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Abstract
We give algorithms for the M-estimators minx ‖Ax− b‖G,

where A ∈ Rn×d and b ∈ Rn, and ‖y‖G for y ∈ Rn is specified

by a cost function G : R 7→ R≥0, with ‖y‖G ≡
∑

iG(yi).
The M -estimators generalize `p regression, for which G(x) =
|x|p. We first show that the Huber measure can be computed
up to relative error ε in O(nnz(A) logn + poly(d(log n)/ε))
time, where nnz(A) denotes the number of non-zero entries
of the matrix A. Huber is arguably the most widely used
M -estimator, enjoying the robustness properties of `1 as well
as the smoothness properties of `2.

We next develop algorithms for general M -estimators.

We analyze the M-sketch, which is a variation of a sketch

introduced by Verbin and Zhang in the context of estimating

the earthmover distance. We show that the M -sketch can

be used much more generally for sketching any M - estimator

provided G has growth that is at least linear and at most

quadratic. Using the M -sketch we solve the M -estimation

problem in O(nnz(A) + poly(d logn)) time for any such G

that is convex,making a single pass over the matrix and

finding a solution whose residual error is within a constant

factor of optimal, with high probability.

1 Introduction.

In recent years there have been significant advances in
randomized techniques for solving numerical linear alge-
bra problems, including the solution of diagonally dom-
inant systems [28, 29, 39], low-rank approximation[2, 9,
15, 12, 13, 34, 36, 38], overconstrained regression[9, 21,
34, 36, 38], and computation of leverage scores [9, 17,
34, 36]. There are many other references; please see for
example the survey by Mahoney [30]. Much of this work
involves the tool of sketching, which in generality is a
descendent of random projection methods as described
by Johnson and Lindenstrauss[1, 4, 3, 11, 26, 27], and
also of sampling methods [10, 14, 15, 16, 18, 19, 20].
Given a problem involving A ∈ Rn×d, a sketching ma-
trix S ∈ Rt×n with t� n is used to reduce to a similar
problem involving the smaller matrix SA, with the key
property that with high likelihood with respect to the
randomized choice of S, a solution for SA is a good
solution for A. More generally, data derived using SA
is used to efficiently solve the problem for A. In cases
where no further processing of A is needed, a stream-
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ing algorithm often results, since a single pass over A
suffices to compute SA.

An important property of many of these sketching
constructions is that S is a subspace embedding, meaning
that for all x ∈ Rd, ‖SAx‖ ≈ ‖Ax‖. (Here the vector
norm is generally `p for some p.) For the regression
problem of minimizing ‖Ax− b‖ with respect to x ∈ Rd,
for inputs A ∈ Rn×d and b ∈ Rn, a minor extension of
the embedding condition implies S preserves the norm
of the residual vector Ax − b, that is ‖S(Ax− b)‖ ≈
‖Ax− b‖, so that a vector x that makes ‖S(Ax− b)‖
small will also make ‖Ax− b‖ small.

A significant bottleneck for these methods is the
computation of SA, taking Θ(nmd) time with straight-
forward matrix multiplication. There has been work
showing that fast transform methods can be incorpo-
rated into the construction of S and its application to
A, leading to a sketching time of O(nd log n) [3, 4, 7, 38].

Recently it was shown that there are useful sketch-
ing matrices S such that SA can be computed in
time linear in the number nnz(A) of non-zeros of A
[6, 9, 34, 36]. With such sketching matrices, various
problems can be solved with a running time whose lead-
ing term is O(nnz(A)) or O(nnz(A) log n). This promi-
nently includes regression problems on “tall and thin”
matrices with n � d, both in the least-squares (`2)
and robust (`1) cases. There are also recent recursive
sampling-based algorithms for `p regression [35], as well
as sketching-based algorithms for p ∈ [1, 2) [34] and
p > 2 [41], though the latter requires sketches whose
size grows polynomially with n. Similar O(nnz(A)) time
results were obtained for quantile regresion [42], by re-
lating it to `1 regression. A natural question raised by
these works is which families of penalty functions can
be computed in O(nnz(A)) or O(nnz(A) log n) time.

M-estimators. Here we further extend the “nnz”
regime to general statistical M -estimators, specified by
a measure function G : R 7→ R≥0, where G(x) = G(−x),
G(0) = 0, and G is non-decreasing in |x|. The result is
a new “norm” ‖y‖G ≡

∑
i∈[n]G(yi). (In general these

functions ‖‖G are not true norms, but we will sometimes
refer to them as norms anyway.) An M -estimator is
a solution to minx ‖Ax− b‖G. For appropriate G, M -
estimators can combine the insensitivity to outliers of
`1 regression with the low variance of `2 regression.



The Huber norm. The Huber norm [24], for
example, is specified by a parameter τ > 0, and its
measure function H is given by

H(a) ≡

{
a2/2τ if |a| ≤ τ
|a| − τ/2 otherwise,

combining an `2-like measure for small x with an `1-like
measure for large x.

The Huber norm is of particular interest, because it
is popular and “recommended for almost all situations”
[43], because it is “most robust” in a certain sense[24],
and because it has the useful computational and statis-
tical properties implied by the convexity and smooth-
ness of its defining function, as mentioned above. The
smoothness makes it differentiable at all points, which
can lead to computational savings over `1, while enjoy-
ing the same robustness properties with respect to out-
liers. Moreover, while some measures, such as `1, treat
small residuals “as seriously” as large residuals, it is of-
ten more appropriate to have robust treatment of large
residuals and Gaussian treatment of small residuals [22].

We give in §2 a sampling scheme for the Huber
norm based on a combination of Huber’s `1 and `2
properties. We obtain an algorithm yielding an ε-
approximation with respect to the Huber norm of the
residual; as stated in Theorem 2.1, the algorithm needs
O(nnz(A) log n) + poly(d/ε) time (see, e.g., [31] for
convex programming algorithms for solving Huber in
poly(d/ε) time when the dimension is poly(d/ε)).

M-sketches for M-estimators. We also show
that the sketching construction of Verbin and Zhang
[40], which they applied to the earthmover distance, can
also be applied to sketching for general M -estimators.

This construction, which we call the M -sketch1 is
constructed independently of the G function specifying
the M -estimator, and so the same sketch can be used
for all G. That is, one can first sketch the input, in
one pass, and decide later on the particular choice of
penalty function G. That is, the entire algorithm for the
problem minx ‖Ax− b‖G is to compute S · A and S · b,
for a simple sketching matrix S described below, and
then solve the regression problem minx ‖SAx−Sb‖G,w,
where ‖‖G,w is defined as follows.

Definition 1.1. For dimension m and non-negative
weights w1, . . . , wm, define the weighted G-measure of a
vector y ∈ Rm, denoted ‖y‖G,w, to be

∑
i∈[m] wiG(yi).

We refer to w as the weight vector.

Notice that ‖y‖G equals ‖y‖G,w when wi = 1 for all i. If
the G function is convex, then using the non-negativity
of w, it follows that ‖y‖G,w is a convex function of y.

1Verbin and Zhang call the construction a Rademacher sketch;
with apologies, we prefer our name, for this application.

The sketch SA (and Sb) can be computed in
O(nnz(A)) time, and needs O(poly(d log n)) space; we
show that it can be used in O(poly(d log n)) time to
find approximate M -estimators, that with constant
probability have a cost within a constant factor of
optimal. The success probability can be amplified by
independent repetition and choosing the best solution
found among the repetitions.

Condition on G. For our results we need some
additional conditions on the function G beyond sym-
metry and monotonicity: that it grows no faster than
quadratically in x, and no slower than linearly. For-
mally: there is α ∈ [1, 2] and CG > 0 so that for all a, a′

with |a| ≥ |a′| > 0,

(1.1)
∣∣∣ a
a′

∣∣∣α ≥ G(a)

G(a′)
≥ CG

∣∣∣ a
a′

∣∣∣
The subquadratic growth condition is necessary for a
sketch with a sketching dimension sub-polynomial in
n to exist, as shown by Braverman and Ostrovsky [8].
Also, subquadratic growth is appropriate for robust re-
gression, to reduce the effect of large values in the resid-
ual Ax − b, relative to their effect in least-squares. Al-
most all proposed M -estimators satisfy these conditions
[43].

The latter linear lower bound on the growth of G
holds for all convex G, and many popular M -estimators
have convex G [43]. Moreover, the convexity of G im-
plies the convexity of ‖‖G, which is needed for comput-
ing a solution to the minimization problem in polyno-
mial time. Convexity also implies significant properties
for the statistical interpretation of the results, such as
consistency and asymptotic normality[23, 37].

However, we do not require G to be convex for
our sketching results, and indeed some M -estimators
are not convex; here we simply reduce a large non-
convex problem, minx ‖Ax− b‖G, to a smaller non-
convex problem minx ‖S(Ax− b)‖G,w of a similar kind.
The linear growth lower bound does imply that we
are unable to apply sketching to some proposed M -
estimators; the “Tukey” estimator, for example, whose
G function is constant for large argument values, is not
included in our results. However, we can get close, in
the sense that at the cost of more computation, we can
handle G functions that grow arbitrarily slowly.

Not only do we obtain optimal O(nnz(A) +
poly(d log n)) time approximation algorithms for these
M -estimators, our sketch is the first to non-trivially re-
duce the dimension of any of these estimators other
than the `p-norms (which are a special case of M -
estimators). E.g., for the L1 − L2 estimator in which
G(x) = 2(

√
1 + x2/2 − 1), the Fair estimator in which

G(x) = c2
[
|x|
c − log(1 + |x|

c )
]
, or the Huber estimator,



no dimensionality reduction for the regression problem
was known.

1.1 Techniques.
Huber algorithm. Our algorithm for the Hu-

ber estimator, §2, involves importance sampling of
the (Ai:, bi), where a sampling matrix S′ is obtained
such that ‖S′(Ax− b)‖H,w is a useful approximation to
‖Ax− b‖H . The sampling probabilities are based on a
combination of the `1 leverage score vector u ∈ Rn, and
the `2 leverage score vector u′ ∈ Rn. The `1 vector u
can be used to obtain good sampling probabilities for `1
regression, and similarly for u′ and `2. Since the Huber
measure has a mixed `1/`2 character, we are able to use
a combination of `1 and `2 scores to obtain good sam-
pling probabilities for Huber. A key observation we use
is Lemma 2.1, which roughly bounds the Huber norm
of a vector in terms of n, τ , and its `1 and `2 norms,
and leads to a recursive sampling algorithm. Several
difficulties arise, most notably that the Huber norm is
not scale-invariant, that is, for small arguments it scales
quadratically with its input while for large arguments it
scales linearly. This complicates the sampling, as well
as simple aspects such as net arguments typically used
for `p-regression, which relied on scale-invariance.

The M-sketch construction. Our sketch, a vari-
ant of that of Verbin and Zhang [40], is given formally
as (3.6) in §3.1. It can be seen as a form of sub-sampling
and finding heavy hitters, techniques common in data
streams [25]; however, most analyses we are aware of
concerning such data structures, with the exception of
that of Verbin and Zhang for earthmover distance, re-
quire a median operation in the sketch space and thus
do not preserve convexity. This is the first time such
sketches have been considered and shown to work in
the context of regression.

We describe here a variant construction, comprising
a sequence of sketching matrices S0, S1, . . . Shmax , for a
parameter hmax, each comprising a block of rows of our
sketching matrix:

S ≡


S0

S1

S2

...
Shmax

 .
When applied to vector y ∈ Rn, each Sh ignores all
but a subset Lh of n/bh entries of y, where b > 1 is a
parameter, and where those entries are chosen uniformly
at random. (That is, Sh can be factored as S′hS

′′
h , where

S′′h ∈ Rn/bh×n samples row i of A by having column i
with a single 1 entry, and the rest zero, and S′h has only
n/bh nonzero entries.)

Each Sh implements a particular sketching
scheme called COUNT-SKETCH on its random sub-
set. COUNT-SKETCH splits the coordinates of y into
groups (“buckets”) at random, and adds together each
group after multiplying each coordinate by a random
±1; each such sum constitutes a coordinate of Shy.
COUNT-SKETCH was recently [9, 34, 36] shown to be a
good subspace embedding for `2, implying here that
the matrix S0, which applies to all the coordinates of
y = Ax, has the property that ‖S0Ax‖2 is a good es-
timator for ‖Ax‖2 for all x ∈ Rd; in particular, each
coordinate of S0y is the magnitude of the `2 norm of
the coordinates in the contributing group.

Why should our construction, based on `2 embed-
dings, be suitable for, e.g., `1, with ‖D(w)SAx‖1 an es-
timate of ‖Ax‖1? Why should the M -sketch be effective
for that norm? Here D(w) is an appropriate diagonal
matrix of weights w. An intuition comes from consid-
ering the matrix Shmax

for the smallest random subset
Lhmax

of y = Ax to be sketched; we can think of Shmax
y

as one coordinate of y = Ax, chosen uniformly at ran-
dom and sign-flipped. The expectation of ‖Shmax

y‖1 is∑
i∈[n] ‖yi‖2/n = ‖y‖1/n; with appropriate scaling from

D(w), that smallest random subset yields an estimate
of ‖y‖1 = ‖Ax‖1. (This scaling is where the values w
are needed.) The variance of this estimate is too high to
be useful, especially when the norm of y is concentrated
in one coordinate, say y1 = 1, and all other coordinates
zero. For such a y, however, ‖y‖2 = ‖y‖1, so the base
level estimator ‖S0y‖2 is a good estimate. On the other
hand, when y is the vector with all coordinates 1/n, the
variance of ‖Slogb ny‖1 is zero, while ‖S0y‖2 ≈ ‖y‖2 is
quite inaccurate as an estimator of ‖y‖1. So in these
extreme cases, the extreme ends of the M -sketch are ef-
fective. The intermediate matrices Sh of the M -sketch
help with less extreme cases of y-vectors.

Analysis techniques. While helpful to the intu-
ition, the above observations are not used to prove the
results here. The general structure of our arguments is
to show that, conditioned on several constant probabil-
ity events, for a fixed x ∈ Rd there are bounds on:

• contraction, so with high probability, ‖SAx‖G,w is
not too much smaller than ‖Ax‖G;

• dilation, so with constant probability, ‖SAx‖G,w is
not too much bigger than ‖Ax‖G.

This asymmetry in probabilities means that some re-
sults are out of reach, but still allows approximation
algorithms for minx ‖Ax− b‖G. (We blur the distinc-
tion between applying S to A for vectors x ∈ Rd, and
to [A b] for vectors [x −1].) If the optimum xOPT for
the original problem has ‖S(AxOPT − b)‖G that is not
too large, then it will be a not-too-large solution for the



sketched problem minx ‖S(Ax− b)‖G,w. If contraction
bounds hold with high probability for a fixed vector Ax,
and a weak dilation bound holds for every Ax, then an
argument using a metric-space ε-net shows that the con-
traction bounds hold for all x; thus, there will be no x
that gives a good, small ‖S(Ax− b)‖G,w and bad, large
‖Ax− b‖G.

The contraction and dilation bounds are shown on
a fixed vector y ∈ Rn by splitting up the coordinates of
y into groups (“weight classes”) with the members of a
weight class having roughly equal magnitude. (For y =
SAx, it will convenient to consider weight classes based
on the values G(yi), not |yi| itself; for this section we
won’t dwell on this distinction: assume hereG(a) = |a|.)
A weight class W is then analyzed with respect to its
cardinality: there will be some random subset (“level”)
Lĥ for which |W ∩ Lĥ| is small relative to the number
of rows of Sĥ (each row of Sĥ corresponds to a bucket,
as an implementation of COUNT-SKETCH), and therefore
the members of W are spread out from each other, in
separate buckets. This implies that each member of
W makes its own independent contribution to ‖Sy‖G,w,
and therefore that ‖Sy‖G,w will not be too small. Also,
the level Lĥ is chosen such that the expected number
of entries of the weight class is large enough that the
random variable |W ∩ Lĥ| is concentrated around its
mean with exponentially small failure probability in d,
and so this contribution from W is well-behaved enough
to union bound over a net.

The above argument works when the weight classW
has many members, i.e., at least d coordinates in order
to achieve concentration. For those W without many
members which still contribute significantly to ‖y‖G, we
need to ensure that as we range over y in the subspace,
these weight classes only ever involve a small fixed set of
coordinates. We show this by relating the G function to
the function f(x) = x2, and arguing that these weight
classes only involve coordinates with a large `2 leverage
score; thus the number of such coordinates is small
and they can be handled separately once for the entire
subspace by conditioning on a constant probability
event.

To show that ‖Sy‖G,w will not be too big, we show
that W will not contribute too much to levels other than
the “Goldilocks” level Lĥ: for h < ĥ, for which |Lh∩W |
is expected to be large, the fact that members of W ∩Lh
will be crowded together in a single bucket implies they
will cancel each other out, roughly speaking; or more
precisely, the fact that the COUNT-SKETCH buckets have
an expectation that is the `2 norm of the bucket entries
implies that if a bucket contains a large number of
entries from one weight class, those entries will make
a lower contribution to the estimate ‖Sy‖G,w than they

did for Lĥ. For h a bit bigger than ĥ, W ∩Lh will likely
be empty, and W will make no contribution to ‖Shy‖.

This argument does not work when the function
G has near quadratic growth, and would result in an
O(log n) dilation. By modifying the estimator we can
achieve an O(1) dilation by ignoring small buckets, and
adding only those buckets in a level h that are among
the top ones in value. Note that if G is convex, then
so is this “clipped” version, since at each level we are
applying a Ky Fan norm. The distinction of taking the
top number of buckets versus those buckets whose value
is sufficiently large seems important here, since only the
former results in a convex program.

1.2 Outline. We give our algorithm for the Huber
M -estimator in §2.

Next we give some definitions and basic lemmas
related to M -sketches, that for a given vector y, under
appropriate assumptions S does not contract y too much
(§3.5). We also show it does not dilate it too much
(§3.6). In §3.6.2, we sharpen the dilation result by
changing slightly the way we use the sketches, improving
the dilation bound while preserving the contraction
bound.

2 ε-Approximation for the Huber Measure.

Here we consider specifically the Huber measure: for
parameter τ > 0, and a ∈ R, the Huber function

H(a) ≡

{
a2/2τ if |a| ≤ τ
|a| − τ/2 otherwise.

The Huber “norm” is ‖z‖H =
∑
pH(zp).

The main theorem of this section, proven in §2.1:

Theorem 2.1. (Input Sparsity Time Huber Regres-
sion) In O(nnz(A) log n)+poly(d/ε) time, given an n×d
matrix A with nnz(A) non-zero entries and n×1 vector
b, with probability at least 4/5, one can find an x′ ∈ Rd
for which ‖Ax′ − b‖H ≤ (1 + ε) minx∈Rd ‖Ax− b‖H .

We will need to relate the Huber norm to the `1
and `2 norms. The following lemma is shown via a case
analysis of the coordinates of the vector z.

Lemma 2.1. (Huber Inequality) For z ∈ Rn,

Θ(n−1/2) min{‖z‖1, ‖z‖
2
2/2τ} ≤ ‖z‖H ≤ ‖z‖1.

Proof. For the upper bound, we note that H(a) ≤ |a|,
whether |a| ≤ τ or otherwise, and therefore ‖z‖H ≡∑
pH(zp) ≤

∑
p |zp| ≡ ‖z‖1. We now prove the lower

bound. We consider a modified Huber measure ‖z‖G
given a parameter τ > 0 in which

G(a) ≡

{
a2/2τ if |a| ≤ τ
|a| otherwise.



Then ‖z‖H ≤ ‖z‖G ≤ 2‖z‖H , and so it suffices to prove
the lower bound for ‖z‖G.

By permuting coordinates, which does not affect the
inequality we are proving, there is an s for which

|z1| ≤ |z2| ≤ . . . ≤ |zs| ≤ τ ≤ |zs+1| ≤ . . . ≤ |zn|.

(We may have s = 0, when all |zi| ≥ τ , or s = n, when
all |zi| ≤ τ .) Let U =

∑n
j=s+1 |zj | and L =

∑s
j=1 z

2
j .

Consider the n-dimensional vector w with s coordinates

equal to
√

L
s , one coordinate equal to U , and remaining

coordinates equal to 0. Then,

‖w‖G = s · L
s2τ

+ U =
L

2τ
+ U = ‖z‖G.(2.2)

Moreover,

‖w‖1 = U + s ·
√
L√
s

= U +
√
sL ≥ ‖z‖1,(2.3)

since subject to a 2-norm constraint L, the 1-norm is
maximized when all s coordinates are equal. Also,

‖w‖22
2τ

=
L

2τ
+
U2

2τ
≥
‖z‖22
2τ

,(2.4)

since subject to a 1-norm constraint U , the 2-norm is
maximized when there is a single non-zero coordinate.

Combining (2.2), (2.3), and (2.4), in order to show

‖z‖G = Ω(n−1/2) min(‖z‖1, ‖z‖
2
2/2τ) it suffices to show

‖w‖G = Ω(n−1/2) min(‖w‖1, ‖w‖
2
2/2τ). By the above,

this is equivalent to showing

U +
L

2τ
= Ω(n−1/2) ·min

(
U +

√
sL,

U2

2τ
+

L

2τ

)
,

which since s ≤ n, is implied by showing
(2.5)

U +
L

2τ
= Ω(n−1/2) ·min

(
U +

√
nL,

U2

2τ
+

L

2τ

)
.

Note that we can assume U 6= 0, as other-
wise the inequality is equivalent to showing
L
2τ = Ω(n−1/2) · min

(√
nL, L2τ

)
. This holds since

L
2τ = Ω(n−1/2) L2τ . So we can assume U > 0, and by
definition of U , this implies that U ≥ τ . We break the
analysis into cases:

Case: U2

2τ + L
2τ ≤

1
4 (U +

√
nL). What we need to show

in this case to prove (2.5) is U+ L
2τ = Ω(n−1/2)(U

2

2τ + L
2τ ).

Suppose first that L
2τ ≥ U . Then what we need to

show in this case is that L
2τ = Ω(n−1/2)(U

2

2τ + L
2τ ). Since

L
2τ appears on both the left and right hand sides, this

follows from showing that L
2τ = Ω(n−1/2)(U

2

2τ ). Using

the definition of this case, and that U ≥ τ , we have
U
4 + U2

4τ + L
2τ ≤

U
4 +

√
nL
4 , which implies that U2

τ ≤
√
nL.

So we just need to show that L
2τ = Ω(n−1/2)

√
nL
2 , or

equivalently,
√
L = Ω(τ). Since L

2τ ≥ U ≥ τ , we have
L = Ω(τ2), as desired.

Otherwise, we have U ≥ L
2τ and to prove (2.5) we

need to show U = Ω(n−1/2)
(
U2

2τ + L
2τ

)
. We can assume

U2

2τ ≥
L
2τ , otherwise this is immediate from the fact

that U ≥ L
2τ , and so we need to show U = Ω(n−1/2)U

2

2τ ,

or equivalently, U
2τ = O(

√
n). Now we use the fact

that U2

2τ + L
2τ = Θ(U

2

τ ) realizes the minimum given

the case that we are in, and so U2

τ = O(U +
√
nL), or

equivalently, U
τ = O

(
1 +

√
nL
U

)
. Since as mentioned

it holds that U2

2τ ≥
L
2τ , we have U2 ≥ L, and so

√
nL
U ≤

√
n. It follows that U

2τ = O(
√
n), which is what

we needed to show.

Case: 1
4 (U+

√
nL) < U2

2τ + L
2τ . What we need to show in

this case to prove (2.5) is U+ L
2τ = Ω(n−1/2)(U+

√
nL).

Suppose first that U ≥ L
2τ , and so we need to

show U = Ω(n−1/2)(U +
√
nL), which is equivalent

to showing U = Ω(
√
L). Since L

2τ ≤ U , we have√
L = O(

√
Uτ) = O(U), using that U ≥ τ . This

completes this case.
Otherwise, we have L

2τ ≥ U and need to show
L
2τ = Ω(n−1/2)(U +

√
nL). We can assume

√
nL ≥ U ,

otherwise this is immediate using L
2τ ≥ U , and so

we need to show L
2τ = Ω(n−1/2)

√
nL = Ω(

√
L), or

equivalently, L = Ω(τ2). Now we use the fact that
U +

√
nL = Θ(

√
nL) realizes the minimum, and so√

nL = O
(
U2

2τ + L
2τ

)
, and using that U ≤ L

2τ , this

implies
√
nL = O

(
L
2τ ·

U
2τ + L

2τ

)
. Since U ≥ τ , it follows

that
√
nL = O

(
LU
τ2

)
. Now using that U ≤

√
nL, this

implies that L = Ω(τ2), which is what we needed to
show.

This completes the proof.

Suppose we want to solve the Huber regression
problem minx∈Rd ‖Ax− b‖H , where A is an n×d matrix
and b an n × 1 column vector. We will do so by
a recursive argument, and for that we will need to
solve minx∈Rd ‖Ax− b‖H,w, for various weight vectors
w. Note that ‖Ax− b‖H,w is a non-negative linear
combination of convex functions of x, and hence is
convex. We develop a lemma for this more general
problem, given w. We maintain that if wi 6= 0, then
wi ≥ 1.

In our recursion we will have ‖w‖∞ ≤ poly(n) for
some polynomial that depends on where we are in the



recursion. These conditions imply that we can partition
the positive coordinates of w into O(log n) groups P j ,
for which P j = {i | 2j−1 ≤ wi < 2j}.

Let Aj denote the restriction of the input matrix
A to those rows i in the set P j . For each j, let U j

be an (α, β)-well-conditioned basis for Aj with respect
to `1, meaning U j has the same column span as Aj ,∑
i∈P j |U ji |1 = α, and for all x, ‖x‖∞ ≤ β‖U jx‖1

[10]. Here U ji is the i-th row of U j . Let V j be an
approximately orthonormal basis for the column span
of Aj , that is,

∑
i∈P j ‖V ji ‖22 = O(d) and for all x,

‖V jx‖2 = (1 ± 1/2)‖x‖2. Here V ji is the i-th row of
V j . Let Aj = U jJj and Aj = V jKj , where Jj and Kj

are d× d matrices.

For each j and i ∈ P j , let qji =
‖Uj

i ‖1
α and let

rji =
‖V j

i ‖
2
2∑

i′∈Pj ‖V j

i′‖
2
2

. For i /∈ P j , let qji = 0 and rji = 0.

Set s = C0 · n1/2 max(α · β, d) · dε−2 log(n/ε) for
a sufficiently large constant C0 > 0. Suppose we
independently sample each row i of A with probability
pi = min(1,Θ(s ·

∑
j(q

j
i + rji ))) (the fact that we choose

Θ(s ·
∑
j(q

j
i + rji )) instead of s ·

∑
j(q

j
i + rji ) in the

definition of pi will give us some flexibility in designing
a fast algorithm, as we will see).

For i ∈ [n], let w′i = 0 if we do not sample row
i, and otherwise w′i = wi/pi. The expected number of
non-zero elements of w′ is O(s log n). This is because for

each of the O(log n) possibilities of j,
∑
i q
j
i +rji = O(1).

Note that if w′i 6= 0, then w′i ≥ 1. Moreover, by a union
bound over the n coordinates, with probability 1−1/nC

we have ‖w′‖∞ ≤ nC+1‖w‖∞, since the probability that
any i for which pi ≤ 1/nC+1 is sampled is at most 1/nC .

Theorem 2.2. (Huber Embedding) With the notation
defined above, for any fixed x ∈ Rd,

Pr[(1− ε)‖Ax‖H,w ≤ ‖Ax‖H,w′ ≤ (1 + ε)‖Ax‖H,w]

≥ 1− exp(−C2d log(n/ε)),

for an arbitrarily large constant C2 > 0.

Proof. Fix a vector x and define the non-negative
random variable Xi = w′i ·H(Aix). For X =

∑n
i=1Xi,

we have E[X] =
∑n
i=1 pi(wi/pi)H(Aix) = ‖Ax‖H,w.

We will use the following version of the Bernstein
inequality.

Fact 2.1. ([33, 5]) Let {Xi}ni=1 be independent random
variables with E[X2

i ] <∞ and Xi ≥ 0. Set X =
∑
iXi

and let γ > 0. Then,

Pr[X ≤ E[X]− γ] ≤ exp

(
−γ2

2
∑
i E[X2

i ]

)
.

If Xi − E[Xi] ≤ ∆ for all i, then with σ2
i = E[X2

i ] −
E[Xi]

2 we have

Pr[X ≥ E[X] + γ] ≤ exp

(
−γ2

2
∑
i σ

2
i + 2γ∆/3

)
.

If for some i we have pi = 1, then E[Xi] = Xi =
wiH(Aix). It follows that such Xi do not contribute
to the deviation of X from E[Xi], and therefore we can
apply Fact (2.1) only to those Xi for which pi < 1.

In order to apply Fact (2.1), we first bound
H(Aix)/pi, for the case when pi < 1, by a case
analysis. Suppose i ∈ P j . We use Lemma 2.1 to do the
case analysis.

Case |Aix| ≥ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖1). It
follows that

H(Aix)

pi
=
|Aix| − τ/2

pi
≤ |Aix|

pi
≤ |Aix|

Θ(s)qji
=

|Aix|α
Θ(s)‖U ji ‖1

≤ ‖U
j
i ‖1‖Jjx‖∞α
Θ(s)‖U ji ‖1

≤ αβ‖Ajx‖1
Θ(s)

≤
αβO(n1/2)‖Ajx‖H

s
=

O(‖Ajx‖H)

C0ε−2d log(n/ε)
.

Case |Aix| ≥ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖22/(2τ)).
We claim in this case that ‖Ajx‖H = Ω(n−1/2‖Ajx‖1)

as well. Suppose not, so that ‖A
jx‖1

‖Ajx‖H
= ω(n1/2).

Let S ⊆ [n] be the set of ` ∈ [n] for which
|(Ajx)`| ≥ τ . Then ‖(Ajx)S‖H ≥ ‖(Ajx)S‖1/2. Hence,

ω(n1/2) =
‖Ajx‖1
‖Ajx‖H

=
‖(Ajx)S‖1 + ‖(Ajx)[n]\S‖1

‖Ajx‖H

≤ 2 +
‖(Ajx)[n]\S‖1
‖Ajx‖H

,

so that ‖(Ajx)[n]\S‖1 = ω(n1/2)‖Ajx‖H .
Given a value of ‖(Ajx)[n]\S‖1, the value

‖(Ajx)[n]\S‖22 is minimized when all of the coordinates
are equal:

‖(Ajx)[n]\S‖H ≥ n ·
(‖(Ajx)[n]\S‖1

n

)2

/(2τ)

=
‖(Ajx)[n]\S‖21

2τn
.

Note also that ‖(Ajx)S‖H ≥ τ/2 since there exists an i
for which |Aix| ≥ τ given that we are in this case.

So in order for the condition that ‖(Ajx)[n]\S‖1 =

ω(n1/2)‖Ajx‖H , it must be the case that

‖(Ajx)[n]\S‖1 = ω(n1/2) ·
(
τ +
‖(Ajx)[n]\S‖21

2τn

)
.



The right hand side of this expression is minimized

when τ2 =
‖(Ajx)[n]\S‖21

2n , which implies Θ(τ2n) =
‖(Ajx)[n]\S‖21, or equivalently, ‖(Ajx)[n]\S‖1 =
Θ(τ
√
n). But then we have

Θ(τ
√
n) = ‖(Ajx)[n]\S‖1 = ω(n1/2) · 2τ,

which is a contradiction. Hence, ‖Ajx‖H =
Ω(n−1/2‖Ajx‖1), and this case reduces to the first case.

Case |Aix| ≤ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖1).
It follows that

H(Aix)

pi
=

(Aix)2

2τpi
≤ τ |Aix|

2τpi
=
|Aix|
2pi

,

using that |Aix| ≤ τ . Now we have the same derivation
as in the first case, up to a factor of 2.

Case |Aix| ≤ τ and ‖Ajx‖H = Ω(n−1/2‖Ajx‖22/(2τ)).
It follows using the properties of V j that

H(Aix)

pi
=

(Aix)2

2τpi
≤ (Aix)2

τΘ(s)rji
≤ (Aix)2O(d)

τs‖V ji ‖22

≤ ‖V
j
i ‖22‖Kjx‖22O(d)

τs‖V ji ‖22
≤ ‖A

jx‖22O(d)

τs

≤
O(d)τn1/2‖Ajx‖H

τs

=
O(‖Ajx‖H)

C0ε−2d log(n/ε)
.

Hence, in all cases, if i ∈ P j then

H(Aix)

pi
≤

‖Ajx‖H
C1ε−2d log(n/ε)

for an arbitrarily large constant C1 > 0. Then,

Xi −E[Xi] ≤ Xi ≤
wiH(Aix)

pi
≤

wi‖Ajx‖H
C1ε−2d log(n/ε)

.

Moreover, using the notation of Fact (2.1),∑
i:pi<1

σ2
i ≤

∑
i:pi<1

E[X2
i ]

=
∑
j

∑
i:pi<1, i∈P j

wiH(Aix)
wiH(Ajix)

pi

≤
∑
j

‖Ajx‖H,w
C1ε−2d log(n/ε)

·
∑

i:pi<1, i∈P j

wiH(Aix)

≤
∑
j

‖Ajx‖2H,w
C1ε−2d log(n/ε)

≤
‖Ax‖2H,w

C1ε−2d log(n/ε)
.

Setting γ = ε‖Ax‖H,w, and applying Fact (2.1),

Pr[‖Ax‖H,w′ ≤ ‖Ax‖H,w − γ]

≤ exp

(
−γ2C1ε

−2d log(n/ε)

2(‖Ax‖H,w)2

)
≤ exp(−C2d log(n/ε)),

and also

Pr[‖Ax‖H,w′ ≥ ‖Ax‖H,w + γ]

≤ exp

 −γ2

2
(‖Ax‖H,w)2

C1ε−2d log(n/ε) + 2
3γ

‖Ax‖H,w

C1ε−2d log(n/ε)


≤ exp(−C2d log(n/ε)),

where C2 > 0 is a constant that can be made arbitrarily
large by choosing C0 > 0 arbitrarily large.

We now combine Theorem 2.2 with a net argument
for the Huber measure. We will use those arguments in
Section 4. To do so, we need the following lemma.

Lemma 2.2. (Huber Growth Condition) The function
H(a) satisfies the growth condition (1.1) with α = 2
and CG = 1.

Proof. We prove this by a case analysis. We can assume
a and a′ are positive since the inequality only depends
on the absolute value of these quantities. For notational
convenience, let C ≡ a/a′. If a = a′, the lemma is
immediate, so assume C > 1.

First suppose a′ ≥ τ . Then H(a)/H(a′) = (Ca′ −
τ/2)/(a′ − τ/2), which is maximized when a′ = τ ,
yielding (C − 1/2)/(1/2) = 2C − 1. Since 2C − 1 ≤ C2

for C ≥ 1, the left inequality of (1.1) holds. Conversely,
H(a)/H(a′) is at least C, and so the right inequality of
(1.1) holds.

Next suppose a ≥ τ and a′ < τ . Then

H(a)/H(a′) = (Ca′ − τ/2)/((a′)2/(2τ))

= 2τC/a′ − τ2/(a′)2.

Then

d(H(a)/H(a′))

da′
= −2τC/(a′)2 + 2τ2/(a′)3,

and setting this equal to 0 we find that a′ = τ/C
maximizes H(a)/H(a′). In this case H(a)/H(a′) = C2,
and so the left inequality of (1.1) holds. Since a ≥ τ ,

τ > a′ ≥ τ/C, and since d(H(a)/H(a′))
da′ < 0 for a′ ∈

(τ/C, τ ], H(a)/H(a′) is minimized when a′ = τ , in
which case it equals 2C − 1. Since 2C − 1 ≥ C for
C ≥ 1, the right inequality of (1.1) holds.



Finally, suppose a < τ . In this case

H(a)/H(a′) = a2/(a′)2 = C2,

and the left inequality of (1.1) holds, and the right
inequality holds as well.

2.1 Proof of Theorem 2.1, Huber algorithm
running time.

Proof. We first solve the least squares regression prob-
lem minx ‖Ax−b‖2 in O(nnz(A))+poly(d/ε) time using
[9] up to a factor of 1+ε. This step succeeds with prob-
ability 1−o(1). Suppose y′ = Ax′− b realizes this mini-
mum. Let c = ‖y′‖2/(1 + ε). Then by Lemma 4.4 as we
will see in our net argument in §4, applied to w = 1n,
if y∗ = Ax∗ − b, where x∗ = argminx‖Ax− b‖H , then
c ≤ ‖y∗‖2 ≤ κcn3/2, where κ > 0 is a sufficiently large
constant.

To apply Theorem 2.2 with w = 1n first note that
all weights wi are in the same group P 1. We then
need to be able to compute the sampling probabilities
q1
i and r1

i , but only up to a constant factor since

pi = min(1,Θ(s · (q1
i + r1

i ))). Recall, q1
i =

‖U1
i ‖1
α and

let ri =
‖V 1

i ‖
2
2∑d

i=1 ‖V 1
i ‖22

, where U1
i and V 1

i denote the i-th

row of U1 and V 1, respectively. Here U1 is an (α, β)-
well-conditioned basis for A with respect to `1, meaning
U1 has the same column span as A,

∑d
i=1 |U1

i |1 = α,
and for all x, ‖x‖∞ ≤ β‖U1x‖1. By Lemma 49 and
Theorem 50 of [9] (see also [34, 41]), the q1

i can be
computed in O(nnz(A) log n)+poly(d/ε) time, for a U1

with α, β ≤ poly(d). Similarly, by Theorem 29 of [9], in
O(nnz(A) log n) + poly(d/ε) time we can compute the
ri, for a matrix V 1 for which

∑
i ‖V 1

i ‖22 = Θ(d) and for
all x, ‖V 1x‖ = (1±1/2)‖x‖2. These steps succeed with
probability 1−1/ logC n probability for arbitrarily large
constant C > 0.

The vector w′ in Theorem 2.2 can be computed
in O(n) time, and the expected number of non-zero
entries of w′ is O(s log n) = O(n1/2 max(α · β, d) ·
ε−2d log(n/ε) log n) = n1/2(log2 n)poly(d/ε), and so
with probability 1 − o(1), we will have nnz(w′) ≤
n1/2(log2 n)poly(d/ε).

Let T be the sparse subspace embedding of [9], so
that with probability 1− o(1), ‖TAx‖2 = (1± ε)‖Ax‖2
for all x and TA can be computed in nnz(A) time and
T has poly(d/ε) rows.

Now consider the regression problem minx ‖Ax −
b‖H,w′ subject to the constraint ‖TAx−Tb‖2 ≤ 2κcn3/2.
This 2-norm constraint is needed to ensure that we
satisfy the conditions needed to apply Lemma 4.5 in
our net argument in §4. By a union bound, Theorem
2.2 holds simultaneously for all points in a net N of
size (n/ε)O(d). This step succeeds with probability

1−o(1). Moreover, since w′i = wi/pi with probability pi
(and zero otherwise), by a union bound the probability
that a pi of a nonzero w′i is less than 1/n2 is at most
n/n2 = 1/n, so with probability 1− o(1), ‖w′‖∞ ≤ n2,
implying ‖Ax− b‖H,w′ ≤ n2‖Ax− b‖H for all x.

Hence, we can apply Lemma 4.5 with S equal to
the identity and our choice of w′ (together with the
input constant 2κ) to conclude, by a union bound that
with probability 1− o(1), if x∗ = argminx‖Ax− b‖H,w′
subject to the constraint ‖TAx∗−Tb‖2 ≤ 2κcn3/2, then
‖Ax∗ − b‖H,w ≤ (1 + ε) minx ‖Ax− b‖H,w.

Thus, we have reduced the original regression prob-
lem to the regression problem minx ‖Ax − b‖H,w′ con-
strained by ‖TAx − Tb‖2 ≤ 2κcn3/2, where w′ has
n1/2 log2 n · poly(d/ε) non-zero entries. We now repeat
this procedure recursively O(1) times. Let w0 = 1n and
w1 = w′. In the `-th recursive step, ` ≥ 2, we are given
the regression problem minx ‖Ax− b‖H,w`−1

subject to

the constraint ‖TAx−Tb‖2 ≤ 2κcn3/2+2`−2 (we use the
same matrix T in all steps), and we reduce the problem
to solving minx ‖Ax − b‖H,w`

subject to the constraint
‖TAx−Tb‖2 ≤ 2κcn3/2+2`−2. We now describe the `-th
recursive step.

We inductively have that ‖w`−1‖∞ ≤ n2`−2. We
first group the weights of w`−1 into O(log n) groups

P j . For each group we compute U ji and V ji as
above, thereby obtaining w` in O(t`−1 log n) expected
time, where t`−1 is the number of non-zero weights

in w`−1. The expected value of t` is O(t
1/2
`−1 max(α ·

β, d) · ε−2d log(n/ε) logn). We can condition on t`−1

being O(n1/2`−1

poly(dε−1 log n)) as all events jointly
succeed with probability 1 − o(1). We thus have

t` = n1/2`

poly(dε−1 log n) with probability 1 − o(1).
We now consider the regression problem minx ‖Ax −
Ab‖H,w`

subject to the constraint ‖TAx − Tb‖2 ≤
2κcn3/2‖w`−1‖∞ ≤ 2κcn3/2+2`−2. By a union bound,
Theorem 2.2 holds simultaneously for all points in a
net N of size (n/ε)O(d), this step succeeding with prob-
ability 1 − o(1). Moreover, the w′ in Theorem 2.2 is
equal to w` and satisfies ‖w`‖∞ ≤ n2‖w`−1‖∞ ≤ n2`.
We can thus apply Lemma 4.5 with S equal to the
identity to conclude that with probability 1 − o(1), if
x∗ = argminx‖Ax − b‖H,w`

subject to the constraint
‖TAx∗−Tb‖2 ≤ 2κcn3/2+2`−2, then ‖Ax∗− b‖H,w`−1

≤
(1 + ε) minx ‖Ax− b‖H,w`−1

.
It follows that for ` a large enough constant, and

by scaling ε by a constant factor, we will have that
with probability 1− o(1), if x∗ = argminx‖Ax− b‖H,w`

subject to the constraint ‖TAx∗−Tb‖2 ≤ 2κcn3/2+2`−2,
then ‖Ax∗ − b‖H ≤ (1 + ε) minx ‖Ax− b‖H . Moreover,

t` ≤ n1/2`

poly(dε−1 log n). This resulting problem is
that of minimizing a convex function subject to a convex
constraint and can be solved using the ellipsoid method



in tC` time for a fixed constant C > 0. Setting 2` > C/2
and assuming the poly(dε−1 log n) factor is at most
n1/2 gives us a running time of O(n) to solve this last
recursive step of the problem. The overall running time
of the recursion is dominated by the time to compute the
U j and V j in the different recursive levels, which itself is
dominated by the top-most level of recursion. This gives
an overall running time of O(nnz(A) log n) + poly(d/ε).

3 M-sketches for M-estimators.

Given a function G : R 7→ R+ with G(a) = G(−a), and
G(0) = 0, we can use the sketch of z ∈ Rn to estimate
‖z‖G ≡

∑
pG(zp), assuming G is monotone and satisfies

the growth upper and lower bounds of (1.1).
(Perhaps a more consistent notation would define

the measure based on G as G−1(‖z‖G), by analogy with
`p norms. Moreover, ‖z‖G does not in general satisfy
the properties of a norm. However, if G is convex, then
‖y‖G is a convex function of z, and if also G−1(‖z‖G)
is scale-invariant, so that G−1(‖tz‖G) = |t|G−1(‖z‖G),
then G−1(‖z‖G) is a norm.)

The sketch. We use an extension of
COUNT-SKETCH, which has been shown to be effec-
tive for subspace embeddings [9, 36, 34]. In that
method, for a vector z ∈ Rn, each coordinate zp is
mapped via a hash function from [n] to one of N hash
buckets, written as gp ∈ [N ] for p ∈ [n]; a coordinate
is generated for bucket g ∈ [N ] as

∑
gp=g Λpzp, where

Λp = ±1 is chosen independently at random with equal
probability for +1 and −1. The resulting N -vector has
approximately the same `2 norm as z.

Here we employ also sampling of the coordinates, as
done in the context of estimating earthmover distance
in [40], where each coordinate zp is mapped to a level
hp, and the number of coordinates mapped to level h is
exponentially small in h: for an integer branching factor
b > 1, we expect the number of coordinates at level h to
be about a b−h fraction of the coordinates. The number
of buckets at a given level is N = bcm, where integers
m, c > 1 are parameters to be determined later.

Our sketching matrix implementing this approach
is S ∈ RNhmax×n, where hmax ≡ blogb(n/m)c, and
our scaling vector w ∈ RNhmax . The entries of S are
Sj,p ← Λp, and the entries of w are wj ← βbhp , where
β ≡ (b− b−hmax)/(b− 1), j ← gp +Nhp, and

Λp ← ±1 with equal probability

gp ∈ [N ] chosen with equal probability

hp ← h with probability 1/βbh for int h ∈ [0, hmax],

(3.6)

all independently. Let Lh be the multiset {zp | hp = h},
and Lh,i the multiset {zp | hp = h, gp = i}; that is,

Lh is multiset of values at a given level, Lh,i is the
multiset of values in a bucket. We can write ‖Sz‖G,w
as
∑
i∈[N ],h∈[0,hmax] βb

hG(‖Lh,i‖Λ), where ‖L‖Λ denotes

|
∑
zp∈L Λpzp|.
(The function ‖‖Λ is a semi-norm (if we map sets

back to vectors), with ‖L‖Λ ≤ ‖L‖1, EΛ[‖L‖2Λ] = ‖L‖22,

and all (EΛ[‖L‖kΛ])1/k within constant factors of ‖L‖2,
by Khintchine’s inequality.)

Regression theorem. Our main theorem of this
section states that M -sketches can be used for regres-
sion.

Theorem 3.1. (Input Sparsity Time Regression for G-
functions) Let OPTG ≡ minx∈Rd ‖Ax− b‖G. There is
an algorithm that in nnz(A) + poly(d log n) time, with
constant probability finds x̂ such that ‖Ax̂− b‖G ≤
O(1)OPTG.

The proof is deferred to §4.1; it requires a net argument,
Lemma 4.5; the contraction bound Theorem 3.2 from
§3.5; and from §3.6, a clipped variant Theorem 3.4 of the
dilation bound Theorem 3.3. First, various definitions,
assumptions, and lemmas will be given.

3.1 Preliminary Definitions and Lemmas for
M-estimators. We will analyze the behavior of sketch-
ing on z ∈ Rn. We assume that ‖z‖G = 1; this is for
convenience of notation only, the same argument would
apply to any particular value of ‖z‖G (we do not assume
scale-invariance of G).

Define y ∈ Rd by yp = G(zp), so that ‖y‖1 =
‖z‖G = 1. A large part of our analysis will be related
to y, although y does not appear in the sketch. Let Z
denote the multiset comprising the coordinates of z, and
let Y denote the multiset comprising the coordinates of
y. For Ẑ ⊂ Z, let G(Ẑ) ⊂ Y denote {G(zp) | zp ∈ Ẑ}.

Let ‖Y ‖k denote [
∑
y∈Y |y|k]1/k, so ‖Y ‖1 = ‖y‖1.

Hereafter multisets will just be called “sets”.
Weight classes. For our analysis, fix γ > 1, and

for integer q ≥ 1, let Wq denote weight class {yp ∈ Y |
γ−q ≤ yp ≤ γ1−q}.

We have βbh E[‖G(Lh) ∩Wq‖1] = ‖Wq‖1.
For a set of integers Q, let WQ denote ∪q∈QWq.
Defining qmax and h(q). For given ε > 0, consider

y′ ∈ Rd with y′i ← yi when yi > ε/n, and y′i ← 0
otherwise. Then ‖y′‖1 ≥ 1 − n(ε/n) = 1 − ε. Thus
for some purposes we can neglect Wq for q > qmax ≡
logγ(n/ε), up to error ε. Moreover, we can assume that
‖Wq‖1 ≥ ε/qmax, since the total contribution of weight
classes of smaller total weight to ‖y‖1 is at most ε.

Let h(q) denote blogb(|Wq|/βm)c for |Wq| ≥ βm,
and zero otherwise, so that

m ≤ E[|G(Lh(q)) ∩Wq|] ≤ bm



for all Wq except those with |Wq| < βm, for which the
lower bound does not hold.

Since |Wq| ≤ n for all q, we have h(q) ≤
blogb(n/βm)c = hmax.

3.2 Assumptions About the Parameters. There
are many minor assumptions about the relations be-
tween various numerical parameters; some of them are
collected here for convenience of reference. Recall that
N = bcm.

Assumption 3.1. We will assume b ≥ m, b > c, m =
Ω(log log(n/ε)), log b = Ω(log log(n/ε)), γ ≥ 2 ≥ β, an
error parameter ε ∈ (0, 1/3), and logN ≤ ε2m. We will
consider γ to be fixed throughout, that is, not dependent
on the other parameters.

3.3 Distribution into Buckets. The entries of y
are well-distributed into the buckets, as the following
lemmas describe.

Lemma 3.1. For ε ≤ 1, with failure probability at
most 4qmaxhmax exp(−ε2m/3) ≤ C−ε

2m for a constant
C > 1, the event E holds, that for all q ≤ qmax with
|Wq| ≥ βm, and all h ≤ h(q), that

|G(Lh) ∩Wq| = β−1b−h|Wq|(1± ε),

and

‖G(Lh) ∩Wq‖1 = β−1b−h‖Wq‖1(1± ε).

Here a = b(1± ε) means that |a− b| ≤ ε|b|.
We will hereafter generally assume that E holds.

Proof. Let s ≡ |Wq|. When s ≥ βm and h ≤ h(q), in
expectation |G(Lh) ∩Wq| is equal to µ ≡ s/βbh ≥ m,
and ‖G(Lh) ∩Wq‖1 ≥ ‖Wq‖1/βb

h. We need that
with high probability, deviations from these bounds are
small.

Applying Bernstein’s inequality to the random vari-
able Z with binomial B(s, 1/βbh) distribution, the log-
arithm of the probability that t ≡ Z − E[Z] = Z − µ
exceeds εµ is at most

−(εµ)2/2

µ+ (εµ)/3
≤ −ε2µ/3 ≤ −ε2m/3.

Taking the exponential, and using a union bound over
all events (including the event that −t exceeds εs/βbh)
completes the first claim, with half the claimed failure
probability, using Assumption 3.1 to shown that the
claimed C exists. For the second claim, there is a similar
argument for the random variables Xp which are equal
to yp when hp = h and yp ∈ Wq, and zero otherwise.
Here

∑
p E[X2

p ] ≤
∑
p E[Xp] = ‖Wq‖1/βb

h.

Lemma 3.2. For h ∈ [hmax], suppose Q ⊂ {q | h(q) =

h, |Wq| ≥ βm}, and Ŵ ⊂ Y contains WQ ≡ ∪q∈QWq.

If |G(Lh) ∩ Ŵ | ≤ εN , then with failure probability at
most 2|Q| exp(−ε2m/3), each Wq has W ∗q ⊂ G(Lh)∩Wq

with |W ∗q | ≥ (1 − ε)β−1b−h|Wq|, and where each entry

of W ∗q is in a bucket with no other element of Ŵ . Also
if condition E of Lemma 3.1 holds, then

‖W ∗q ‖1 ≥ (1− 4γε)β−1b−h‖Wq‖1.

Proof. We will show that for q ∈ Q, with high probabil-
ity it will hold that aq ≥ (1−ε))β−1b−h|Wq|, where aq is
the number of buckets G(Lh,i), over i ∈ [N ], containing

a member of Wq, and no other members of Ŵ .
Consider each q ∈ Q in turn, and the members of

Wq in turn, for k = 1, 2, . . . s ≡ |Wq|, and let Zk denote
the number of bins occupied by the first k members
of Wq. The probability that Zk+1 > Zk is at least

β−1b−h(1−|G(Lh)∩ Ŵ |/N) ≥ β−1b−h(1− ε). We have
aq ≥ (1− ε)β−1b−h|Wq| in expectation.

To show that this holds with high probability, let
Ẑk ≡ E[Zs | Zk]. Then Ẑ1, Ẑ2, . . . is a Martingale with
increments bounded by 1, and with the second moment
of each increment at most β−1b−h. Applying Freed-
man’s inequality gives a concentration for aq similar to
the above application of Bernstein’s inequality, yielding
a failure probability 2 exp(−ε2m/3),

Applying a union bound over all |Q| yields that with
probability at least 1− 2|Q| exp(−ε2m/3), for each Wq

there is W ∗q of size at least (1− ε)β−1b−h|Wq| such that
each member of W ∗q is in a bucket containing no other

member of Ŵ .
For the last claim, we compare the at least (1−ε)X

entries of W ∗q , where X ≡ β−1b−h|Wq|, with the at most
(1 + ε)X−|W ∗q | entries of G(Lh)∩Wq not in W ∗q , using
condition E ; we have

‖W ∗q ‖1
‖G(Lh) ∩Wq‖1

≥ (1− ε)Xγ−q

(1− ε)Xγ−q + 2εXγ1−q

≥ 1− 2γε/(1− ε).

Using condition E again to make the comparison with
‖Wq‖1, the claim follows.

Lemma 3.3. For h ∈ [hmax], W̄ ⊂ G(Lh), T ≥ ‖W̄‖∞,
and δ ∈ (0, 1), if

N ≥
6‖W̄‖1

T log(N/δ)
,

then with failure probability δ,

max
i∈[N ]

‖G(Lh,i) ∩ W̄‖1 ≤
7

6
T log(N/δ).



Proof. This directly follows from Lemma 2 of [9], (which
follows directly from Bernstein’s inequality), where t
of that lemma is N , T is the same, us:n is W̄ , r
is ‖W̄‖1, and δh is δ. The bound for N also uses

‖W̄‖22 ≤ ‖W̄‖∞‖W̄‖1.

3.4 Leverage Scores. The `2 leverage scores u ∈ Rn
have ui ≡ ‖Ui:‖22, where U is an orthogonal basis for the
columnspace C(A) ≡ {Ax | x ∈ Rd}. We will use the
standard facts that these values satisfy ‖u‖∞ ≤ 1 and
‖u‖1 ≤ d, and for y ∈ C(A) with ‖y‖2 = 1, y2

i ≤ ui for
i ∈ [n].

We will condition on a likely event involving the top
leverage scores. This lemma will be used to bound the
effect of those Wq with |Wq| small and weight γ−q large.

Lemma 3.4. For A ∈ Rn×d, let u ∈ Rn denote the `2
leverage score vector of A. For N1, N2 with N2 ≥ N1

and with N1N2 ≤ κN , for κ ∈ (0, 1/2), let Y1 and
Y2 denote the sets of indices of the N1 and N2 largest
coordinates of u, so that Y1 ⊂ Y2. Then with probability
at least 1 − 2κ, the event Ec holds, that S sends each
member of Y1 into a bucket containing no other member
of Y2.

We will hereafter generally assume that Ec holds.

Proof. For each member of Y2, the expected number of
members of Y1 colliding with it, that is, in the same
bucket with it, is N1/N . The expected number of
such collisions is therefore at most N1N2/N < κ. The
probability that the number of collisions is at least twice
its mean is at most 2κ, so with probability at least 1−2κ,
the number of collisions is less than 2κ < 1, that is, zero.

We use the `2 leverage scores to bound the coor-
dinates of G(z); this is the one place in proving con-
traction bounds that we need the linear lower bound of
(1.1) on the growth of G.

Lemma 3.5. If up is the k’th largest `2 leverage score,

then for z ∈ C(A), G(zp) ≤
√

2d/k‖z‖G/CG.

Here CG is the growth parameter from (1.1).

Proof. We have up ≤ d/k, since
∑
i ui = d. For

z = Ux ∈ C(A),

z2
p ≤ (Up∗x)2 ≤ ‖Up∗‖2‖x‖2 = up‖z‖2 ≤ (d/k)‖z‖2.

That is,
∑
q z

2
q/z

2
p ≥ k/d. Suppose

∑
zq≤zp z

2
q/z

2
p ≥

k/2d. Then

∑
zq≤zp

G(zq)

G(zp)
≥
∑
zq≤zp

∣∣∣∣zqzp
∣∣∣∣α ≥ ∑

zq≤zp

∣∣∣∣zqzp
∣∣∣∣2 ≥ k/2d,

and the claimed inequality follows. Otherwise,∑
zq≥zp z

2
q/z

2
p ≥ k/2d, which implies

∑
zq≥zp

G(zq)

G(zp)
≥ CG

∑
zq≥zp

∣∣∣∣zqzp
∣∣∣∣ ≥ CG

 ∑
zq≥zp

∣∣∣∣zqzp
∣∣∣∣2
1/2

≥ CG
√
k/2d,

and the claimed inequality follows.

3.5 Contraction bounds. Here we will show that
‖Sz‖G,w is not too much smaller than ‖z‖G.

3.5.1 Estimating ‖z‖G using Sz. For v ∈ T ⊂ Z,
let T − v denote T \ {v}.

Lemma 3.6. For v ∈ T ⊂ Z,

G(‖T‖Λ) ≥
(

1−
‖T − v‖Λ
|v|

)2

G(v),

and if G(v) ≥ ε−1‖T − v‖G, then

(3.7)
‖T − v‖2
|v|

≤ ε1/α,

and for a constant C, EΛ[G(‖T‖Λ)] ≥ (1−Cε1/α)G(v).

Proof. For the first claim, if ‖T‖Λ ≥ |v|, then the claim
is immediate since G is non-decreasing. Otherwise,
note that ‖T‖Λ has the form | |v| ± ‖T − v‖Λ|, so if
‖T‖Λ ≤ |v|, then ‖T‖Λ = | |v| − ‖T − v‖Λ|. We have

G(‖T‖Λ)

G(v)
≥
(
‖T‖Λ
|v|

)α
≥
(
‖T‖Λ
|v|

)2

=

(
|v| − ‖T − v‖Λ

|v|

)2

=

(
1−
‖T − v‖Λ
|v|

)2

,

proving the first claim. For the second claim, we have
|v′| < |v| for v′ ∈ T − v, since G(v′) ≤ ‖T − v‖G ≤
εG(v), and G is non-decreasing in |v|. Therefore

ε ≥
‖T − v‖G
G(v)

=
∑

v′∈T−v

G(v′)

G(v)

≥
∑

v′∈T−v

(
|v′|
|v|

)α
≥

∑
v′∈T−v

(
|v′|
|v|

)2

and so (3.7) follows. For the third claim, we have from
the first claim,

EΛ[G(‖T‖Λ)] ≥ EΛ

[(
1−
‖T − v‖Λ
|v|

)2
]
G(v)

≥
(

1− 2
EΛ[‖T − v‖Λ]

|v|

)
G(v).



Using the Khintchine inequality and (3.7), we have

EΛ[‖T − v‖Λ]

|v|
≤
C‖T − v‖2
|v|

≤ Cε1/α,

for a constant C, so the claim follows, after adjusting
constants.

We will need a lemma that will allow bounds on
the contributions of the weight classes. First, some
notation. For h = 0 . . . hmax, let

Q̂h ≡ {q | h(q) = h, |Wq| ≥ βm}
M≥ ≡ logγ(2(1 + 3ε)b/ε)

Qh ≡ {q ∈ Q̂h | q ≤M≥ + min
q∈Q̂h

q}

M< ≡ logγ(m/ε) = O(logγ(b/ε))

Q< ≡ {q | |Wq| < βm, q ≤M<}
Q∗ ≡ Q< ∪ [∪hQh].

(3.8)

Here Q̂h gives the indices of Wq that are “large” and
have h as the level at which between m and bm members
of Wq are expected in Lh. The set Qh cuts out the
weight classes that can be regarded as negligible at level
h.

Lemma 3.7. Using Assumption 3.1 and assuming con-
dition E of Lemma 3.1,

∑
q∈Q∗ ‖Wq‖1 ≥ 1− 5ε.

Proof. The total weight of those weight classes with
|Wq| ≤ βm and q > M< is at most

βm
∑
q>M<

γ1−q ≤ βm(ε/m)γ
∑
g>0

γ−q ≤ εβ/(1−1/γ) ≤ 4ε,

for γ ≥ 2 and β ≤ 2.
For given h > 0, let q∗h ≡ minq∈Q̂h

q. The ratio of

the total weight of classes in Q̂h \ Qh to ‖Wq∗h
‖

1
is at

most

1

(1− ε)γ−q∗hm
γ−q

∗
h−M≥

∑
q>0

(1 + ε)bmγ1−q

= b
ε

2b(1 + 3ε)

1 + ε

1− ε
∑
q≥0

γ−q

=
ε

2(1 + 3ε)

1 + ε

1− ε
1

1− 1/γ

≤ ε,

under the assumptions on γ and ε. So
∑
h ‖WQ̂h\Qh

‖
1
≤∑

h ε‖Wq∗h
‖

1
≤ ε.

Putting together the bounds for the two cases, the
total is at most 5ε, as claimed.

Lemma 3.8. Assume that condition E of Lemma 3.1
holds, and that condition Ec of Lemma 3.4 holds for
N1 = N2 = O(C−2

G ε−2dm2). Let Q′h ≡ {q | q ≤ M ′h},
where M ′h ≡ logγ(βbh+1m2qmax). Then there is N =

O(N2
1 + m2bε−1qmax) so that with probability at least

1−C−ε2m for a constant C > 1, for each q ∈ Q∗, there
is W ∗q ⊂ Lh(q) ∩Wq such that:

1. |W ∗q | ≥ (1− ε)β−1b−h(q)|Wq|;

2. each x ∈ W ∗q is in a bucket with no other member
of WQ∗ ;

3. ‖W ∗q ‖1 ≥ (1− 4γε)β−1b−h‖Wq‖1.

4. for q ∈ Qh, each x ∈ W ∗q is in a bucket with no
member of WQ′h

;

Proof. There is N1 satisfying the given bound so that
Lemma 3.5 implies that y /∈ Y1 must be smaller than
C−1
G

√
2d/N1 ≤ ε/m, and therefore not in Wq for q ∈

Q<. Therefore WQ<
⊂ Y1, and with the assumption of

condition Ec, no member of WQ< is in the same bucket
as any other member of that set. We will takeW ∗q ←Wq

for q ∈ Q<.
For each h, apply Lemma 3.2 to Qh and with

Ŵ ← WQ∗ ≡ WQ<
∪q∈Qh

Wq, so that, using condition
E ,

|G(Lh) ∩ Ŵ | ≤M<βm+M≥(1 + ε)bm

= O(mb logγ(b/ε)).

To apply Lemma 3.2, we need N > ε−1|G(Lh) ∩ Ŵ |,
and large enough N in O(mbε−1 logγ(b/ε)) suffices for
this. We have (1) and (2), with failure probability
2M≥ exp(−ε2m).

Condition (3) follows either trivially, for q ∈ Q<, or
from Lemma 3.2.

For (4), let Ŵ ←WQh
∪WQ′h

. Since |WQ′h
|γ−M ′h ≤

‖y‖1 ≤ 1, so that |WQ′h
| ≤ βbh+1m2qmax, we have

|G(Lh) ∩ Ŵ | ≤ |G(Lh) ∩WQh
|+ |G(Lh) ∩WQ′h

|

≤ (1 + ε)bmM≥ + (1 + ε)β−1b−h|WQ′h
|

≤ O(bm2qmax),

using condition E . Since |G(Lh) ∩ Ŵ | ≤ εN for large
enough N = O(m2bε−1qmax), we can apply Lemma 3.2
to obtain (4).

Lemma 3.9. Let G : R 7→ R+ as above. Assume
that condition E of Lemma 3.1 holds, and Assump-
tion 3.1, and that condition Ec of Lemma 3.4 holds for
N1 = N2 = O(C−2

G ε−2dm2). There is N = O(N2
1 +



ε−2m2bqmax), so that for h ∈ [hmax] and q ∈ Qh with
‖Wq‖1 ≥ ε/qmax, we have∑

yp∈W∗q

G(‖L(yp)‖Λ) ≥ (1− ε1/α)‖Wq‖1

with failure probability at most C−ε
2m for fixed C > 1.

Proof. For any q ∈ Qh we have

|Wq| ≤ (1 + ε)βbh E[|G(Lh) ∩Wq|]
≤ (1 + ε)βbhbm

by condition E and the definition of h(q) = h; since

|Wq|γ1−q ≥ ‖Wq‖1 ≥ ε/qmax,

using ‖Wq‖1 ≥ ε/qmax from the lemma statement, we
have for any yp ∈Wq,
(3.9)
yp ≥ γ−q ≥ (ε/qmax)/γ|Wq| ≥ ε/bh+1γβm(1 + ε)qmax.

Condition 4 of Lemma 3.8 holds, since N1, N2, and
N are large enough, and so we have that no bucket
containing yp ∈ W ∗q contains an entry larger than

γ/βbh+1m2qmax, so if W̄ comprises G(Lh)∩ (Y \WQ′h
),

we have ‖W̄‖∞ ≤ γ/βbh+1m2qmax. Using condition E ,
‖W̄‖1 ≤ (1 + ε)b−h, using just the condition ‖Y ‖1 = 1.
Therefore the given N is larger than the O(bmε−2qmax)
needed for Lemma 3.3 to apply, with δ = exp(−ε2m).
This with (3.9) yields that for each yp ∈ W ∗q , the
remaining entries in its bucket L have ‖L− yp‖1 ≤
2γ2ε|yp|, with failure probability exp(−ε2m).

For each such isolated yp we consider the corre-
sponding zp (denoted by v hereafter), and let L(v)
denote the set of z values in the bucket containing
v. We apply Lemma 3.6 to v with L(v) taking the
role of T , and 2γ2ε taking the role of ε, obtaining
EΛ[G(‖L(v)‖Λ)] ≥ (1 − C ′ε1/α)G(v). (Here we fold a
factor of (2γ2)1/α into C ′, recalling that we consider γ
to be fixed.) Using this relation and condition E , we
have

‖Wq‖1 ≤ βb
h‖W ∗q ‖1/(1− 4γε) from Lem 3.8.3

≤ βbh
∑

G(v)∈W∗q

EΛ[G(‖L(v)‖Λ)]

(1− 4γε)(1− C ′ε1/α)
,

so the claim of the lemma follows, in expectation, after
adjusting constants, and conditioned on events of failure
probability C−ε

2m for constant C.
To show the tail estimate, we relate each

G(‖L(v)‖Λ) to G(v) via the first claim of
Lemma 3.6, which implies G(‖L(v)‖Λ) ≥

(1 − 2‖L(v)− v‖Λ/|v|)G(v). Writing V ≡ G−1(W ∗q ),
we have∑
v∈V

G(‖L(v)‖Λ)

≥
∑
v∈V

‖L(v)‖Λ>|v|

G(v) +
∑
v∈V

‖L(v)‖Λ≤|v|

(
1− 2

‖L(v)− v‖Λ
|v|

)
G(v)

≥ ‖W ∗q ‖1 − 2
∑
v∈V

‖L(v)‖Λ≤|v|

‖L(v)− v‖Λ
|v|

γ1−q.

It remains to upper bound the sum. Since
‖L(v)‖Λ = ||v|±t|, where t ≡ ‖L(v)− v‖Λ, if ‖L(v)‖Λ ≤
|v|, then t ≤ 2|v|.

Since

E[t | t ≤ 2|v|] ≤ E[t] ≤ C1‖L(v)− v‖2 ≤ C1C
′ε1/α|v|,

using Khintchine’s inequality and (3.7), and similarly
E[t2|t ≤ 2|v|] ≤ C2(C ′ε1/α)2v2, we can use Bernstein’s
inequality to bound∑

v∈V
‖L(v)‖Λ≤|v|

‖L(v)− v‖Λ
|v|

γ1−q ≤
∑
v∈V

‖L(v)‖Λ≤|v|

C3ε
1/αγ1−q

≤ C4ε
1/α‖W ∗q ‖1,

with failure probability exp(−ε2m). Hence∑
v∈V

G(‖L(v))‖Λ)

≥ ‖W ∗q ‖1 − 2C4ε
1/α‖W ∗q ‖1

= ‖W ∗q ‖1(1− 2C4ε
1/α)

≥ β−1b−h‖Wq‖1(1− 4γε)(1− 2C4ε
1/α),

using condition E . Adjusting constants, the result
follows.

Lemma 3.10. Assume that condition E of Lemma 3.1
holds, and Assumption 3.1, and Ec of Lemma 3.4 holds
for large enough N1 = O(C−2

G ε−2dm2) and N2 =
O(C−2

G d(ε2αm4+α + ε4α−4m2+2α)). Then for q ∈ Q<,∑
v∈G−1(Wq)

‖G(L(v))‖Λ ≥ (1− ε1/α)‖Wq‖1

with failure probability at most C−ε
2m for a constant

C > 1.

Proof. For all yp ∈WQ<
, we have

yp ≥
ε

m
.



Let

γ′ ≡ min{ ε−α

3εαm2+α/2
,
ε2−2α

m1+α
},

so that N2 of the lemma statement is at least 2d/γ′
2
C2
G.

Then condition Ec and Lemma 3.5 imply that every
member of Wq is in a bucket with no entry other than
itself larger than γ′.

Assume for the moment that all hp = 0, that is, all
values are mapped to level 0. We apply Lemma 3.3 to
h = 0, with δ ≡ exp(−ε2m) and with W̄ ≡ Y \ Y2, so
that

‖W̄‖∞ ≤ γ
′ ≤ ε−α

3m2+α/2
=

(
1

ε1−1/α
√
m

)α
ε

3m

1

ε2m
.

The result is that with large enough N =
O(m1+α/2ε−2+α), and assuming logN ≤ ε2m, so that
log(N/δ) ≤ 2ε2m, we have for v with G(v) = yp ∈Wq,

‖G(L(v)) ∩ W̄‖1 ≤
7

6

(
1

ε1−1/α
√
m

)α
2ε

3m

≤
(

1

ε1−1/α
√
m

)α
|yp|,

that is,

‖L(v)− v‖G
G(v)

≤
(

1

ε1−1/α
√
m

)α
,

so that from (3.7), we have

(3.10)
‖L(v)− v‖22

v2
≤ ε2/α

ε2m
.

Since

‖W̄‖∞ ≤
ε2−2α

m1+α
=

(
1

mε2−1/α

)α
ε

m
,

we also have, for all v′ ∈ L(v) − v, and using that
G(v) ≥ ε/m,

(3.11)

∣∣∣∣v′v
∣∣∣∣ ≤ (G(v′)

G(v)

)1/α

≤ 1

mε2−1/α
.

From (3.11), we have that the summands determin-
ing ‖L(v)− v‖Λ have magnitude at most |v|ε1/α/ε2m.

From (3.10), we have ‖L(v)− v‖22 is at most
v2ε2/α/ε2m. It follows from Bernstein’s inequality
that with failure probability exp(−ε2m), ‖L(v)− v‖Λ ≤
ε1/α|v|. Applying the first claim of Lemma 3.6, we have
G(‖L(v)‖Λ) ≥ (1 − 2ε1/α)G(v), for all v ∈ G−1(W ∗q ),

with failure probability |Wq| exp(−ε2m). This implies
the bound after adjusting constants.

We can remove the assumption that all hp = 0,
because the bound on ‖L(v)− v‖Λ also holds when
splitting up into levels.

Combining these lemmas, we have the following
contraction bound.

Theorem 3.2. Assume condition E of Lemma 3.1
holds, and Assumption 3.1, and condition Ec of
Lemma 3.4 holds for N1 = O(C−2

G ε−2dm2) and N2 =
O(C−2

G d(ε2αm4+α+ε4α−4m2+2α)), with N = O(N1N2+
ε−2m2bqmax). Then ‖Sz‖G,w ≥ ‖z‖G(1 − ε1/α), with

failure probability no more than C−ε
2m, for absolute

C > 1.

Proof. (We note that c, b, and m can be chosen such
that the relations among these quantities and also N =
cbm satisfy Assumption 3.1, up to the weak relations
among m, b, and n/ε, which ultimately will require that
n is not extremely large relative to d.)

Recalling Q∗ from (3.8), let Q∗∗ ≡ {q | q ∈
Q∗, ‖Wq‖1 ≥ ε/qmax}. Assuming conditions E and Ec,
we have, with probability 1− C−ε2m,

‖Sz‖G,w =
∑
h,i

βbhG(‖Lh,i‖Λ) Def.

≥
∑

q∈Q∗∗,v∈W∗q

βbh(q)G(‖L(v)‖Λ) Lem 3.8

≥
∑
q∈Q∗∗

βbh(q)(1− ε1/α)‖W ∗q ‖1 Lems 3.9, 3.10

≥
∑
q∈Q∗∗

(1− ε1/α)(1− 4γε)‖Wq‖1 Lem 3.8.

Using Lemma 3.7,∑
q∈Q∗∗

‖Wq‖1 ≥ −qmax(ε/qmax) +
∑
q∈Q∗

‖Wq‖1 ≥ 1− 6ε.

Adjusting constants gives the result.

3.6 Dilation bounds. We prove two bounds for
dilation, where the first gives a dilation that is at most
a log factor, and the second gives a constant factor by
using a different way to estimate distance based on the
sketch.

3.6.1 Bound for ‖Sz‖G,w. Our first bound for dila-
tion is E[‖Sz‖G,w] = O(hmax)‖z‖G, which implies a tail
bound via Markov’s inequality; first, some lemmas.

Lemma 3.11. For T ⊂ Z, EΛ[G(‖T‖Λ)] ≤ CG(‖T‖2),
for an absolute constant C.

Proof. Let L denote the event that ‖T‖Λ ≥ ‖T‖2. Here



the expectation is with respect to Λ only:

E[G(‖T‖Λ)]

= E[G(‖T‖Λ) | L ] P{L}+ E[G(‖T‖Λ) | ¬L ] P{¬L}

≤ E

[
‖T‖αΛ
‖T‖α2

G(‖T‖2) | L
]

P{L}+G(‖T‖2)

= E[‖T‖αΛ | L ] P{L}
G(‖T‖2)

‖T‖α2
+G(‖T‖2)

≤ E[‖T‖αΛ]
G(‖T‖2)

‖T‖α2
+G(‖T‖2)

≤ CG(‖T‖2),

for a constant C, where the last inequality uses Khint-
chine.

Lemma 3.12. For T ⊂ Z, G(‖T‖2) ≤ ‖T‖G, and so
EΛ[G(‖T‖Λ)] ≤ C‖T‖G.

Proof. Using the growth upper bound for G,

‖T‖G
G(‖T‖2)

=
∑
zp∈T

G(zp)

G(‖T‖2)

≥
∑
zp∈T

∣∣∣∣ zp
‖T‖2

∣∣∣∣α

≥
∑
zp∈T

∣∣∣∣ zp
‖T‖2

∣∣∣∣2
= 1.

The last claim follows from this and the previous lemma.

Theorem 3.3. Assuming condition E of Lemma 3.1,
Eg,`,Λ[‖Sz‖G,w] = O(hmax)‖z‖G.

Proof. Note that for each level h,
∑
i EΛ[G(‖Lh,i‖Λ)] ≤

C‖Lh‖G, applying the previous lemma. Since ‖Lh‖G =
‖G(Lh)‖1 = (1 ± ε)‖y‖1/βbh under assumption E , we
have

Eg,`,Λ[‖Sz‖G,w]

=
∑
h

βbh
∑
i

EΛ[G(‖Lh,i‖Λ)]

≤
∑
h

βbh
∑
i

C(1 + ε)‖y‖1/βb
h

=
∑
h

∑
i

C(1 + ε)‖y‖1 = hmaxC(1 + ε)‖z‖G,

and the theorem follows, picking bounded ε.

3.6.2 Bound for a “clipped” version. We can
achieve a better dilation than O(hmax) = O(log(εn/d))

by ignoring small buckets, using a subset of the coordi-
nates of Sz, as follows: for a given sketch, our new es-
timate ‖Sz‖Gc,w of ‖z‖G is obtained by adding in only
those buckets in level h that are among the top

M∗ ≡ bmM≥ + βmM< = O(mb logγ(b/ε))

in Λ-semi-norm, recalling M≥ and M< defined in (3.8).
That is,

‖Sz‖Gc,w ≡
∑
j

βbj
∑

i∈[M∗]

G(‖Lj,(i)‖Λ),

where Lj,(i) denotes the level j bucket with the i’th
largest Λ-semi-norm among the level j buckets.

The proof of the bounded contraction of ‖Sz‖G,w,
Theorem 3.2, only requires lower bounds on ‖G(Lh,i)‖Λ
for those at most M∗ buckets on level h containing
some member of W ∗q for q ∈ Q∗, for the W ∗q defined in
Lemma 3.8. Thus if the estimate of ‖Sy‖G,w uses only
the largest such buckets in Λ-norm, the proven bounds
on contraction continue to hold, and in particular
‖Sz‖Gc,w ≥ (1− ε)‖Sz‖G,w.

Moreover, the dilation of ‖‖Gc,w is constant:

Theorem 3.4. There is c = O(logγ(b/ε)(logb(n/m)))
and b ≥ c, recalling N = mbc, such that

E[‖Sz‖Gc,w] ≤ C‖z‖G

for a constant C.

Proof. From Lemma 3.12, the contribution of level h
satisfies

(3.12) E[
∑
i

G(‖Lh,i‖Λ)] ≤ C‖Lh‖G = C‖G(Lh)‖1.

We will consider the contribution of each weight class
separately. The contribution of Wq at h = h(q) is
βbh‖G(Lh) ∩Wq‖1 ≤ ‖Wq‖1(1 + ε), if all entries of
Wq land among the top M∗ buckets; otherwise the
contribution will be smaller.

The expected contribution of Wq at h = h(q) − k
for k > 0 is at most M∗|Lh,i∗ ∩Wq|γ1−q, where Lh,i∗
contains the largest number of members of Wq among
the buckets on level h. When |G(Lh) ∩Wq| ≥ N logN ,
|G(Lh,i∗) ∩ Wq| ≤ 4|G(Lh) ∩ Wq|/N , with failure
probability at most 1/N . (This follows by applying
Bernstein’s inequality to the sum of random variables
Xi, where Xi = 1 when the i’th element of Wq falls in
a given bucket, and Xi = 0 otherwise, followed by a
union bound over the buckets.) At level h = h(q) − k,
|G(Lh) ∩ Wq| ≥ bkm(1 − ε), using assumption E of
Lemma 3.1, so to obtain bkm(1−ε) ≥ N logN it suffices
that k ≥ 2 + 2 logb c ≥ logb(N log(N)/m(1 − ε)), using



N = bcm, obtaining for those k a contribution for Wq

is within a constant factor of

βbhM∗(4β−1b−h|Wq|/N)γ1−q ≤
O(logγ(b/ε))

c
‖Wq‖1,

using the bound on M∗ given above. Adding this
contribution to that for k ≤ 2 + 2 logb c, we obtain
an overall bound for Wq and h < h(q) that is within

a constant factor of (1 + logb c + hmax
M∗

N )‖Wq‖1, and
therefore within a constant factor of ‖Wq‖1 under the
given conditions on b and c.

For h = h(q) + k for k > 0, the expected size of
G(Lh) ∩ Wq is at most m/bk−1; this quantity is also
an upper bound for the probability that G(Lh) ∩ Wq

is non-empty. Thus for the qmax non-negligible sets
Wq, by a union bound the event Es holds with failure
probability δ, that all Wq ∩ Lh(q)+k will be empty
for large enough k = O(logb qmaxm/δ). For each
q and k, condition E implies that the contribution
βbh

∑
i ‖G(Lh,i)‖Λ ≤ (1 + ε)‖Wq‖1, and so the total

contribution is C‖Wq‖1 logb qmaxm/δ, within a constant
factor of ‖Wq‖1, under given conditions.

Note that if G is convex, then so is ‖Sz‖Gc,w,
since at each level we are applying a Ky Fan norm,
discussed below; also, if G−1(‖ · ‖G) is scale-invariant,
then so is G−1(‖ · ‖Gc,w). If both conditions hold, then

G−1(‖ · ‖G) is a norm, and so is G−1(‖ · ‖Gc,w).
The Ky Fan k-norm of a vector y ∈ Rn is∑

i∈[k] |y(i)|, where y(i) denotes the i’th largest entry
of y in magnitude. Thus the Ky Fan 1-norm of y is
‖y‖∞, and the Ky Fan n-norm of y is ‖y‖1. The matrix
version of the norm arises by application to the vector
of singular values.

A disadvantage of this approach is that some
smoothness is sacrificed: ‖z‖Gc,w is not a smooth func-
tion, even if G is; while this does not affect the fact that
the minimization problem in the sketch space is polyno-
mial time, it could affect the concrete polynomial time
complexity, which we leave a subject for future work.

4 Net Argument.

We prove a general ε-net argument for M-estimators
satisfying our growth condition (1.1).

We need a few lemmas to develop the net argument.

Lemma 4.1. (Bounded Derivative) There is a constant
C > 0 for which for any a, b with |b| ≤ ε|a|, G(a+ b) =
(1± Cε)G(a).

Proof. First suppose that a and b have the same sign.
Then by montonicity, G(a) ≤ G(a + b). Moreover, by
the growth condition,

G(a+ b)

G(a)
≤
∣∣∣∣a+ b

a

∣∣∣∣2 ≤ (1 + ε)2 ≤ 1 + 3ε,

and so G(a+ b) ≤ (1 + 3ε)G(a).
Now suppose a and b have the opposite sign. Then

G(a + b) ≤ G(a) by monotonicity, and again by the
growth condition,

G(a)

G(a+ b)
≤
∣∣∣∣ a

a+ b

∣∣∣∣2 ≤ (1 + 2ε)2 ≤ 1 + 5ε,

and so G(a + b) ≥ G(a)/(1 + 5ε), and so G(a + b) ≥
(1− 5ε)G(a).

Lemma 4.2. (Approximate Scale Invariance) For all a
and C ≥ 1, G(Ca) ≤ C2G(a).

Proof. By the growth condition, G(Ca)/G(a) ≤ C2.

Lemma 4.3. (Perturbation of the weighted M-
Estimator) There is a constant C ′ > 0 for which
for any e and any w, with ‖e‖G,w ≤ ε5‖y‖G,w,

‖y + e‖G,w = (1± C ′ε)‖y‖G,w.

Proof. By Lemma 4.2, G( 1
ε2 ei) ≤

1
ε4G(ei), and so

‖ 1
ε2 e‖G,w ≤ 1

ε4 ‖e‖G,w ≤ ε‖y‖G,w, where the final

inequality follows by the assumption of the lemma.
Now let S ⊆ [n] denote those coordinates i for which

|ei| ≤ ε|yi|. By Lemma 4.1, G(yi + ei) = (1±Cε)G(yi).
Now consider an i ∈ [n] \ S. In this case |yi| ≤

ε( 1
ε2 |ei|). Using that G is monotonically non-decreasing

and applying Lemma 4.1 again,

G(ei + yi) ≤ G(
1

ε2
ei + yi) = (1± Cε)G(ei/ε

2),

so that ∑
i∈[n]\S

wiG(yi + ei) ≤ (1 + Cε)‖e/ε2‖G,w

≤ (1 + Cε)ε‖y‖G,w.

Again using that G is monotonically non-decreasing, we
note that∑

i∈[n]\S

wiG(yi) ≤
∑

i∈[n]\S

wiG(ei/ε) ≤ ‖e/ε‖G,w

≤ ‖e/ε2‖G,w ≤ ε‖y‖G,w.

Hence,

‖y + e‖G,w
=
∑
i∈S

wiG(yi + ei) +
∑

i∈[n]\S

wiG(yi + ei)

= (1± Cε)
∑
i∈S

wiG(yi)± (1 + Cε)ε‖y‖G,w

= (1±O(ε))
∑
i∈[n]

wiG(yi)± (2 + Cε)ε‖y‖G,w

= (1±O(ε))‖y‖G,w.

This completes the proof.



Lemma 4.4. (Relation of weighted M-Estimator to 2-
Norm) Suppose wi ≥ 1 for all i. Given an n× d matrix
A, an n × 1 column vector b, let c = minx ‖Ax− b‖2
(note the norm is the 2-norm here). Let y∗ = Ax∗ − b,
where x∗ = argminx‖Ax− b‖G,w. Then c ≤ ‖y∗‖2 ≤
κcn3/2‖w‖∞, where κ > 0 is a sufficiently large con-
stant.

Proof. If c = 0, then there exists an x for which
Ax = b. In this case, since G(0) = 0, it follows
that ‖y∗‖2 = 0. Now suppose c > 0 and let y be a
vector of the form Ax − b of minimal 2-norm. Since
‖y‖2 = c, each coordinate of y is at most c. Hence,
‖y‖G,w ≤ ‖w‖∞ · n ·G(c) by monotonicity of G.

Now consider the 2-norm of y∗, and let d = ‖y∗‖2.
By definition, d ≥ c. Moreover, there exists a coordinate
of y∗ of absolute value at least d/

√
n. Hence, by

monotonicity of G and using that wi ≥ 1 for all i,
‖y∗‖G ≥ G(d/

√
n). Since y∗ is the minimizer for G with

weight vector w, necessarily G(d/
√
n) ≤ ‖w‖∞ ·n ·G(c).

If d/
√
n ≤ c, the lemma follows. Otherwise, by the

lower bound on the growth condition for G, G(d/
√
n) ≥

G(c) · CGd/(c
√
n), and so CGd/(c

√
n) ≤ ‖w‖∞ · n.

Hence, d ≤ ‖w‖∞n3/2c/CG.

Lemma 4.5. (Net for weighted M-Estimators) Let c =
minx ‖Ax− b‖2. For any constant CS > 0 there is a
constant CN > 0 and a set N ⊆ {Ax− b | x ∈ Rd} with

|N | ≤ (n/ε)
CNd for which if both:

1. ‖S(Ax − b)‖G,w′ = (1 ± ε)‖Ax − b‖G,w holds for
all Ax − b ∈ N and S is a matrix for which
‖S(Ax−b)‖G,w′ ≤ nCS‖Ax−b‖G,w for all x for an
appropriate w′,

2. ‖w‖∞ ≤ nCs and wi ≥ 1 for all i,

then for all x for which ‖Ax− b‖2 ≤ κcn3/2‖w‖∞, for
an arbitrary constant κ > 0, it holds that

‖S(Ax− b)‖G,w′ = (1± ε)‖Ax− b‖G,w.

Moreover, if the first condition is relaxed to state only
that (1− ε)‖Ax− b‖G,w ≤ ‖S(Ax− b)‖G,w′ for all Ax−
b ∈ N and S is a matrix for which ‖S(Ax − b)‖G,w′ ≤
nCS‖Ax − b‖G,w for all x for an appropriate weight
vector w′, then the following conclusion holds: for all
x for which ‖Ax− b‖2 ≤ κcn3/2‖w‖∞, for an arbitrary
constant κ > 0, it holds that (1 − ε)‖Ax− b‖G,w ≤
‖S(Ax− b)‖G,w′ .

Proof. Let L be the subspace of Rn of dimension at most
d+ 1 spanned by the columns of A together with b. Let
Nα be a finite subset of {z | z ∈ L and ‖z‖2 = α} for
which for any point y with ‖y‖2 = α, there exists a point

e ∈ Nα for which ‖y − e‖2 ≤ ε5

n2CS+2α. It is well-known

that there exists an Nα for which |Nα| ≤
(

3n2CS+2

ε5

)d+1

[32]. We define

N = Nc ∪Nc(1+ε) ∪Nc(1+ε)2 ∪ · · · ∪Nκcn3/2‖w‖∞ .

Then

|N | = O(log1+ε κn
3/2‖w‖∞)

(
3n2CS+2

ε5

)d+1

≤
(n
ε

)CNd

,

where CN > 0 is a large enough constant.
Now consider any x ∈ Rd for which y = Ax − b

satisfies ‖y‖2 ≤ κcn3/2‖w‖∞. By construction of
N , there exists an e ∈ N for which ‖e − y‖2 =
O(ε5/n2CS+2)‖y‖2. Then,

‖S(e− y)‖G,w′ ≤ n
CS‖e− y‖G,w

≤ nCS · ‖w‖∞ · nG(‖e− y‖2),

using the fact that each coordinate of e − y is at most
‖e− y‖2 in magnitude and that G is monotonically non-
decreasing. By the lower bound on the growth condition
on G,

G(‖e− y‖2) ≤
‖e− y‖2
CG‖y‖2

G(‖y‖2)

= O

(
ε5

n2Cs+2

)
G(‖y‖2).

Note that ‖y‖G,w ≥ G(‖y‖2/
√
n) by monotonicity and

using that wi ≥ 1 for all i. Furthermore, by the growth
condition on G, G(‖y‖2) ≤ nG(‖y‖2/

√
n). Combining

these inequalities, we have

‖S(e− y)‖G,w′ ≤ n
2Cs+1G(‖e− y‖2)

= O

(
ε5

n

)
G(‖y‖2)

= O(ε5)‖y‖G,w.(4.13)

Note that the argument thus far was true for any S and
w′ for which ‖S(Ax− b)‖G,w′ ≤ nCs‖Ax− b‖G,w for all
x, and so in particular holds for S being the identity
and w′i = 1 for all i ∈ [n]. So in particular we have
‖e− y‖G,w = O(ε5)‖y‖G,w. Applying Lemma 4.3, it
follows that

(4.14) ‖y‖G,w = ‖e+ (y − e)‖G,w = (1±O(ε))‖e‖G,w.

Now we use the assumption of the theorem that for
all e ∈ N with a particular choice of S and w′ one
has (1 − ε)‖e‖G,w ≤ ‖Se‖G,w′ ≤ (1 + ε)‖e‖G,w. Then
‖Sy‖G,w′ = ‖Se+ S(y − e)‖G,w′ . Now, ‖Se‖G,w′ =
(1±ε)‖e‖G,w by the assumption of the theorem, whereas

‖S(y − e)‖G,w′ = O(ε5)‖y‖G,w = O(ε5)‖e‖G,w by com-
bining (4.13) and (4.14). So we can apply Lemma 4.3



to conclude that ‖Sy‖G,w′ = (1 ± O(ε))‖Se‖G,w′ , and
combining this with the assumption of the theorem and
(4.14),

‖Sy‖G,w′ = (1±O(ε))‖Se‖G,w′ = (1±O(ε))‖e‖G,w
= (1±O(ε))‖y‖G,w.

For the second part of the lemma, suppose we only had
that for all e ∈ N , (1 − ε)‖e‖G,w ≤ ‖Se‖G,w′ . We still
have ‖S(y − e)‖G,w′ = O(ε5)‖e‖G,W , and so we can still
apply Lemma 4.3 to conclude that

‖Sy‖G,w′ = (1±O(ε))‖Se‖G,w′ .

Using (4.14), we have

‖Sy‖G,w′ = (1±O(ε))‖Se‖G,w′ ≥ (1−O(ε))‖e‖G,w
≥ (1−O(ε))‖y‖G,w,

which completes the proof.

4.1 Proof of Theorem 3.1. Using Lemma 4.5, and
previous results on contraction and dilation, we can now
prove Theorem 3.1.

Proof. The first algorithm: compute SA and Sb,
for S an M -sketch matrix with large enough N =
O(C−2

G d2m6+α), putting m = O(d log n), and ε = 1/2.
This N is large enough for Theorem 3.2 to apply, obtain-
ing a contraction bound with failure probability C−m1 .

To apply Lemma 4.5, we need to ensure the as-
sumptions of the lemma are satisfied. For the second
condition, note that indeed ‖w‖∞ ≤ nCs for a constant
Cs > 0 by definition of the sketch, since hmax ≤ log n.
For the first condition, because the second condition
holds, it now suffices to bound ‖Sy‖G,w for an arbitrary
vector y. For this it suffices to show that for each level
h and bucket i, G(‖Lh,i‖Λ) ≤ nO(1)

∑
p∈Lh,i

G(p). By

monotonicity of G, we have G(‖Lh,i‖Λ) ≤ G(‖Lh,i‖1).
By the growth condition on G, for a ≥ b we have

G(a+ b)

G(a)
≤ (a+ b)2

a2
≤ 2 +

2b2

a2
≤ 2 +

2G(b)

G(a)
,

and so G(a+b) ≤ 2G(a)+2G(b). Applying this inequal-
ity recursively dlog |Lh,i|e times, we have G(‖Lh,i‖1) ≤
n
∑
p∈Lh,i

|yp|, which is what we needed to show (where

with some abuse of notation, we use the definition
yp = G(zp) given in §3.1).

Hence, we can apply Lemma 4.5, and by Theo-
rem 3.2, the needed contraction bound holds for all
members of the net N of Lemma 4.5, with failure prob-
ability O(n)CNdC−m1 < 1, for m = O(d log n), assuming
conditions E and E ′c.

For xG minimizing ‖Ax− b‖G, apply Theorem 3.3
to xG and S, so that with constant probabil-
ity, ‖S(AxG − b)‖G,w = O(logd n)‖AxG − b‖G =
O(logd n)OPTG.

By making the totals of the failure probabilities for
conditions E and E ′c, for the contraction bound, and
the dilation bound less than one, the overall failure
probability is less than one. (Here we note that all such
failure probabilities can be made less than 1/5, even if
described as fixed.)

Let T be the sparse subspace embedding of [9], so
that with probability 1 − o(1), ‖TAx‖2 = O(1)‖Ax‖2
for all x and TA can be computed in nnz(A) time and
T has poly(d) rows.

Find x0 minimizing ‖T (Ax− b)‖2, and let c ≡
‖Ax0 − b‖2.

Now find x̃ minimizing ‖S(Ax− b)‖Gc,w, subject to

‖T (Ax− b)‖2 ≤ κcn3/2, using the ellipsoid method, in
poly(d log n) time. Now Lemma 4.5 applies, implying
that x̃ satisfies the claim of the theorem.

A similar argument holds for x̂, by minimizing
‖S(Ax− b)‖Gc,w.
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