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Abstract

Clustering large datasets is a fundamental problem with a number of applications
in machine learning. Data is often collected on different sites and clustering needs
to be performed in a distributed manner with low communication. We would
like the quality of the clustering in the distributed setting to match that in the
centralized setting for which all the data resides on a single site. In this work, we
study both graph and geometric clustering problems in two distributed models:
(1) a point-to-point model, and (2) a model with a broadcast channel. We give
protocols in both models which we show are nearly optimal by proving almost
matching communication lower bounds. Our work highlights the surprising power
of a broadcast channel for clustering problems; roughly speaking, to spectrally
cluster n points or n vertices in a graph distributed across s servers, for a worst-case
partitioning the communication complexity in a point-to-point model is n · s, while
in the broadcast model it is n+ s. A similar phenomenon holds for the geometric
setting as well. We implement our algorithms and demonstrate this phenomenon
on real life datasets, showing that our algorithms are also very efficient in practice.

1 Introduction

Clustering is a fundamental task in machine learning with widespread applications in data mining,
computer vision, and social network analysis. Example applications of clustering include grouping
similar webpages by search engines, finding users with common interests in a social network, and
identifying different objects in a picture or video. For these applications, one can model the objects
that need to be clustered as points in Euclidean space Rd, where the similarities of two objects are
represented by the Euclidean distance between the two points. Then the task of clustering is to choose
k points as centers, so that the total distance between all input points to their corresponding closest
center is minimized. Depending on different distance objective functions, three typical problems
have been studied: k-means, k-median, and k-center.

The other popular approach for clustering is to model the input data as vertices of a graph, and the
similarity between two objects is represented by the weight of the edge connecting the corresponding
vertices. For this scenario, one is asked to partition the vertices into clusters so that the “highly
connected” vertices belong to the same cluster. A widely-used approach for graph clustering is
spectral clustering, which embeds the vertices of a graph into the points in Rk through the bottom k
eigenvectors of the graph’s Laplacian matrix, and applies k-means on the embedded points.
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Both the spectral clustering and the geometric clustering algorithms mentioned above have been
widely used in practice, and have been the subject of extensive theoretical and experimental studies
over the decades. However, these algorithms are designed for the centralized setting, and are not
applicable in the setting of large-scale datasets that are maintained remotely by different sites. In
particular, collecting the information from all the remote sites and performing a centralized clustering
algorithm is infeasible due to high communication costs, and new distributed clustering algorithms
with low communication cost need to be developed.

There are several natural communication models, and we focus on two of them: (1) a point-to-point
model, and (2) a model with a broadcast channel. In the former, sometimes referred to as the message-
passing model, there is a communication channel between each pair of users. This may be impractical,
and the so-called coordinator model can often be used in place; in the coordinator model there is a
centralized site called the coordinator, and all communication goes through the coordinator. This
affects the total communication by a factor of two, since the coordinator can forward a message from
one server to another and therefore simulate a point-to-point protocol. There is also an additional
additive O(log s) bits per message, where s is the number of sites, since a server must specify to the
coordinator where to forward its message. In the model with a broadcast channel, sometimes referred
to as the blackboard model, the coordinator has the power to send a single message which is received
by all s sites at once. This can be viewed as a model for single-hop wireless networks.

In both models we study the total number of bits communicated among all sites. Although the
blackboard model is at least as powerful as the message-passing model, it is often unclear how to
exploit its power to obtain better bounds for specific problems. Also, for a number of problems the
communication complexity is the same in both models, such as computing the sum of s length-n bit
vectors modulo two, where each site holds one bit vector [18], or estimating large moments [20].
Still, for other problems like set disjointness it can save a factor of s in the communication [5].

Our contributions. We present algorithms for graph clustering: for any n-vertex graph whose
edges are arbitrarily partitioned across s sites, our algorithms have communication cost Õ(ns)

in the message passing model, and have communication cost Õ(n + s) in the blackboard model,
where the Õ notation suppresses polylogarithmic factors. The algorithm in the message passing
model has each site send a spectral sparsifier of its local data to the coordinator, who then merges
them in order to obtain a spectral sparsifier of the union of the datasets, which is sufficient for
solving the graph clustering problem. Our algorithm in the blackboard model is technically more
involved, as we show a particular recursive sampling procedure for building a spectral sparsifier
can be efficiently implemented using a broadcast channel. It is unclear if other natural ways of
building spectral sparsifiers can be implemented with low communication in the blackboard model.
Our algorithms demonstrate the surprising power of the blackboard model for clustering problems.
Since our algorithms compute sparsifiers, they also have applications to solving symmetric diagonally
dominant linear systems in a distributed model. Any such system can be converted into a system
involving a Laplacian (see, e.g., [1]), from which a spectral sparsifier serves as a good preconditioner.

Next we show that Ω(ns) bits of communication is necessary in the message passing model to even
recover a constant fraction of a cluster, and Ω(n + s) bits of communication is necessary in the
blackboard model. This shows the optimality of our algorithms up to poly-logarithmic factors.

We then study clustering problems in constant-dimensional Euclidean space. We show for any c > 1,
computing a c-approximation for k-median, k-means, or k-center correctly with constant probability
in the message passing model requires Ω(sk) bits of communication. We then strengthen this lower
bound, and show even for bicriteria clustering algorithms, which may output a constant factor more
clusters and a constant factor approximation, our Ω(sk) bit lower bound still holds. Our proofs are
based on communication and information complexity. Our results imply that existing algorithms [3]
for k-median and k-means with Õ(sk) bits of communication, as well as the folklore parallel guessing
algorithm for k-center with Õ(sk) bits of communication, are optimal up to poly-logarithmic factors.
For the blackboard model, we present an algorithm for k-median and k-means that achieves an
O(1)-approximation using Õ(s+ k) bits of communication. This again separates the models.

We give empirical results which show that using spectral sparsifiers preserves the quality of spectral
clustering surprisingly well in real-world datasets. For example, when we partition a graph with over
70 million edges (the Sculpture dataset) into 30 sites, only 6% of the input edges are communicated
in the blackboard model and 8% are communicated in the message passing model, while the values
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of the normalized cut (the objective function of spectral clustering) given in those two models are
at most 2% larger than the ones given by the centralized algorithm, and the visualized results are
almost identical. This is strong evidence that spectral sparsifiers can be a powerful tool in practical,
distributed computation. When the number of sites is large, the blackboard model incurs significantly
less communication than the message passing model, e.g., in the Twomoons dataset when there are
90 sites, the message passing model communicates 9 times as many edges as communicated in the
blackboard model, illustrating the strong separation between these models that our theory predicts.

Related work. There is a rich literature on spectral and geometric clustering algorithms from various
aspects (see, e.g., [2, 16, 17, 19]). Balcan et al. [3, 4] and Feldman et al. [9] study distributed k-means
([3] also studies k-median). Very recently Guha et al. [10] studied distributed k-median/center/means
with outliers. Cohen et al. [7] study dimensionality reduction techniques for the input data matrices
that can be used for distributed k-means. The main takeaway is that there is no previous work
which develops protocols for spectral clustering in the common message passing and blackboard
models, and lower bounds are lacking as well. For geometric clustering, while upper bounds exist
(e.g., [3, 4, 9]), no provable lower bounds in either model existed, and our main contribution is to
show that previous algorithms are optimal. We also develop a new protocol in the blackboard model.

2 Preliminaries

Let G = (V,E,w) be an undirected graph with n vertices, m edges, and weight function V × V →
R≥0. The set of neighbors of a vertex v is represented byN(v), and its degree is dv =

∑
u∼v w(u, v).

The maximum degree of G is defined to be ∆(G) = maxv{dv}. For any set S ⊆ V , let µ(S) ,∑
v∈S dv . For any sets S, T ⊆ V , we define w(S, T ) ,

∑
u∈S,v∈T w(u, v) to be the total weight of

edges crossing S and T . For two sets X and Y , the symmetric difference of X and Y is defined as
X4Y , (X \ Y ) ∪ (Y \X).

For any matrix A ∈ Rn×n, let λ1(A) ≤ · · · ≤ λn(A) = λmax(A) be the eigenvalues of A. For any
two matrices A,B ∈ Rn×n, we write A � B to represent B − A is positive semi-definite (PSD).
Notice that this condition implies that xᵀAx ≤ xᵀBx for any x ∈ Rn. Sometimes we also use a
weaker notation (1− ε)A �r B �r (1 + ε)A to indicate that (1− ε)xᵀAx ≤ xᵀBx ≤ (1 + ε)xᵀAx
for all x in the row span of A.

Graph Laplacian. The Laplacian matrix of G is an n× n matrix LG defined by LG = DG −AG,
whereAG is the adjacency matrix ofG defined byAG(u, v) = w(u, v), andDG is the n×n diagonal
matrix with DG(v, v) = dv for any v ∈ V [G]. Alternatively, we can write LG with respect to a
signed edge-vertex incidence matrix: we assign every edge e = {u, v} an arbitrary orientation, and
let BG(e, v) = 1 if v is e’s head, BG(e, v) = −1 if v is e’s tail, and BG(e, v) = 0 otherwise. We
further define a diagonal matrix WG ∈ Rm×m, where WG(e, e) = we for any edge e ∈ E[G].
Then, we can write LG as LG = Bᵀ

GWGBG. The normalized Laplacian matrix of G is defined by
LG , D

−1/2
G LGD

−1/2
G = I − D−1/2G AGD

−1/2
G . We sometimes drop the subscript G when the

underlying graph is clear from the context.

Spectral sparsification. For any undirected and weighted graph G = (V,E,w), we say a subgraph
H of G with proper reweighting of the edges is a (1 + ε)-spectral sparsifier if

(1− ε)LG � LH � (1 + ε)LG. (1)

By definition, it is easy to show that, if we decompose the edge set of a graph G = (V,E) into
E1, . . . , E` for a constant ` and Hi is a spectral sparsifier of Gi = (V,Ei) for any 1 ≤ i ≤ `, then
the graph formed by the union of edge sets from Hi is a spectral sparsifier of G. It is known that, for
any undirected graph G of n vertices, there is a (1 + ε)-spectral sparsifier of G with O(n/ε2) edges,
and it can be constructed in almost-linear time [13]. We will show that a spectral sparsifier preserves
the cluster structure of a graph.

Models of computation. We will study distributed clustering in two models for distributed data: the
message passing model and the blackboard model. The message passing model represents those
distributed computation systems with point-to-point communication, and the blackboard model
represents those where messages can be broadcast to all parties.

More precisely, in the message passing model there are s sites P1, . . . ,Ps, and one coordinator.
These sites can talk to the coordinator through a two-way private channel. In fact, this is referred to
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as the coordinator model in Section 1, where it is shown to be equivalent to the point-to-point model
up to small factors. The input is initially distributed at the s sites. The computation is in terms of
rounds: at the beginning of each round, the coordinator sends a message to some of the s sites, and
then each of those sites that have been contacted by the coordinator sends a message back to the
coordinator. At the end, the coordinator outputs the answer. In the alternative blackboard model, the
coordinator is simply a blackboard where these s sites P1, . . . ,Ps can share information; in other
words, if one site sends a message to the coordinator/blackboard then all the other s− 1 sites can see
this information without further communication. The order for the sites to speak is decided by the
contents of the blackboard.

For both models we measure the communication cost as the total number of bits sent through the
channels. The two models are now standard in multiparty communication complexity (see, e.g.,
[5, 18, 20]). They are similar to the congested clique model [14] studied in the distributed computing
community; the main difference is that in our models we do not post any bandwidth limitations at
each channel but instead consider the total number of bits communicated.

3 Distributed graph clustering

In this section we study distributed graph clustering. We assume that the vertex set of the input graph
G = (V,E) can be partitioned into k clusters, where vertices in each cluster S are highly connected to
each other, and there are fewer edges between S and V \S. To formalize this notion, we define the con-
ductance of a vertex set S by φG(S) , w(S, V \S)/µ(S). Generalizing the Cheeger constant, we de-
fine the k-way expansion constant of graphG by ρ(k) , minpartition A1, . . . , Ak

max1≤i≤k φG(Ai).

Notice that a graph G has k clusters if the value of ρ(k) is small.

Lee et al. [12] relate the value of ρ(k) to λk(LG) by the following higher-order Cheeger inequality:

λk(LG)

2
≤ ρ(k) ≤ O(k2)

√
λk(LG).

Based on this, a large gap between λk+1(LG) and ρ(k) implies (i) the existence of a k-way partition
{Si}ki=1 with smaller value of φG(Si) ≤ ρ(k), and (ii) any (k + 1)-way partition of G contains a
subset with high conductance ρ(k + 1) ≥ λk+1(LG)/2. Hence, a large gap between λk+1(LG) and
ρ(k) ensures that G has exactly k clusters.

In the following, we assume that Υ , λk+1(LG)/ρ(k) = Ω(k3), as this assumption was used in the
literature for studying graph clustering in the centralized setting [17].

Both algorithms presented in the section are based on the following spectral clustering algorithm:
(i) compute the k eigenvectors f1, . . . , fk of LG associated with λ1(LG), . . . , λk(LG); (ii) embed
every vertex v to a point in Rk through the embedding F (v) = 1√

dv
· (f1(v), . . . , fk(v)); (iii) run

k-means on the embedded points {F (v)}v∈V , and group the vertices of G into k clusters according
to the output of k-means.

3.1 The message passing model

We assume the edges of the input graphG = (V,E) are arbitrarily allocated among s sitesP1, · · · ,Ps,
and we use Ei to denote the edge set maintained by site Pi. Our proposed algorithm consists of
two steps: (i) every Pi computes a linear-sized (1 + c)-spectral sparsifier Hi of Gi , (V,Ei), for a
small constant c ≤ 1/10, and sends the edge set of Hi, denoted by E′i, to the coordinator; (ii) the

coordinator runs a spectral clustering algorithm on the union of received graphs H ,
(
V,
⋃k
i=1E

′
i

)
.

The theorem below summarizes the performance of this algorithm, and shows the approximation
guarantee of this algorithm is as good as the provable guarantee of spectral clustering known in the
centralized setting [17].
Theorem 3.1. Let G = (V,E) be an n-vertex graph with Υ = Ω(k3), and suppose the edges
of G are arbitrarily allocated among s sites. Assume S1, · · · , Sk is an optimal partition that
achieves ρ(k). Then, the algorithm above computes a partition A1, . . . , Ak satisfying vol(Ai4Si) =

O
(
k3 ·Υ−1 · vol(Si)

)
for any 1 ≤ i ≤ k. The total communication cost of this algorithm is Õ(ns)

bits.
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Our proposed algorithm is very easy to implement, and the next theorem shows that the communica-
tion cost of our algorithm is optimal up to a logarithmic factor.
Theorem 3.2. Let G be an undirected graph with n vertices, and suppose the edges of G are
distributed among s sites. Then, any algorithm that correctly outputs a constant fraction of a cluster
in G requires Ω(ns) bits of communication. This holds even if each cluster has constant expansion.

As a remark, it is easy to see that this lower bound also holds for constructing spectral sparsifiers:
for any n× n PSD matrix A whose entries are arbitrarily distributed among s sites, any distributed
algorithm that constructs a (1 + Θ(1))-spectral sparsifier of A requires Ω(ns) bits of communication.
This follows since such a spectral sparsifier can be used to solve the spectral clustering problem.
Spectral sparsification has played an important role in designing fast algorithms from different areas,
e.g., machine learning, and numerical linear algebra. Hence our lower bound result for constructing
spectral sparsifiers may have applications to studying other distributed learning algorithms.

3.2 The blackboard model

Next we present a graph clustering algorithm with Õ(n + s) bits of communication cost in the
blackboard model. Our result is based on the observation that a spectral sparsifier preserves the
structure of clusters, which was used for proving Theorem 3.1. So it suffices to design a distributed
algorithm for constructing a spectral sparsifier in the blackboard model.

Our distributed algorithm is based on constructing a chain of coarse sparsifiers [15], which is described
as follows: for any input PSD matrix K with λmax(K) ≤ λu and all the non-zero eigenvalues of K
at least λ`, we define d = dlog2(λu/λ`)e and construct a chain of d+ 1 matrices

[K(0),K(1), . . . ,K(d)], (2)

where γ(i) = λu/2
i and K(i) = K + γ(i)I . Notice that in the chain above every K(i − 1) is

obtained by adding weights to the diagonal entries of K(i), and K(i− 1) approximates K(i) as long
as the weights added to the diagonal entries are small. We will construct this chain recursively, so that
K(0) has heavy diagonal entries and can be approximated by a diagonal matrix. Moreover, since K
is the Laplacian matrix of a graph G, it is easy to see that d = O(log n) as long as the edge weights
of G are polynomially upper-bounded in n.
Lemma 3.3 ([15]). The chain (2) satisfies the following relations: (1) K �r K(d) �r 2K; (2)
K(`) � K(`− 1) � 2K(`) for all ` ∈ {1, . . . , d}; (3) K(0) � 2γ(0)I � 2K(0).

Based on Lemma 3.3, we will construct a chain of matrices[
K̃(0), K̃(1), . . . , K̃(d)

]
(3)

in the blackboard model, such that every K̃(`) is a spectral sparsifier of K(`), and every K̃(`+ 1)

can be constructed from K̃(`). The basic idea behind our construction is to use the relations among
different K(`) shown in Lemma 3.3 and the fact that, for any K = BᵀB, sampling rows of B with
respect to their leverage scores can be used to obtain a matrix approximating K.
Theorem 3.4. LetG be an undirected graph on n vertices, where the edges ofG are allocated among
s sites, and the edge weights are polynomially upper bounded in n. Then, a spectral sparsifier of G
can be constructed with Õ(n+ s) bits of communication in the blackboard model. That is, the chain
(3) can be constructed with Õ(n+ s) bits of communication in the blackboard model.

Proof. Let K = BᵀB be the Laplacian matrix of the underlying graph G, where B ∈ Rm×n is the
edge-vertex incidence matrix of G. We will prove that every K̃(i+ 1) can be constructed based on
K̃(i) with Õ(n+ s) bits of communication. This implies that K̃(d), a (1 + ε)-spectral sparsifier of
K, can be constructed with Õ(n+ s) bits of communication, as the length of the chain d = O(log n).

First of all, notice that λu ≤ 2n, and the value of n can be obtained with communication cost
Õ(n + s) (different sites sequentially write the new IDs of the vertices on the blackboard). In the
following we assume that λu is the upper bound of λmax that we actually obtained in the blackboard.

Base case of ` = 0: By definition, K(0) = K + λu · I , and 1
2 · K(0) � γ(0) · I � K(0), due

to Statement 3 of Lemma 3.3. Let ⊕ denote appending the rows of one matrix to another. We
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define Bγ(0) = B ⊕
√
γ(0) · I , and write K(0) = K + γ(0) · I = Bᵀ

γ(0)Bγ(0). By defining
τi = bᵀi (K(0))

ᵀ
bi for each row of Bγ(0), we have τi ≤ bᵀi (γ(0) · I) bi ≤ 2 · τi. Let τ̃i =

bᵀi (γ(0) · I)
+
bi be the leverage score of bi approximated using γ(0) · I , and let τ̃ be the vector of

approximate leverage scores, with the leverage scores of the n rows corresponding to
√
γ(0) · I

rounded up to 1. Then, with high probability sampling O(ε−2n log n) rows of B will give a matrix
K̃(0) such that (1− ε)K(0) � K̃(0) � (1 + ε)K(0). Notice that, as every row of B corresponds
to an edge of G, the approximate leverage scores τ̃i for different edges can be computed locally by
different sites maintaining the edges, and the sites only need to send the information of the sampled
edges to the blackboard, hence the communication cost is Õ(n+ s) bits.

Induction step: We assume that (1−ε)K(`) �r K̃(`) �r (1+ε)K(`), and the blackboard maintains
the matrix K̃(`). This implies that (1− ε)/(1 + ε) ·K(`) �r 1/(1 + ε) · K̃(`) �r K(`). Combining
this with Statement 2 of Lemma 3.3, we have that

1− ε
2(1 + ε)

K(`+ 1) �r
1

2(1 + ε)
K̃(`) � K(`+ 1).

We apply the same sampling procedure as in the base case, and obtain a matrix K̃(` + 1) such
that (1 − ε)K(` + 1) �r K̃(` + 1) �r (1 + ε)K(` + 1). Notice that, since K̃(`) is written on
the blackboard, the probabilities used for sampling individual edges can be computed locally by
different sites, and in each round only the sampled edges will be sent to the blackboard in order for
the blackboard to obtain K̃(`+ 1). Hence, the total communication cost in each iteration is Õ(n+ s)
bits. Combining this with the fact that the chain length d = O(log n) proves the theorem.

Combining Theorem 3.4 and the fact that a spectral sparsifier preserves the structure of clusters,
we obtain a distributed algorithm in the blackboard model with total communication cost Õ(n+ s)
bits, and the performance of our algorithm is the same as in the statement of Theorem 3.1. Notice
that Ω(n + s) bits of communication are needed for graph clustering in the blackboard model,
since the output of a clustering algorithm contains Ω(n) bits of information and each site needs to
communicate at least one bit. Hence the communication cost of our proposed algorithm is optimal up
to a poly-logarithmic factor.

4 Distributed geometric clustering

We now consider geometric clustering, including k-median, k-means and k-center. Let P be a set
of points of size n in a metric space with distance function d(·, ·), and let k ≤ n be an integer. In
the k-center problem we want to find a set C (|C| = k) such that maxp∈P d(p, C) is minimized,
where d(p, C) = minc∈C d(p, c). In k-median and k-means we replace the objective function
maxp∈P d(p, C) with

∑
p∈P d(p, C) and

∑
p∈P (d(p, C))2, respectively.

4.1 The message passing model

As mentioned, for constant dimensional Euclidean space and a constant c > 1, there are algorithms
that c-approximate k-median and k-means using Õ(sk) bits of communication [3]. For k-center, the
folklore parallel guessing algorithms (see, e.g., [8]) achieve a 2.01-approximation using Õ(sk) bits
of communication.

The following theorem states that the above upper bounds are tight up to logarithmic factors. Due
to space constraints we defer the proof to the full version of this paper. The proof uses tools from
multiparty communication complexity. We in fact can prove a stronger statement that any algorithm
that can differentiate whether we have k points or k + 1 points in total in the message passing model
needs Ω(sk) bits of communication.
Theorem 4.1. For any c > 1, computing c-approximation for k-median, k-means or k-center
correctly with probability 0.99 in the message passing model needs Ω(sk) bits of communication.

A number of works on clustering consider bicriteria solutions (e.g., [11, 6]). An algorithm is a
(c1, c2)-approximation (c1, c2 > 1) if the optimal solution costs W when using k centers, then the
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output of the algorithm costs at most c1W when using at most c2k centers. We can show that for k-
median and k-means, the Ω(sk) lower bound holds even for algorithms with bicriteria approximations.
The proof of the following theorem can be found in the full version of this paper.

Theorem 4.2. For any c ∈ [1, 1.01], computing (7.1− 6c, c)-bicriteria-approximation for k-median
or k-means correctly with probability 0.99 in the message passing model needs Ω(sk) bits of
communication.

4.2 The blackboard model

We can show that there is an algorithm that achieves an O(1)-approximation using Õ(s+ k) bits of
communication for k-median and k-means. Due to space constraints we defer the description of the
algorithm to the full version of this paper. For k-center, it is straightforward to implement the parallel
guessing algorithm in the blackboard model using Õ(s+ k) bits of communication.

Theorem 4.3. There are algorithms that compute O(1)-approximations for k-median, k-means and
k-center correctly with probability 0.9 in the blackboard model using Õ(s+k) bits of communication.

5 Experiments

In this section we present experimental results for spectral graph clustering in the message passing
and blackboard models. We will compare the following three algorithms. (1) Baseline: each site
sends all the data to the coordinator directly; (2) MsgPassing: our algorithm in the message passing
model (Section 3.1); (3) Blackboard: our algorithm in the blackboard model (Section 3.2).

Besides giving the visualized results of these algorithms on various datasets, we also measure the
qualities of the results via the normalized cut, defined as ncut(A1, . . . , Ak) = 1

2

∑
i∈[k]

w(Ai,V \Ai)
vol(Ai)

,
which is a standard objective function to be minimized for spectral clustering algorithms.

We implemented the algorithms using multiple languages, including Matlab, Python and C++. Our
experiments were conducted on an IBM NeXtScale nx360 M4 server, which is equipped with 2 Intel
Xeon E5-2652 v2 8-core processors, 32GB RAM and 250GB local storage.

Datasets. We test the algorithms in the following real and synthetic datasets.

• Twomoons: this dataset contains n = 14, 000 coordinates in R2. We consider each point to
be a vertex. For any two vertices u, v, we add an edge with weight w(u, v) = exp{−‖u−
v‖22/σ2} with σ = 0.1 when one vertex is among the 7000-nearest points of the other. This
construction results in a graph with about 110, 000, 000 edges.

• Gauss: this dataset contains n = 10, 000 points in R2. There are 4 clusters in this dataset,
each generated using a Gaussian distribution. We construct a complete graph as the similarity
graph. For any two vertices u, v, we define the weight w(u, v) = exp{−‖u− v‖22/σ2} with
σ = 1. The resulting graph has about 100, 000, 000 edges.

• Sculpture: a photo of The Greek Slave We use an 80× 150 version of this photo where
each pixel is viewed as a vertex. To construct a similarity graph, we map each pixel to a point
in R5, i.e., (x, y, r, g, b), where the latter three coordinates are the RGB values. For any two
vertices u, v, we put an edge between u, v with weight w(u, v) = exp{−‖u − v‖22/σ2}
with σ = 0.5 if one of u, v is among the 5000-nearest points of the other. This results in a
graph with about 70, 000, 000 edges.

In the distributed model edges are randomly partitioned across s sites.

Results on clustering quality. We visualize the clustered results for the Twomoons dataset in
Figure 1. It can be seen that Baseline, MsgPassing and Blackboard give results of very similar
qualities. For simplicity, here we only present the visualization for s = 15. Similar results were
observed when we varied the values of s.

We also compare the normalized cut (ncut) values of the clustering results of different algorithms.
The results are presented in Figure 2. In all datasets, the ncut values of different algorithms are very
close. The ncut value of MsgPassing slightly decreases when we increase the value of s, while the
ncut value of Blackboard is independent of s.
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(a) Baseline (b) MsgPassing (c) Blackboard

Figure 1: Visualization of the results on Twomoons. In the message passing model each site samples
5n edges; in the blackboard model all sites jointly sample 10n edges and the chain has length 18.

(a) Twomoons (b) Gauss (c) Sculpture

Figure 2: Comparisons on normalized cuts. In the message passing model, each site samples 5n
edges; in each round of the algorithm in the blackboard model, all sites jointly sample 10n edges (in
Twomoons and Gauss) or 20n edges (in Sculpture) edges and the chain has length 18.

Results on Communication Costs. We compare the communication costs of different algorithms
in Figure 3. We observe that while achieving similar clustering qualities as Baseline, both
MsgPassing and Blackboard are significantly more communication-efficient (by one or two orders
of magnitudes in our experiments). We also notice that the value of s does not affect the communica-
tion cost of Blackboard, while the communication cost of MsgPassing grows almost linearly with
s; when s is large, MsgPassing uses significantly more communication than Blackboard.

(a) Twomoons (b) Gauss (c) Sculpture

(d) Twomoons (e) Gauss (f) Sculpture

Figure 3: Comparisons on communication costs. In the message passing model, each site samples
5n edges; in each round of the algorithm in the blackboard model, all sites jointly sample 10n (in
Twomoons and Gauss) or 20n (in Sculpture) edges and the chain has length 18.
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