Optimal Principal Component Analysis in Distributed and
Streaming Models

Christos Boutsidis
Goldman Sachs
New York, USA

christos.boutsidi-
s@gmail.com

ABSTRACT

This paper studies the Principal Component Analysis (PCA)
problem in the distributed and streaming models of compu-
tation. Given a matrix A € R™*", a rank parameter k <
rank(A), and an accuracy parameter 0 < € < 1, we want to
output an m x k orthonormal matrix U for which

|A - UUTAE < (1+¢e)-|A - A,

where A, € R™*" is the best rank-k approximation to A.
Our contributions are summarized as follows:

1. In the arbitrary partition distributed model of Kannan
et al. (COLT 2014), each of s machines holds a matrix
A’and A = Y"°_| A’. Each machine should output U.
Kannan et al. achieve O(skm/e) + poly(sk/e) words
(of O(log(nm)) bits) communication. We obtain the
improved bound of O(skm) + poly(sk/e) words, and
show an optimal (up to low order terms) 2(skm) lower
bound. This resolves an open question in the literature.
A poly(e™") dependence is known to be required, but
we separate this dependence from m.

2. In a more specific distributed model where each server
receives a subset of columns of A, we bypass the above
lower bound when A is ¢-sparse in each column. Here
we obtain an O(sk¢/c) + poly(sk/e) word protocol.
Our communication is independent of the matrix di-
mensions, and achieves the guarantee that each server,
in addition to outputting U, outputs a subset of O(k/¢)
columns of A containing a U in its span (that is, for
the first time, we solve distributed column subset se-
lection). Additionally, we show a matching Q(sk¢/e)
lower bound for distributed column subset selection.
Achieving our communication bound when A is sparse
in general but not sparse in each column, is impossible.

3. In the streaming model of computation, in which the
columns of the matrix A arrive one at a time, an algo-
rithm of Liberty (KDD, 2013) with an improved anal-
ysis by Ghashami and Phillips (SODA, 2014) achieves

David P. Woodruff
IBM Research
California, USA

dpwoodru@us.ibm.com

Peilin Zhong
Institute for Interdisciplinary
Information Sciences
Tsinghua University, China

zpl12@mails.tsinghua.edu.cn

O(km/e) “real numbers” space complexity. We improve
this result, since our one-pass streaming PCA algorithm
achieves an O(km/e) + poly(k/e) word space upper
bound. This almost matches a known Q(km /<) bit lower
bound of Woodruff (NIPS, 2014). We show that with
two passes over the columns of A one can achieve an
O(km) + poly(k/e) word space upper bound; another
lower bound of Woodruff (NIPS, 2014) shows that this
is optimal for any constant number of passes (up to the
poly(k/e) term and the distinction between words ver-
sus bits).

4. Finally, in turnstile streams, in which we receive entries
of A one at a time in an arbitrary order, we describe an
algorithm with O((m + n)ke ') words of space. This
improves the O((m+ne~?)ke™?) upper bound of Clark-
son and Woodruff (STOC 2009), and matches their Q((m+
n)ke™') word lower bound.

Notably, our results do not depend on the condition num-
ber or any singular value gaps of A.

Categories and Subject Descriptors

G.1.3 [Mathematics of Computing]: Numerical Analysis -
Numerical Linear Algebra; E.m [Data]: Miscellaneous
General Terms

Algorithms, Theory
Keywords

low rank matrix decomposition, singular value decomposi-
tion, principal component analysis, column subset selection,
distributed, streaming, sparse, lower bounds

1. INTRODUCTION

In distributed-memory computing systems such as, for ex-
ample, Hadoop [1] or Spark [3], Principal Component Analy-
sis (PCA) and the related Singular Value Decomposition (SVD)
of large matrices is becoming very challenging. Machine learn-
ing libraries implemented on top of such systems, for exam-
ple mahout [2] or mllib [4], provide distributed PCA imple-
mentations since PCA is often used as a building block for a
learning algorithm. PCA is useful for dimension reduction,
noise removal, visualization, etc. In all of these implementa-
tions, the bottleneck is the communication; hence, the focus
has been on minimizing the communication cost of the re-
lated algorithms, and not the computational cost, which is
often the bottleneck in more traditional batch systems.

The data matrix corresponding to the dataset in hand, e.g.,
a term-document matrix representing a text collection, or the

Netflix matrix representing user’s ratings for different movies,
could be distributed in many different ways [38]. In this
paper, we focus on the following so-called arbitrary parti-
tion and column partition models. In the arbitrary partition
model, a matrix A € R™*" is arbitrarily distributed among
s machines. Specifically, A = 37 | A; where A; € R™*"
is held by machine i. Unless otherwise stated, we always
assume m < n. In the column partition model, a matrix
A € R™*" is distributed column-wise among s < n ma-
chines: A = (A1 A, Aj);here, fori=1:s, Aiis
an m X w; column submatrix of A with), w; = n. Note
that the column partition model is a special case of the ar-
bitrary partition model. Thus, it is desirable to prove upper
bounds in the arbitrary partition model, and lower bounds in
the column partition model. Both models have been adapted
by traditional numerical linear algebra software libraries for
distributed memory matrix computations [8].

A recent body of work [24, 6, 33, 26, 30, 9] (see Section 2 for
a comparison) has focused on designing algorithms which
minimize the communication needed for each machine to
output an m x k matrix U for which |[A — UUTA|Z <
(1+¢)-||A — Ag||}, where Ay, € R™*" is the best rank-k
approximation to A. Each machine should output the same
matrix U which can then be used for downstream applica-
tions, such as clustering, where one first projects the data to
a lower dimensional subspace (see, e.g., [6]). The protocol
should succeed with large constant probability. The model is
such that each of the s machines communicates with one ma-
chine, called the “coordinator” (which we sometimes refer to
as Server), but does not communicate with other machines.
This is known as the coordinator model and one can simu-
late arbitrary point-to-point communication with a constant
factor overhead in communication together with an additive
O(log(mn)) bit overhead per message (see, e.g., [37]).

1.1 Our Results

1.1.1 Distributed models

In the arbitrary partition distributed model, the best upper
bound is O((skme™*)+s-poly(ke™')) words (of O(log(mn))
bits) communication [30], while the only known lower bound
for this problem is in the arbitrary partition model and is
Q(skm) [30]. In high precision applications one may want
to set € to be as small as possible and the leading order term
of O(skme™") is undesirable. A natural question is whether
there is an O((skm) + s - poly(ke™')) word protocol. We
note that there is a fairly simple known Q(e~?) bit lower
bound [46], so although one cannot achieve an O(log(1/¢))
dependence in the communication as one would maybe ex-
pect given iterative algorithms for regression with running
time O(log(1/¢)) (see section 2.6 of [47] for an overview), an
O((skm) + s - poly(ke ")) bound would at least separate the
dependence of € and m and allow for much smaller € with
the same amount of communication.

In the column-partition distributed model, there are many
existing protocols using O(skme™") words of communica-
tion [24, 6, 33, 26, 30, 9], and the protocols work in very dif-
ferent ways: that of [24, 6] is based on coresets, while that of
[33,26] is based on adapting a streaming algorithm to the dis-
tributed setting, while that of [30] is based on sketching, and
that of [9] is based on alternating minimization and is useful
only under some assumptions on the condition number (see
Section 2 for a more detailed discussion of these protocols).
It was thus natural to assume there should be a lower bound

of Q(skme™'). Instead, we obtain a new upper bound in the
arbitrary partition model and a matching lower bound (up
to lower order terms) in the column partition model.

THEOREM 1. (Restatement of Theorems 8 and 15) Suppose
the matrix A € R™*™ is partitioned in the arbitrary-partition
model (See Definition 1). For any 1 > ¢ > 0, there is an al-
gorithm which on termination leaves the same orthonormal ma-
trix U € R™** on each machine such that |A — UUTA||} <
(1+¢€)-||A — Ag||} holds with arbitrarily large constant prob-
ability. Further, the algorithm runs in polynomial time with total
communication complexity O(skm + s - poly(ke™")) words each
containing O(log(smne™")) bits.

Suppose the matrix A € R™*™ is partitioned in the column-
partition model (See Definition 2). For any positive 1 < C <
O(poly(skm)), any algorithm which on termination leaves the
same orthonormal matrix U € R™** on each machine for which
|A-UUTA||: < C-||A— Ayl holds with constant probability,
requires Q(skm log(skm)) bits of communication.

In some applications even an O(skm) word protocol may be
too costly, as m could be very large. One could hope to do
for communication what recent work on input sparsity al-
gorithms [18, 35, 36, 12, 21] has done for computation, i.e.,
obtain protocols sensitive to the number of non-zero entries
of A. Many matrices are sparse, e.g., Netflix provides a train-
ing data set of 100, 480, 507 ratings that 480, 189 users give to
17,770 movies. If users correspond to columns in the matrix,
then the average column sparsity is &~ 200 non-zero elements
(out of the 17, 770 possible coordinates).

Our second contribution is a distributed PCA algorithm in
the column-partition model with communication complex-
ity depending on the number of non-zero entries of A. The
communication complexity of this algorithm is independent
of the matrix dimensions. Denote by ¢ the maximum num-
ber of non-zero elements of a column in A. When we say that
A is ¢-sparse, we mean that every column of A has at most ¢
non-zero elements and nnz(A) < ¢ - n. Our protocol has the
additional feature of leaving on each machine the same sub-
set C of O(k/e) columns of A for which there exists an m x k
orthonormal matrix U in the column span of C for which
|A - CCTA[} < [A-UU'AJE < (1+¢)- A~ Axl
This is known as the column subset selection problem, which
is useful since C may be sparse if A is, and also it can lead
to better data intepretability. To partially complement our
protocol, we show our protocol is optimal for any protocol
solving the column subset selection problem. We summarize
these results as follows.

THEOREM 2. (Restatement of Theorem 12) Suppose a ¢-sparse
matrix A € R™*™ is partitioned in the column-partition model
(See Definition 2). For any 1 > € > 0, there is an algorithm which
on termination leaves C € R™*¢ with ¢ = O(k/e) columns
of A and an orthonormal matrix U on each machine such that
|A — CCTAJ2 < A~ UUTAR < (1+¢)- A - Agfl2
holds with arbitrarily large constant probability. Further, the al-
gorithm runs in polynomial time with total communication com-
plexity O (skge™" + sk’e~*) words, each of which is specified by
O(log(smne™1)) bits.

1.1.2 Streaming Models
A model closely related to the distributed model of com-
putation is the streaming model of computation. The model
we focus on is the so-called turnstile streaming model. In this

Upper bounds Lower bounds

Definition 3 (arbitrary partition model)

O(skm 4 s - poly(k/e)) (Theorem 8)

Q(skm) (Theorem 1.2 in [30])

Definition 4 (column partition model)

O(skm + s - poly(k/c)) _ (Theorem 8)

Q(skm) (Theorem 15)

Definition 4 with sparsity ¢ = o(g - m)

O(skpe— L + s - poly(k/e)) (Theorem 12)

Q(skg) (Corollary2)

Table 1: Communication upper/lower bounds for the Distributed PCA problems.

model, there is a stream of update operations and each op-
eration indicates that the corresponding entry of A should
be incremented by a specific number. We present novel PCA
algorithms in this model.

Our first one-pass algorithm improves upon the best exist-
ing streaming PCA algorithm [33, 26] in two respects. First,
the space of [33, 26] is described in “real numbers” while our
space bound (O(mk/e + poly(k/e)) - see Theorem 9) is in
terms of words (we also bound the word size). This matches
an Q(km/e) bit lower bound for one-pass algorithms in [45],
up to the distinction between words versus bits and a low
order term poly(k/¢). Second, our algorithm can be applied
in the turnstile streaming model which is stronger than the
column update streaming model in [33, 26].

THEOREM 3. (Restatement of Theorem 9) Suppose a matrix
A e R™*™ is given by a stream of update operations in the turn-
stile streaming model (See Definition 7). For any 1 > € > 0, there
is an algorithm which uses a single pass over the stream and on
termination outputs an orthonormal matrix U € R™** such that
|[A - UUTA|2 < (1+¢) - ||A — Ay} holds with arbitrarily
large constant probability. Further, the algorithm runs in polyno-
mial time with space of total O (mk /e + poly(ke ")) words each
containing O(log(smne™ ")) bits.

A slight modification of the previous algorithm leads to a
one-pass algorithm which can compute a factorization of a
(1 + e)-approximate rank-k matrix. The modified algorithm
only needs O((n+m)k/e + poly(k/e)) words of space which
improves the O((m + ne™2)ke™?) upper bound in [17] and
matches the Q((n + m)k/e) bit lower bound given by [17],
up to the low order term poly(k/¢).

THEOREM 4. (Restatement of Theorem 10) Suppose a matrix
A e R™*™ is given by a stream of update operations in the turn-
stile streaming model (See Definition 7). For any 1 > € > 0, there
is an algorithm which uses a single pass over the stream and on
termination outputs a factorization of a matrix Ay € R™*" with
rank(A}) < ksuch that |A — AL||E < (14¢) - ||A — Ag|}
holds with arbitrarily large constant probability. Further, the algo-
rithm runs in polynomial time with space of total O((m+n)k/e+
poly(ke™)) words each containing O(log(smne™")) bits.

We also show a two-pass algorithm which is an implemen-
tation of our distributed PCA protocol. It uses O((km) +
poly(k/e)) words of space, which up to the poly(k/c) term
and the distinction between words versus bits, is optimal for
any constant number of passes. A “next natural goal” in [45]
was to improve the lower bound of Q(km) to a bound closer
to the 1-pass Q(km/e) lower bound established in that paper;
our upper bound shows this is not possible.

THEOREM 5. (Restatement of Theorem 11) Suppose a matrix
A e R™*"™ is given by a stream of update operations in the turn-
stile streaming model (See Definition 7). For any 1 > e > 0, there
is an algorithm which uses two passes over the stream and upon
termination outputs an orthonormal matrix U € R™** such that
|[A - UUTA|?: < (1 +¢) - ||A — Ay} holds with arbitrarily
large constant probability. Further, the algorithm runs in poly-
nomial time with total space O (mk + poly(ke™")) words each

containing O(log(smne™")) bits.

1.2 Technical Overview

1.2.1 Upper Bounds
The Arbitrary Partition Model.

Recall that the input matrix A € R™*" is arbitrarily par-
titioned into s matrices A; € R™*" ie., fori = 1,2,...,s:
A = 377 | A, Critical to our protocol is the recent notion
of projection-cost preserving sketches [20]. These show that by
sketching the matrix A on the left and right by two small

random Si§n matrices § € ROF/e)xm and T ¢ R"XO(’“/EZ),
with O(sk? /e*) words of communication, the server can learn
A = SAT which is a “sketch” of A, and critically, that it
suffices to compute the best rank-k approximation Ay, to A.
Suppose the SVD of A, = U A2 Angk. Then the server
can learn X = ATV, by a second round of communi-
cation which needs O(skm) words. We then prove ||A —
UUTA|2 < (1 +¢)||A — Ak||z where U is an orthonormal
basis of span(X). Notice that rank(U) < k. Thus U is ex-
actly what we want. Section 4.3 gives details of the protocol.

A technical obstacle in the analysis above is that it may
require a large number of machine words to specify the en-
tries of V A, even if each entry in A is only a single word.
In fact, one can show (we omit the details) that the singular
values of A, can be exponentially large in &/, which means
one would need to round the entries of V5 to an additive
exponentially small precision, which wouldk translate to an
undesirable sm - poly(k/e) bits of communication.

To counter this, we use the smoothed analysis of Tao and
Vu [44] to argue that if we add small random Bernoulli noise
to A, then its minimum singular value becomes inverse poly-
nomial in n. Moreover, if the rank of A is at least 2k and
under the assumption that the entries of A are representable
with a single machine word (so we can identify them with
integers in magnitude at most poly(nms/¢) by scaling), then
we can show the additional noise preserves relative error ap-
proximation. To our knowledge, this is the first application
of this smoothing technique to distributed linear algebra al-
gorithms. Section 5 discusses the details of this approach.

On the other hand, if the rank of A is smaller than 2k, the
smoothing technique need not preserve relative error. In this
case though, we can learn a basis C € R™*O®) for the col-
umn span of A by multiplying by a pseudorandom matrix
based on Vandermonde matrices. Since C has at most 2k
columns, we can efficiently communicate it to all servers us-
ing O(skm) communication. At this point we set up the opti-
mization problem min i (x)<x || CXCTA — A||r. The server
cannot learn CTA and A directly, as this would be Q(nm)
words, but we can choose additional “sketching matrices”
Tieft and Trigne to instead solve

min || Ty (CXCTA — A)Trigni|r,
rank(X)<k
which is a generalization of the subspace embedding tech-
nique to “affine embeddings” [45]. Note that the server learns
Tt CXCTAT,igns and Ty ;s AT igne, which are small ma-
trices, and can be sent to each machine. Each machine locally
solves for the rank-k solution X. minimizing the following
quantity HT[eftCXCTAT”'ght — TleftATrightHF- Finally,
each machine can find the same m X k orthonormal basis

Upper bounds Lower bounds
One-pass turnstile, Def. 8 O(mke L + poly(k,e 1)) (Theorem 9) Q(mke 1) bits [45]
One-pass turnstile, factorization, Def. 9 O((n + m)ke™ T poly(k,e™ T)) (Theorem 10) Q((n + m)ke ™ T) words [17]
Two-pass turnstile, Def. 8 O(mk + poly(k, e 1) (Theorem 11) Q(mk) bits [45]

Table 2: Space upper/lower bounds for the Streaming PCA problem.

and output it without further communication.

Sparse Matrices in the Column Partition Model.

Our algorithm for sparse matrices is technically simpler
than that in the arbitrary partition model. Section 7.2 presents
a distributed PCA algorithm using O((¢kse ') +poly(sk/c))
words of communication. Our idea in order to take advan-
tage of the sparsity in the input matrix A is to select and
transfer to the coordinator a small set of “good” columns
from each sub-matrix A;. Specifically, we design an algo-
rithm that first computes, in a distributed way, a matrix Ce
R™*¢ with ¢ = O(ke™") columns of A, and then finds U €
span(C) using a distributed, communication-efficient algo-
rithm developed in [30]. The matrix C is constructed using
optimal algorithms for column sampling [13, 22], extended
properly to the distributed case.

As mentioned, our algorithm actually solves the distributed
column subset selection problem. It builds on results for col-
umn subset selection in the batch setting [13, 22], but gives a
novel analysis showing that in the distributed setting one can
find columns as good as in the batch setting. To the best of
our knowledge, only heuristics for distributed column sub-
set selection were known [23]. We also optimize the time
complexity of our algorithm, see Table 4.

Turnstile streaming model.

Our one-pass streaming PCA algorithm starts by gener-
ating two random sign matrices S € RO*/9)*" and R ¢
R™*O(k/2) "' We can show, ming, i< |ARXSA — AlE <

(14¢)-||A — Ax||% The intuition of the above is as follows.
Suppose the SVD of Ay is Ua,3a, Vh, where Ay is the
best rank-k approximation matrix to A. Since X can be cho-
sen as ¥a, Va,, we have min,qnix)<k [Ua, X — Al =
|Ar — A||3. As shown in [17], S can provide a sketch for
the regression problem with O(k/e) rows. Thus, |[Ua, X —
Alf < (1+¢) minaukxy<k |Ua,X — AZ where X =
arg min, q,x(x)<k |[SUA, X — SA|%. Notice that X is in the
row space of SA and has rank k. Then we focus on the re-
gression problem: minga o x) <k |[XSA —A||%. The main ob-
servation is that we can write this as min . 1 (¥)<k [YWSA—-

A||%, where WSA has the same row space as X and is a
k x n matrix. By doing this, it follows that if R has O(k/e)
columns, we can again sketch the problem by multiplying
by R on the right. Without this observation, note that R
would have to have O(k/e?) columns to apply the technique
in [17], since the matrix in the regression problem in [17]
would have rank O(k/¢) instead of k. Analogously, Y is in
the column span of AR. Thus we can optimize

min ||ARY'WSA — A||7,
Y, W
which we can write as minya e x) <k [ARXSA — A3
One problem is that it is too expensive to store the entire
matrix A. Thus, we sketch on the left and right by Ticy: and
Trignt. Since each of Ticjt AR, SAT ignt and Tie e AT right
can be maintained in small space,

X, =arg min ||Tis(ARXSA — A)Tyign:|7

rank(x)<k

Upper bounds Lower bounds
Definition 5 O(skpe 1) (Theorem 13) | Q(sk¢e 1) (Theorem 16)
Definition6 | O (skqsa*l Ts- poly(k'/a)) (Theorem 13) | Q(sk¢e 1) (Corollary3)

Table 3: Communication upper/lower bounds for the CSSP problems of
Definitions 5 and 6.

can be constructed after one pass over the stream. Addi-
tionally, if AR is also maintained in the algorithm, we can
get U € R™** of which columns are an orthonormal ba-
sis of span(ARX.) satisfying ||[A — UUTA|Z < (1 +¢) -
|A — Ay||3. Furthermore, if SA is also maintained, since it
suffices to compute the SVD of X, = Ux, ¥x, V§(*, T =
Tie;+ARUx, and K = V% _SAT, ;4 can be constructed in
O((n + m)k) words of space. Therefore, the algorithm can
compute A = T3x, K = ARX,SA in O((n+m)k) words
of space. The algorithm then can output A} with total space
O((n +m)k/e + poly(k/e)) words (see Theorem 10).

Our two-pass streaming PCA algorithm is just an imple-
mententation of our distributed PCA algorithm in the stream-
ing model.

1.2.2 Lower Bounds

Table 3 summarizes the matching communication lower
bounds that we obtain for distributed column-based matrix
reconstruction. Theorem 16 proves a lower bound for the
problem in Definition 5; then, a lower bound for the prob-
lem of Definition 6 follows immediately since this is a harder
problem (see Corollalry 3).

Distributed Column Subset Selection.

Our most involved lower bound argument is in showing
the tightness for the distributed column subset selection prob-
lem, and is given in Theorem 16. To illustrate the ideas, sup-
pose k = 1. We start with the canonical hard matrix for col-
umn subset selection, namely, an m x m matrix A whose first
row is all ones, and remaining rows are a subset of the iden-
tity matrix. Intuitively the best rank-1 approximation is very
aligned with the first row of A. However, given only o(1/¢)
columns of the matrix, there is not a vector in the span which
puts a (1 — ¢)-fraction of its mass on the first coordinate, so
Q(1/e) columns are needed. Such a matrix has ¢ = 2.

Obtaining a lower bound for general ¢ involves creating a
large net of such instances. Suppose we set m = ¢ and con-
sider LA, where L is formed by choosing a random ¢ x ¢ or-
thonormal matrix, and then rounding each entry to the near-
est integer multiple of 1/poly(n). We can show that o(1/¢)
columns of LA do not span a rank-1 approximation to LA.
We also need a lemma which shows that if we take two in-
dependently random orthonormal matrices, and round their
entries to integer multiples of 1/poly(n), then these matrices
are extremely unlikely to share a constant fraction of columns.
The idea then is that if one server holds LA, and every other
server holds the zero matrix, then every server needs to out-
put the same subset of columns of LA. By construction of
A, each column of LA is the sum of the first column of L
and an arbitrary column of L, and since we can assume all
servers know the first column of L (which involves a neg-
ligible O(s¢) amount of communication), this implies that
each server must learn Q(1/¢) columns of L. The proba-
bility that random discretized orthonormal matrices share

Q(1/e) columns is sufficiently small that we can choose a
large enough net for these columns to identify L in that net,
requiring Q(¢/e) bits of communication per server, or Q(s¢/«)
words in total. The argument for general k can be viewed as
a “direct sum theorem”, giving (sk¢/c) words of commu-
nication in total.

Dense Matrices in the Column Partition Model.

Our optimal lower bound for dense matrices is technically
simpler. It gives an 2(skm) word communication lower bound
in the column partition model for dense matrices. Theorem 15
argues that there exists an m x n matrix A such that for
this A, any £ < 0.99m, and any error parameter C' with
1 < C < poly(skm), if there exists a protocol to construct an
m x k matrix U satisfying | A — UUTA|3 < C-||A — Ay|3,
with constant probability, then this protocol has communica-
tion cost at least Q(skm) words. This lower bound is proven
for a matrix A that has k fully dense columns. We should
note that the lower bound holds even if each machine only
outputs the projection of A; onto U, i.e., UUT A;, rather than
U itself. Note that this problem is potentially easier, since
given U, a machine could find UUTA,.

The intuition of the proof is that machine 1 has a random
matrix A; € R™** with orthonormal columns (rounded to
integer multiples of 1/poly(n)), while all other machines have
a very small multiple of the identity matrix. When concate-
nating the columns of these matrices, the best k-dimensional
subspace to project the columns onto must be very close to
A in spectral norm. Since machine 4, 7 > 1, has tiny iden-
tity matrices, after projection it obtains a projection matrix
very close to the projection onto the column span of A;. By
choosing a net of m x k orthonormal matrices, all of which
pairwise have high distance in spectral norm, each machine
can reconstruct a random element in this net, which requires
lots of information, and hence communication.

Our lower bound of Theorem 15 also implies a lower bound
of Q(sk¢) words for matrices in which the column sparsity is
¢ (see Corollary 2) as a simple corollary.

1.3 Road Map

We discuss prior results on distributed PCA algorithms in
Section 2. Section 3 introduces the notation and basic results
from linear algebra that we use in our algorithms. Section 4
presents our distributed PCA algorithm for arbitrary matri-
ces for Definition 3. The communication of the algorithm in
this section can be stated only in terms of “real numbers”.
We resolve this issue in Section 5 where a modified algo-
rithm has communication cost bounded in terms of machine
words. Section 6 discusses space-optimal PCA methods in
the streaming model of computation. Section 7 presents a
distributed PCA algorithm for sparse matrices in the column
partition model, while Section 8 extends this algorithm to a
faster distributed PCA algorithm for sparse matrices. Sec-
tion 9 presents communication lower bounds.

Proofs are omitted due to space constraints; we refer the
reader to [16] for the full version of our paper.

2. RELATED WORK

Distributed PCA (or distributed SVD) algorithms have been
investigated for a long time. One line of work, developed pri-
marily within the numerical linear algebra literature, studies
such algorithms from the perspective of parallelizing exist-
ing standard SVD algorithms without sacrificing accuracy.
This approach aims at high accuracy implementations with

the least possible communication cost. The distributed mod-
els of computation go typically beyond the column-partition
model and arbitrary-partition model that we study in this
paper [38]. An extensive survey of this line of work is out
of the scope of our paper; we refer the reader to [29, 42, 28]
and references therein for more details as well as to popu-
lar software for distributed SVD such ScaLAPACK [10] and
Elemental [38].

Another line of work for distributed PCA algorithms has
emerged within the machine learning and datamining com-
munities. Such algorithms have been motivated by the need
to apply SVD or PCA to extremely large matrices encoding
enormous amounts of data. The algorithms in this line of re-
search are typically heuristic approaches that work well in
practice but come with no rigorous theoretical analysis. We
refer the reader to [39, 34, 5, 11] for more details.

Finally, distributed PCA algorithms in the column-partition
model have been recently studied within the theoretical com-
puter science community. Perhaps the more intuitive algo-
rithm for PCA in this model appeared in [24, 6]: first, a num-
ber of left singular vectors and singular values are computed
in each machine; then, the server collects those singular vec-
tors and concatenates them column-wise in a new matrix and
then it computes the top k left singular vectors of this “ag-
gregate” matrix. It is shown in [24, 6] that if the number
of singular vectors and singular values in the first step is
O(ks_l), then, the approximation error in Frobenius norm
is at most (1 + ¢) times the optimal Frobenius norm error;
the communication cost is O(skme ™) real numbers because
each of the s machines sends O(ke™') singular vectors of
dimension m; unfortunately, it is unclear how one can ob-
tain a communication cost in terms of words/bits. A dif-
ferent algorithm with the same communication cost (only
in terms of real numbers since a word/bit communication
bound remained unexplored) is implicit in [33, 26] (see Theo-
rem 3.1 in [26] and the discussion in Section 2.2 in [33]). Kan-
nan, Vempala and Woodruff proposed the arbitrary-partition
model in [30]. They developed a (1 + ¢) Frobenius norm
error algorithm with communication O (skme™" + sk’ ™*)
words. Bhojanapalli, Jain, and Sanghavi in [9] developed an
algorithm that provides a bound with respect to the spectral
norm. Their algorithm is based on sampling elements from
the input matrix, but the communication cost is prohibitive
if n is large. The cost also depends on the condition num-
ber of A. Moreover, to implement the algorithm, one needs
to know ||A — Ay||r. Finally, [32] discussed a distributed im-
plementation of the “orthogonal iteration” to compute eigen-
vectors of graphs. The model they consider is different, but
perhaps their protocol could be extended to our model.

3. PRELIMINARIES

DEFINITION 1. (Arbitrary-partition model) An m x n matrix
A is arbitrarily partitioned into s matrices A; € R™*", i.e., for
i =1,2,...,s: A =37 Ay There are s machines, and the
i-th machine has A; as input. There is also another machine, to
which we refer to as the “server”, which acts as the central coor-
dinator. The model only allows communication between the ma-
chines and the server. The communication cost of an algorithm in
this model is defined as the total number of words transferred be-
tween the machines and the server, where we assume each word is
O(log(nms/¢)) bits.

DEFINITION 2. (Column-partition model) An m X n matrix
A is partitioned arbitrarily column-wise into s blocks A; € R™*™?

la —uuTa|2 <

Communication cost

Total number of arithmetic operations

Reference 1A —uuTal, <

Implicit in [24] (1+e)lA—Agllg | o

o ('m.n min{m, n} + mske ! min{m, ske ! })

Theorem 2 in [6] (1+5)||A—Ak”12:‘ 0

o (m,n min{m, n} + mske ! min{m, sks*l})

Theorem 6 in [6] A+ellA-—aglE | >0

o (nnz(A) +s (m??ﬁ n ’Ciglz) log (%) log (%))

Implicit in [33, 26] (+e)llA—Aglg [o

O(mnke—2)

Thm 1.1 in [30]* (1+5)||A—Ak|\% O(1) O(slﬂns_l +sk25_4) O(poly(nl,n,k,s,s_l))
Thm 5.1 in [9] A — Al +T - >0 O(s'm+nk5s_2A) O(nnz(A)+6_1nk55_2a%(A)a;z(A))
Remark p. 11 [9] A — Al +T - >0 o (s7n + nk35_2A) o (nnz(A) + 6_1nk55_2:7%(A)a;2(A))

Theorem 8* (1+e)lA—AglE o(1)

O(skm + sk3c—2)

o (mnka*z + mk2e—% pozy(ksfl)) .

Theorem 12 (1+e)la—-ALl2 | o)

O(skpe— T + skZ2e— %)

O (mn min{m, n} + mns - poly(k, 1/¢))

Theorem 13 1+olla—-AglE [o

O(5k¢s_1 + sk3s_5)

O (nnz(A) log® (BE) + (m + n) s - poly(E log(B)),

Table 4: Distributed PCA Algorithms in the column-partition model with s machines (see Definition 2). * indicates that the algorithm can also be applied in the

arbitrary partition model (see Definition 1). A € R™*™ hasrank p, U €

Rm'Xk

with k < pisorthonormal, 0 < £ < 1, and each column of A contains at most ¢ <

m non-zero elements. § is the failure probability. Finally, for notational convenience letI" := e[| A — A ||, A := o (A)(fk_2 (A) log? (HAHQ A — Agllpte?) .

i.e.,fori =1,2,...,s: A= (Al Ao
n. There are s machines, and the i-th machine has A; as input.
There is also another machine, to which we refer to as the “server”,
which acts as the central coordinator. The model only allows com-
munication between the machines and the server. The communica-
tion cost of an algorithm in this model is defined as the total number
of words transferred between the machines and the server, where we
assume each word is O(log(nms/e)) bits.

DEFINITION 3. (Distributed PCA - arbitrary partition) Given
an m X n matrix A arbitrarily partitioned into s matrices A; €
R™*™ (4 : 1,2,...,8): A = > °_, Ay, a rank parameter k <
rank(A), and an accuracy parameter 0 < & < 1, design an algo-
rithm in the model of Definition 1 which, upon termination, leaves
on each machine a matrix U € R™** with k orthonormal columns
such that ||A — UUTA||2 < (1 +¢)-||A — Ax||E, and the com-
munication cost of the algorithm is as small as possible.

DEFINITION 4. (Distributed PCA - column partition) Given
an mxn matrix A partitioned column-wise into s arbitrary blocks
AiERmxwi (i:l,Q,...,S).’A: (A1 Ao AS),LI
rank parameter k < rank(A), and an accuracy parameter 0 <
e < 1, design an algorithm in the model of Definition 2 which,
upon termination, leaves on each machine a matrix U € R™*F
with k orthonormal columns such that ||A — UUTA|E < (1 +
€) - |A — Ay||%, and the communication cost of the algorithm is
as small as possible.

DEFINITION 5. (Distributed Column Subset Selection) Given
an mxn matrix A partitioned column-wise into s arbitrary blocks
AiERmxwi (i:l,Q,...,S).‘A: (A1 Ao AS),LI
rank parameter k < rank(A), and an accuracy parameter 0 <
e < 1, design an algorithm in the model of Definition 2 that, upon
termination, leaves on each machine a matrix C € R™*€ with ¢ <
n columns of A such that || A—CCTA |3 < (1+¢)-||A—Ax|3,
and 1. The number of selected columns c is as small as possible. 2.
The communication cost of the algorithm is as small as possible.

DEFINITION 6. (Distributed CSS - rank k subspace) Given an
m X n matrix A partitioned column-wise into s arbitrary blocks
AiERmxwi (i:l,?,...,s).‘A: (A1 Ao AS),LI
rank parameter k < rank(A), and an accuracy parameter 0 <
e < 1, design an algorithm in the model of Definition 2 that, upon
termination, leaves on each machine a matrix C € R™*¢ with
¢ < n columns of A and a matrix U € R™** with k orthonormal
columns with U € span(C), such that ||A — CCTA||% < ||A —
UUTA |2 < (1+¢)-||A — Ay||}, and 1. The number of selected
columns c is as small as possible. 2. The communication cost of the
algorithm is as small as possible.

DEFINITION 7. (Streaming model for PCA) Let all the entries
in A € R™*™ initially be zero. In the streaming model of compu-

A,) .Here, > w; =

tation, there is a stream of update operations such that the q'" op-
eration has the form (iq, jq, x4) which indicates that A, ;, should
be incremented by x4 where iq € {1,...,m},jq, € {1,...,n},2q €
R. An algorithm is allowed a single pass over the stream. At the
end of the stream the algorithm stores some information regarding
A which we call a “sketch” of A. The space complexity of an algo-
rithm in this model is defined as the total number of words required
to describe the information the algorithm stores during the stream
including the sketch. Each word is O(log(nms/<)) bits.

DEFINITION 8. (The Streaming PCA Problem) Given an m x
n matrix A, a rank parameter k < rank(A), and an accuracy
parameter 0 < € < 1, design a minimal space algorithm that finds
a sketch of A in the streaming model (see Definition 7) and using
only this sketch outputs U € R™** with k orthonormal columns
with A — UUTAJZ < (1+2) - [A — A2

DEFINITION 9. (The Streaming PCA Problem (factorization))
Given an m x n matrix A, a rank parameter k < rank(A), and
an accuracy parameter 0 < e < 1, design an algorithm that, using
as little space as possible, first finds a sketch of A in the streaming
model (see Definition 7) and then, using only this sketch outputs a
factorization of Ay, € R™*" with rank(Ay) < k such that

IA = ALllE < (1+e) - A — Alfi.

Notation.

A, B, ... arematrices; a, b, ... are column vectors. I,, is the
n X n identity matrix; O, xr is the m x n matrix of zeros; 1,
is the n x 1 vector of ones; e; is the standard basis (whose di-
mensionality will be clear from the context): the ith element
of e; is one and the rest are zeros. A" and A ;) denote the
ith column and jth row of A, respectively. A;; is the (4, j)th
entry in A.

Sampling Matrices.

Let matrix A = [AM) ... A™] € R™*" and let matrix
C = [AU) .. AU] ¢ R™*¢ consist of ¢ < n columns
of A. Note that we can write C = AS2, where the sampling
matrix is 2 = [e;,,...,e;,] € R"*° (here e; are the standard
basis vectors in R"). If D € R°*¢ is a diagonal matrix, then
A QD contains ¢ columns of A rescaled with the correspond-
ing elements in D. We abbreviate S := QD, hence the matrix
S € R"*¢ “samples” and “rescales” ¢ columns from A.

Matrix norms.

The Frobenius and the spectral matrix-norms: ||A[|z =
> AL A2 = sup =1 [|AX]l2. |A]l¢ is used if a result
holds for both norms & = 2 and £ = F. The standard sub-
multiplicativity property for matrix norms implies that for
any A and B: ||ABJ|¢ < ||A||¢||B|le. The triangle inequality
for matrix norms implies that ||[A + Bl|¢ < [|A]l¢ + [|B|le- A

version of the triangle inequality for the norms squared is:
|A+B|Z <2-[|Alf +2-|BJ|jZ. A version of the matrix
Pythagorean theorem is: if ATB is the all-zeros matrix, then
|A 4+ B|% = ||A||2 + |B||2. If V has orthonormal columns,
then |AVT||¢ = ||A|l¢, for any A. If P is a symmetric projec-
tion matrix (i.e.,, P = PT and P? = P) then, [|[PA|[¢ < || A,
for any A.

Singular Value Decomposition (SVD) and Moore-Penrose

Pseudo-inverse.
The SVD of A € R™*" with rank(A) = pis

S 0 \'
A = (Uk Up—k) < 0 Epfk) (Vzkk)7
— -

Up ERMXP

A ERPXP VT eroxn

with singular values o1 > ...0% > og41 > ... > 0, > 0.
Here, £ < p. We will use 0; (A) to denote the i-th singu-
lar value of A when the matrix is not clear from the con-
text. The matrices Uj, € R™** and U,_;, € R™*"~%) con-
tain the left singular vectors of A, and, similarly, the matrices
Vi € R"* and V,_; € R"*(*~F) contain the right singu-
lar vectors of A. It is well-known that A, = U,3,V} =
AV, VL = U,ULA minimizes || A — X||¢ over all matrices
X € R™*™ of rank at most k. Specifically, |[A — Ax|3 =
ori1(A)and ||A — Ag|lE = Y7, 07 (A) (see [27]). AT =
VAEKIUL € R™™™ denotes the so-called Moore-Penrose
pseudo-inverse of A € R™*™ (here ¥, is the inverse of
2a). By the SVD of A and A, Vi = 1,...,p = rank(A) =
I‘al‘lk(AJr)Z O’i(AT) = 1/Gp7i+1(A).

The best rank k matrix within a subspace.

Let A € R™*", let k < n be an integer, and let V € R™*¢
with k < ¢ < n. IIy ,(A) € R™*" is the best rank k ap-
proximation to A in the column span of V. Equivalently, we
can write I, , (A) = VX, where Xop: = argmin ||A —

rank(x)<k
VX||%. Similarly, we use Ik ,(A) to denote the best rank k&
approximation within the row space of a given subspace R.

4. DISTRIBUTED PCA IN THE ARBITRARY

PARTITION MODEL

This section describes a fast distributed PCA algorithm with
total communication O(msk) + poly(sk/e) words, which is
optimal up to the typically lower-order poly(sk/¢) factor.

We first present the batch version of the algorithm which
offers a new low-rank matrix approximation technique; a spe-

cificimplementation of this algorithm offers a communication-

optimal distributed PCA algorithm. Before presenting all
these new algorithms in detail, we present the relevant re-
sults from the previous literature.

4.1 Projection-cost preserving sketching ma-
trices

In this section, we recap a notion of sketching matrices
which are called “projection-cost preserving sketching ma-
trices”. A sketching matrix from this family is a linear matrix
transformation and it has the property that for all projections
it preserves, up to some error, the difference between the ma-
trix in hand and its projection in Frobenius norm.

DEFINITION 10. (Projection-cost preserving sketching) We say
that W € R™* is an (e, k)-projection-cost preserving sketch-

ing matrix of A € R™*", if for all rank-k orthogonal projec-
tion matrices P € R™*™, it satisfies (1 — ¢)||A — PA||Z <
AW — PAW|% + ¢ < (1 +¢)||A — PA| 2, where ¢ is a non-
negative scalar which only depends on A and W. We also call
AW an (e, k)-projection-cost preserving sketch of A.

Due to the following lemma, we know that a good rank-%
approximation projection matrix of an (e, k)-projection-cost
preserving sketch AW also provides a good rank-k approx-
imation to A.

LEMMA 1. (PCA via Projection-Cost Sketching [20]) Suppose
W € R"*¢ is an (e, k)-projection-cost preserving sketching ma-
trixof A € R™*"™. Let P" = arg min, qnxp)<k |AW-PAW|3.
Forall P, &' satisfying rank(f)) <k, e >0,if

[AW — PAW|# < (1+¢)|AW — PTAW|JZ,

then |A — PA|f < {22 - (1+)| A — A}
[20] also provides several ways to construct projection-cost
preserving sketching matrices. Because we mainly consider
the communication, we just choose one which can reduce the
dimension as much as possible. Furthermore, it is also an
oblivious projection-cost preserving sketching matrix.

LEMMA 2. (Dense Johnson-Lindenstrauss matrix) [part of The-
orem 12 in [20]] For ¢ < 1, suppose each entry of W € R"*¢ is
chosen O(k)-wise independently and uniformly in {1//€, —1//€}
where ¢ = O(ke™?2) [17]. For any A € R™*™, with probability
at least 0.99, W is an (e, k)-projection-cost preserving sketching
matrix of A.

Note, as pointed out to us, it is possible that the O(k)-wise
independence can be improved, though the communication
cost of our algorithm will still be O(msk) + s - poly(k/e) after
doing this, so we omit this optimization.

4.2 A batch algorithm for the fast low rank
approximation of matrices

In this section, we describe a new method for quickly com-
puting a low-rank approximation to a given matrix. This
method does not offer any specific advantages over previous
such techniques [40, 19, 14]; however, this new algorithm can
be implemented efficiently in the distributed setting (see Sec-
tion 4.3) and in the streaming model of computation (see Sec-
tion 6); in fact we are able to obtain communication-optimal
and space-optimal results, respectively. For completeness as
well as ease of presentation, we first present and analyze the
simple batch version of the algorithm. The algorithm uses
the dense Johnson-Lindenstrauss matrix of Lemma 2 in or-
der to reduce both dimensions of A, before computing some
sort of SVD to a poly(k/e) x poly(k/c) matrix (see Step 2 in
the algorithm below).

Consider the usual inputs: a matrix A € R™*", a rank
parameter k£ < rank(A), and an accuracy parameter 0 < & <
1. The algorithm below returns an orthonormal matrix U €
R™** such that ||A — UUTA||E < (1+¢) - ||A — Ag|3.

Algorithm

1. Construct two Johnson-Lindenstrauss matrices S € R&1 %™
and T € R"%€2 with & = O(ke=2),& = O(ke—2) (see
Lemma 2).

2. Construct A = SAT.

3. Compute the SVD of A, = Uz B3 VI (Ui, € ROXE,
kxk k
EAk eR X , vAk ER'EQX)
4. Construct X = ATVAk

5. Compute an orthonormal basis U € R™*F for span(X) (no-
tice that rank(X) < k).

4.3 The distributed PCA algorithm

Recall that the input matrix A € R™*" is partitioned arbi-
trarily as: A = > 7 A fori =1:5, A; € R™*". The idea is
to implement the algorithm in Section 4.2 in the distributed
setting. Firstly, all the machines can agree with the same S
and T in the step 1 of the batch algorithm. Then machine %
computes SA;T locally, and sends it to the server. Thus the
server can learn A = SAT and implement the step 3. Next,
the server sends the V 5 to all machines. Each machine then
computes A; TV 5z, and returns the result to the server. Fi-
nally, the server can finish the algorithm and send U to all
machines. Notice that S and T can be described using a ran-
dom seed that is O(k)-wise independent due to Lemma 2.

THEOREM 6. (main) The matrix U € R™** with k orthonor-
mal columns satisfies w.p. 0.98:

|A - UUTA|Z < (1+¢) [|A — Agl.)

The communication cost of the algorithm is O(msk+s-poly(k/e))
“real numbers”; and the running time of the algorithm is of the
order O (nmke™> + mk*e~* + poly(ke ™)) .

Notice that the communication cost is only given in terms
of “real numbers”. This is because the entries of V5, could
be unbounded (see the discussion regarding the upper bounds
in Section 1.2). We resolve this issue in the next section.

5. OBTAINING BIT COMPLEXITY FOR
THE DISTRIBUTED PCA ALGORITHM

In this section, we describe how to obtain a communication
upper bound in terms of words for the above protocol, where
each word is O(log(mnsk/¢)) bits.

The basic idea is that we have a case analysis depending on
the rank of the matrix A. If the rank of A is less than or equal
to 2k, we follow one distributed protocol and if the rank is at
least 2k we follow a different protocol. In Section 5.1 and
Section 5.2, we describe the algorithm that tests the rank of a
distributed matrix, and the PCA protocol for rank of A less
than or equal to 2k, respectively. Then, in Section 5.3 and
Section 5.4 we give the details of the overall algorithm and in
Section 5.5 we give its analysis.

5.1 Testing the rank of a distributed matrix

LEMMA 3. Given A € R™*" and a rank parameter k <
rank(A), there exists a distributed protocol in the arbitrary par-
tition model to test if the rank of A is less than or equal to 2k using
O(sk?) words of communication and succeeding with probability
1 — ¢ for an arbitrarily small constant 6 > 0.

This is an immediate implementation of a streaming algo-
rithm due to [17] for testing if an n x n matrix A has rank at
least 2k. In that algorithm, there is a fixed O(nk) x n matrix
H whose entries are integers of magnitude at most poly(n).
The algorithm chooses 4k random rows from H. Letting H’
be the 2k x n matrix of the first 2k chosen rows, and H”
be the n x 2k matrix whose columns are the next 2k chosen
rows, the algorithm just declares that A has rank at least &

iff the rank of H' AH” is 2k. In the distributed model, since
machine i can compute H' A, H" locally, the coordinator can
learn H' AH" with O(sk?) words of communication.

5.2 Distributed PCA when rank(A) < 2k

5.2.1 Subsampled Randomized Hadamard Transform
and Affine Embeddings

Our algorithms use a tool, known as “Subsampled Ran-
domized Hadamard Transform” or SRHT for short, to imple-
ment efficiently fast dimension reduction in large matrices.

The next lemma argues that an SRHT matrix is a so-called
“affine embedding matrix”. The SRHT is one of the possible
choices of Lemma 32 in [19] that will satisfy the lemma, and
we just choose it for convenience.

LEMMA 4. (Affine embeddings - Theorem 39 in [19]) Suppose
G and H are matrices with m rows, and G has rank at most r.
Suppose T is a € x m SRHT matrix with ¢ = O(r/e?). Then,
with probability 0.99, for all X simultaneously:

(1-e)- IGX~H[i < |T(GX-H)[[i < (1+¢)-|GX~H]z.

5.2.2 Generalized rank-constrained matrix approxi-
mations

LetM € R™*", N € R™*°, L € R™*",and k < ¢,r be
integers. Consider the following optimization problem,

Xopt € argmin [M — NXL|7.

Xerexr rank(xX)<k

Then, the solution X,,: € R°*" with rank(X,,:) < k that has
the minimum [|X,,:||r out of all possible feasible solutions
is given via X,p; = NT (UNUGMVLVY), L. The matrix
(UNUNKMVLVY) ., € R™*" of rank at most k denotes the

best rank k matrix to UNULKMVLVY € R™*". This result
was proven in [25] (see also [41] for the spectral norm version
of the problem).

5.2.3 The PCA protocol

LEMMA 5. Suppose the rank p of A € R™*"™ satisfies p < 2k,
for some rank parameter k. Then, there is a protocol for the Dis-
tributed Principal Component Analysis Problem in the arbitrary
partition model using O(smk + sk? /?) words of communication
and succeeding with probability 1 — 6 for an arbitrarily small con-
stant § > 0.

The n x 2k matrix H” chosen in the protocol of Lemma 3
satisfies that with probability 1 — §, for an arbitrarily small
constant § > 0, the rank of AH" is equal to the rank of A if
p < 2k. Hence, as in the protocol of Lemma 3, the coordi-
nator learns the column space of A, which can be described
with O(km) words. The coordinator thus communicates this
to all machines, using O(skm) total words of communica-
tion. Let C = AH”, which is m x 2k. Since the rank of C
and A are small, we can sketch on the left and right using
affine embeddings T.s; and Tign:. Each machine can then
solve the optimization problem

min ||TleftCXCTATright - TleftAT'rightHF7 (2)
rank(x)<k
each obtaining the same X, which is the optimal solution to
Eqn (2). Due to Lemma 4, X.. isa (1+0O(¢))-approximation to
the best solution to min A [CXCTA — A||r. Finally,
RrR™ Xk

rank(x)<
every machine outputs the same orthonormal basis U €
for CX.. which will satisfy ||A — UUTA|2 < (14 ¢)||A —
Axlf-

5.3 Perturbation technique when rank(A) > 2k

The idea here is more involved than in the previous sub-
section and in order to describe the algorithm we need sev-
eral intermediate results.

5.3.1 Lower bounds on singular values of integer-
perturbed matrices

We describe a perturbation technique for matrices and pro-
vide lower bounds for the smallest singular value of the per-
turbed matrix. We start with a theorem of Tao and Vu.

THEOREM 7. (Theorem 2.5 of [44]) Let M be an n x n matrix
with integer entries bounded in magnitude by n® for a constant
C > 0. Let Ny, be a matrix with independent entries each chosen
to be 1 with probability 1/2, and —1 with probability 1/2. Then,
there is a constant B > 0 depending on C, for which Pr[||(M +
N,.) 'z > n"] < 1/n.

COROLLARY 1. Let M be an n x n matrix with integer entries
bounded in magnitude by n° for a constant C' > 0. Let N, be
a matrix with independent entries each chosen to be 1/n® with
probability 1/2, and —1/n® with probability 1/2, where D > 0 is
a constant. Then, there is a constant B > 0 depending on C and
D for which Pr[||(M + N,) 7|2 > n®] < 1/n.

We need to generalize Corollary 1 to rectangular matrices
since we will eventually apply this perturbation technique
to the matrix A to which we would like to compute a dis-
tributed PCA.

LEMMA 6. Let M be an m x n matrix with integer entries
bounded in magnitude by n® for a constant C' > 0, and suppose
m < n. Let Ny, » be a matrix with independent entries each cho-
sen to be 1/n® with probability 1/2 and —1/n® with probability
1/2, where D > 0 is a constant. Then, there is a constant B > 0
depending on C and D for which Pr[o, (M 4N,) < 1/nP] <
1/n, where o, (M + Ny,) denotes the smallest singular value
OfM + N'm,n~

5.4 Description of the whole algorithm

Using the above results, we are now ready to describe a
distributed PCA algorithm whose communication cost can
be bounded in terms of machine words and not just in terms
of “real numbers”. As in the algorithm in Section 4.3, we let
B; € R™*™ denote the matrix that arises from A, after ap-
plying the Bernoulli perturbation technique discussed above
in Lemma 6, while Vi > 1, B; is equal to A;. Using this no-
tation, we have B :=). B; € R™*". Notice that B exactly
arises from A after applying such a Bernoulli perturbation
technique.

Input: 1. A € R™*™ arbitrarily partitioned A = Y7 A; for
i=1:s, A; € R™*™ 2. rank parameter k < rank(A). 3. accuracy
parameter € > 0.

Algorithm

1. Use the protocol of Lemma 3 with § = 0.01 to test if the rank
of A is less than 2k.
2. If rank(A) < 2k, use the protocol of Lemma 5 to find some
orthonormal U € R™*F,
3. Ifrank(A) > 2k,
(a) machine 1 locally and independently adds 1/n” with

probability 1/2, and —1/n” with probability 1/2, to each
of the entries of A1, where D is the constant of Lemma 6.

Note that this effectively adds the matrix Ny, of Lemma 6

to the entire matrix A. For notational convenience let
B = A + Ny, Bi € R™X"™ be the local perturbed
matrix of machine 1 and Vi > 1, B; is just equal to A;.

(b) Machines agree upon two dense Johnson-Lindenstrauss
matrices S € RE1X™ T € R"%¢&2 with & = O(ke2),
& = O(ke™2) (see Lemma 2).

(c) Each machine locally computes B; = SB; T and sends
B, to the server. Server constructs B = =, B,.

S o oT i
(d) Server computesthe SVD of B, = UBk EBk VB;C (UBk
k kxk k
eROXF, By € RFF, Vg € RE2XF),
(e) Server rounds each of the entries in V]~3k to the nearest

integer multiple of 1/nY for a sufficiently large constant
~ > 0. Let the matrix after the rounding be ka

(f) Server sends Vé to all machines.
k

(g) Each machine constructs X, = BiTVBk and sends X;
to the server. Server constructs X = > Xi.

(h) Server computes an orthonormal basis U € R™*¥ for
span(X) (notice that rank(X) < k), e.g., with a QR fac-
torization.

(i) Server sends U to each machine.

5.5 Main result
The theorem below analyzes the previous algorithm.
THEOREM 8. The matrix U € R™** with k orthonormal
columns satisfies with arbitrarily large constant probability:
1A~ UUTAJE < (1+2) - A = Al ©)

The communication cost is O(msk + s - poly(k/e)) words and the
running time is O (nmke =2 + mk*e~* + poly(ke ™)) .

6. STREAMING PRINCIPAL COMPONENT
ANALYSIS

In this section, we are interested in computing a PCA of
a matrix in the turnstile streaming model. Specifically, there
is a stream of update operations such that the ¢*" operation
has the form (i,, jq, z,) which indicates that the (i, j4)*" en-
try of A € R™*" should be incremented by z, where iy, €
{1,...,m},jq € {1,...,n},z, € R. Initially, A is zero. In the
streaming model of computation, we are allowed only one
pass over the update operations, i.e., the algorithm “sees”
each update operation one by one and only once. Upon ter-
mination, the algorithm should return a matrix U with k or-
thonormal columns which is a “good” basis for span(A) .
In Section 6.1.1 below, we describe an algorithm which gives
a space-optimal streaming algorithm. Furthermore, we pro-
vide a variation of this algorithm in Section 6.1.2 which can
output a factorization of a matrix A}, satisfying ||A— A ||F <
(1+¢€) - ||A — Ag||E. Tt meets the space lower bound shown
in [17]. In Section 6.2, we relax the problem and we describe
a two-pass streaming algorithm which is a version of the al-
gorithm of Section 5.4. Notice that the space complexity of
our algorithm is bounded in terms of bits.

Inputs to the algorithms in Section 6.1 and Section 6.2 are
a stream of updates (i1, j1,21), ..., (i1, 1, 1), a rank param-
eter k£ < rank(A), and an accuracy parameter 0 < & < 1.

6.1 One-pass streaming PCA
6.1.1 The algorithm which outputs U

In the following algorithm, the output should be U with
orthogonal unit columns and satisfying |A — UUTA|7 <
(1+4€)-]|A—Ag]||Z. Our algorithm uses the following property
of random sign matrices, though other sketching matrices are
also possible.

LEMMA 7. (Sketch for regression - Theorem 3.1 in [17]) Sup-
pose both of A and B have m rows and rank(A) < k. If each en-
try of S € RE*™ is O(k)-wise independently chosen from {—1/¢,
+1/€} where ¢ = O(k/e) and X = arg minx |[SAX — SB|2,
witéz probability at least 0.99, || AX —B||3 < (1+¢) minx ||AX—
Bl[&

Algorithm

1. Construct random sign sketching matrices S € R&1X™ with
&1 = O(ke™1) and R € R"*&2 with & = O(ke™1) (see
Lemma 7)

2. Construct affine embedding matrices Ticp; € RE3X™ and
Tright € R"¥€4 with &5 = O(ke™3), &4 = O(k/e3) (see
Section 5.2.1).

3. Initialize all-zeros matrices: M € R¢3%84 L, € Ré1%81, N €
RE3%€2 D € R™*€2, We will maintain M, L, N, D such that
M = TleftATright7 L = SATT‘ight7 N = TleftAR and
D = AR.

4. For (iq,7q,xq) == (41,41, 21), ..., (41, 41, 1) (one pass over the
stream of update operations)

(@) Foralli =1,...,63, j = 1,...,&, let M; ; = M, ; +
(Tleft)i,iq cZg (Tm'ght)jq,j~

(b) Foralli=1,....,61, j=1,...,64,1letL; ; = L; ; +Si,iq :
2q (Tright)jq,j-

(c) Foralli = 1,...,&3, j = 1,...,&2, let N;; = Nyj; +
(Tieft)iyiq - Tq - Ryg -

(d) Forallj =1,...,&9, let Diq,j = Miq,j + xzq - qu’j

5. end
6. Construct X, = argmin |[N.X L — M]|%. (Notice that
rank(X)<k
X, = argmin [Tz (ARXSA — A) Trigne]|2.)
rank(X)<k

7. Compute the SVD of X. = Ux, Zx, Vi (Ux, € R&Xk,
¥x, € RExk Vx, € REXF); then, compute T = DUx_ .

8. Compute an orthonormal basis U € R™*F for span(T).

THEOREM 9. The matrix U € R™** with k orthonormal
columns satisfies w.p. 0.96:
|A - UUTA[F < (140 () - [|A — Ag|7.

The space complexity of the algorithm is O (mk/e + poly (ke "))
machine words, and the running time for each update operation is
O(poly(ke™")). Furthermore, the total running time of the algo-
rithm is of the order O (1 - poly(ke™") + mk®e ") where L is the
total number of updates.

6.1.2 A variation which outputs A

We just slightly modify the previous algorithm in Section 6.1.1

to get the algorithm which can output a factorization of a ma-
trix A}, € R™*™ satisfying || A — Aj||2 < (1+¢)-||A— Axl3.
All we need to do is to maintain a matrix C = SA. To
achieve this, we only need to update C in each iteration of
step 4 of the algorithm in Section 6.1.1. Additionally, in step
7, we compute a matrix K = V% C. Finally, we output
A =TYx K.

THEOREM 10. With probability at least 0.96: |A — A} |3 <
(140 (e)) - ||A — A||2. The space complexity of the algorithm
is O ((m+ n)k/e + poly(ke™")) words, and the running time
for each update operation is O(poly(ke™")) and the total running
time is of the order O (1 - poly(ke™') 4+ (m + n)k’e ™" + mnk)
where 1 is total number of updates.

6.2 Two-pass streaming PCA

We use the same idea as in the case of the distributed PCA
algorithm in Section 5. This leads to a two-pass streaming al-
gorithm for PCA. Again, as in the distributed case, we need
to test if the rank of A is less than 2k, and then we use one ap-
proach if rank(A) < 2k and another approach if rank(A) >
2k. Both of these approaches can be implemented with two
passes. In the overall streaming PCA algorithm that we would
like to design, we can not wait for the algorithm that tests the
rank to finish and then start running one of the two PCA pro-
tocols, because this will lead to a three-pass algorithm (one
pass to test the rank and two passes for the actual PCA pro-
tocol). To keep the number of passes to two, we just start
running the PCA protocols in parallel with the protocol that
tests the rank of the input matrix. In the end of the first
pass over the stream of update operations, we already know
which protocol to follow, and we just do this, disregarding
the other protocol.

We already discussed the streaming version of the algo-
rithm that tests the rank of the matrix in Lemma 3. Below,
we describe separately the two streaming PCA protocols.

6.2.1 Streaming PCA protocol when rank(A) < 2k

The idea here is to implement a streaming version of the
distributed PCA protocol in Lemma 5.

We first construct the matrix H” and two affine embed-
ding matrices Ticy: and Trign: as in Lemma 5. In the first
pass over the stream, we maintain a matrix C = AH". Inthe
second pass, we maintain matrices Ti.z:C, CTATMght and
Ticrt AT ign:. Finally, we can solve the optimization prob-
lem: X, = argmin HTleftCXCTAT,.ight—TleftATm-gm||%,

rank(x)<k
and output an orthonormal basis U for span(CX.).
6.2.2 Streaming PCA protocol when rank(A) > 2k

The idea here is to implement a streaming version of step
3 of the algorithm in Section 5.4. We first construct sketching
matrices S and T as in the algorithm in Section 5.4. In the
first pass over the stream, we maintain a matrix B = SBT,
where B arises from A after applying the perturbation. After
the first pass, we compute the SVD of B, = Ug, X5, Vngk.
Then, we round each of the entries of VBk to the nearest inte-
ger multiple of 1/n” for a sufficient large constant v > 0. Let
the matrix after the rounding be VBk- In the second pass,
we maintain a matrix X = BTVBk. We finally output an

).

orthonormal basis U for span(X
6.2.3 Main result

The theorem below analyzes the approximation error, the
space complexity, and the running time of the previous algo-
rithm. Notice that the space complexity of this algorithm is
given in terms of machine words.

THEOREM 11. The matrix U € R™ " with k orthonormal
columns satisfies with arbitrarily large constant probability: ||A —
UUTA|E2 < (1+¢) - ||A — Ay} The space complexity of the
algorithm is O (mk + poly(ke ")) machine words, the running
time of each update operation is O (poly(ke™")), and the total run-
ning time is of the order O (L - poly (ke ") + mk?®) where L is the
total number of update operations.

7. PCA FOR SPARSE MATRICES IN
COLUMN-PARTITION MODEL

Recall that in the problem of Definition 2 we are given 1)
an m X n matrix A partitioned column-wise as follows: A =
(A1 Ao AS) R with A; € R X Wi (Z w; = n); 2) a
rank parameter k < rank(A); 3) an accuracy parameter ¢ >
0. We would like to design an algorithm that finds an m x k
matrix U with UTU = I, and, upon termination, leaves this
matrix U in each machine of the network.

The high level idea of our algorithm is to find, in a dis-
tributed way, a small set - O(ke™") - of columns from A and
then find U in the span of those columns. To choose those
O(ke™") columns of A in a distributed way we implement
the following three-stage sampling procedure:

1. Local sampling: Each machine samples O(k) columns
using a deterministic algorithm from [13].

2. Global sampling: The server collects the columns from
each machine and down-samples them to O(k) columns
using the same deterministic algorithm from [13].

3. Adaptive sampling: the server sends back to each ma-
chine those O(k) columns; then, an extra of O(ke™!)
columns are selected randomly from the entire matrix
A using [22].

We argue that if C contains the columns selected with this
three-stage approach, then, w.p. 0.99,

At
IA—CC Al < |A-TIg , (A)E < (1+0())-|A— A
Though we could have used Hg . (A) to be the rank k& matrix

that approximates A, we are not familiar with any commu-
nication efficient computation of IIf, , (A). To address this

issue, using an idea from [30], we compute U € span(C)
such that

|A -~ UUTA|} < (1+0(e))||A - TIE , (A) 175

this U can be calculated with small communication cost and
it is sufficient for our purposes.

Before presenting the new algorithm in detail, we discuss
results from previous literature.
7.1 Background material

7.1.1 Column sampling algorithms

Our distributed PCA algorithm in Section 7 samples columns

from the input matrix in three stages. In the first two stages,
we use a deterministic algorithm developed in [13], which
itself extends the Batson, Spielman, and Strivastava (BSS)
spectral sparsification algorithm [7]. For the actual algorithm
we defer the reader to Lemma 3.6 in [13]. Lemma 8 and
Lemma 9 below present the relevant results. In the third sam-
pling stage, we use an adaptive sampling algorithm from [22].

LEMMA 8. (Lemma 3.6 in [13]) Let V€ R¥** be a matrix
with w > kand V'V = 1. Let E € R™ "™ be an arbitrary
matrix. Then, given an integer € such that k < £ < w, there exists
a deterministic algorithm that runs in O (fwk* 4+ muw) time, and
constructs a “sampling/rescaling” w x £ matrix S such that

o (VTS) > (1 - lc/é)g,

Specifically, rank(V'S) = k. We denote this sampling procedure
as S = BssSampling(V,E, {).

IES|[E < |[E[&-

LEMMA 9. (Theorem 5 in [13]) Given matrix G € R™*< of
rank p and a target rank k ', there exists a deterministic algorithm
that runs in O (ammin{c, m} + ack®) time and selects ¢ > k
columns of G to form a matrix C € R™* with

B - B Ly rank(c) ,
|G - cCla? < 1+(1 \/k/c) D))
i=k+1

The algorithm in this theorem finds C as C = GS, where S =
BssSampling(V,G — GVVT ¢) and V € R*** contains the
top k right singular vectors of G. We denote this sampling proce-
dure as C = DeterministicC'ssFrobenius(G, k, c).

LEMMA 10. (Adaptive sampling; Theorem 2.1 of [22]) Given
A e R™™and V € R™* (with c1 < m,m), define the residual
matrix 8 = A — VVIA ¢ R™*" . Forj=1,...,n,let p; bea
probability distribution such that p; > B||[®9)(3/||® |2, for some
1> 8> 0, where ¥ is the j-th column of the matrix ¥. Sample
c2 columns from A in cp iid. trials, where in each trial the j-th
column is chosen with probability p;. Let Co € R™*°* contain
the co sampled columns and let C = [V Cp] € R™*(c1te2)
contain the columns of V and Ca. Then, for any integer k > 0,
E[[|A - CCA|] <E[||A - IIg (A)]F]

rank(A) &

< ¥ (M) + 5 |A - VVIAJE.
=kt 1 2

Given A and C, this method requires O(cimn) time to compute
W, another O(mn) time to compute the probabilities p;’s and an-
other O(n + c2) time for the sampling step - using the method
in [43]. In total, the method requires O(cimn + c2) time to com-
pute Ca. We denote this as Co; = AdaptiveCols(A,V,cz,).

7.1.2 Distributed adaptive sampling

In our distributed PCA algorithm below, we also need to
use a distributed version of the previous adaptive sampling
procedure. We provide some preliminary results for that task
in this section.

LEMMA 11. Suppose that the columns of A € R™*™ are par-
titioned arbitrarily across the machines into matrices Ay, ..., As.
Let C be an arbitrary m X r matrix. Consider the distribution p

_ llaj—cCla;|z

on n columns in which p; = TA—CCTALZ » where a; is the j-th

column of A (j =1 : n here).
For each i € [s], let some value B; satisfies | A; — CCTA[|f <
B < 2||A; — CCYA,||2. For each j € [n], if column a; is

i

held on the i-th server (denoted a’), then let q¢; = Esﬁiﬁ .
il=1 "4’
. Then for each j € [n], p;/2 < q; < 2p;.

lai—cctal ||
lA;—CCTA;|IE

LEMMA 12. O(logk + loglog(mns/e)) Suppose the coordi-
nator has an m x r matrix C of columns of an m X n matrix A,
where v = O(k). Suppose the entries of A are integers bounded
by poly (mns/e) in magnitude, and let the columns of A be parti-
tioned arbitrarily across the servers into matrices Ay, ..., As.

There is a protocol using O(skm) machine words of communi-
cation for the coordinator to learn values B° so that for all i € [s],
|A; = CCTA|[f < 8" <2||Ai — CCTA

'The original Theorem 5 in [13] has the assumption that
k < p, but this assumption can be dropped having the result
unchanged. The only reason the assumption k& < p exists is
because otherwise column subset selection is trivial.

7.1.3 Low-rank matrix approximations within a sub-
space

The final stage of our distributed PCA algorithm below
finds U € span(C) such that the error of the residual matrix
A — UU"A is “small”. To implement this step, we employ

an algorithm developed in [30].

LEMMA 13. Let A € R™*" be the input matrix and V €
R™*€ be the input subspace. We further assume that for some
rank parameter k < c and accuracy parameter 0 < e < 1:

IA = I & (A)[|F < (1+0(e))l|A — Al

Let V.= YW be a gr decomposition of V with’ Y € R™*¢ and
W e R*C, Let 2 = YTAWT € R*¢, where WT € R™*¢
with &€ = O(c/e?), each element of which is chosen i.id. to be
{+1/y/n, —1/+/n} with probability 1/2. Let A € R*** contain
the top k left singular vectors of 2. Then, with probability at least
1—e 5% [|[A-YAATYTAZ < (1+&)||A - Ag|3. Y, and
A can be computed in O(mn&) time. We denote this procedure as
[Y, A] = ApprozSubspaceSV D(A,V, k,¢).

7.2 Detailed description of the algorithm
Input:
1. A € R™X" partitioned column-wise A = (A1 ... A,);
fori=1:s,A; € R™*Wi; 3" w; =mn.
2. rank parameter k < rank(A)
3. accuracy parameter € > 0
Algorithm
1. Local Column Sampling

(a) For each sub-matrix A; € R™*"i, compute the matrix
V, € R¥iX* with the top k right singular vectors of A;.
Also, construct the m x w; matrix E; = A; — AZ-ViViT.
For each sub-matrix A;, compute C; € R™*¢ contain-
ing ¢ = 4k columns from A; as follows: C; = A;S;.
Here, S; has dimensions w; X ¢ and is constructed as
follows: S; = BssSampling(V;, E;,) (see Lemma 8).

(b) Machine ¢ sends C; to the server.

2. Global Column Sampling

(a) Server constructs m X (s - £) matrix G containing (s - £)
actual columns from A as: G = (01 Co ... Cg).
Server uses C = DeterministicCssFrobenius(G, k,c1)
to construct C € R™*¢1 via choosing ¢; = 4k columns
from G (see Lemma 9).

(b) Server sends C to all the machines.
3. Adaptive Column Sampling

(a) Machine i computes ¥; = A; — CCtA; € Rm*w;
and then computes 3; as it was described in Lemma 12.
Machine ¢ sends g; to server.

(b) Server computes probability distribution g; = %
Server samplesi.i.d. with replacement [50k /e | samples
(machines) from g;. Then, server determines numbers ¢;
(i=1,2,...,s), where t; is the number of times the ith

machine was sampled. It sends the ¢;’s to the machines.
(c) Machine i computes probabilities g5 = ||x||5/[|¥;(|%
(j = 1 : w;), where x is the jth column of ¥;. And
now machine i samples ¢; samples from it’s local proba-

bility distribution and sends the corresponding columns
to the server. Let co = >, t; = [50k /e].

(d) Server collects the columns and assigns them to C e
R™>¢z, Server constructs C to be the m X (c1 + c2)
matrix: C = (C; C€).Letc=ci+co = 4k+[50k/e].

4. Rank-k matrix in the span of C

(a) Server sends C to all the machines and each machine
computes (the same) qr factorization of C: C = YR
where Y € R™*¢ has orthonormal columns and R €
R¢*¢ is upper triangular.

Machine i generates W; € REX%i with ¢ = O(c/e?) to
be i.id. {+1,—1} w.p. 1/2. Implicitly all machines to-
gether generate W = (Wl Wy ... W,) , with
W € REX"™, Machine i computes H; = CT(AZ-WZT) €
R¢*€. Machine i sends H; to the server.

(b

=

(c

~

Server computes E = 37 H; € R°*¢ and sends
this back to all the machines. Now machines compute
Z:=R ! =.1/yn(:= YTAWT), where the matrix
W satisfies W = (W1 Wz ... W,)€ RS*xn
is a random matrix each element of which is taking val-
ues {+1/+/n, —1/y/n} w.p. 1/2, and then they compute
A € R¥F tobe the top k left singular vectors of =. Each
machine computes U =Y - A € R™*k,

Discussion.

A few remarks are necessary for the last two stages of the
algorithm. The third stage (adaptive column sampling), im-
plements the adaptive sampling method of Lemma 10. To see
this, note that each column in A (specifically the jth column

12

in A;) is sampled with probability g; - ¢} > 3 - “l‘)‘;jdg»
¥ = A — CC'A. This follows from Lemma 11. Overall,
this stage effectively constructs C such that (see Lemma 10)
C= AdaptiveCols(A, C, cz,1/2). The last stage in the algo-
rithm implements the algorithm in Lemma 13. To see this,
note that W satisfies the properties in the lemma. Hence,
Y, A] = ApprozSubspaceSV D(A, G, k, €).

7.3 Main Result

THEOREM 12. The matrix C € R™*° with ¢ = O(k/e)
columns of A satisfies w.p. at least 0.99,

where

St
|A-CC A2 < AT (A)[} < (1+2000)|A- U, UTA 3.
@)

The matrix U € R™** with k orthonormal columns satisfies with
probability at least 0.98,

|A-UUTA|2 < (14¢)-|A-UUA|E. ()

Let each column of A have at most ¢ non-zero elements. Then,
the communication cost of the algorithm is O (sk¢e ™" + sk*c™?)
machine words and the running time is O(mn min{m, n}+ mns-

poly(k,1/¢)).

8. FASTER DISTRIBUTED PCA FOR
SPARSE MATRICES

One can modify certain steps of the distributed PCA algo-
rithm in Section 7 to improve the total running time by using
input sparsity sketches and related techniques in [18, 15].

THEOREM 13. The matrix C € R™* with ¢ = O(k/e)
columns of A satisfies w.p. 0.59 — =L — 25:

JA-CC'A[R < |A-TIE (A)|} < <1+0<s>>~|\A—Aku(%).
6

The matrix U € R™** with k orthonormal columns satisfies w.p.
0.58 — *tL — 25:

|A-UUA|E < (1+¢)- A — Agl. @)

Let each column of A have at most ¢ non-zero elements. Then,
the communication is O (sk¢e™" + sk®c) words and the time

is O (nnz(A) - log? (%) + (m + n)s - poly(k,e 1, log (%)) .

9. LOWER BOUNDS

9.1 Lower bounds for distributed PCA on
dense matrices

This section provides communication cost lower bounds
for the Distributed PCA problem of Definition 4.
9.1.1 Preliminaries

We use the notation Gy, to denote the set of k-dimensional
subspaces of R™, which we identify with corresponding pro-
jector matrices Q € R™*™, with rank(Q) = k < m, onto the
subspaces, i.e., Gr,m = {Q € R™*™ : Q* = Q,rank(Q) =
k < m.} We also need a description of a subset from Gy m:
CE(P) = {Q € G : [P — Q2 < 3}

THEOREM 14. (Net Bound - Corollary 5.1 of [31]) For any
m,k,6 > 0, there is a family N = {P*, ... P"} and N =
282 (k(m=k)108(1/8)) tphere PP € Gy and CE(PY) N CE(PY) =
0, forall i # j.

9.1.2 Hard instance construction

Below, we describe a specific construction for a matrix A.
First of all, we set § = 1/(skm), the parameter to be used
in Theorem 14. Next, fix a family A of subspaces of Gi,m
with the guarantees of Theorem 14. Let Pr = RR' be a
uniformly random member of A/, where R € R™** has or-
thonormal columns. The entries of A; are equal to the entries
of R, each rounded to the nearest integer multiple of 1/B,
where B = poly(skm) is a large enough parameter specified
later. We denote this rounded matrix with R € R™**. Each
A;fori=2,3,...,s—1is 1/B times the m x m identity ma-
trix. Finally, A is the m x t matrix of all zeros witht = n —
(s—)m—k.Le, A= (R £, 25In £ Opmxe) -

THEOREM 15. Let A € R™*"™ be the hard instance matrix
described above and be distributed in s machines in the above way.
Suppose n = Q(sm), k < .99m, and 1 < C < poly(skm).
Assume that there is an algorithm (protocol) which succeeds with
probability at least 2/3 in having the i-th server output QA,, for
all i, where Q € R™*™ is a projector matrix with rank at most k
such that ||A — QA|lr < C||A — Ay||r. Then, this algorithm
requires Q(skm log(skm)) bits of communication.

Further, the bound holds even if the input matrices A; to the
servers have all entries which are integer multiples of 1/ B, for a
value B = poly(skm), and bounded in magnitude by 1, and there-
fore all entries can be specified with O(log(skm)) bits.

Note that assuming a word size of © (log(skm)) bits, we obtain
an Q(skm) word lower bound.

9.2 Lower bounds for distributed PCA on sparse

matrices

COROLLARY 2. Let A € R®*™ be the hard instance matrix
in Section 9.1.2 (with m replaced with ¢ in noting the number
of rows in A): A = (R LIy ... LIs Ogx:). Suppose
n = Qs¢), k < .99¢, and 1 < C < poly(ske). Now, for
arbitrary m consider the matrix A € R™*™ which has A in the
top part and the all-zeros (m — ¢) x n matrix in the bottom part. A
admits the same column partition as A after padding with zeros:

A:(R 11, i1, Oux:)
O(m—g)xk O(m—p)xo O(m—g)x¢ O(m—g)xt
We denote the new sub-matrices with A; € R™* ™,

Assume that there is an algorithm (protocol) which succeeds with
probability at least 2/3 in having the i-th server output QA.;, for
all i, where Q € R™ ™ is a projector matrix with rank at most k
such that |A — QA|r < C||A — Ag||r. Then, this algorithm
requires Q(sk¢log(ske)) bits of communication.

Note that assuming a word size of ©(log(sk¢)) bits, we obtain
an Q(ske) word lower bound.

9.3 Lower bounds for distributed column
based matrix reconstruction

These lower bounds were outlined a bit in Section 1. Please
see the full version [16] for details.

THEOREM 16. Assume 2/e < ¢ and k¢ < min(m, n). Then,
any, possibly randomized, protocol I1 which succeeds with proba-
bility at least 2/3 in solving the Distributed Column Subset Selec-
tion Problem of Definition 5, under the promise that each column
of A has at most ¢ non-zero entries which are integer multiples of
1/(mn)¢ and bounded in magnitude by 1, for a constant ¢ > 0,
requires Q(s¢k(log(mn))/e) bits of communication. If the word
size is O (log(mn)), this is Q(s¢k/e) words.

COROLLARY 3. Assume 2/e < ¢ and k¢ < min(m,n).
Then, any, possibly randomized, protocol II which succeeds with
probability at least 2/3 in solving the Distributed Column Sub-
set Selection Problem - rank k subspace version (see Definition 6),
promise that each column of A has at most ¢ non-zero entries
which are integer multiples of 1/(mn)® and bounded in magni-
tude by 1, for a constant ¢ > 0, requires Q(s¢k(log(mn))/e) bits
of communication. This is Q(s¢k/e) words of size ©(log(mn)).

Acknowledgment. D. Woodruff would like to thank support
in part from the XDATA program of the Defense Advanced
Research Projects Agency (DARPA), administered through
Air Force Research Laboratory FA8750-12-C-0323.

10. REFERENCES
[1] http://hadoop.apache.org/.

2] https://mahout.apache.orgq.

3] https://spark.apache.org/.

4] https://spark.apache.org/mllib/.

5] Z.-]. Bai, R. H. Chan, and F. T. Luk. Principal
component analysis for distributed data sets with
updating. In Advanced Parallel Processing Technologies,
pages 471-483. Springer, 2005.

[6] M.-F. Balcan, V. Kanchanapally, Y. Liang, and
D. Woodruff. Improved distributed principal
component analysis. arXiv preprint arXiv:1408.5823, to
appear in NIPS, 2014.

[7] J. Batson, D. Spielman, and N. Srivastava.
Twice-ramanujan sparsifiers. In Proceedings of the 41st
annual ACM symposium on Theory of computing, pages
255-262. ACM, 2009.

[8] A.R.Benson, D. F. Gleich, and J. Demmel. Direct qr
factorizations for tall-and-skinny matrices in
mapreduce architectures. In Big Data, 2013 IEEE
International Conference on, pages 264-272. IEEE, 2013.

[9] S.Bhojanapalli, P. Jain, and S. Sanghavi. Tighter
low-rank approximation via sampling the leveraged

[
[
[
[

element. http:
//uts.cc.utexas.edu/~bsrinadh/main.pdf, to
appear in SODA, 2015.

[10] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, et al. ScaLAPACK users’ guide,
volume 4. siam, 1997.

[11] Y.-A. L. Borgne, S. Raybaud, and G. Bontempi.
Distributed principal component analysis for wireless
sensor networks. Sensors, 2008.

[12] J. Bourgain, S. Dirksen, and J. Nelson. Toward a unified
theory of sparse dimensionality reduction in euclidean
space. In STOC, 2015.

[13] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near
optimal column based matrix reconstruction. SIAM
Journal on Computing (SICOMP), 2013.

[14] C. Boutsidis and A. Gittens. Improved matrix
algorithms via the subsampled randomized hadamard
transform. SIAM Journal on Matrix Analysis and
Applications, 34(3):1301-1340, 2013.

[15] C. Boutsidis and D. P. Woodruff. Optimal cur matrix
decompositions. STOC, 2014.

[16] C. Boutsidis, D. P. Woodruff, and P. Zhong. Optimal
principal component analysis in distributed and
streaming models. CoRR, abs/1504.06729, 2015.

[17] K. Clarkson and D. Woodruff. Numerical linear algebra
in the streaming model. In Proceedings of the 41st annual
ACM symposium on Theory of computing (STOC), 2009.

[18] K. L. Clarkson and D. P. Woodruff. Low rank
approximation and regression in input sparsity time. In
In STOC, 2013.

[19] K. L. Clarkson and D. P. Woodruff. Low rank
approximation and regression in input sparsity time.
ArxiV report:
http://arxiv.org/pdf/1207.6365v4.pdf,2013.

[20] M. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu.
Dimensionality reduction for k-means clustering and
low rank approximation. arXiv preprint arXiv:1410.6801,
2014.

[21] M. B. Cohen. Simpler and tighter analysis of sparse
oblivious subspace embeddings. In SODA, 2016.

[22] A.Deshpande, L. Rademacher, S. Vempala, and
G. Wang. Matrix approximation and projective
clustering via volume sampling. Theory of Computing,
2(12):225-247, 2006.

[23] A.K. Farahat, A. Elgohary, A. Ghodsi, and M. S.
Kamel. Distributed column subset selection on
mapreduce. In ICDM, 2013.

[24] D. Feldman, M. Schmidt, and C. Sohler. Turning big
data into tiny data: Constant-size coresets for k-means,
pca and projective clustering. In SODA, pages
1434-1453. SIAM, 2013.

[25] S. Friedland and A. Torokhti. Generalized
rank-constrained matrix approximations. SIAM Journal
on Matrix Analysis and Applications, 29(2):656-659, 2007.

[26] M. Ghashami and J. Phillips. Relative errors for
deterministic low-rank matrix approximations. In
SODA, 2013.

[27] G. H. Golub and C. E. Van Loan. Matrix computations,
volume 3. JHU Press, 2012.

[28] M. Gu and S. C. Eisenstat. A divide-and-conquer

algorithm for the bidiagonal svd. SIAM Journal on
Matrix Analysis and Applications, 16(1):79-92, 1995.

[29] E. Jessup and D. Sorensen. A parallel algorithm for
computing the singular value decomposition of a
matrix. Siam Journal on Matrix Analysis and Applications,
15(2):530-548, 1994.

[30] R. Kannan, S. S. Vempala, and D. P. Woodruff. Principal
component analysis and higher correlations for
distributed data. In Proceedings of The 27th Conference on
Learning Theory, pages 1040-1057, 2014.

[31] M. Kapralov and K. Talwar. On differentially private
low rank approximation. In SODA, 2013.

[32] D. Kempe and F. McSherry. A decentralized algorithm
for spectral analysis. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages
561-568. ACM, 2004.

[33] E. Liberty. Simple and deterministic matrix sketching.
In KDD, pages 581-588. ACM, 2013.

[34] S. V. Macua, P. Belanovic, and S. Zazo.
Consensus-based distributed principal component
analysis in wireless sensor networks. In SPAWC, 2010.

[35] X. Meng and M. W. Mahoney. Low-distortion subspace
embeddings in input-sparsity time and applications to
robust linear regression. In STOC, 2013.

[36] J. Nelson and H. L. Nguyén. Osnap: Faster numerical
linear algebra algorithms via sparser subspace
embeddings. In FOCS, 2013.

[37] J. M. Phillips, E. Verbin, and Q. Zhang. Lower bounds
for number-in-hand multiparty communication
complexity, made easy. In SODA, 2012.

[38] J. Poulson, B. Marker, R. A. van de Geijn, J. R.
Hammond, and N. A. Romero. Elemental: A new
framework for distributed memory dense matrix
computations. TOMS, 39(2), 2013.

[39] Y. Qu, G. Ostrouchov, N. Samatova, and A. Geist.
Principal component analysis for dimension reduction
in massive distributed data sets. In ICDM, 2002.

[40] T. Sarlos. Improved approximation algorithms for large
matrices via random projections. In IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

[41] K. C. Sou and A. Ranzer. On generalized matrix
approximation problem in the spectral norm. Linear
Algebra and its Applications, 436(7):2331-2341, 2012.

[42] F. Tisseur and]. Dongarra. A parallel divide and
conquer algorithm for the symmetric eigenvalue
problem on distributed memory architectures. SIAM
Journal on Scientific Computing, 20(6), 1999.

[43] M. D. Vose. A linear algorithm for generating random
numbers with a given distribution. Software
Engineering, IEEE Transactions on, 17(9):972-975, 1991.

[44] V. H. Vu and T. Tao. The condition number of a
randomly perturbed matrix. In STOC, 2007.

[45] D. Woodruff. Low rank approximation lower bounds
in row-update streams. In Advances in Neural
Information Processing Systems, pages 1781-1789, 2014.

[46] D. Woodruff and P. Zhong. Distributed low rank
approximation of implicit functions of a matrix. In
ICDE, 2016.

[47] D. P. Woodruff. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2):1-157, 2014.

