Faster Algorithms for Binary Matrix Factorization

Ravi Kumar, Rina Panigrahy, Ali Rahimi, David P. Woodruff Google and CMU

Binary Matrix Factorization

• Given A in $\{0,1\}^{m\times n}$, find $U\in\{0,1\}^{m\times k}$ and $V\in\{0,1\}^{k\times n}$ to minimize

$$|\mathbf{U} \cdot \mathbf{V} - \mathbf{A}|_{\mathbf{p}}^{\mathbf{p}}$$

- For an m x n matrix C, $|C|_p^p = \sum_{i,j} |C_{i,j}|^p$
- U · V can be
 - Integer product: $\langle U_{i*,} V_{*j} \rangle = \sum_{\ell=1,\ldots,k} U_{i,\ell} \cdot V_{\ell,j}$
 - Mod 2 product: $\langle U_{i*,} V_{*j} \rangle = \sum_{\ell=1,\dots,k} U_{i,\ell} \cdot V_{\ell,j} \mod 2$
 - Boolean product: $\langle U_{i*,} V_{*j} \rangle = V \left(\ell=1,...,k \ U_{i,\ell} \land V_{\ell,j} \right)$

Approximation Algorithms

- All variants are NP-hard for any p-norm
- What about randomized O(1)-approximation algorithms?
- Output $U \in \{0,1\}^{m \times k}$ and $V \in \{0,1\}^{k \times n}$ for which $|U \cdot V A|_p^p \leq O(1) \cdot \min_{U' \in \{0,1\}^{m \times k}, \, V' \in \{0,1\}^{k \times n}} |U' \cdot V' A|_p^p$
- $f(k) \cdot poly(mn)$ randomized O(1)-approximation algorithms
 - $f(k) = 2^{2^{\Theta(k)}}$ [BBBKLW, FGLPS]
 - Doubly-exponential running time is prohibitive

Complexity Analysis

- A in $\{0,1\}^{m\times n}$ is a bipartite incidence matrix
 - $A_{i,j} = 1$ iff i-th left vertex incident to j-th right vertex
- If $U \cdot V$ is Boolean product, the 1-entries of $U \cdot V$ are the edges in a union of k bipartite cliques ("bicliques")
 - the i-th biclique has left vertex set support(Uⁱ) and right vertex set support(Vⁱ)
- Under the Exponential Time Hypothesis (ETH), 2^{2^k} time is needed to decide if biclique covering number is k
 - Rules out $2^{2^{o(k)}}$ time for any multiplicative approximation and for any p norm
- What about integer product and mod 2 product?

Integer Product

- 2^{2^k} time lower bound does not apply to integer product!
- If $U\cdot V=A$ for integer product $\,U\cdot V,$ the 1-entries of $U\cdot V$ are the edges in a multiset union of k bicliques
 - If $U \cdot V = A$, the biclique partition number is k
- Can decide if biclique partition number is at most k in $2^{O(k^2)}$ time [CIK]
- What if we only know $U\cdot V\approx A$ for $U\in\{0,1\}^{m\times k}$ and $V\in\{0,1\}^{k\times n}$?
 To find O(1)-approximate U and V, previous algorithms take 2^{2^k} or $\min(m,n)^{k^{O(1)}}$ time

 - p = 1 minimizes edges in symmetric difference between input and multiset union of bicliques
- Can we obtain fast O(1)-approximation algorithms for integer product?

OLED Motivation for Integer Product

- A display can be viewed as an m x n matrix of pixels
- Passive displays render one row at a time
 - human eye integrates this into an image
 - brightness inversely proportional to number of rows
 - active displays are brighter because they add memory to keep the pixel illuminated for duration of the image, but they are expensive
- We observe that rendering a row has same cost as rendering a rank-1 image
 - brightness proportional to duration of rendering, which is rank of decomposition
 - binary factors allow us to use cheap voltage drivers on rows and columns

Our Result

• For any $p \ge 1$, there's a $2^{(k^{\left \lceil \frac{p}{2} \right \rceil + 1}) \log k}$ poly(mn) time algorithm outputting $U \in \{0,1\}^{m \times k}$ and $V \in \{0,1\}^{k \times n}$ with

$$|U \cdot V - A|_p^p \le O(1) \cdot \min_{U' \in \{0,1\}^m \times k, \ V' \in \{0,1\}^{k \times n}} |U' \cdot V' - A|_p^p,$$

where U · V is integer product, i.e., $\langle U_{i*,} V_{*j} \rangle = \sum_{\ell=1,\dots,k} U_{i,\ell} \cdot V_{\ell,j}$

• Assuming ETH, there's a $2^{\Omega(k)}$ poly(mn) time lower bound

Our Techniques

- For a subset S of rows of matrix C, let $S \cdot C$ be the matrix consisting of the rows in S
- Let $U^* \in \{0,1\}^{n \times k}$, $V^* \in \{0,1\}^{k \times n}$ be the minimizer to $|U^*V^* A|_p^p$
- Theorem: Let $s = k^{\left\lceil \frac{p}{2} \right\rceil + 1} \log k$. There is a subset $S \cdot A$ of s rows of A, and an s x s diagonal matrix D with entries in $\{1, 2, 4, 8, ..., ns\}$, with $\forall V \in R^{k \times n}$, $|D \cdot S \cdot U^* \cdot V D \cdot S \cdot A|_p^p = \Theta(1) \cdot |U^*V A|_p^p$
- \bullet Proof: properties of Lewis weights ("optimized $l_p\mbox{-leverage scores}\mbox{"}) and triangle inequality$

Interpreting the Theorem

- Theorem: Let $s = k^{\left|\frac{p}{2}\right|+1}\log k$. There is a subset $S \cdot A$ of s rows of A, and an s x s diagonal matrix D with entries in $\{1, 2, 4, 8, ..., ns\}$, with $\forall V \in \{0,1\}^{k \times n}$, $|D \cdot S \cdot U^* \cdot V D \cdot S \cdot A|_p^p = \Theta(1) \cdot |U^*V A|_p^p$
- If we had $D\cdot S\cdot U^*$ and $D\cdot S\cdot A$, can solve for each column of V separately in $2^k\cdot poly(sk)$ time by guessing all 2^k possibilities and choosing the best one
- Given V, we can then solve for each row of U separately in $2^k \cdot \text{poly}(sk)$ time, where the i-th row U_i is the minimizer to $|U_i \cdot V A|_p^p$. Overall, we'd get $\Theta(1)$ -approximation
- But we don't know $D \cdot S \cdot U^*$ and $D \cdot S \cdot A$

Guess a Sketch Framework [RSW]

- Theorem: Let $s = k^{\left\lceil \frac{p}{2} \right\rceil + 1} \log k$. There is a subset $S \cdot A$ of s rows of A, and an s x s diagonal matrix D with entries in $\{1, 2, 4, 8, ..., ns\}$, with $\forall V \in R^{k \times n}$, $|D \cdot S \cdot U^*V D \cdot S \cdot A|_p^p = \Theta(1) \cdot |U^*V A|_p^p$
- $S \cdot U^*$ is binary and $s \times k =>$ only 2^{sk} possibilities
- D is s x s diagonal s x s with entries in $\{1, 2, 4, 8, ..., ns\} => only (log(ns))^s$ possibilities
- Try all $S \cdot U^*$ and $D \Rightarrow only (log(ns))^s \cdot 2^{sk} \le 2^{O(sk)} poly(n)$ possibilities
- But $S \cdot A$ can be an arbitrary s x n binary matrix, too many possibilities

Preconditioning via Clustering

- If A had only 2^k distinct rows, then there are only 2^{sk} possibilities for $S \cdot A$, and only $(\log n)^s \ 2^{sk} \le 2^{O(sk)} poly(n)$ possibilities for $D \cdot S \cdot A$
- [CGTS] Given a set P of n points in R^d , there is an algorithm running in poly(nd) time which outputs (C_1, \dots, C_{2^k}) and (c_1, \dots, c_{2^k}) , with $c_i \in P$, and

$$\sum_{i=1,\dots,2^k} \sum_{x \in C_i} |x - c_i|_p^p \le \kappa_p \cdot OPT_{2^k}$$

where κ_p depends only on p, and OPT_{2^k} is the optimal 2^k -clustering cost

- ullet Let B be the m x n matrix whose i-th row is the nearest center $c_{
 m j}$ to $A_{
 m i}$
- B is binary and has only 2^k distinct rows. Replace A with B!

Putting it All Together

- Let $U' \cdot V'$ be an O(1)-approximate binary low rank approximation to B
- Let $U^* \cdot V^*$ be an optimal binary low rank approximation to A
- Let OPT be the optimal binary low rank approximation cost to A

•
$$|A - U' \cdot V'|_p \le |A - B|_p + |B - U' \cdot V'|_p$$

 $\le |A - B|_p + |B - U^* \cdot V^*|_p$
 $\le |A - B|_p + |B - A|_p + |A - U^* \cdot V^*|_p$
 $= 2|A - B|_p + OPT$

• $|A - B|_p = O(1)$ OPT, since any binary low rank matrix has $\leq 2^k$ distinct rows

Conclusions

• For any $p\geq 1$, there's a $2^{(k^{\left\lceil\frac{p}{2}\right\rceil+1})\log k}$ poly(mn) time algorithm outputting $U\in\{0,1\}^{m\times k}$ and $V\in\{0,1\}^{k\times n}$ for which

$$|U \cdot V - A|_p^p \le O(1) \cdot \min_{U' \in \{0,1\}^m \times k, \ V' \in \{0,1\}^{k \times n}} |U' \cdot V' - A|_p^p$$

• When U · V is mod 2 product, we show a $2^{O(k^3)}$ poly(mn) time algorithm outputting $U \in \{0,1\}^{m \times r}$ and $V \in \{0,1\}^{r \times n}$ with

$$|U \cdot V - A|_p^p \le O(1) \cdot \min_{U' \in \{0,1\}^m \times k, \ V' \in \{0,1\}^{k \times n}} |U' \cdot V' - A|_p^p$$

where $r = O(k \log m)$. Since $U \cdot V$ is binary, error measure doesn't depend on p

ullet Empirically, we find clustering into k groups instead of 2^k already gives good binary low rank approximations