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ABSTRACT
Kernel Principal Component Analysis (KPCA) is a key ma-
chine learning algorithm for extracting nonlinear features
from data. In the presence of a large volume of high dimen-
sional data collected in a distributed fashion, it becomes
very costly to communicate all of this data to a single data
center and then perform kernel PCA. Can we perform kernel
PCA on the entire dataset in a distributed and communica-
tion efficient fashion while maintaining provable and strong
guarantees in solution quality?

In this paper, we give an affirmative answer to the ques-
tion by developing a communication efficient algorithm to
perform kernel PCA in the distributed setting. The algo-
rithm is a clever combination of subspace embedding and
adaptive sampling techniques, and we show that the algo-
rithm can take as input an arbitrary configuration of dis-
tributed datasets, and compute a set of global kernel princi-
pal components with relative error guarantees independent
of the dimension of the feature space or the total number
of data points. In particular, computing k principal compo-
nents with relative error ε over s workers has communica-
tion cost Õ(sρk/ε + sk2/ε3) words, where ρ is the average
number of nonzero entries in each data point. Furthermore,
we experimented the algorithm with large-scale real world
datasets and showed that the algorithm produces a high
quality kernel PCA solution while using significantly less
communication than alternative approaches.
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Kernel Principal Component Analysis (KPCA) is a key
machine learning algorithm for extracting nonlinear features
from complex datasets, such as image, text, healthcare and
biological data [27, 26, 28]. The original kernel PCA algo-
rithm is designed for a batch setting, where all data points
need to fit into a single machine. However, nowadays large
volumes of data are being collected increasingly in a dis-
tributed fashion, which poses new challenges for running ker-
nel PCA. For instance, a large network of distributed sensors
can collect temperature readings from geographically distant
locations; a system of distributed data centers in an Internet
company can process user queries from different countries;
a fraud detection system in a bank needs to perform credit
checks on people opening accounts from different branches;
and a network of electronic healthcare systems can store
patient records from different hospitals. It is very costly in
terms of network bandwidth and transmission delays to com-
municate all of the data collected in a distributed fashion to
a single data center, and then run kernel PCA on the cen-
tral node. In other words, communication now becomes the
bottleneck to the nonlinear feature extraction pipeline. How
can we leverage the aggregated computing power in a large
distributed system? Can we perform kernel PCA on the
entire dataset in a distributed and communication efficient
fashion while maintaining provable and strong guarantees in
solution quality?

While recent work shows how to do linear PCA in a com-
munication efficient and distributed fashion [8], the kernel
setting is significantly more challenging. The main problem
with previous work is that it achieves communication pro-
portional to the dimension of the data points, which if im-
plemented straightforwardly in the kernel setting would give
communication proportional to the dimension of the feature
space which can be very large or even infinite. Kernel PCA
uses the kernel trick to avoid going to the potentially infinite
dimensional kernel feature space explicitly, so intermediate
results are often represented by a function (e.g., a weighted
combination) of the feature mapping of some data points.
Communicating such intermediate results requires commu-
nicating all the data points they depend on. To lower the
communication, the intermediate results should only depend
on a small number of data points. A distributed algorithm
then needs to be carefully designed to meet this constraint.
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In this paper, we propose a communication efficient al-
gorithm for distributed KPCA in a master-worker setting
where the dataset is arbitrarily partitioned and each portion
sits in one worker, and the workers can communicate only
through the master. Our key idea is to design a communica-
tion efficient way of generating a small representative subset
of the data, and then performing kernel PCA based on this
subset. We show that the algorithm can compute a rank-k
subspace in the kernel feature space using just a represen-
tative subset of size O(k/ε) built in a distributed fashion.
For polynomial kernels, it achieves a (1 + ε) relative-error
approximation to the best rank-k subspace, and for shift-
invariant kernels (such as the Gaussian kernel), it achieves
(1 + ε)-approximation with an additive error term that can
be made arbitrarily small. In both cases, the total com-
munication for a system of s workers is Õ(sρk/ε + sk2/ε3)
words, where ρ is the average number of nonzero entries in
each data point, and is always bounded by the dimension of
the data d and independent of the dimension of the kernel
feature space. This for constant ε nearly matches the lower
bound Ω(sdk) for linear PCA [8]. As far as we know, this is
the first algorithm that can achieve provable approximation
with such communication bounds.

As a subroutine of our algorithm, we have also developed
an algorithm for the distributed Column Subset Selection
(CSS) problem, which can select a set ofO(k/ε) points whose
span contains (1 + ε)-approximation, with communication
O(sρk/ε + sk2). This is the first algorithm that addresses
the problem for kernels, and it nearly matches the commu-
nication lower bound Ω(sρk/ε) for this problem in the linear
case [10]. The column subset selection problem has various
applications in big data scenarios, so this result could be of
independent interest.

Furthermore, our algorithm also leads to some other dis-
tributed kernel algorithms: the data can then be projected
onto the subspace found and processed by downstream ap-
plications. For example, an immediate application is for
distributed spectral clustering, that first computes KPCA
to rank-k/ε and then does k-means on the data projected on
the subspace found by KPCA (e.g., [17]). This can be done
by combining our algorithm with any efficient distributed
k-means algorithms (e.g., [6]).

We evaluate our algorithm on datasets with millions of
data points and hundreds of thousands of dimensions where
non-distributed algorithms such as batch KPCA are imprac-
tical to run. Furthermore, comparing to other distributed
algorithms, our algorithm requires less communication and
fewer representation data points to achieve the same approx-
imation error.

2. RELATED WORK
There has been a surge of recent work on distributed ma-

chine learning, e.g., [5, 30, 20, 6]. In this setting, the data
sets are typically large, and small error rate is required. This
is because if only a coarse error is needed then there is no
need to use large-scale data sets; a small subset of the data
will be sufficient. Furthermore, one prefers relative error
rates instead of additive error rates, since the latter is worse
and harder to interpret without knowing the optimum. Our
algorithm can achieve small relative error with limited com-
munication.

Since there exist communication efficient distributed lin-
ear PCA algorithms [6, 20], it is tempting to adopt the ran-

dom feature approach for distributed kernel PCA: first con-
struct m random features and then solve PCA in the primal
form, i.e., apply distributed linear PCA on the random fea-
tures. However, the communication of this method is too
high. One needs m = Õ(d/ε2) random features to preserve
the kernel values up to additive error ε, leading to a com-
munication of O(skm/ε) = O(skd/ε3). Another drawback
of using random features is that it only produces a solu-
tion in the space spanned by the random features, but not
a solution in the feature space of the kernel.

The Nyström method is another popular tool for large-
scale kernel methods: sample a subset of data points uni-
formly at random, and use them to construct an approxi-
mation of the original kernel matrix. However, it also suf-
fers from high communication cost, since one needs O(1/ε4)
sampled points to achieve additive ε error in the Frobenius
norm of the kernel matrix [21]. A closely related method is
incomplete Cholesky decomposition [3], where a few pivots
are greedily chosen to approximate the kernel matrix. It is
unclear how to design a communication efficient distributed
version since it requires as many rounds of communication
as the number of pivots, which is costly.

Leverage score sampling is a related technique for low-
rank approximation [29]. A prior work of Boutsidis et al.
[8] gives the first distributed protocol for column subset se-
lection. [11] gives a distributed PCA algorithm with optimal
communication cost, but only for linear PCA. In compari-
son, our work is the first communication efficient distributed
algorithm for low rank approximation in the kernel space.

3. BACKGROUNDS
For any vector v, let ‖v‖ denote its Euclidean norm. For

any matrix M ∈ Rd×n, let Mi: denote its i-th row and
M:j its j-th column. Let ‖M‖F denote its Frobenius norm,
and ‖M‖2 denote its spectral norm. Let its rank be r ≤
min {n, d}, and denote its SVD as M = UΣV > where U ∈
Rd×r,Σ ∈ Rr×r, and V ∈ Rn×r. Let [M ]k denote its best
rank-k approximation. Finally, denote its number of non-
zero entries as nnz(M).

In the distributed setting, there are s workers that are
connected to a master processor. Worker i has a local data
set Ai ∈ Rd×ni , and the global data set A ∈ Rd×n is the
concatenation of the local data (n =

∑s
i=1 ni).

Kernels and Random Features. For a kernel κ(x, x′),
let H denote its feature space, i.e., there exists a feature
mapping φ(·) ∈ H such that κ(x, x′) = 〈φ(x), φ(x′)〉H. Let
φ(A) ∈ Hn denote the matrix obtained by applying φ on
each column of A and concatenating the results. Through-
out the paper, we regard any M ∈ Hn as a matrix whose
columns are elements in H and define matrix operations ac-
cordingly. For example, for any M ∈ Hn and N ∈ Hm,
let B = M>N ∈ Rn×m where Bij = 〈M:i, N:j〉H, and let

‖M‖2H = tr
(
M>M

)
. When there is no ambiguity, we omit

the subscript H.
The random feature approach is a recent technique to

scale up kernel methods. Many kernels can be approx-
imated by 1

m

∑m
i=1 ξωi(x)ξωi(y) where ωi’s are randomly

sampled. These include Gaussian RBF kernels and other
shift-invariant kernels, inner product kernels, etc ([24, 15]).
For example, Gaussian RBF kernels, κ(x, y) = exp(−‖x −
y‖2/2σ2), can be approximated by 1

m

∑m
i=1 zωi,bi(x)zωi,bi(y)

where zω,b(x) =
√

2 cos(ω>x+ b) and ωi is from a Gaussian



distribution with density proportional to exp(−σ2 ‖ω‖2 /2)
and bi is uniform over [0, 2π].

In this paper, we provide guarantees for shift-invariant
kernels using Fourier random features (the extension to other
kernels/random features is straightforward). We assume the
kernel satisfies some regularization conditions: it is defined
over bounded compact domain in Rd, with κ(0) ≤ 1 and
bounded ∇2k(0) [24]. Such conditions are standard in prac-
tice, and thus we assume them throughout the paper.

Kernel PCA. An element u ∈ H is an eigenfunction of
φ(A)φ(A)> with the corresponding eigenvalue λ if ‖u‖ =
1 and φ(A)φ(A)>u = λu. Given eigenfunctions {ui} of
φ(A)φ(A)> and eigenvectors {vi} of φ(A)>φ(A), φ(A) has
the singular decomposition UΣkV

> + U⊥Σ⊥V
>
⊥ , where U ,

V are the lists of top k eigenfunctions/vectors, Σk is a diag-
onal matrix with the corresponding singular values, U⊥, V⊥
are the lists of the rest of the eigenfunctions/vectors, and
Σ⊥ is a diagonal matrix with the rest of the singular values.
Kernel PCA aims to identify the top k subspace U , since the
best rank-k approximation [φ(A)]k = UΣkV

> = UU>φ(A).
Typically, the goal is to find a good approximation to this
subspace. Formally,

Definition 1. A subspace L ∈ Hk is a rank-k (1+ ε,∆)-
approximation for kernel PCA on A if L>L = Ik and∥∥∥φ(A)− LL>φ(A)

∥∥∥2 ≤ (1 + ε)
∥∥φ(A)− [φ(A)]k

∥∥2 + ∆.

Kernel PCA leads to immediate solutions for some other
nonlinear component analysis (e.g., kernel CCA), and pro-
vides needed subroutines for tasks like spectral clustering.

Subspace Embeddings. Subspace embeddings are a
useful technique that can improve the computational and
space costs by embedding data into lower dimension while
preserving interesting properties. They have been exten-
sively studied in recent years [25, 1, 13]. The recent fast
sparse subspace embeddings [13] and its optimizations [22,
23] are particularly suitable for large-scale sparse datasets,
since their running time is linear in the number of non-zero
entries in the data matrix. They also preserve the sparsity
of the input data. Formally,

Definition 2. An ε-subspace embedding of M ∈ Rm×n
is a matrix S ∈ Rt×m such that for any x,

‖SMx‖ = (1± ε) ‖Mx‖ .

Subspace embeddings can also be done on the right hand side,
i.e., S ∈ Rn×t and

∥∥x>MS
∥∥ = (1± ε)

∥∥x>M∥∥.

Mx is in the column space of M and SMx is its em-
bedding, so the definition means that the norm of any vec-
tor in the column space of M is approximately preserved.
This then provides a way to do dimensional reduction for
problems depending on inner products of vectors. Our al-
gorithm repeatedly makes use of subspace embeddings. In
particular, the embedding we use is the concatenation of
the following known sketching matrices: CountSketch and
i.i.d. Gaussians (or the concatenation of CountSketch, fast
Hadamard and i.i.d. Gaussians). The details can be found
in [29]; we only need the following fact.

Lemma 1. For M ∈ Rd×n, there exist sketching matri-
ces S ∈ Rt×d with t = O(n/ε2) that are ε-subspace embed-
dings. Furthermore, SM can be successfully computed in
time Õ(nnz(M)) with probability at least 1− δ.

The work of [2] shows that a fast computational approach,
TensorSketch, is indeed a subspace embedding for the
polynomial kernel. However, there are no previously known
subspace embeddings for other kernels. We develop efficient
and provable embeddings for a large family of kernels includ-
ing Gaussian kernel and other shift invariant kernels. These
embeddings will be a key tool used by our algorithm.

4. OVERVIEW
In view of the limitations of the related work, we instead

take a different approach, which first selects a small subset
of points whose span contains an approximation with rela-
tive error rate ε, and then find a low rank approximation
in their span. It is important to keep the size of the subset
small and also guarantee that their span contains a good
approximation (this is also called kernel column subset se-
lection). A well known technique is to sample according to
the statistical leverage scores.

Challenges. However, this immediately raises the fol-
lowing technical challenges.

I. Computing the statistical leverage scores is prohibitively
expensive. Näıvely computing them requires communicating
all data points. There exist non-trivial fast algorithms [18],
but they are designed for the non-distributed setting. Using
them in the distributed setting leads to communication lin-
ear in the number of data points, or linear in the number of
random features if one uses random features and computes
the leverage scores for them.
Our key idea is that it is sufficient to compute the (gener-
alized) leverage scores of the data points, i.e., the leverage
scores of another matrix whose row space approximates that
of the original data matrix. So the problem is reduced to
designing kernel subspace embeddings that can approximate
the row space of the data.

II. Even given the embedded data, it is unclear how to
compute its leverage scores in a communication efficient way.
Although the dimension of the embedded data is small, ex-
isting algorithms will lead to communication linear in the
number of data points, which is impractical.

III. Simply sampling according to the generalized leverage
scores does not give the desired results: a good approxima-
tion can only be obtained using a much larger rank, specifi-
cally, O(k/ε).

IV. After selecting the small subset of points, we need to
design a distributed algorithm to compute a good low rank
approximation in their span.

Algorithm. We have designed a distributed kernel PCA
algorithm that computes an approximated solution with rel-
ative error rate ε using low communication. The algorithm
operates in following key steps, each of which addresses one
of the challenges mentioned above (See Figure 1):

I. Kernel Subspace Embeddings. To approximate the sub-
space of the original data matrix, we propose subspace em-
beddings for a large family of kernels. For polynomial ker-
nels we improve the prior work by reducing the embedding
dimension and thus lowering the communication. Further-
more, we propose new subspace embeddings for kernels with
random feature expansions, allowing PCA for these kernels
to be computed in a communication efficient manner. See
Section 5.1 for the details.

II. Distributed Leverage Scores. To compute the leverage
scores, sampling with constant approximations is sufficient.
We can thus drastically reduce the number of data points:



(a) Compress data and compute leverage scores (b) Leverage score sampling

(c) Adaptive sampling

SVD(                   )

(d) Project data and compute KPCA

Figure 1: Algorithm overview. The black machine at the center is the master and the gray machines are the workers. Each worker
stores its portion of the dataset, and the algorithm computes the top k principle components on the whole dataset. The arrows between
the machines denote the direction of communications. In each round, the communication always starts from the workers to the master
(lighter arrows) and then from the master to the workers (darker arrows). (a) Each worker compresses its data by using (kernel) subspace
embeddings and sends it to the master. The master aggregates the data and computes intermediate results for leverage scores and sends
back to the workers. (b) Each worker computes the leverage scores, samples data points (denoted by circles) and then sends them to the
master. The master distributes back the union of the sampled data points. (c) Each worker conducts adaptive sampling and sends newly
sampled points to the master. The master distributes back the union of all sampled points. (d) Each worker projects its data onto the
subspace spanned by the sampled data points and sends the compressed projections to the master. The master computes coefficients for
the top k principle components by running SVD, and then sends them back to the workers. (best viewed in color)

first do another (non-kernel) subspace embeddings on the
embedded data, and then send the result to the master for
computing the scores. See Figure 1(a) for an illustration and
Section 5.2 for the details.

III. Sampling Representative Points. We take a two-step
approach as leverage scores alone is not good enough : first
sample according to generalized leverage scores, and then
sample additional points according to their distances to the
span of the points sampled in the first step. The first step
gains some coarse information about the data, and the sec-
ond step use it to get the desired samples. The two steps
are illustrated in Figure 1(b) and 1(c), respectively, while
the details are in Section 5.3.

IV. Computing an Approximation. After projecting the
data to the span of the representative points, we sketch the
projections by (non-kernel) subspace embeddings. We then
send the compressed projections to the master and compute
the solution there. See Figure 1(d) for an illustration and
Section 5.4 for the details.

Main Theoretical Results. Given as input the local
datasets, the rank k and error parameters ε,∆, our algo-
rithm outputs a (1 + ε,∆)-approximation to the optimum
with large probability. Formally,

Theorem 1. Algorithm 4 produces a subspace L for ker-
nel PCA on A that with probability ≥ 0.99 satisfies:

1. L is a rank-k (1 + ε, 0)-approximation when applied to
polynomial kernels.

2. L is a rank-k (1+ ε,∆)-approximation when applied to
shift-invariant kernels with regularization.

The total communication is Õ( sρk
ε

+ sk2

ε3
) words, where ρ is

the average number of nonzero entries in one data point.

The constant success probability can be boosted up to any
high probability 1−δ by repetition, which adds only an extra
O(log 1

δ
) term to communication and computation.

The output subspace L is represented by Õ(k/ε) sampled
points Y from A (i.e., L = φ(Y )C for some coefficient ma-
trix C), so L can be easily communicated and the projec-
tion of any point on L can be easily computed by the kernel
trick. The communication has linear dependence on the di-
mension and the number of workers, and has no dependence
on the number of data points, which is crucial for big data
scenarios. Moreover, it does not depend on ∆ (but the com-
putation does), so the additive error can be made arbitrarily
small with more computation.

The theorem also holds for other properly regularized ker-
nels with random feature expansions (see [24, 15] for more
such kernels); the extension of our proof is straightforward.

We also make the following contributions: (i) Subspace
embedding techniques for many kernels. (ii) Distributed al-
gorithm for computing generalized leverage scores with low
communication. (iii) Distributed algorithm for kernel col-
umn subset selection.

5. DISTRIBUTED KERNEL PRINCIPAL
COMPONENT ANALYSIS

Our algorithm first computes the (generalized) leverage
scores that measure the non-uniform structure, then samples
the desired subset of points whose span contains a good
approximated solution, and finally finds such a solution in



the span.
Leverage scores are critical for importance sampling in

many fast randomized algorithms. The leverage scores are
defined as follows.

Definition 3. For E ∈ Rt×n with SVD E = UΣV >, the
leverage score `j for its j-th column is `j = ‖Vj:‖2 .

Their importance is reflected in the following fact: suppose
E has rank at most k, and suppose P is a subset of O( k log k

ε2
)

columns obtained by repeatedly sampled from the columns
of E according to their leverage scores, then the span of
P contains an (1 + ε, 0)-approximation subspace for E with
probability ≥ 0.99 (see,e.g., [19]). Here, sampling one col-
umn according to the leverage scores `j means to define sam-

pling probabilities pj such that pj ≥ `j
4
∑

j `j
for all j, and

then pick one column where the j-th column is picked with

probability pj . Note that setting pj =
`j∑
j `j

is clearly suffi-

cient, but a constant variance of pj is allowed at the expense
of an extra constant factor in the sample size. This means
that it is sufficient to compute constant approximations ˜̀

j

for `j , and then sample according to pj =
˜̀
j∑
j
˜̀
j
.

However, even computing constant approximations of the
leverage scores are non-trivial: näıve approaches require
SVD, which is expensive. Actually, SVD is more expensive
than the task of PCA itself. Even ignoring computation
cost, näıve SVD is prohibitive in the distributed setting due
to its high communication cost. Fortunately, it turns out
that the leverage scores are an over kill for our purpose; it
suffices to compute the generalized leverage scores, i.e., the
leverage scores of a proxy matrix.

Definition 4. If E has rank q and can approximate the
row space of M up to (1 + ε,∆), i.e., there exists X with

‖XE −M‖F ≤ (1 + ε) ‖M − [M ]k‖F + ∆,

then the leverage scores of E are called the generalized lever-
age scores of M with respect to rank q.

This generalizes the definition in [18] by allowing the rank
of E to be larger than k and allowing additive error ∆, which
are important for our application. The generalized leverage
scores can act as the leverage scores for our purpose in the
following sense.

Lemma 2. Let P be O( q log q
ε2

) columns sampled from M
according to their generalized leverage scores w.r.t. rank q.
Then with probability ≥ 0.99, the span of P has a rank-s
(1 + 2ε, 2∆)-approximation subspace for M .

Proof. It follows from combining Theorem 5 in [19] and
the definition of the generalized leverage scores.

Computing the generalized scores with respect to rank q
could be much more efficient, since the intrinsic dimension
now becomes q, which can be much smaller than the ambient
dimension (the number of points or the dimension of the
feature space). However, as noted in the overview, there are
still a few technical challenges.

• Efficiently find a smaller matrix E that can approxi-
mate the row space of the original data.

• Compute the leverage scores of E in a communication
efficient way.

• The approximation solution in the span of P has the
same rank as E, which is O(k/ε) when we use kernel
subspace embedding to obtain E. This is not satisfying
since our final goal is to compute a rank-k solution.

• Find a good approximation in the span of φ(Y ) with
low communication.

Our final algorithm consists of four key steps, each of which
addresses one of the above challenges. They are elaborated
in the following four subsections respectively, and the final
subsection presents the overall algorithm.

5.1 Kernel Subspace Embeddings
Recall that a subspace embedding S for a matrixM is such

that ‖SMx‖ ≈ ‖Mx‖, i.e., the norm of any vector in the
column space of M is approximately preserved. Subspace
embeddings can also be generalized for the feature mapping
of kernels, simply by setting M = φ(A), S a linear mapping
from H 7→ Rt and using the corresponding inner product. If
the data after the kernel subspace embedding is sufficient for
solving the problem under consideration, then only Sφ(A) in
much lower dimension is needed. This is especially interest-
ing for distributed kernel methods, since directly using the
feature mapping or the kernel trick in this setting will lead
to high communication cost, while the data after embedding
can be much smaller and lead to much lower communication
cost.

A sufficient condition for solving many problems (in par-
ticular, kernel PCA) is to preserve the low rank structure of
the data. More precisely, the row space of Sφ(A) is a good
approximation to that of φ(A), where the error is compa-
rably to the best rank k approximation error. Then Sφ(A)
can be used to compute the generalized leverage scores for
φ(A), which can then be utilized to compute kernel PCA as
mentioned above.

More precisely, we would like Sφ(A) to approximate the
row space of φ(A) up to (1 + ε,∆), as required in the defi-
nition of the generalized leverage scores. We give such em-
beddings a particular name.

Definition 5. S is called a (1 + ε,∆)-good subspace em-
bedding for φ(A) ∈ Hn, if there exists X such that

‖X(Sφ(A))− φ(A)‖2 ≤ (1 + ε) ‖φ(A)− [φ(A)]k‖2 + ∆.

We now identify the sufficient conditions for (1 + ε,∆)-
good subspace embeddings, which can then be used in con-
structing such embeddings for various kernels.

Lemma 3. S is a (1 + ε,∆)-good subspace embedding for
φ(A) ∈ Hn if it satisfies the following.
P1 (Subspace Embedding): For any orthonormal V ∈ Hk

( i.e., V >V is the identity), for all x ∈ Rk,

‖SV x‖ = (1± c) ‖V x‖

where c is a sufficiently small constant.
P2 (Approximate Product): for any M ∈ Hn, N ∈ Hk,∥∥∥(SN)>(SM)−N>M

∥∥∥2
F
≤ ε

k
‖N‖2 ‖M‖2 + ∆.

Polynomial Kernels. For polynomial kernels, there ex-
ists an efficient algorithm TensorSketch to compute the
embedding [2]. However, the embedding dimension has a
quadratic dependence on the rank k, which will increase the



Algorithm 1 Distributed Leverage Scores:
{˜̀ij} = disLS(

{
Ei
}s
i=1

, k)

1: Each worker i: do 1
4
-subspace embedding EiT i ∈ Rt×p

with p = O(t); send EiT i to Master.

2: Master: QR-factorize
[
E1T 1, . . . , EsT s

]>
= UZ;

send Z to all workers.

3: Each worker i: compute ˜̀i
j =

∥∥∥((Z>)−1Ei
)
:j

∥∥∥2
2
.

communication. Fortunately, subspace embedding can be
concatenated, so we can further apply another known sub-
space embedding such as one of those in Lemma 1 which,
though not fast for feature mapping, is fast for the already
embedded data and has lower dimension. In this way, we
can enjoy the benefits of both approaches.

The guarantee of TensorSketch in [2] and the property
of the subspace embeddings in Lemma 1 can be combined
to verify P1 and P2. So we have

Lemma 4. For polynomial kernels κ(x, y) = (〈x, y〉)q, there

exists a (1+ε, 0)-good subspace embedding matrix S : Rd
q

7→
Rt with t = O(k/ε).

Kernels with Random Feature Expansions. Poly-
nomial kernels have finite dimensional feature mappings, for
which the sketching seems natural. It turns out that it is
possible to extend subspace embeddings to kernels with infi-
nite dimensional feature mappings. More precisely, we pro-
pose subspace embeddings for kernels with random feature
expansions, i.e., κ(x, y) = Eω [ξω(x)ξω(y)] for some function
ξ(·). Therefore, one can approximate the kernel by using m
features zω(x) on randomly sampled ω. Such random feature
expansion can be exploited for subspace embeddings: view
the expansion as the “new” data points and apply a sketch-
ing matrix on top of it. Compared to polynomial kernels,
the finite random feature expansion leads to an additional
additive error term. Our analysis shows that bounding the
additive error term only requires sufficiently large sampled
size m, which affects the computation but does not affect the
final embedding dimension and thus the communication.

In summary, the embedding is Sφ(x) = TR(φ(x)), where
R(φ(x)) ∈ Rm is m random features for x and T ∈ Rt×m is
an embedding as in Lemma 1. The properties P1 and P2
can be verified by combining Lemma 1 and the guarantees
of random features.

Lemma 5. For a continuous shift-invariant kernels κ(x, y) =
κ(x − y) with regularization, there exists a (1 + ε,∆)-good
subspace embedding S : H 7→ Rt with t = O(k/ε).

5.2 Computing Leverage Scores
Given the matrix E obtained from kernel subspace em-

bedding, we would like to compute the leverage scores of E.
First note that this cannot be done simply in a local man-
ner: the leverage score of a column in Ei is different from
the leverage score of the same column in E. Furthermore,
though data in E have low dimension, communicating all
points in E to the master is still impractical, since it leads
to communication linear in the total number of points.

Fortunately, we only need to compute constant approxi-
mations of the scores, which allows us to use subspace em-
bedding on E to greatly reduce the number of data points.
In particular, we apply a 1

4
-subspace embedding T i (e.g.,

Algorithm 2 Sampling Representative Points:
Y = RepSample(

{
Ai
}s
i=1

, {˜̀ij}, k, ε)

1: Workers: sample O(k log k) points according to {˜̀ij};
send to Master;

2: Master: send all the sampled points P to the workers;
3: Workers: sample O(k/ε) points Ỹ according to the

square distances to P in the feature space;
send to Master;

4: Master: send Y = Ỹ ∪ P to all the workers.

one of those in Lemma 1) on each local data set Ei, and
then send them to the master. Let ET denote all the em-
bedded data, and do QR factorization (ET )> = UZ. Now,

the rows of U> =
(
Z>
)−1

ET are a set of basis for ET .

Then, think of U>T † =
(
Z>
)−1

E as the basis for E, so it

suffices to compute the norms of the columns in
(
Z>
)−1

E.
The details are described in Algorithm 1 and Figure 1(a)

shows an illustration. The algorithm is guaranteed to output
constant approximations of the leverage scores of E.

Lemma 6. Let `ij be the true leverage scores of E. Then

Algorithm 1 outputs ˜̀i
j = (1± 1/2)`ij.

Proof. The algorithm can be viewed as applying an em-
bedding T = diag

(
T 1, . . . , T s

)
on E to approximate the

scores while saving the costs. Each T i is an 1
4
-subspace em-

bedding matrix, then for any x,∥∥∥x>ET∥∥∥2 =
∥∥∥[x>E1T 1, x>E2T 2, . . . , x>EsT s]

∥∥∥2
=

s∑
i=1

∥∥∥x>EiT i∥∥∥2 =

s∑
i=1

(1± 1/4)2
∥∥∥x>Ei∥∥∥2

=(1± 1/4)2
∥∥∥x>E∥∥∥2 .

So T is also 1
4
-subspace embedding. Such a scheme of using

embedding for approximating the scores has been analyzed
(Lemma 6 in [18]), and the lemma follows.

We note that though a constant approximation is suffi-
cient for our purpose, but the algorithm can output ˜̀i

j =

(1± ε)`ij by doing an ε
2
-subspace embedding (instead of 1

4
),

which can be useful for other applications.

5.3 Sampling Representative Points
Sampling directly to the leverage scores can produce a set

of points P such that the span of φ(P ) contains a (1+ ε,∆)-
approximation to φ(A). However, the rank of that approxi-
mation can be as high as O(k/ε), since its rank is the same
as that of the embedded data (see Lemma 2), which will be
O(k/ε) to achieve ε error. To get a rank-k approximation
and also enjoy the advantage of leverage scores, we propose
to combine leverage score sampling and the adaptive sam-
pling algorithm in [16, 9].

The details are presented in Algorithm 2. We first sample
a set P of O(k log k) points according to the leverage scores,
so that the span of φ(P ) contains a (2,∆)-approximation.
Then we use the adaptive sampling method: sample O(k/ε)
points according to the square distances from the points to
their projections on P and then add them to P to get the
desire set Y of representative points. Figure 1(b) and 1(c)
demonstrate the two steps of the algorithm.



Algorithm 3 Computing an Approximation:
L = disLR(

{
Ai
}s
i=1

, Y , k, ε,∆)

1: Each worker i: compute the basis Q for φ(Y ) and Πi =

Q>φ(Ai); do an ε-subspace embedding ΠiT i ∈ R|Y |×w
with w = O(|Y |/ε2), and send ΠiT i to Master;

2: Master: concatenate ΠT =
[
Π1T 1, . . . ,ΠsT s

]
and send

the top k singular vectors W of ΠT to the workers.
3: Each worker i: set L = QW .

Adaptive sampling has the following guarantee:

Lemma 7. Suppose there is a (2,∆)-approximation for
φ(A) in the span of φ(P ). Then with probability ≥ 0.99,
the span of φ(Y ) has a rank-k (1 + ε,∆)-approximation.

Therefore, we solves the column subset selection problem
for kernels in the distributed setting, with O(k log k+k/ε) se-
lected columns and with a communication of only O(sρk/ε+
sk2). This also provides the foundation for kernel PCA task.

5.4 Computing an Approximation
To compute a good approximation in the span of φ(Y ),

the näıve approach is to project the data to the span and
compute SVD there. However, the communication will be
linear in the number of data points. Subspace embedding
can be used to sketch the projected data, so that the number
of data points is greatly reduced.

Algorithm 4 describes the details and Figure 1(d) shows
an illustration. To compute the best rank-k approximation
for the projected data Π, we do a subspace embedding on
the right hand side, i.e., compute ΠT =

[
Π1T 1, . . . ,ΠsT s

]
.

Then the algorithm computes the best rank-k approximation
W for ΠT , which is then a good approximation for Π and
thus φ(A). It then returns L, the representation of W in the
coordinate system of φ(A). The output L is guaranteed to
be a good approximation.

Lemma 8. If there is a rank-k (1 + ε,∆)-approximation
subspace in the span of φ(Y ), then∥∥∥LL>φ(A)− φ(A)

∥∥∥2 ≤ (1+ε)2
∥∥φ(A)− [φ(A)]k

∥∥2+(1+ε)∆.

Proof Sketch. For our choice of w, T i is an ε-subspace
embedding matrix for Πi. Then their concatenation B is an
ε-subspace embedding for Π, the concatenation of Πi. Then
we can apply the idea implicit in [20].

By Pythagorean Theorem, the error can be factorized into∥∥∥LL>φ(A)−QQ>φ(A)
∥∥∥2︸ ︷︷ ︸

T1

+
∥∥∥φ(A)−QQ>φ(A)

∥∥∥2︸ ︷︷ ︸
T2

.

Since LL> = QWW>Q>,

T1 =
∥∥∥WW>Q>φ(A)−Q>φ(A)

∥∥∥2 .
Note that Π = Q>φ(A), and W is the best rank-k sub-

space for its embedding ΠT . By property of T (Theorem 7
in [20]), it is also a good approximation for Π. So

T1 ≈
∥∥∥[Q>φ(A)]k −Q>φ(A)

∥∥∥2 =
∥∥∥Q[Q>φ(A)]k −QQ>φ(A)

∥∥∥2 .

Algorithm 4 Distributed Kernel PCA:
L = disKPCA(

{
Ai
}s
i=1

, k, ε,∆)

1: Each worker i: do a (1/4,∆)-good subspace embedding
Ei = S(φ(Ai)) ∈ Rt×ni , t = O(k);

2: Compute the leverage scores:
{˜̀ij} = disLS(

{
Ei
}s
i=1

, k);

3: Sample points: Y = RepSample(
{
Ai
}s
i=1

, {˜̀ij}, k, ε);
4: Output L = disLR(

{
Ai
}s
i=1

, Y, k, ε,∆).

Table 1: Dataset specification: d is the original feature dimen-
sion, n is the number of data points, and s is the total number
of workers storing the dataset distributedly. Among them, bow
and 20news are sparse datasets. All datasets except mnist8m are
taken from UCI repository [4] and [7].

Dataset d n s

bow 100,000 8,000,000 200
higgs 28 11,000,000 200
mnist8m 784 8,000,000 100
susy 18 5,000,000 100
yearpredmsd 90 463,715 10
ctslice 384 53,500 10
20news 61,118 11,269 5
protein 9 41,157 5

har 561 10,299 5
insurance 85 9,822 5

Combining this with T2, and applying Pythagorean Theo-
rem again, we know that the error is roughly∥∥∥Q[Q>φ(A)]k − φ(A)

∥∥∥2 .
Now, by assumption, there is a rank-k (1+ε,∆)-approximation

subspace X in the span of φ(Y ). Since [Q>φ(A)]k is the best
rank-k approximation to Q>φ(A),∥∥∥Q[Q>φ(A)]k − φ(A)

∥∥∥2
=
∥∥∥Q[Q>φ(A)]k −QQ>φ(A)

∥∥∥2 +
∥∥∥QQ>φ(A)− φ(A)

∥∥∥2
≤
∥∥∥X −QQ>φ(A)

∥∥∥2 +
∥∥∥QQ>φ(A)− φ(A)

∥∥∥2
= ‖X − φ(A)‖2 .

The lemma then follows.

5.5 Overall Algorithm
Now, putting things together, we obtain our final algo-

rithm for distributed kernel PCA (Algorithm 4). Our main
result, Theorem 1, follows by combining all the lemmas in
the previous subsections (with properly adjusted ε and ∆).

6. EXPERIMENTS

6.1 Datasets
We use ten datasets to evaluate our algorithm. They con-

tain both sparse and dense data and come from a variety of
different domains, such as text, images, high energy physics
and biology. We use two smaller ones to benchmark against
the single-machine batch KPCA algorithm while the rest are
large-scale datasets with up to tens of millions of data points
and hundreds of thousands dimensions. Refer to Table 1 for
detailed specifications.
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Figure 2: KPCA for polynomial kernels on small datasets: low-rank approximation error and runtime
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Figure 3: KPCA for Gaussian kernels on small datasets: low-rank approximation error and runtime

Each dataset is partitioned on different workers according
to the power law distribution with exponent 2 to simulate
the distribution of the data over large networks [14]. De-
pending on the size of the dataset, the number of workers
used ranges from 5 to 200 (see Table 1 for details).

6.2 Experiment Settings
Since our key contribution is sampling a small set of data

points intelligently, the natural alternative is uniformly sam-
pling. We compare with two variants of uniform sampling
algorithms: 1) uniformly sampling representative points and
use Algorithm 3 to get KPCA solution (denoted as uni-
form+disLR); 2) uniformly sampling data points and apply
batch KPCA (denoted as uniform+batch KPCA).

For both algorithms, we compare the tradeoff of low rank
approximation error and communication cost. Particularly,
we compare the communication needed to achieve the same
error. Each method is run 5 times and the mean and the
standard deviation are reported.

For polynomial kernel, the degree is q = 4 and for Gaus-
sian RBF kernel, the kernel bandwidth σ is set to 0.2 of the
median pairwise distance among a subset of 20000 randomly
chosen data points (a.k.a, the “median trick”). For Gaussian
random feature expansion, we use 2000 random features.

In all experiments, we set the number of principle compo-
nents k = 10, which is the same number for k-means. The
algorithm specific parameters are set as follows: 1) The sub-
space embedding dimension for the feature expansion t is 50;
2) The subspace embedding dimension for the data points p
is 250; 3) We vary the number of adaptively sampled points

|Ỹ | from 50 to 400 to simulate different communication cost;
4) The subspace embedding dimension w is set to equal |Y |.

6.3 Comparison with Batch Algorithm
We compare to the “ground-truth” solutions produced by

batch KPCA on two small datasets where it is feasible. The
experiment results for the polynomial kernel and the Gaus-
sian RBF kernel are presented in Figures 2 and 3, respec-
tively. In both cases, the approximation error of disKPCA
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Figure 6: KPCA results for arc-cos kernels

decreases as more communication is allowed. It can nearly
match the optimum low-rank approximation error with much
fewer data points. In addition, it is much faster: we gain a
speed up of 10× by using five workers.

6.4 Communication Efficiency
In these experiments, we compare the tradeoff between

communication cost and approximation accuracy on large-
scale datasets. The alternative, uniform + batch KPCA,
is stopped short in many experiments due to its excessive
computation cost for larger number of sampled data points.

Figure 4 demonstrates the performance on polynomial
kernels on four large datasets. On all four datasets, our
algorithm outperforms the alternatives by significant mar-
gins. Especially on bow, which is a sparse dataset, the usage
of kernel embeddings takes advantage of the sparsity struc-
ture and leads to much smaller error. On other datasets,
uniform + disLR cannot match the error achieved by our
algorithm even when using much more communication.

Figure 5 shows the performance on Gaussian kernels. On
mnist8m, the error for uniform + batch KPCA is so large
(almost twice of the errors in the figure) that it is not shown.
On other datasets, disKPCA achieves significant smaller er-
ror. For example, on higgs dataset, to achieve the same
error, uniform + disLR requires more than 5 times com-
munication. Since it does not have the communication of
computing leverage scores, this means that it needs to sam-
ple much more points to get similar performance. Therefore,
our algorithm is very efficient in communication.
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Figure 4: KPCA for polynomial kernels on larger datasets
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Figure 5: KPCA for Gaussian kernels on larger datasets
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Figure 7: KPCA scaling results

Besides polynomial and Gaussian kernels, we have also
conducted experiments using arc-cos kernel [12]. The arc-
cosine kernels have random feature bases similar to the Rec-
tified Linear Units (ReLU) used in deep learning. We use
degree n = 2 and Figure 6 shows the results. Our algorithm
consistently achieves better tradeoff between communication
and approximation and the benefit is especially more pro-
nounced on sparser dataset such as 20news.

6.5 Scaling Results
In Figure 7, we present the scaling results for disKPCA.

In these experiments, we vary the number of workers and
record the corresponding computation time (communication
time excluded). On both datasets, the runtime decreases as
we use more workers, and it eventually plateaus. Our algo-
rithm gains about 2× speedup by using 4× more workers.
Note that our algorithm is designed to strike a good balance
between communication and approximation. Even though
computation complexity is not our first priority, the experi-
ments show disKPCA still enjoys favorable scaling property.

6.6 Distributed Spectral Clustering
We have also experimented a form of spectral clustering

(KPCA followed by k-means clustering). We project the
data onto the top k principle components and then apply a
distributed k-means clustering algorithm [6]. The evaluation
criterion is the k-means objective, i.e., average distances to
the corresponding centers, in the feature space.

Figure 8(a) presents results for polynomial kernels on the
20news and susy and Figure 8(b) presents results for Gaus-
sian kernels on ctslice and yearpredmsd. Our algorithm com-
pares favorably with the other methods and achieves a better
tradeoff of communication and error. This means that al-
though the other methods require similar communication,

they need to sample more data points to achieve the same
loss, demonstrating the effectiveness of our algorithm.

7. CONCLUSION
This paper proposes a communication efficient distributed

algorithm for kernel Principal Component Analysis with the-
oretical guarantees. It computes a relative-error approxi-
mation compared to the best rank-k subspace, using com-
munication that nearly matches that of the state-of-the-art
algorithms for distributed linear PCA. This is the first dis-
tributed algorithm that can achieve such provable approx-
imation and communication bounds. The experimental re-
sults show that it can achieve better performance than the
baseline using the same communication budget.
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