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ABSTRACT
We study the tradeoff between the statistical error and com-
munication cost of distributed statistical estimation prob-
lems in high dimensions. In the distributed sparse Gaussian
mean estimation problem, each of the m machines receives n
data points from a d-dimensional Gaussian distribution with
unknown mean θ which is promised to be k-sparse. The ma-
chines communicate by message passing and aim to estimate
the mean θ. We provide a tight (up to logarithmic factors)
tradeoff between the estimation error and the number of bits
communicated between the machines. This directly leads to
a lower bound for the distributed sparse linear regression
problem: to achieve the statistical minimax error, the total
communication is at least Ω(min{n, d}m), where n is the
number of observations that each machine receives and d is
the ambient dimension. These lower bound results improve
upon [Sha14, SD15] by allowing a multi-round interactive
communication model. We also give the first optimal simul-
taneous protocol in the dense case for mean estimation.

As our main technique, we prove a distributed data pro-
cessing inequality, as a generalization of usual data process-
ing inequalities, which might be of independent interest and
useful for other problems.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: communica-
tion complexity, secure computation; F.1.3 [Software En-
gineering]: information and communication complexity;
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G.3 [Probability and Statistics]: Multivariate statistics

General Terms
Theory

Keywords
Communication complexity, Information complexity, statis-
tical estimation.

1. INTRODUCTION
Rapid growth in the size of modern data sets has fu-

eled a lot of interest in solving statistical and machine
learning tasks in a distributed environment using mul-
tiple machines. Communication between the machines
has emerged as an important resource and sometimes
the main bottleneck. A lot of recent work has been
devoted to design communication-efficient learning algo-
rithms [DAW12, ZDW13, ZX15, KVW14, LBKW14, SSZ14,
LSLT15, BWZ15, WZ16].

In this paper we consider statistical estimation problems
in the distributed setting, which can be formalized as follows.
There is a family of distributions P = {µθ : θ ∈ Ω ⊂ Rd}
that is parameterized by θ ∈ Rd. Each of the m machines is
given n i.i.d samples drawn from an unknown distribution
µθ ∈ P. The machines communicate with each other by
message passing, and do computation on their local samples
and the messages that they receives from others. Finally
one of the machines needs to output an estimator θ̂ and the
statistical error is usually measured by the mean-squared
loss E[‖θ̂ − θ‖2]. We count the communication between the
machines in bits.

This paper focuses on understanding the fundamental
tradeoff between communication and the statistical error for
high-dimensional statistical estimation problems. Modern
large datasets are often equipped with a high-dimensional
statistical model, while communication of high dimensional
vectors could potentially be expensive. It has been shown
by Duchi et al. [DJWZ14] and Garg et al. [GMN14] that for
the linear regression problem, the communication cost must



scale with the dimensionality for achieving optimal statisti-
cal minimax error – not surprisingly, the machines have to
communicate high-dimensional vectors in order to estimate
high-dimensional parameters.

These negative results naturally lead to the interest
in high-dimensional estimation problems with additional
sparse structure on the parameter θ. It has been well under-
stood that the statistical minimax error typically depends on
the intrinsic dimension, that is, the sparsity of the parame-
ters, instead of the ambient dimension1. Thus it is natural
to expect that the same phenomenon also happens for com-
munication.

However, this paper disproves this possibility in the inter-
active communication model by proving that for the sparse
Gaussian mean estimation problem (where one estimates
the mean of a Gaussian distribution which is promised to
be sparse, see Section 2 for the formal definition), in order
to achieve the statistical minimax error, the communication
must scale with the ambient dimension. On the other end of
the spectrum, if alternatively the communication only scales
with the sparsity, then the statistical error must scale with
the ambient dimension (see Theorem 4.5). Shamir [Sha14]
establishes the same result for the 1-sparse case under a
non-iterative communication model.

Our lower bounds for the Gaussian mean estimation prob-
lem imply lower bounds for the sparse linear regression prob-
lem (Corollary 4.8) via the reduction of [ZDJW13]: for
a Gaussian design matrix, to achieve the statistical min-
imax error, the communication per machine needs to be
Ω(min{n, d}) where d is the ambient dimension and n is the
dimension of the observations that each machine receives.
This lower bound matches the upper bound in [LSLT15]
when n is larger than d. When n is less than d, we note
that it is not clear whether O(n) or O(d) should be the min-
imum communication cost per machine needed. In any case,
our contribution here is in proving a lower bound that does
not depend on the sparsity. Compared to previous work of
Steinhardt and Duchi [SD15], which proves the same lower
bounds for a memory-bounded model, our results work for
a stronger communication model where multi-round itera-
tive communication is allowed. Moreover, our techniques
are possibly simpler and potentially easier to adapt to re-
lated problems. For example, we show that the result of
Woodruff and Zhang [WZ12] on the information complex-
ity of distributed gap majority can be reproduced by our
technique with a cleaner proof (see the full paper for the
proof).

We complement our lower bounds for this problem in
the dense case by providing a new simultaneous pro-
tocol, improving the number of rounds of the previous
communication-optimal protocol from O(logm) to 1 (see
Theorem 4.6). Our protocol is based on a certain combi-
nation of many bits from a few Gaussian samples, together
with roundings (to a single bit) of the fractional parts of
many Gaussian samples.

Our proof techniques are potentially useful for other ques-
tions along these lines. We first use a modification of the
direct-sum result of [GMN14], which is tailored towards
sparse problems, to reduce the estimation problem to a de-
tection problem. Then we prove what we call a distributed
data processing inequality for bounding from below the cost

1the dependency on the ambient dimension is typically log-
arithmic.

of the detection problem. The latter is the crux of our proofs.
We elaborate more on it in the next subsection.

1.1 Distributed Data Processing Inequality
We consider the following distributed detection problem.

As we will show in Section 4 (by a direct-sum theorem), it
suffices to prove a tight lower bound in this setting, in order
to prove a lower bound on the communication cost for the
sparse linear regression problem.
Distributed detection problem: We have a family
of distributions P that consist of only two distributions
{µ0, µ1}, and the parameter space Ω = {0, 1}. To facili-
tate the use of tools from information theory, sometimes it
is useful to introduce a prior over the parameter space. Let
V ∼ Bq be a Bernoulli random variable with probability
q of being 1. Given V = v ∈ {0, 1}, we draw i.i.d. sam-
ples X1, . . . , Xm from µv and the j-th machine receives one
sample Xj , for j = 1, . . . ,m. We use Π ∈ {0, 1}∗ to de-
note the sequences of messages that are communicated by
the machines. We will refer to Π as a “transcript”, and the
distributed algorithm that the machines execute as a “pro-
tocol”.

The final goal of the machines is to output an estimator for
the hidden parameter v which is as accurate as possible. We
formalize the estimator as a (random) function v̂ : {0, 1}∗ →
{0, 1} that takes the transcript Π as input. We require that
given V = v, the estimator is correct with probability at
least 3/4, that is, minv∈{0,1} Pr[v̂(Π) = v | V = v] ≥ 3/4.
When q = 1/2, this is essentially equivalent to the state-
ment that the transcript Π carries Ω(1) information about
the random variable V . Therefore, the mutual information
I(V ; Π) is also used as a convenient measure for the quality
of the protocol when q = 1/2.
Strong data processing inequality: The mutual in-
formation viewpoint of the accuracy naturally leads us to
the following approach for studying the simple case when
m = 1 and q = 1/2. When m = 1, we note that the parame-
ter V , data X, and transcript Π form a simple Markov chain
V → X → Π. The channel V → X is defined as X ∼ µv,
conditioned on V = v. The strong data processing inequal-
ity (SDPI) captures the relative ratio between I(V ; Π) and
I(X; Π).

Definition 1 (Special case of SDPI). Let V ∼
B1/2 and the channel V → X be defined as above. Then
there exists a constant β ≤ 1 that depends on µ0 and µ1, such
that for any Π that depends only on X (that is, V → X → Π
forms a Markov Chain), we have

I(V ; Π) ≤ β · I(X; Π). (1)

An inequality of this type is typically referred to as a strong
data processing inequality for mutual information when β <
1 2. Let β(µ0, µ1) be the infimum over all possible β such
that (1) is true, which we refer to as the SDPI constant.

Observe that the LHS of (1) measures how much infor-
mation Π carries about V , which is closely related to the
accuracy of the protocol. The RHS of (1) is a lower bound
on the expected length of Π, that is, the expected commu-
nication cost. Therefore the inequality relates two quanti-
ties that we are interested in - the statistical quality of the

2Inequality (1) is always true for a Markov chain V → X →
Π with β = 1 and this is called the data processing inequal-
ity.



protocol and the communication cost of the protocol. Con-
cretely, when q = 1/2, in order to recover V from Π, we need
that I(V ; Π) ≥ Ω(1), and therefore inequality (1) gives that
I(X; Π) ≥ Ω(β−1). Then it follows from Shannon’s source
coding theory that the expected length of Π (denoted by
|Π|) is bounded from below by E[|Π|] ≥ Ω(β−1). We refer
to [Rag14] for a thorough survey of SDPI.3

In the multiple machine setting, Duchi et al. [DJWZ14]
links the distributed detection problem with SDPI by show-
ing from scratch that for any m, when q = 1/2, if β is such
that (1−

√
β)µ1 ≤ µ0 ≤ (1 +

√
β)µ1, then

I(V ; Π) ≤ β · I(X1 . . . Xm; Π).

This results in the bounds for the Gaussian mean estimation
problem and the linear regression problem. The main lim-
itation of this inequality is that it requires the prior Bq to
be unbiased (or close to unbiased). For our target applica-
tion of high-dimensional problems with sparsity structures,
like sparse linear regression, in order to apply this inequal-
ity we need to put a very biased prior Bq on V . The proof
technique of [DJWZ14] seems also hard to extend to this
case with a tight bound4. Moreover, the relation between
β, µ0 and µ1 may not be necessary (or optimal), and indeed
for the Gaussian mean estimation problem, the inequality
is only tight up to a logarithmic factor, while potentially in
other situations the gap is even larger.

Our approach is essentially a prior-free multi-machine
SDPI, which has the same SDPI constant β as is required
for the single machine one. We prove that, as long as the
SDPI (1) for a single machine is true with parameter β, and
µ0 ≤ O(1)µ1, then the following prior-free multi-machine
SDPI is true with the same constant β (up to a constant
factor).

Theorem 1.1 (Distributed SDPI). Suppose 1
c
·µ0 ≤

µ1 ≤ cµ0 for some constant c ≥ 1, and let β(µ0, µ1) be
the SDPI constant defined in Definition 1. Then in the dis-
tributed detection problem, we have the following distributed
strong data processing inequality,

h2(Π|V=0,Π|V=1)

≤ Kcβ(µ0, µ1) · min
v∈{0,1}

{I(X1 . . . Xm; Π | V = v)} (2)

where K is a universal constant, and h(·, ·) is the Hellinger
distance between two distributions and Π|V=v denotes the
distribution of Π conditioned on V = v.

Moreover, for any µ0 and µ1 which satisfy the condition of
the theorem, there exists a protocol that produces transcript
Π such that (2) is tight up to a constant factor.

As an immediate consequence, we obtain a lower bound on
the communication cost for the distributed detection prob-
lem.

3Also note that in information theory, SDPI is typically
interpreted as characterizing how information decays when
passed through the reverse channel X → V . That is, when
the channel X → V is lossy, then information about Π will
decay by a factor of β after passing X through the channel.
However, in this paper we take a different interpretation that
is more convenient for our applications.
4We note, though, that it seems possible to extend the proof
to the situation where there is only one-round of communi-
cation.

Corollary 1.2. Suppose the protocol and estimator
(Π, v̂) are such that for any v ∈ {0, 1}, given V = v , the
estimator v̂ (that takes Π as input) can recover v with prob-
ability 3/4. Then

max
v∈{0,1}

E[|Π| | V = v] ≥ Ω(β−1).

Our theorem suggests that to bound the communication
cost of the multi-machine setting from below, one could sim-
ply work in the single machine setting and obtain the right
SDPI constant β. Then, a lower bound of Ω(β−1) for the
multi-machine setting immediately follows. In other words,
multi-machines need to communicate a lot to fully exploit
the m data points they receive (1 on each single machine) re-
gardless of however complicated their multi-round protocol
is.

Remark 1. Note that our inequality differs from the typi-
cal data processing inequality on both the left and right hand
sides. First of all, the RHS of (2) is always less than or
equal to I(X1 . . . Xm; Π | V ) for any prior Bq on V . This
allows us to have a tight bound on the expected communica-
tion E[|Π|] for the case when q is very small.

Second, the squared Hellinger distance (see Definition 4)
on the LHS of (2) is not very far away from I(Π;V ), es-
pecially for the situation that we consider. It can be viewed
as an alternative (if not more convenient) measure of the
quality of the protocol than mutual information – the further
Π|V=0 from Π|V=1, the easier it is to infer V from Π. When
a good estimator is possible (which is the case that we are
going to apply the bound in), Hellinger distance, total varia-
tion distance between Π|V=0 and Π|V=1, and I(V ; Π) are all
Ω(1). Therefore in this case, the Hellinger distance does not
make the bound weaker.

Finally, suppose we impose a uniform prior for V . Then
the squared Hellinger distance is within a constant factor of
I(V ; Π) (see Lemma 4, and the lower bound side was proved
by [BYJKS04]),

2h2(Π|V=0,Π|V=1) ≥ I(V ; Π) ≥ h2(Π|V=0,Π|V=1) .

Therefore, in the unbiased case, (2) implies the typical form
of the data processing inequality.

Remark 2. The tightness of our inequality does not im-
ply that there is a protocol that solves the distributed detec-
tion problem with communication cost (or information cost)
O(β−1). We only show that inequality (2) is tight for some
protocol but solving the problem requires having a protocol
such that (2) is tight and that h2(Π|V=0,Π|V=1) = Ω(1).
In fact, a protocol for which inequality (2) is tight is one
in which only a single machine sends a message Π which
maximizes I(Π;V )/I(Π;X).

Organization of the paper: Section 2 formally sets up
our model and problems and introduces some preliminaries.
Then we prove our main theorem in Section 3. In Section 4
we state the main applications of our theory to the sparse
Gaussian mean estimation problem and to the sparse linear
regression problem. The next three sections are devoted to
the proofs of results in Section 4. In Section 5, we prove
Theorem 4.4. The other missing proofs appear in the full
paper.



2. PROBLEM SETUP, NOTATIONS AND
PRELIMINARIES

2.1 Distributed Protocols and Parameter Es-
timation Problems

Let P = {µθ : θ ∈ Ω} be a family of distributions over
some space X , and Ω ⊂ Rd be the space of all possible pa-
rameters. There is an unknown distribution µθ ∈ P, and our
goal is to estimate a parameter θ usingmmachines. Machine

j receives n i.i.d samples X
(1)
j , . . . , X

(n)
j from distribution

µθ. For simplicity we will use Xj as a shorthand for all the

samples machine j receives, that is, Xj = (X
(1)
j , . . . , X

(n)
j ).

Therefore Xj ∼ µnθ , where µn denotes the product of n
copies of µ. When it is clear from context, we will use X as
a shorthand for (X1, . . . , Xm). We define the problem of es-
timating parameter θ in this distributed setting formally as
task T (n,m,P). When Ω = {0, 1}, we call this a detection
problem and refer it to as Tdet(n,m,P).

The machines communicate via a publicly shown black-
board. That is, when a machine writes a message on the
blackboard, all other machines can see the content. The
messages that are written on the blackboard are counted
as communication between the machines. Note that this
model captures both point-to-point communication as well
as broadcast communication. Therefore, our lower bounds
in this model apply to both the message passing setting and
the broadcast setting.

We denote the collection of all the messages written on
the blackboard by Π. We will refer to Π as the transcript
and note that Π ∈ {0, 1}∗ is written in bits and the commu-
nication cost is defined as the length of Π, denoted by |Π|.
We will call the algorithm that the machines follow to pro-
duce Π a protocol. With a slight abuse of notation, we use
Π to denote both the protocol and the transcript produced
by the protocol.

One of the machines needs to estimate the value of θ using
an estimator θ̂ : {0, 1}∗ → Rd which takes Π as input. The
accuracy of the estimator on θ is measured by the mean-
squared loss:

R((Π, θ̂), θ) = E
[
‖θ̂(Π)− θ‖22

]
,

where the expectation is taken over the randomness of the
data X, and the estimator θ̂. The error of the estimator is
the supremum of the loss over all θ,

R(Π, θ̂) = sup
θ∈Ω

E
[
‖θ̂(Π)− θ‖22

]
. (3)

The communication cost of a protocol is measured by the
expected length of the transcript Π, that is, CC(Π) =
supθ∈Ω E[|Π|]. The information cost IC of a protocol is de-
fined as the mutual information between transcript Π and
the data X,

IC(Π) = sup
θ∈Ω

Iθ(Π;X | Rpub) (4)

where Rpub denotes the public coin used by the algorithm
and Iθ(Π;X | Rpub) denotes the mutual information be-
tween random variable X and Π when the data X is drawn
from distribution µθ. We will drop the subscript θ when it
is clear from context.

For the detection problem, we need to define minimum
information cost, a stronger version of information cost

min-IC(Π) = min
v∈{0,1}

Iv(Π;X | Rpub) (5)

Definition 2. We say that a protocol and estima-
tor pair (Π, θ̂) solves the distributed estimation problem
T (m,n, d,Ω,P) with information cost I, communication
cost C, and mean-squared loss R if IC(Π) ≤ I, CC(Π) ≤ C

and R(Π, θ̂) ≤ R.

When Ω = {0, 1}, we have a detection problem, and we typ-
ically use v to denote the parameter and v̂ as the (discrete)
estimator for it. We define the communication and informa-
tion cost the same as (2.1) and (4), while defining the error
in a more meaningful and convenient way,

Rdet(Π, v̂) = max
v∈{0,1}

Pr[v̂(Π) 6= v | V = v]

Definition 3. We say that a protocol and estima-
tor pair (Π, v̂) solves the distributed detection problem
Tdet(m,n, d,Ω,P) with information cost I, if IC(Π) ≤ I,
Rdet(Π, v̂) ≤ 1/4.

Now we formally define the concrete questions that we are
concerned with.
Distributed Gaussian detection problem: We call the
problem with Ω = {0, 1} and P = {N (0, σ2)n,N (δ, σ2)n}
the Gaussian mean detection problem, denoted by
GD(n,m, δ, σ2).
Distributed (sparse) Gaussian mean estimation
problem: The distributed statistical estimation prob-
lem defined by Ω = Rd and P = {N (θ, σ2Id×d) : θ ∈ Ω}
is called the distributed Gaussian mean estimation prob-
lem, abbreviated GME(n,m, d, σ2). When Ω = {θ ∈ Rd :
|θ|0 ≤ k}, the corresponding problem is referred to as
distributed sparse Gaussian mean estimation, abbreviated
SGME(n,m, d, k, σ2).
Distributed sparse linear regression: For simplicity
and the purpose of lower bounds, we only consider sparse
linear regression with a random design matrix. To fit into
our framework, we can also regard the design matrix as part
of the data. We have a parameter space Ω = {θ ∈ Rd :
|θ|0 ≤ k}. The j-th data point consists of a row of design
matrix Aj and the observation yj = 〈Aj , θ〉+wj where wj ∼
N (0, σ2) for j = 1, . . . ,mn, and each machine receives n
data points among them5. Formally, let µθ denote the joint
distribution of (Aj , yj) here, and let P = {µθ : θ ∈ Ω}. We
use SLR(n,m, d, k, σ2) as shorthand for this problem.

2.2 Hellinger distance and cut-paste property
In this subsection, we introduce Hellinger distance, and

the key property of protocols that we exploit here, the
so-called “cut-paste” property developed by [BYJKS04] for
proving lower bounds for set-disjointness and other prob-
lems. We also introduce some notation that will be used
later in the proofs.

Definition 4 (Hellinger distance). Consider two
distributions with probability density functions f, g : Ω→ R.
The square of the Hellinger distance between f and g is de-

fined as h2(f, g) := 1
2
·
∫

Ω

(√
f(x)−

√
g(x)

)2

dx

5We note that here for convenience, we use subscripts for
samples, which is different from the notation convention
used for previous problems.



A key observations regarding the property of a protocol
by [BYJKS04, Lemma 16] is the following: fixing X1 =
x1, . . . , Xm = xm, the distribution of Π|X=x can be factored
in the following form,

Pr[Π = π | X = x] = p1,π(x1) . . . pm,π(xm) (6)

where pi,π(·) is a function that only depends on i and the
entire transcript π . To see this, one could simply write
the density of π as a product of densities of each message
of the machines and group the terms properly according to
machines (and note that pi,π(·) is allowed to depend on the
entire transcript π).

We extend equation (6) to the situation where the inputs
are from product distributions. For any vector b ∈ {0, 1}m,
let µb := µb1 × · · · × µbm be a distribution over Xm.
We denote by Πb the distribution of Π(X1, . . . , Xm) when
(X1, . . . , Xm) ∼ µb.

Therefore if X ∼ µb, using the fact that µb is a product
measure, we can marginalize over X and obtain the marginal
distribution of Π when X ∼ µb,

Pr
X∼µb

[Π = π] = q1,π(b1) . . . qm,π(bm), (7)

where qj,π(bj) is the marginalization of pj,π(x) over x ∼ µbj ,

that is, qj,π(bj) =
∫
x
pj,π(x)dµbj .

Let Πb denote the distribution of Π when X ∼ µb. Then
by the decomposition (7) of Πb(π) above, we have the follow-
ing cut-paste property for Πb which will be the key property
of a protocol that we exploit.

Proposition 2.1 (Cut-paste property of a protocol).
For any a, b and c,d with {ai, bi} = {ci, di} (in a multi-set
sense) for every i ∈ [m],

Πa(π) ·Πb(π) = Πc(π) ·Πd(π) (8)

and therefore,

h2(Πa,Πb) = h2(Πc,Πd) (9)

3. DISTRIBUTED STRONG DATA PRO-
CESSING INEQUALITIES

In this section we prove our main Theorem 1.1. We state
a slightly weaker looking version here but in fact it im-
plies Theorem 1.1 by symmetry. The same proof also goes
through for the case when the RHS is conditioned on V = 1.

Theorem 3.1. Suppose µ1 ≤ c · µ0, and β(µ0, µ1) = β.
We have

h2(Π|V=0,Π|V=1) ≤ K(c+ 1)β · I(X; Π | V = 0) . (10)

where K is an absolute constant.

Note that the RHS of (10) naturally tensorizes (by Lemma 1
that appears below) in the sense that

m∑
i=1

I(Xi; Π | V = 0) ≤ I(X; Π | V = 0), (11)

since conditioned on V = 0, the Xi’s are independent. Our
main idea consists of the following two steps a) We tensorize
the LHS of (10) so that the target inequality (10) can be
written as a sum of m inequalities. b) We prove each of
these m inequalities using the single machine SDPI. To this

end, we do the following thought experiment: Suppose W
is a random variable that takes value from {0, 1} uniformly.
Suppose data X ′ is generated as follows: X ′i ∼ µW , and for
any j 6= i, X ′j ∼ µ0. We apply the protocol on the input
X ′, and view the resulting transcript Π′ as communication
between the i-th machine and the remaining machines. Then
we are in the situation of a single machine case, that is,
W → X ′i → Π′ forms a Markov Chain. Applying the data
processing inequality (1), we obtain that

I(W ; Π′) ≤ βI(X ′i; Π′)· (12)

Using Lemma 4, we can lower bound the LHS of (12) by the
Hellinger distance and obtain

h2(Π′|W=0,Π
′|W=1) ≤ β · I(X ′i; Π′)

Let ei = (0, 0, . . . , 1, . . . , 0) be the unit vector that only
takes 1 in the ith entry, and 0 the all zero vector. Using the
notation defined in Section 2.2, we observe that Π′|W=0 has
distribution Π0 while Π′|W=1 has distribution Πei . Then
we can rewrite the equation above as

h2(Π0,Πei) ≤ β · I(X
′
i; Π′) (13)

Observe that the RHS of (13) is close to the first entry of
the LHS of (11) since the joint distribution of (X ′1,Π

′) is
not very far from X,Π | V = 0. (The only difference is
that X ′1 is drawn from a mixture of µ0 and µ1, and note
that µ0 is not too far from µ1). On the other hand, the
sum of LHS of (13) over i ∈ [m] is lower-bounded by the
LHS of (10). Therefore, we can tensorize equation (10) into
inequality (13) which can be proved by the single machine
SDPI. We formalize the intuition above by the following two
lemmas,

Lemma 1. Suppose µ1 ≤ c · µ0, and β(µ0, µ1) = β, then

h2(Πei ,Π0) ≤ (c+ 1)β

2
· I(Xi; Π | V = 0) (14)

Lemma 2. Let 0 be the m-dimensional all 0’s vector, and
1 the all 1’s vector, we have that

h2(Π0,Π1) ≤ O(1) ·
m∑
i=1

h2(Πei ,Π0) (15)

Using Lemma 1 and Lemma 2, we obtain Theorem 3.1
straightforwardly by combining inequalities (11), (14)
and (15)6.

Finally we provide the proof of Lemma 1. Lemma 2 is a
direct corollary of Theorem A.1 (which is in turn a direct
corollary of Theorem 7 of [Jay09]) and Proposition 2.1.

Proof Proof of Lemma 1. Let W be a uniform
Bernoulli random variable and define X ′ and Π′ as follows:
Conditioned on W = 0, X ′ ∼ µ0 and conditioned on W = 1,
X ′ ∼ µei . We run protocol on X ′ and get transcript Π′.

Note that V → X ′ → Π′ is a Markov chain and so is
V → X ′i → Π′. Also by definition, the conditional random
variable X ′|V has the same distribution as the random vari-
able X|V in Definition 1. Therefore by Definition 1, we have
that

β · I(X ′i; Π′) ≥ I(V ; Π′). (16)

6Note that Π0 is the same distribution as Π|V=0 under the
notation introduced in Section 2.2.



It is known that mutual information can be expressed as
the expectation of KL divergence, which in turn is lower-
bounded by Hellinger distance. We invoke a technical vari-
ant of this argument, Lemma 6.2 of [BJKS04], restated as
Lemma 4, to lower bound the right hand side. Note that Z
in Lemma 4 corresponds to V here and φz1 , φz2 correspond
to Πei and Π0. Therefore,

I(V ; Π′) ≥ h2(Πei ,Π0). (17)

It remains to relate I(X ′i; Π′) to I(Xi; Π | V = 0). Note
that the difference between joint distributions of (X ′i,Π

′)
and (Xi,Π)|V=0 is that X ′i ∼ 1

2
(µ0 + µ1) and Xi|V=0 ∼ µ0.

We claim (by Lemma 5) that since µ0 ≥ 2
c+1

(µ0+µ1
2

), we
have

I(Xi; Π | V = 0) ≥ 2

c+ 1
· I(X ′i; Π′). (18)

Combining equations (16), (17) and (18), we obtain the
desired inequality.

4. APPLICATIONS TO PARAMETER ES-
TIMATION PROBLEMS

4.1 Warm-up: Distributed Gaussian mean
detection

In this section we apply our main technical Theorem 3.1
to the situation when µ0 = N (0, σ2) and µ1 = N (δ, σ2). We
are also interested in the case when each machine receives n
samples from either µ0 or µ1. We will denote the product
of n i.i.d copies of µv by µnv , for v ∈ {0, 1}.

Theorem 3.1 requires that a) β = β(µ0, µ1) can be calcu-
lated/estimated b) the densities of distributions µ0 and µ1

are within a constant factor with each other at every point.
Certainly b) is not true for any two Gaussian distributions.

To this end, we consider µ′0, µ
′
1, the truncation of µ0 and µ1

on some support [−τ, τ ], and argue that the probability mass
outside [−τ, τ ] is too small to make a difference.

For a), we use tools provided by Raginsky [Rag14] to es-
timate the SDPI constant β. [Rag14] proves that Gaussian
distributions µ0 and µ1 have SDPI constant β(µ0, µ1) ≤
O(δ2/σ2), and more generally it connects the SDPI con-
stants to transportation inequalities. We use the framework
established by [Rag14] and apply it to the truncated Gaus-
sian distributions µ′0 and µ′1. Our proof essentially uses the
fact that (µ′0 +µ′1)/2 is a log-concave distribution and there-
fore it satisfies the log-Sobolev inequality, and equivalently
it also satisfies the transportation inequality. The details
and connections to concentration of measures are provided
in the full version.

Theorem 4.1. Let µ′0 and µ′1 be the distributions ob-
tained by truncating µ0 and µ1 on support [−τ, τ ] for some
τ > 0. If δ ≤ σ, we have β(µ′0, µ

′
1) ≤ δ2/σ2.

As a corollary, the SDPI constant between n copies of µ′0
and µ′1 is bounded by nδ2/σ2.

Corollary 4.2. Let µ̃0 and µ̃1 be the distributions over
Rn that are obtained by truncating µn0 and µn1 outside the ball
B = {x ∈ Rn : |x1 + · · · + xn| ≤ τ}. Then when

√
nδ ≤ σ,

we have β(µ̃0, µ̃1) ≤ nδ2/σ2.

Applying our distributed data processing inequality (The-
orem 3.1) on µ̃0 and µ̃1, we obtain directly that to distin-

guish µ̃0 and µ̃1 in the distributed setting, Ω
(
σ2

nδ2

)
commu-

nication is required. By properly handling the truncation of
the support, we can prove that it is also true with the true
Gaussian distribution.

Theorem 4.3. Any protocol estimator pair (Π, v̂) that
solves the distributed Gaussian mean detection problem
GD(n,m, δ, σ2) with δ ≤ σ/

√
n requires communication cost

and minimum information cost at least,

E[|Π|] ≥ min-IC(Π) ≥ Ω

(
σ2

nδ2

)
.

Remark 3. The condition δ ≤ σ/
√
n captures the inter-

esting regime. When δ � σ/
√
n, a single machine can even

distinguish µ0 and µ1 by its local n samples.

Proof of Theorem 4.3. Let Π0 and Π1 be the distri-
butions of Π|V = 0 and Π|V = 1, respectively, as defined in
Section 2.2. Since v̂ solves the detection problem, we have
that ‖Π0 − Π1‖TV ≥ 1/4. It follows from Lemma 3 that
h(Π0,Π1) ≥ Ω(1).

We pick a threshold τ = 20σ, and let B = {z ∈ Rn :
|z1 + · · · + zn| ≤

√
nτ}. Let F = 1 denote the event that

X = (X1, . . . , Xn) ∈ B, and otherwise F = 0. Note that
Pr[F = 1] ≥ 0.95 and therefore even if we conditioned on
the event that F = 1, the protocol estimator pair should
still be able to recover v with good probability in the sense
that

Pr[v̂(Π(X)) = v | V = v, F = 1] ≥ 0.6 (19)

We run our whole argument conditioned on the event F =
1. First note that for any Markov chain V → X → Π,
and any random variable F that only depends on X, the
chain V |F=1 → X|F=1 → Π|F=1 is also a Markov Chain.
Second, the channel from V to X|F=1 satisfies that random
variable X|V=v,F=1 has the distribution µ̃v as defined in the
statement of Corollary 4.2. Note that by Corollary 4.2, we
have that β(µ̃0, µ̃1) ≤ nδ2/σ2. Also note that by the choice
of τ and the fact that δ ≤ O(σ/

√
n), we have that for any

z ∈ B, µ̃0(z) ≤ O(1) · µ̃1(z).
Therefore we are ready to apply Theorem 3.1 and conclude

that

I(X; Π | V = 0, F = 1) ≥ Ω(β(µ̃0, µ̃1)−1) = Ω(
σ2

nδ2
)

Note that Π is independent of F conditioned on X and
V = 0. Therefore we have that

I(X; Π | V = 0) ≥ I(X; Π | F, V = 0)

≥ I(X; Π|F = 1, V = 0) Pr[F = 1 | V = 0]

= Ω(
σ2

nδ2
).

Note that by construction, it is also true that µ̃0 ≤
O(1)µ̃1, and therefore if we switch the positions of µ̃0, µ̃1

and run the argument above we will have

I(X; Π | V = 1) = Ω(
σ2

nδ2
)

Hence the proof is complete.



4.2 Sparse Gaussian mean estimation
In this subsection, we prove our lower bound for the

sparse Gaussian mean estimation problem via a variant of
the direct-sum theorem of [GMN14] tailored towards sparse
mean estimation.

Our general idea is to make the following reduction ar-
gument: Given a protocol Π′ for d-dimensional k-sparse es-
timation problem with information cost I and loss R, we
can construct a protocol Π′ for the detection problem with
information cost roughly I/d and loss R/k. The protocol
Π′ embeds the detection problem into one random coordi-
nate of the d-dimensional problem, prepares fake data on
the remaining coordinates, and then runs the protocol Π on
the high dimensional problem. It then extracts information
about the true data from the corresponding coordinate of
the high-dimensional estimator.

The key distinction from the construction of [GMN14] is
that here we are not able to show that Π′ has small informa-
tion cost, but only able to show that Π′ has a small minimum
information cost 7. This is the reason why in Theorem 4.3
we needed to bound the minimum information cost instead
of the information cost.

To formalize the intuition, let P = {µ0, µ1} define the
detection problem. Let Ωd,k,δ = {θ : θ ∈ {0, δ}d, |θ|0 ≤
k} and Qd,k,δ = {µθ = µθ1/δ × · · · × µθd/δ : θ ∈ Ωd,k,δ}.
Therefore Q is a special case of the general k-sparse high-
dimensional problem. We have that

Theorem 4.4 (Direct-sum for sparse parameters).
Let d ≥ 2k, and P and Q defined as above. If there exists
a protocol estimator pair (Π, θ̂) that solves the detection
task T (n,m,Q) with information cost I and mean-squared
loss R ≤ 1

16
kδ2, then there exists a protocol estimator pair

(Π′, v̂′) (shown in Protocol 1 in Section 5) that solves the
task Tdet(n,m,P) with minimum information cost I

d−k+1
.

The proof of the theorem is deferred to Section 5. Com-
bining Theorem 4.3 and Theorem 4.4, we get the following
theorem:

Theorem 4.5. Suppose d ≥ 2k. Any protocol estimator
pair (Π, v̂) that solves the k-sparse Gaussian mean problem
SGME(n,m, d, k, σ2) with mean-squared loss R and infor-
mation cost I and communication cost C satisfies that

R ≥ Ω

(
min

{
σ2k

n
,max

{
σ2dk

nI
,
σ2k

nm

}})
≥ Ω

(
min

{
σ2k

n
,max

{
σ2dk

nC
,
σ2k

nm

}})
. (20)

Intuitively, to parse equation (20), we remark that the term
σ2k
n

comes from the fact that any local machine can achieve

this error O(σ
2k
n

) using only its local samples, and the term
σ2k
nm

is the minimax error that the machines can achieve with
infinite amount of communication. When the target error
is between these two quantities, equation (20) predicts that
the minimum communication C should scale inverse linearly
in the error R.
7This might be inevitable because protocol Π might reveal
a lot information for the nonzero coordinate of θ but since
there are very few non-zeros, the total information revealed
is still not too much.

Our theorem gives a tight tradeoff between C and R
up to a logarithmic factor, since it is known [GMN14]

that for any communication budget C, there exists
a protocol which uses C bits and has error R ≤
O
(

min
{
σ2k
n
,max

{
σ2dk
nC

, σ
2k
nm

}}
· log d

)
.

As a side product, in the case when k = d/2, our lower
bound improves previous works [DJWZ14] and [GMN14]
by a logarithmic factor, and turns out to match the upper
bound in [GMN14] up to a constant factor.

Proof of Theorem 4.5. If R ≤ 1
16
kσ2

n
then we are

done. Otherwise, let δ :=
√

16R/k ≤ σ/
√
n. Let

µ0 = N (0, σ2) and µ1 = N (δ, σ2) and P = {µ0, µ1}.
Let Qd,k,δ = {µθ = µθ1/δ × · · · × µθd/δ : θ ∈ Ωd,k,δ}.
Then T (n,m,Q) is just a special case of the sparse Gaus-
sian mean estimation problem SGME(n,m, d, k, σ2), and
T (n,m,P) is the distributed Gaussian mean detection prob-
lem GD(n,m, δ, σ2). Therefore, by Theorem 4.4, there ex-
ists (Π′, v̂′) that solves GD(n,m, δ, σ2) with minimum in-
formation cost I ′ = O(I/d). Since δ ≤ O(σ/

√
n), by The-

orem 4.3 we have that I ′ ≥ Ω(σ2/(nδ2)). It follows that
I ≥ Ω(dσ2/(nδ2)) = Ω(kdσ2/(nR)). To derive (20), we ob-
serve that Ω(σ2k/nm) is the minimax lower bound for R,
which completes the proof.

To complement our lower bounds, we also give a new
protocol for the Gaussian mean estimation problem achiev-
ing communication optimal up to a constant factor in any
number of dimensions in the dense case. Our protocol is
a simultaneous protocol, whereas the only previous protocol
achieving optimal communication requires Ω(logm) rounds
[GMN14]. This resolves an open question in Remark 2
of [GMN14], improving the trivial protocol in which each
player sends its truncated Gaussian to the coordinator by
an O(logm) factor.

Theorem 4.6. For any 0 ≤ α ≤ 1, there exists a proto-
col that uses one round of communication for the Gaussian
mean estimation problem GME(n,m, d, σ2) with communi-

cation cost C = αdm and mean-squared loss R = O
(
σ2d
αmn

)
.

The protocol and proof of this theorem are deferred to Sec-
tion 6, though we mention a few aspects here. We first
give a protocol under the assumption that |θ|∞ ≤ σ√

n
. The

general protocol is in the full version of the paper. The pro-
tocol trivially generalizes to d dimensions so we focus on 1
dimension. The protocol coincides with the first round of
the multi-round protocol in [GMN14], yet we can extract
all necessary information in only one round, by having each
machine send a single bit indicating if its input Gaussian is
positive or negative. Since the mean is on the same order as
the standard deviation, one can bound the variance and give
an estimator based on the Gaussian density function. If the
mean of the Gaussian is allowed to be much larger than the
variance, and this no longer works. Instead, a few machines
send their truncated inputs so the coordinator learns a crude
approximation. To refine this approximation, in parallel the
remaining machines each send a bit which is 1 with prob-
ability x − bxc, where x is the machine’s input Gaussian.
This can be viewed as rounding a sample of the “sawtooth
wave function” h applied to a Gaussian. For technical rea-
sons each machine needs to send two bits, another which
is 1 with probability (x + 1/5) − b(x + 1/5)c. We give an
estimator based on an analysis using the Fourier series of h.



Sparse Gaussian estimation with signal strength lower
bound.

Our techniques can also be used to study the optimal rate-
communication tradeoffs in the presence of a strong signal
in the non-zero coordinates, which is sometimes assumed for
sparse signals. That is, suppose the machines are promised
that the mean θ ∈ Rd is k-sparse and also if θi 6= 0, then
|θi| ≥ η, where η is a parameter called the signal strength.
We get tight lower bounds for this case as well.

Theorem 4.7. For d ≥ 2k and η2 ≥ 16R/k, any pro-
tocol estimator pair (Π, v̂) that solves the k-sparse Gaus-
sian mean problem SGME(n,m, d, k, σ2) with signal strength
η and mean-squared loss R requires information cost (and

hence expected communication cost) at least Ω
(
σ2d
nη2

)
.

Note that there is a protocol for SGME(n,m, d, k, σ2) with
signal strength η and mean-squared loss R that has commu-

nication cost Õ
(

min
{
σ2d
nη2

+ σ2k2

nR
, σ

2dk
nR

})
. In the regime

where η2 ≥ 16R/k, the first term dominates and by Theorem

4.7, and the fact that σ2k2

nR
is a lower bound even when the

machines know the support [GMN14], we also get a match-
ing lower bound. In the regime where η2 ≤ 16R/k, second
term dominates and it is a lower bound by Theorem 4.5.

Proof of Theorem 4.7. The proof is very similar to
the proof of Theorem 4.4. Given a protocol estimator pair
(Π, v̂) that solves SGME(n,m, d, k, σ2) with signal strength
η, mean-squared loss R and information cost I (where
η2 ≥ 16R/k), we can find a protocol Π′ that solves the
Gaussian mean detection problem GD(n.m, η, σ2) with in-
formation cost ≤ O(I/d) (as usual the information cost is
measured when the mean is 0). Π′ would be exactly the
same as Protocol 1 but with µ0 replaced by N (0, σ2), µ1 re-
placed by N (η, σ2) and δ replaced by η. We leave the details
to the reader.

4.3 Lower bound for Sparse Linear Regres-
sion

In this section we consider the sparse linear regression
problem SLR(n,m, d, k, σ2) in the distributed setting as de-
fined in Section 2. Suppose the i-th machine receives a sub-
set Si of the mn data points, and we use ASi ∈ Rn×d to
denote the design matrix that the i-th machine receives and
ySi to denote the observed vector. That is, ySi = ASiθ+wSi ,
where wSi ∼ N (0, σ2In×n) is Gaussian noise.

This problem can be reduced from the sparse Gaussian
mean problem, and thus its communication can be lower-
bounded. It follows straightforwardly from our Theorem 4.5
and the reduction in Corollary 2 of [DJWZ14]. To state
our result, we assume that the design matrices ASi have
uniformly bounded spectral norm λ

√
n. That is,

λ = max
1≤i≤m

‖ASi‖/
√
n.

Corollary 4.8. Suppose machines receive data from the
sparse linear regression model. Let λ be as defined above. If
there exists a protocol under which the machines can output
an estimator θ̂ with mean squared loss R = E[‖θ̂− θ‖2] with

communication C, then R · C ≥ Ω(σ
2kd
λ2n

).

When ASi is a Gaussian design matrix, that is, the rows of
ASi are i.i.d drawn from distribution N (0, Id×d), we have

λ = O
(

max{
√
d/n, 1}

)
and Corollary 4.8 implies that to

achieve the statistical minimax rate R = O( kσ
2

nm
), the algo-

rithm has to communicate Ω(m ·min{n, d}) bits. The point
is that we get a lower bound that doesn’t depend on k– that
is, with sparsity assumptions, it is impossible to improve
both the loss and communication so that they depend on
the intrinsic dimension k instead of the ambient dimension
d. Moreover, in the regime when d/n → c for a constant c,
our lower bound matches the upper bound of [LSLT15] up
to a logarithmic factor. The proof follows Theorem 4.5 and
the reduction from Gaussian mean estimation to sparse lin-
ear regression of [ZDJW13] straightforwardly and is deferred
to the full version of the paper.

5. DIRECT-SUM THEOREM FOR SPARSE
PARAMETERS

Unknown parameter: v ∈ {0, 1}
Inputs: Machine j gets n samples Xj = (X

(1)
j , . . . , X

(n)
j ),

where Xj is distributed according to µnv .

1. All machines publicly sample k independent coordi-
nates I1, . . . , Ik ⊂ [d] (without replacement).

2. Each machine j locally prepares data X̃j =(
X̃j,1, . . . , X̃j,d

)
as follows: The I1-th coordinate is

embedded with the true data, X̃j,I1 = Xj . For

r = 2, . . . , k, j-th the machine draws X̃j,Ir pri-
vately from distribution µn1 . For any coordinate i ∈
[d]\{I1, . . . , Ik}, the j-th machine draws privately X̃j,i
from the distribution µn0 .

3. The machines run protocol Π with input data X̃.

4. If |θ̂(Π)I1 | ≥ δ/2, then the machines output 1, other-
wise they output 0.

Protocol 1: direct-sum reduction for sparse parameter

We prove Theorem 4.4 in this section. Let Π′ be the
protocol described in Protocol 1. Let θ ∈ Rd be such that
θI1 = vδ and θIr = δ for r = 2, . . . , k, and θi = 0 for
i ∈ [d]\{I1, . . . , Ik}. We can see that by our construction,

the distribution of X̃j is the same as µnθ , and all Xj ’s are
independent. Also note that θ is k-sparse. Therefore when

Π′ invokes Π on data X̃, Π will have loss R and information

cost I with respect to X̃.
We first verify that the protocol Π does distinguish be-

tween v = 0 and v = 1.

Proposition 5.1. Under the assumption of Theo-
rem 4.4, when v = 1, we have that

E
[
|θ̂(Π)I1 − δ|

2
]
≤ R

k
(21)

and when v = 0, we have

E
[
|θ̂(Π)I1 |

2
]
≤ R

d− k + 1
(22)

Moreover, with probability at least 3/4, Π′ outputs the correct
answer v.

The proof appears in the full version of the paper.



6. TIGHT UPPER BOUND WITH ONE-
WAY COMMUNICATION

In this section, we describe a one-way communication pro-
tocol achieving the tight minimal communication for Gaus-
sian mean estimation problem GME(n,m, d, σ2) with the
assumption that |θ|∞ ≤ σ√

n
. We defer the protocol without

this assumption to the full version of the paper.
Note that for the design of protocol, it suffices to con-

sider a one-dimensional problem. Protocol 2 solves the one-
dimensional Gaussian mean estimation problem, with each
machine sending exactly 1 bit, and therefore the total com-
munication is m bits. To get a d-dimensional protocol, we
just need to apply Protocol 2 to each dimension. In order to
obtain the tradeoff as stated in Theorem 4.6, one needs to
run Protocol 2 on the first αm machines, and let the other
machines be idle.

Unknown parameter θ ∈ [−σ/
√
n, σ/

√
n]

Inputs: Machine i gets n samples (X
(1)
i , . . . , X

(n)
i ) where

X
(j)
i ∼ N (θ, σ).

• Simultaneously, each machine i

1. Computes Xi = 1
σ
√
n

∑n
j=1 X

(j)
i

2. Sends Bi

Bi =

{
1 if Xi ≥ 0
−1 otherwise

• Machine 1 computes

T =
√

2 · erf−1

(
1

m

m∑
i=1

Bi

)
where erf−1 is the inverse of the Gauss error function.

• It returns the estimate θ̂ = σ√
n
θ̂′ where θ̂′ =

max(min(T, 1),−1) is obtained by truncating T to the
interval [−1, 1].

Protocol 2: A simultaneous algorithm for estimating the
mean of a normal distribution in the distributed setting.

The correctness of the protocol follows from the following
theorem.

Theorem 6.1. The algorithm described in Protocol 2
uses m bits of communication and achieves the following
mean squared loss.

E
[
(θ̂ − θ)2

]
= O

(
σ2

mn

)
where the expectation is over the random samples and the
random coin tosses of the machines.

Proof. Let θ̄ = θ
√
n/σ.

Notice that Xi is distributed according to N (θ̄, 1). Our
goal is to estimate θ̄ from the Xi’s. By our assumption on
θ, we have θ̄ ∈ [−1, 1].

The random variables Bi are independent with each other.
We consider the mean and variance of Bi’s. For the mean
we have that,

E [Bi] = E [2 · Pr[0 ≤ Xi]− 1]

For any i ∈ [m], Pr[0 ≤ Xi] = Pr[−Xi ≤ 0] = Φ−θ̄,1(0),

where Φµ,σ2 is the CDF of normal distribution N (µ, σ2).
Note the following relation between the error function and
the CDF of a normal random variable

Φµ,σ2(x) =
1

2
+

1

2
erf

(
x− µ√

2σ2

)
Hence,

E [Bi] = erf(θ̄/
√

2).

Let B = 1
m

∑m
i=1 Bi, then we have that E[B] = erf(θ̄/

√
2) ≤

erf(1/
√

2) and therefore by a Chernoff bound, the prob-
ability that B > erf(1) or B ≤ erf(−1) is exp(−Ω(m)).
Thus, with probability at least 1 − exp(−Ω(m)), we have
erf(−1) ≤ B ≤ erf(1) and therefore |T | ≤

√
2.

Let E be the event that |T | ≤
√

2, then we have that the
error of θ̄ is bounded by

E[|θ̂′ − θ̄|2]

= E[|θ̂′ − θ̄|2 | E] Pr[E] + E[|θ̂′ − θ̄|2 | Ē] Pr[Ē]

≤ E[|
√

2 erf
−1

(B)−
√

2 erf
−1

(E[B])|2 | E] Pr[E] + 2 Pr[Ē]

= E[|
√

2 erf
−1

(B)−
√

2 erf
−1

(E[B])|2 | E] Pr[E] + 2 exp(−Ω(m))

Let M = maxerf−1(x)∈[−1,1]
derf−1(x)

dx
< 3. Then we have

that | erf−1(x) − erf−1(y)| ≤ M |x − y| ≤ O(1) · |x − y| for
any x, y ∈ [−1, 1]. Therefore it follows that

E[|θ̂′ − θ̄|2]

≤ E[|
√

2 erf
−1

(B)−
√

2 erf
−1

(E[B])|2 | E] Pr[E] + 2 exp(−Ω(m))

≤ E[2M
2|B − E[B]|2 | E] Pr[E] + 2 exp(−Ω(m))

≤ E[2M
2|B − E[B]|2] + 2 exp(−Ω(m))

≤ O
(

1

m

)
+ 2 exp(−Ω(m))

≤ O
(

1

m

)
Hence we have that

E
[
|θ̂ − θ|2

]
=
σ2

n
E
[
|θ̂′ − θ̄|2

]
= O

(
σ2

mn

)
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APPENDIX
A. TOOLBOX

Lemma 3 (folklore). For any two distributions P,Q,
we have

h2(P,Q) ≤ ‖P −Q‖TV ≤
√

2h(P,Q)

Lemma 4. Let φ(z1) and φ(z2) be two random variables.
Let Z denote a random variable with uniform distribution
in {z1, z2}: Suppose φ(z) is independent of Z for each z ∈
{z1, z2}: Then,

2h2(φz1 , φz2) ≥ I(Z;φ(Z)) ≥ h2(φz1 , φz2)



Theorem A.1 (Corollary of Theorem 7 of [Jay09]).
Suppose a family of distribution {Pb : b ∈ {0, 1}m} sat-
isfies the cut-paste property: for any a, b and c,d with
{ai, bi} = {ci, di} (in a multi-set sense) for every i ∈ [m],
h2(Πa,Πb) = h2(Πc,Πd). Then we have

m∑
i=1

h2(P0, Pei) ≥ Ω(1) · h2(P0, P1) (23)

where 0 and 1 are all 0’s and all 1’s vectors respectively, and
ei is the unit vector that only takes 1 in the ith entry.

Lemma 5. Suppose two distributions µ, µ′ satisfies µ ≥
c · µ′. Let Π(X) be a random function that only depends on
X. If X ∼ µ and X ′ ∼ µ′, then we have that

I(X; Π(X)) ≥ c · I(X ′; Π(X ′)) (24)

Proof. Since µ ≥ c · µ′, we have that

I(X; Π(X)) = E
X∼µ

[Dkl(ΠX‖Π)] ≥ c · E
X′∼µ′

[Dkl(ΠX′‖Π)]

Then note that

E
X′∼µ′

[Dkl(ΠX′‖Π)] = E
X′∼µ′

[
Dkl(ΠX′‖Π′)

]
+ Dkl(Π

′‖Π)

It follows that

I(X; Π(X)) ≥ c · E
X∼µ′

[
Dkl(ΠX‖Π′)

]
= c · I(X ′; Π(X ′))

Lemma 6 (Folklore). When X is drawn from a prod-
uct distribution, then

m∑
i=1

I(Xi; Π) ≤ I(X; Π).


