
An Optimal Algorithm for `1-Heavy Hitters in Insertion
Streams and Related Problems

Arnab Bhattacharyya
Indian Institute of Science,

Bangalore
arnabb@csa.iisc.ernet.in

Palash Dey
Indian Institute of Science,

Bangalore
palash@csa.iisc.ernet.in

David P. Woodruff
IBM Research, Almaden

dpwoodru@us.ibm.com

ABSTRACT
We give the first optimal bounds for returning the `1-heavy
hitters in a data stream of insertions, together with their
approximate frequencies, closing a long line of work on this
problem. For a stream of m items in {1, 2, . . . , n} and pa-
rameters 0 < ε < ϕ 6 1, let fi denote the frequency of
item i, i.e., the number of times item i occurs in the stream.
With arbitrarily large constant probability, our algorithm
returns all items i for which fi > ϕm, returns no items j
for which fj 6 (ϕ − ε)m, and returns approximations f̃i
with |f̃i − fi| 6 εm for each item i that it returns. Our
algorithm uses O(ε−1 logϕ−1 + ϕ−1 logn + log logm) bits
of space, processes each stream update in O(1) worst-case
time, and can report its output in time linear in the out-
put size. We also prove a lower bound, which implies that
our algorithm is optimal up to a constant factor in its space
complexity. A modification of our algorithm can be used
to estimate the maximum frequency up to an additive εm
error in the above amount of space, resolving Question 3 in
the IITK 2006 Workshop on Algorithms for Data Streams
for the case of `1-heavy hitters. We also introduce several
variants of the heavy hitters and maximum frequency prob-
lems, inspired by rank aggregation and voting schemes, and
show how our techniques can be applied in such settings.
Unlike the traditional heavy hitters problem, some of these
variants look at comparisons between items rather than nu-
merical values to determine the frequency of an item.

Keywords
Heavy hitters, frequent items, data streams, algorithms

1. INTRODUCTION
The data stream model has emerged as a standard model

for processing massive data sets. Because of the sheer size
of the data, traditional algorithms are no longer feasible,
e.g., it may be hard or impossible to store the entire input,
and algorithms need to run in linear or even sublinear time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4191-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2902251.2902284

Such algorithms typically need to be both randomized and
approximate. Moreover, the data may not physically reside
on any device, e.g., if it is internet traffic, and so if the data is
not stored by the algorithm, it may be impossible to recover
it. Hence, many algorithms must work given only a single
pass over the data. Applications of data streams include
data warehousing [6, 28, 31, 34], network measurements [3,
20, 23, 27], sensor networks [8, 65], and compressed sensing
[12, 30]. We refer the reader to recent surveys on the data
stream model [18, 59, 60].

One of the oldest and most fundamental problems in the
area of data streams is the problem of finding the `1-heavy
hitters (or simply, “heavy hitters”), also known as the top-
k, most popular items, frequent items, elephants, or iceberg
queries. Such algorithms can be used as subroutines in net-
work flow identification at IP routers [27], association rules
and frequent itemsets [2, 32, 35, 64, 68], iceberg queries and
iceberg datacubes [6, 28, 31]. The survey [19] presents an
overview of the state-of-the-art for this problem, from both
theoretical and practical standpoints.

We now formally define the heavy hitters problem that we
focus on in this paper:

Definition 1. ((ε, ϕ)-Heavy Hitters Problem) In the
(ε, ϕ)-Heavy Hitters Problem, we are given parameters 0 <
ε < ϕ 6 1 and a stream a1, . . . , am of items aj ∈
{1, 2, . . . , n}. Let fi denote the number of occurrences of item
i, i.e., its frequency. The algorithm should make one pass
over the stream and at the end of the stream output a set
S ⊆ {1, 2, . . . , n} for which if fi > ϕm, then i ∈ S, while if
fi 6 (ϕ − ε)m, then i /∈ S. Further, for each item i ∈ S,

the algorithm should output an estimate f̃i of the frequency
fi which satisfies |fi − f̃i| 6 εm.

Note that other natural definitions of heavy hitters are
possible and sometimes used. For example, `2-heavy hit-
ters are those items i for which f2

i > ϕ2∑n
j=1 f

2
j , and

more generally, `p-heavy hitters are those items i for which
fpi > ϕp

∑n
j=1 f

p
j . It is in this sense that Definition 1 corre-

sponds to `1-heavy hitters.
We are interested in algorithms which use as little space

in bits as possible to solve the (ε, ϕ)-Heavy Hitters Prob-
lem. Further, we are also interested in minimizing the up-
date time and reporting time of such algorithms. Here, the
update time is defined to be the time the algorithm needs
to update its data structure when processing a stream in-
sertion. The reporting time is the time the algorithm needs
to report the answer after having processed the stream. We
allow the algorithm to be randomized and to succeed with
probability at least 1 − δ for 0 < δ < 1. We do not make

http://dx.doi.org/10.1145/2902251.2902284


any assumption on the ordering of the stream a1, . . . , am.
This is desirable as often in applications one cannot assume
a best-case or even a random order. We are also interested
in the case when the length m of the stream is not known in
advance, and give algorithms in this more general setting.

The first algorithm for the (ε, ϕ)-Heavy Hitters Prob-
lem was given by Misra and Gries [54], who achieved
O(ε−1(logn + logm)) bits of space for any ϕ > ε. This al-
gorithm was rediscovered by Demaine et al. [23], and again
by Karp et al. [38]. Other than these algorithms, which
are deterministic, there are also a number of randomized al-
gorithms, such as the CountSketch [16], Count-Min sketch
[21], sticky sampling [48], lossy counting [48], space-saving
[52], sample and hold [27], multi-stage bloom filters [15],
and sketch-guided sampling [41]. Berinde et al. [5] show
that using O(kε−1 log(mn)) bits of space, one can achieve

the stronger guarantee of reporting, for each item i ∈ S, f̃i
with |f̃i − fi| 6 ε/kF

res(k)
1 , where F

res(k)
1 < m denotes the

sum of frequencies of items in {1, 2, . . . , n} excluding the
frequencies of the k most frequent items.

We emphasize that prior to our work the best known
algorithms for the (ε, ϕ)-Heavy Hitters Problem used
O(ε−1(logn + logm)) bits of space. Two previous lower
bounds were known. The first is a lower bound of
log(

(
n

1/ϕ

)
) = Ω(ϕ−1 log(ϕn)) bits, which comes from the fact

that the output set S can contain ϕ−1 items and it takes
this many bits to encode them. The second lower bound
is Ω(ε−1) which follows from a folklore reduction from the
randomized communication complexity of the Index prob-
lem. In this problem, there are two players, Alice and Bob.
Alice has a bit string x of length (2ε)−1, while Bob has an
index i. Alice creates a stream of length (2ε)−1 consisting of
one copy of each j for which xj = 1 and copies of a dummy
item to fill the rest of the stream. She runs the heavy hitters
streaming algorithm on her stream and sends the state of the
algorithm to Bob. Bob appends (2ε)−1 copies of the item i
to the stream and continues the execution. For ϕ = 1/2, it
holds that i ∈ S. Moreover, fi differs by an additive εm fac-
tor depending on whether xi = 1 or xi = 0. Therefore by the
randomized communication complexity of the Index problem
[40], the (ε, 1/2)-heavy hitters problem requires Ω(ε−1) bits
of space. Although this proof was for ϕ = 1/2, no better
lower bound is known for any ϕ > ε.

So, while the upper bound for the (ε, ϕ)-Heavy Hitters
Problem is O(ε−1(logn+logm)) bits, the best known lower
bound is only Ω(ϕ−1 logn + ε−1) bits. We note that we

assume log(ϕn) = Ω(logn), that is, that ϕ > 1/n1−Ω(1).
For constant ϕ, and logn ≈ ε−1, this represents a nearly
quadratic gap in upper and lower bounds. Given the lim-
ited resources of devices which typically run heavy hitters
algorithms, such as internet routers, this quadratic gap can
be critical in applications.

A problem related to the (ε, ϕ)-Heavy Hitters Problem
is estimating the maximum frequency in a data stream, also
known as the `∞-norm. In the IITK 2006 Workshop on
Algorithms for Data Streams, Open Question 3 asks for an
algorithm to estimate the maximum frequency of any item
up to an additive εm error using as little space as possible.
The best known space bound is still O(ε−1 logn) bits, as
stated in the original formulation of the question (note that
the “m” in the question there corresponds to the “n” here).
Note that, if one can find an item whose frequency is the

largest, up to an additive εm error, then one can solve this
problem. The latter problem is independently interesting
and corresponds to finding approximate plurality election
winners in voting streams [24]. We refer to this problem as
the ε-Maximum problem.

Finally, we note that there are many other variants of
the (ε, ϕ)-Heavy Hitters Problem that one can consider.
One simple variant of the above is to output an item of fre-
quency within εm of the minimum frequency of any item in
the universe. Note that an item of frequency 0 is consid-
ered an item of minimum frequency in our definition (see
Section 2). We refer to this as the ε-Minimum problem.
This only makes sense for small universes, as otherwise out-
putting a random item typically works. This is useful when
one wants to count the “number of dislikes”, or in anomaly
detection; see more motivation below. In other settings, one
may not have numerical scores associated with the items,
but rather, each stream update consists of a “ranking” or
“total ordering” of all stream items. This may be the case
in ranking aggregation on the web (see, e.g., [47, 51]) or in
voting streams (see, e.g., [13, 17, 24, 73]). One may consider
a variety of aggregation measures, such as the Borda score
of an item i, which asks for the sum, over rankings, of the
number of items j 6= i for which i is ranked ahead of j in
the ranking. Alternatively, one may consider the Maximin
score of an item i, which asks for the minimum, over items
j 6= i, of the number of rankings for which i is ranked ahead
of j. For these aggregation measures, one may be interested
in finding an item whose score is an approximate maximum.
This is the analogue of the ε-Maximum problem above.
Or, one may be interested in listing all items whose score is
above a threshold, which is the analogue of the (ε, ϕ)-Heavy
Hitters Problem.

We give more motivation of these variants of heavy hitters
in this section below, and precise definitions in Section 2.

1.1 Our Contributions
Our results are summarized in Table 1. We note that inde-

pendently of this work and nearly parallelly, there have been
improvements to the space complexity of the `2-heavy hitters
problem in insertion streams [10, 11] and to the time com-
plexity of the `p-heavy hitters problem in turnstile1 streams
[43] for all p ∈ (0, 2]. These works use very different tech-
niques. See also [72] for a survey of some recent new algo-
rithms for heavy hitters.

Our first contribution is an optimal algorithm and lower
bound for the (ε, ϕ)-Heavy Hitters Problem. Namely,
we show that there is a randomized algorithm with constant
probability of success which solves this problem using

O(ε−1 logϕ−1 + ϕ−1 logn+ log logm)

bits of space, and we prove a lower bound matching up to
constant factors. In the unit-cost RAM model with O(logn)
bit words, our algorithm has O(1) update time and reporting
time linear in the output size, under the standard assump-
tions that the length of the stream and universe size are
at least poly(ε−1 log(1/ϕ)). Furthermore, we can achieve
nearly the optimal space complexity even when the length

1In a turnstile stream, updates modify an underlying n-
dimensional vector x initialized at the zero vector; each up-
date is of the form x ← x + ei or x ← x − ei where ei is
the i’th standard unit vector. In an insertion stream, only
updates of the form x← x+ ei are allowed.



Problem
Space complexity

Upper bound Lower bound

(ε, ϕ)-Heavy Hitters
O
(
ε−1 logϕ−1 + ϕ−1 logn+ log logm

)
[Theorem 2 and 7]

Ω
(
ε−1 logϕ−1 + ϕ−1 logn+ log logm

)
[Theorem 9 and 14]

ε-Maximum and `∞-approximation
O
(
ε−1 log ε−1 + logn+ log logm

)
[Theorem 1 and 7]

Ω
(
ε−1 log ε−1 + logn+ log logm

)
[Theorem 9 and 14]

ε-Minimum
O
(
ε−1 log log ε−1 + log logm

)
[Theorem 4 and 8]

Ω
(
ε−1 + log logm

)
[Theorem 11 and 14]

ε-Borda
O
(
n(log ε−1 + logn) + log logm

)
[Theorem 5 and 8]

Ω
(
n(log ε−1 + logn) + log logm

)
[Theorem 12 and 14]

ε-Maximin
O
(
nε−2 log2 n+ log logm

)
[Theorem 6 and 8]

Ω
(
n(ε−2 + logn) + log logm

)
[Theorem 13]

Table 1: The bounds hold for constant success probability algorithms and for n sufficiently large in terms of ε. For

the (ε, ϕ)-Heavy Hitters problem and the ε-Maximum problem, we also achieve O(1) update time and reporting time

which is linear in the size of the output. The upper bound for ε-Borda (resp. ε-Maximin) is for returning every item’s

Borda score (resp. Maximin score) up to an additive εmn (resp. additive εm), while the lower bound for ε-Borda (resp.

ε-Maximin) is for returning only the approximate Borda score (resp. Maximin score) of an approximate maximum.

m of the stream is not known in advance. Although the
results of [5] achieve stronger error bounds in terms of the
tail, which are useful for skewed streams, here we focus on
the original formulation of the problem.

Next, we turn to the problem of estimating the maximum
frequency in a data stream up to an additive εm. We give
an algorithm using

O(ε−1 log ε−1 + logn+ log logm)

bits of space, improving the previous best algorithms which
required space at least Ω(ε−1 logn) bits, and show that
our bound is tight. As an example setting of parame-
ters, if ε−1 = Θ(logn) and log logm = O(logn), our space
complexity is O(logn log log n) bits, improving the previous
Ω(log2 n) bits of space algorithm. We also prove a lower
bound showing our algorithm is optimal up to constant fac-
tors. This resolves Open Question 3 from the IITK 2006
Workshop on Algorithms for Data Streams in the case of
insertion streams, for the case of “`1-heavy hitters”. Our
algorithm also returns the the item with the approximate
maximum frequency, solving the ε-Maximum problem.

We then focus on a number of variants of these prob-
lems. We first give nearly tight bounds for finding an item
whose frequency is within εm of the minimum possible fre-
quency. While this can be solved using our new algorithm
for the (ε, ε)-Heavy Hitters Problem, this would incur
Ω(ε−1 log ε−1 + log logm) bits of space, whereas we give an
algorithm using only O(ε−1 log log(ε−1) + log logm) bits of
space. We also show a nearly matching Ω(ε−1 + log logm)
bits of space lower bound. We note that for this problem,
a dependence on n is not necessary since if the number of
possible items is sufficiently large, then outputting the iden-
tity of a random item among the first say, 10ε−1 items, is a
correct solution with large constant probability.

Finally, we study variants of heavy hitter problems that
are ranking-based. In this setting, each stream update con-
sists of a total ordering of the n universe items. For the ε-
Borda problem, we give an algorithm using O(n(log ε−1 +
log log n)+log logm) bits of space to report the Borda score
of every item up to an additive εmn. We also show this
is nearly optimal by proving an Ω(n log ε−1 + log logm) bit

lower bound for the problem, even in the case when one
is only interested in outputting an item maximum Borda
score up to an additive εmn. For the ε-Maximin problem,
we give an algorithm using O(nε−2 log2 n + log logm) bits
of space to report the maximin score of every item up to an
additive εm, and prove an Ω(nε−2 + log logm) bits of space
lower bound even in the case when one is only interested in
outputting the maximum maximin score up to an additive
εm. This shows that finding heavy hitters with respect to
the maximin score is significantly more expensive than with
respect to the Borda score.

1.2 Motivations for Variants of Heavy Hitters
While the (ε, ϕ)-Heavy Hitters and ε-Maximum prob-

lem are very well-studied in the data stream literature, the
other variants introduced are not. We provide additional
motivation for them here.

For the ε-Minimum problem, in our formulation, an item
with frequency zero, i.e., one that does not occur in the
stream, is a valid solution to the problem. In certain scenar-
ios, this might not make sense, e.g., if a stream containing
only a small fraction of IP addresses. However, in other sce-
narios we argue this is a natural problem. For instance, con-
sider an online portal where users register complaints about
products. Here, minimum frequency items correspond to
the “best” items. That is, such frequencies arise in the con-
text of voting or more generally making a choice: in cases for
which one does not have a strong preference for an item, but
definitely does not like certain items, this problem applies,
since the frequencies correspond to “number of dislikes”.

The ε-Minimum problem may also be useful for anomaly
detection. Suppose one has a known set of sensors broad-
casting information and one observes the “From:” field in
the broadcasted packets. Sensors which send a small num-
ber of packets may be down or defective, and an algorithm
for the ε-Minimum problem could find such sensors.

Finding items with maximum and minimum frequencies in
a stream correspond to finding winners under plurality and
veto voting rules respectively in the context of voting2 [9].

2In fact, the first work [56] to formally pose the heavy hitters
problem couched it in the context of voting.



The streaming aspect of voting could be crucial in applica-
tions like online polling [39], recommender systems [1, 33, 63]
where the voters are providing their votes in a streaming
fashion and at every point in time, we would like to know the
popular items. While in some elections, such as for political
positions, the scale of the election may not be large enough
to require a streaming algorithm, one key aspect of these lat-
ter voting-based problems is that they are rank-based which
is useful when numerical scores are not available. Order-
ings naturally arise in several applications - for instance, if
a website has multiple parts, the order in which a user vis-
its the parts given by its clickstream defines a voting, and
for data mining and recommendation purposes the website
owner may be interested in aggregating the orderings across
users. Motivated by this connection, we define similar prob-
lems for two other important voting rules, namely Borda and
maximin. The Borda scoring method finds its applications
in a wide range of areas of artificial intelligence, for example,
machine learning [14, 36, 62, 70], image processing [46, 55],
information retrieval [4, 45, 61], etc. The Maximin score is
often used when the spread between the best and worst out-
come is very large (see, e.g., p. 373 of [58]). The maximin
scoring method also has been used frequently in machine
learning [37, 71], human computation [49, 50], etc.

2. PRELIMINARIES
We denote the disjoint union of sets by t. We denote the

set of all permutations of a set U by L(U). For a positive
integer `, we denote {1, . . . , `} by [`]. In most places, we
ignore floors and ceilings for the sake of notational simplicity.

2.1 Model of Input Data
The input data is an insertion-only stream of elements

from some universe U . In the context of voting, the input
data is an insertion-only stream over the universe of all pos-
sible rankings (permutations).

2.2 Communication Complexity
We will use lower bounds on communication complexity of

certain functions to prove space complexity lower bounds for
our problems. The communication complexity of a function
measures the number of bits that need to be exchanged be-
tween two players to compute a function whose input is split
among those two players [74]. In a more restrictive one-way
communication model, Alice, the first player, sends only one
message to Bob, the second player, and Bob outputs the
result. A protocol is a method that the players follow to
compute certain functions of their input. Also the protocols
can be randomized; in that case, the protocol needs to out-
put correctly with probability at least 1 − δ, for δ ∈ (0, 1)
(the probability is taken over the random coin tosses of the
protocol). The randomized one-way communication com-
plexity of a function f with error probability δ is denoted
byR1-way

δ (f). [42] is a standard reference for communication
complexity.

2.3 Model of Computation
Our model of computation is the unit-cost RAM model

on words of size O(logn), capable of generating uniformly
random words and of performing arithmetic operations in
{+,−, log2} in one unit of time. We note that this model of
computation has been used before [25]. We store an integer

C using a variable length array of [7] which allows us to read
and update C in O(1) time and O(logC) bits of space.

2.4 Universal Family of Hash Functions

Definition 2. (Universal family of hash functions)
A family of functions H = {h|h : A → B} is called a
universal family of hash functions if for all a 6= b ∈ A,
Pr{h(a) = h(b)} = 1/|B|, where h is picked uniformly at
random from H.

We know that there exists a universal family of hash func-
tions H from [k] to [`] for every positive integer ` and every
prime k [44]. Moreover, |H|, the size of H, is O(k2).

2.5 Problem Definitions
We now formally define the problems we study here. Sup-

pose we have 0 < ε < ϕ < 1.

Definition 3. (ε, ϕ)-List heavy hitters
Given an insertion-only stream of length m over a universe
U of size n, find all items in U with frequency more than
ϕm, along with their frequencies up to an additive error of
εm, and report no items with frequency less than (ϕ− ε)m.

Definition 4. ε-Maximum
Given an insertion-only stream of length m over a universe
U of size n, find the maximum frequency up to an additive
error of εm.

Next we define the minimum problem for 0 < ε < 1.

Definition 5. ε-Minimum
Given an insertion-only stream of length m over a universe
U of size n, find the minimum frequency up to an additive
error of εm.

Next we define related heavy hitters problems in the con-
text of rank aggregation. The input is a stream of rankings
(permutations) over an item set U for the problems below.
The Borda score of an item i is the sum, over all rankings,
of the number of items j 6= i for which i is ranked ahead of
j in the ranking.

Definition 6. (ε, ϕ)-List borda
Given an insertion-only stream over a universe L(U) where
|U| = n, find all items with Borda score more than ϕmn,
along with their Borda score up to an additive error of εmn,
and report no items with Borda score less than (ϕ− ε)mn.

Definition 7. ε-Borda
Given an insertion-only stream over a universe L(U) where
|U| = n, find the maximum Borda score up to an additive
error of εmn.

The maximin score of an item i is the minimum, over all
items j 6= i, of the number of rankings for which i is ranked
ahead of j.

Definition 8. (ε, ϕ)-List maximin
Given an insertion-only stream over a universe L(U) where
|U| = n, find all items with maximin score more than ϕm
along with their maximin score up to an additive error of εm,
and report no items with maximin score less than (ϕ− ε)m.



Definition 9. ε-maximin
Given an insertion-only stream over a universe L(U) where
|U| = n, find the maximum maximin score up to an additive
error of εm.

Notice that the maximum possible Borda score of an item
is m(n − 1) = Θ(mn) and the maximum possible maximin
score of an item is m. This justifies the approximation fac-
tors in Definition 6 to 9. We note that finding an item with
maximum Borda score within additive εmn or maximum
maximin score within additive εm corresponds to finding an
approximate winner of an election (more precisely, what is
known as an ε-winner) [24].

3. ALGORITHMS
In this section, we present our upper bound results. All

omitted proofs are in Appendix B. Before describing specific
algorithms, we record some claims for later use. Lemma 1
follows by checking whether we get all heads in logm tosses
of a fair coin.

Lemma 1. Suppose m is a power of two3. Then there
is an algorithm A for choosing an item with probability 1/m
that has space complexity of O(log logm) bits and time com-
plexity of O(1) in the unit-cost RAM model.

Our second claim is a standard result for universal families
of hash functions.

Lemma 2. For S ⊆ A, δ ∈ (0, 1), and universal family
of hash functions H = {h|h : A→ [d|S|2/δe]}:

Pr
h∈unifH

[∃i 6= j ∈ S, h(i) = h(j)] 6 δ

Our third claim is folklore and also follows from the cel-
ebrated DKW inequality [26]. We provide a simple proof
here that works for constant δ.

We assume δ is a constant throughout this paper. This
constant can be made arbitrarily small by independent rep-
etition (in general, the complexity grows by a multiplicative
factor of log(1/δ)), finding the heavy items that occur in
a large constant fraction of the repetitions, and using the
median of their estimated frequencies.

Lemma 3. Let fi and f̂i be the frequencies of an item i
in a stream S and in a random sample T of size r from S,
respectively. Then for r > 2ε−2 log(2δ−1), with probability
1− δ, for every universe item i simultaneously,∣∣∣∣∣ f̂ir − fi

m

∣∣∣∣∣ 6 ε.

Proof for constant δ. This follows by Chebyshev’s
inequality and a union bound. Indeed, consider a given
i ∈ [n] with frequency fi and suppose we sample each
of its occurrences pairwise-independently with probability
r/m, for a parameter r. Then the expected number E[f̂i] of

sampled occurrences is fi · r/m and the variance Var[f̂i] is

3In all our algorithms, whenever we pick an item with prob-
ability p > 0, we can assume, without loss of generality, that
1/p is a power of two. If not, then we replace p with p′ where
1/p′ is the largest power of two less than 1/p. This does not
affect correctness and performance of our algorithms.

fi · r/m(1− r/m) 6 fir/m. Applying Chebyshev’s inequal-
ity,

Pr
[∣∣∣f̂i −E[f̂i]

∣∣∣ > rε

2

]
6

Var[f̂i]

(rε/2)2
6

4fir

mr2ε2
.

Setting r = C
ε2

for a constant C > 0 makes this probability at

most 4fi
Cm

. By the union bound, if we sample each element
in the stream independently with probability r

m
, then the

probability there exists an i for which |f̂i −E[f̂i]| > rε
2

is at

most
∑n
i=1

4fi
Cm

6 4
C

, which for C > 400 is at most 1
100

, as
desired.

For now, assume that the length of the stream is known
in advance; we show in Section 3.5 how to remove this as-
sumption.

3.1 List Heavy Hitters
For the (ε, ϕ)-List heavy hitters problem, we present

two algorithms. The first is slightly suboptimal, but simple
conceptually and already constitutes a very large improve-
ment in the space complexity over known algorithms. We
expect that this algorithm could be useful in practice as
well. The second algorithm is more complicated, building
on ideas from the first algorithm, and achieves the optimal
space complexity upto constant factors.

We note that both algorithms proceed by sampling
O(ε−2 ln(1/δ)) stream items and updating a data structure
as the stream progresses. In both cases, the time to up-
date the data structure is bounded by O(1/ε), and so, un-
der the standard assumption that the length of the stream
is at least poly(ln(1/δ)ε), the time to perform this update
can be spread out across the next O(1/ε) stream updates,
since with large probability there will be no items sampled
among these next O(1/ε) stream updates. Therefore, we
achieve worst-case4 update time of O(1).

3.1.1 A simpler, near-optimal algorithm

Theorem 1. Assume the stream length is known before-
hand, and δ > 0 is any constant. Then there is a randomized
one-pass algorithm A for the (ε, ϕ)-List heavy hitters
problem which succeeds with probability at least 1 − δ using
O
(
ε−1 log 1/ε + (1/ϕ) logn+ log logm

)
bits of space. More-

over, A has an update time of O(1) and reporting time linear
in its output size.

Overview. The overall idea is as follows. We sample
` = O(ε−2) many items from the stream uniformly at ran-
dom as well as hash the id’s (the word “id” is short for iden-
tifier) of the sampled elements into a space of size O(ε−4).
Now, both the stream length as well as the universe size are
poly(ε−1). From Lemma 3, it suffices to solve the heavy
hitters problem on the sampled stream. From Lemma 2,
because the hash function is chosen from a universal fam-
ily, the sampled elements have distinct hashed id’s. We can
then feed these elements into a standard Misra-Gries data
structure with ε−1 counters, incurring space O(ε−1 log ε−1).
Because we want to return the unhashed element id’s for the
heavy hitters, we also use logn space for recording the ϕ−1

top items according to the Misra-Gries data structure and
output these when asked to report.
4We emphasize that this is stronger than an amortized guar-
antee, as on every insertion, the cost will be O(1).



Algorithm 1 for (ε, ϕ)-List heavy hitters

Input: A stream S of length m over U = [n]; let f(x) be
the frequency of x ∈ U in S

Output: A set X ⊆ U and a function f̂ : X → N such that
if f(x) > ϕm, then x ∈ X and f(x) − εm 6 f̂(x) 6
f(x) + εm and if f(y) 6 (ϕ− ε)m, then y /∈ X for every
x, y ∈ U

1: Initialize:
2: ` ← 6 log(6/δ)/ε2

3: Hash function h uniformly at random from a
universal family H ⊆ {h : [n]→ d4`2/δe}.

4: An empty table T1 of (key, value) pairs of length
ε−1. Each key entry of T1 can store an integer in
[0, d4`2/δe] and each value entry can store an
integer in [0, 11`]. . The table T1 will be in sorted
order by value throughout.

5: An empty table T2 of length 1/ϕ. Each entry of T2

can store an integer in [0, n]. . The entries of T2

will correspond to ids of the keys in T1 of the
highest 1/ϕ values

6:
7: procedure Insert(x)
8: With probability p = 6 /̀m, continue. Otherwise, re-

turn .
9: Perform Misra-Gries update using h(x) maintaining
T1 sorted by values.

10: if The value of h(x) is among the highest 1/ϕ valued
items in T1 then

11: if xi is not in T2 then
12: if T2 currently contains 1/ϕ many items then
13: For y in T2 such that h(y) is not among

the highest 1/ϕ valued items in T1, replace y with x.
14: else
15: We put x in T2.

16: Ensure that elements in T2 are ordered according
to corresponding values in T1.

17:
18: procedure Report( )
19: return items in T2 along with their corresponding

values in T1

Proof of Theorem 1. The pseudocode of our (ε, ϕ)-
List heavy hitters algorithm is in Algorithm 1. By
Lemma 3, if we select a subset S of size at least ` =
6ε−2log(6δ−1) uniformly at random from the stream, then
Pr[∀i ∈ U , |(f̂i/|S|) − (fi/n)| 6 ε] > 1 − δ/3, where fi and

f̂i are the frequencies of item i in the input stream and S
respectively. First we show that with the choice of p in line
10 in Algorithm 1, the number of items sampled is at least
` and at most 11` with probability at least (1− δ/3). Let Xi
be the indicator random variable of the event that the item
xi is sampled for i ∈ [m]. Then the total number of items
sampled X =

∑m
i=1 Xi. We have E[X] = 6` since p = 6 /̀m.

Now we have the following.

Pr[X 6 ` or X > 11`] 6 Pr[|X − E[X]| > 5`] 6 δ/3

The inequality follows from the Chernoff bound and the
value of `. From here onwards we assume that the number
of items sampled is in [`, 11`].

We use (a modified version of) the Misra-Gries algo-
rithm [54] to estimate the frequencies of items in S. The

length of the table in the Misra-Gries algorithm is ε−1.
We pick a hash function h uniformly at random from a
universal family H = {h|h : [n] → d4`2/δe} of hash func-
tions of size |H| = O(n2). Note that picking a hash func-
tion h uniformly at random from H can be done using
O(logn+log(1/ε)+log(1/δ)) bits of space, which is O(logn)
bits for constant δ and assuming that ε > 1/n (as otherwise,
there is an Ω(n) lower bound for the problem). Lemma 2
shows that there are no collisions in S under this hash func-
tion h with probability at least 1− δ/3. From here onwards
we assume that there is no collision among the ids of the
sampled items under the hash function h.

We modify the Misra-Gries algorithm as follows. Instead
of storing the id of any item x in the Misra-Gries table (table
T1 in line 5 in Algorithm 1) we only store the hash h(x) of
the id x. We also store the ids (not the hash of the id) of
the items with highest 1/ϕ values in T1 in another table T2.
Moreover, we always maintain the table T2 consistent with
the table T1 in the sense that the ith highest valued key in
T1 is the hash of the ith id in T2.

Upon picking an item x with probability p, we create an
entry corresponding to h(x) in T1 and make its value one if
there is space available in T1; decrement the value of every
item in T1 by one if the table is already full; increment the
entry in the table corresponding to h(x) if h(x) is already
present in the table. When we decrement the value of every
item in T1, the table T2 remains consistent and we do not
need to do anything else. Otherwise there are three cases to
consider. Case 1: h(x) is not among the 1/ϕ highest valued
items in T1. In this case, we do not need to do anything
else. Case 2: h(x) was not among the 1/ϕ highest valued
items in T1 but now it is among the 1/ϕ highest valued items
in T1. In this case the last item y in T2 is no longer among
the 1/ϕ highest valued items in T1. We replace y with x in
T2. Case 3: h(x) was among the 1/ϕ highest valued items
in T1. When the stream finishes, we output the ids of all
the items in table T2 along with the values corresponding to
them in table T1. Correctness follows from the correctness
of the Misra-Gries algorithm and the fact that there is no
collision among the ids of the sampled items.

3.1.2 An optimal algorithm

Theorem 2. Assume the stream length is known
beforehand. Then there is a randomized one-pass al-
gorithm A for the (ε, ϕ)-List heavy hitters prob-
lem which succeeds with constant probability using
O
(
ε−1 logϕ−1 + ϕ−1 logn+ log logm

)
bits of space.

Moreover, A has an update time of O(1) and reporting time
linear in its output size.

Overview. As in the simpler algorithm, we sample ` =
O(ε−2) many stream elements and solve the (ε/2, ϕ)-List
heavy hitters problem on this sampled stream. Also, the
Misra-Gries algorithm for (ϕ/2, ϕ)-List heavy hitters re-
turns a candidate set of O(ϕ−1) items containing all items of
frequency at least ϕ`. It remains to count the frequencies of
these O(ϕ−1) items with upto ε`/2 = O(ε−1) additive error,
so that we can remove those whose frequency is less than
(ϕ− ε/2)`.

Fix some item i ∈ [n], and let fi be i’s count in the sam-
pled stream. A natural approach to count fi approximately
is to increment a counter probabilistically, instead of deter-
ministically, at every occurrence of i. Suppose that we incre-
ment a counter with probability 0 6 pi 6 1 whenever item i



Algorithm 2 for (ε, ϕ)-List heavy hitters

Input: A stream S of length m over universe U = [n]; let
f(x) be the frequency of x ∈ U in S

Output: A set X ⊆ U and a function f̂ : X → N such that
if f(x) > ϕm, then x ∈ X and f(x) − εm 6 f̂(x) 6
f(x) + εm and if f(y) 6 (ϕ− ε)m, then y /∈ X for every
x, y ∈ U

1: Initialize:
2: ` ← 105ε−2

3: s ← 0
4: Hash functions h1, . . . , h200 log(12ϕ−1) uniformly at

random from a universal family
H ⊆ {h : [n]→ [100/ε]}.

5: An empty table T1 of (key, value) pairs of length
2ϕ−1. Each key entry of T1 can store an element
of [n] and each value entry can store an integer in
[0, 10`].

6: An empty table T2 with 100ε−1 rows and
200 log(12ϕ−1) columns. Each entry of T2 can
store an integer in [0, 100ε`].

7: An empty 3-dimensional table T3 of size at most
100ε−1 × 200 log(12ϕ−1)× 4 log(ε−1). Each entry
of T3 can store an integer in [0, 10`]. . These are
upper bounds; not all the allowed cells will
actually be used.

8:
9: procedure Insert(x)

10: With probability /̀m, increment s and continue.
Else, return

11: Perform Misra-Gries update on T1 with x.
12: for j ← 1 to 200 log(12ϕ−1) do
13: i← hj(x)
14: With probability ε, increment T2[i, j]
15: t← blog(10−6T2[i, j]2)c and p← min(ε · 2t, 1)
16: if t > 0 then
17: With probability p, increment T3[i, j, t]

18:
19: procedure Report( )
20: X ← ∅
21: for each key x with nonzero value in T1 do
22: for j ← 1 to 200 log(12ϕ−1) do

23: f̂j(x)←
∑4 log(ε−1)
t=0 T3[h(x), j, t]/min(ε2t, 1)

24: f̂(x)← median(f̂1, . . . , f̂10 logϕ−1)

25: if f̂(x) > (ϕ− ε/2)s then
26: X ← X ∪ {x}
27: return X, f̂

arrives in the stream. Let the value of the counter be ĉi, and

let f̂i = ĉi/pi. We see that E
[
f̂i
]

= fi and Var[f̂i] 6 fi/pi.

It follows that if pi = Θ(ε2fi), then Var[f̂i] = O(ε−2), and

hence, f̂i is an unbiased estimator of fi with additive error
O(ε−1) with constant probability. We call such a counter
an accelerated counter as the probability of incrementing ac-
celerates with increasing counts. For each i, we can main-
tain O(logϕ−1) accelerated counters independently and take
their median to drive the probability of deviating by more
than O(ε−1) down to O(ϕ). So, with constant probability,
the frequency for the O(ϕ−1) items in the Misra-Gries data
structure is estimated within O(ε−1) error, as desired.

However, there are two immediate issues with this ap-

proach. The first problem is that we may need to keep counts
for Ω(`) = Ω(ε−2) distinct items, which is too costly for our
purposes. To get around this, we use a hash function from
a universal family to hash the universe to a space of size
u = Θ(ε−1), and we work throughout with the hashed id’s.
We can then show that the space complexity for each itera-
tion is O(ε−1). Also, the accelerated counters now estimate
frequencies of hashed id’s instead of actual items, but be-
cause of universality, the expected frequency of any hashed
id is `/u = O(ε−1), our desired error bound.

The second issue is that we need a constant factor approx-
imation of fi, so that we can set pi to Θ(ε2fi). But because
the algorithm needs to be one-pass, we cannot first compute
pi in one pass and then run the accelerated counter in an-
other. So, we divide the stream into epochs in which fi stays
within a factor of 2, and use a different pi for each epoch.
In particular, set pti = ε · 2t for 0 6 t 6 log(pi/ε). We want
to keep a running estimate of i’s count to within a factor of
2 to know if the current epoch should be incremented. For
this, we subsample each element of the (already sampled)
stream with probability ε independently and maintain ex-
act counts for the observed hashed id’s. It is easy to see
that this requires only O(ε−1) bits in expectation. Consider
any i ∈ [u] and the prefix of the stream upto b 6 `, and
let fi(b) be i’s frequency in the prefix, let c̄i(b) be i’s fre-

quency among the samples in the prefix, and f̄i(b) = c̄i(b)
ε

.

We see that E
[
f̄i(b)

]
= fi(b), Moreover, we show that for

any b ∈ [`], f̄i(b) is a 4-factor approximation of fi(b) with
constant probability. By repeating O(logϕ−1) times inde-
pendently and taking the median, the error probability can
be driven down to O(ϕ).

Now, for every hashed id i ∈ [u], we need not one accel-
erated counter but O(log(εfi)) many, one corresponding to
each epoch t. When an element with hash id i arrives at po-
sition b, we decide, based on f̄i(b), the epoch t it belongs to
and then increment the t’th accelerated counter with prob-
ability pti. The storage cost over all i is still O(1/ε). Also,
we iterate the whole set of accelerated counters O(logϕ−1)
times, making the total storage cost O(ε−1 logϕ−1).

Let ĉi,t be the count in the accelerated counter for hash id i

and epoch t. Then, let f̂i =
∑
t ĉi,t/p

t
i. Clearly, E

[
f̂i
]

= fi.

The variance is O(ε−2) in each epoch, and so, Var[f̂i] =
O(ε−2 log ε−1), not O(ε−2) which we wanted. This issue
is fixed by a change in how the sampling probabilities are
defined, effectively making the sum a geometric series. We
now go on to the formal proof.

Pseudocode appears in Algorithm 2 and the full proof in
the appendix. Note that the numerical constants are chosen
for convenience of analysis and have not been optimized.
Also, for the sake of simplicity, the pseudocode does not
have the optimal reporting time, but it can be modified to
achieve this; see the proof for details.

3.2 Maximum
By tweaking Algorithm 1 slightly, we get the following

result for the ε-Maximum problem.

Theorem 3. Assume the length of the stream
is known beforehand. Then there is a randomized
one-pass algorithm A for the ε-Maximum problem
which succeeds with probability at least 1 − δ using
O (min{1/ε, n}(log 1/ε + log log 1/δ) + logn+ log logm) bits



of space. Moreover, the algorithm A has an update time of
O(1).

Proof. Instead of maintaining the table T2 in Algo-
rithm 1, we just store the actual id of the item with maxi-
mum frequency in the sampled items.

3.3 Minimum

Theorem 4. Assume the length of the stream is known
beforehand. Then there is a randomized one-pass algorithm
A for the ε-Minimum problem which succeeds with probabil-
ity at least 1 − δ using O ((1/ε) log log(1/εδ) + log logm) bits
of space. Moreover, the algorithm A has an update time of
O(1).

Overview. Pseudocode is provided in Algorithm 3. The
idea behind our ε-Minimum problem is as follows. It is most
easily explained by looking at the REPORT(x) procedure
starting in line 13. In lines 14-15 we ask, is the universe
size |U | significantly larger than 1/ε? Note that if it is, then
outputting a random item from |U | is likely to be a solution.
Otherwise |U | is O(1/ε).

The next point is that if the number of distinct elements
in the stream were smaller than 1/(ε log(1/ε)), then we
could just store all the items together with their frequen-
cies with O(1/ε) bits of space. Indeed, we can first sample
O(1/ε2) stream elements so that all relative frequencies are
preserved up to additive ε, thereby ensuring each frequency
can be stored with O(log(1/ε)) bits. Also, since the universe
size is O(1/ε), the item identifiers can also be stored with
O(log(1/ε)) bits. So if this part of the algorithm starts tak-
ing up too much space, we stop, and we know the number of
distinct elements is at least 1/(ε log(1/ε)), which means that
the minimum frequency is at most O(mε log(1/ε)). This is
what is being implemented in steps 9-10 and 18-19 in the
algorithm.

We can also ensure the minimum frequency is at
least Ω(mε/ log(1/ε)). Indeed, by randomly sampling
O((log(1/ε)/ε) stream elements, and maintaining a bit vec-
tor for whether or not each item in the universe occurs -
which we can with O(1/ε) bits of space since |U | = O(1/ε)
- any item with frequency at least Ω(εm/ log(1/ε)) will be
sampled and so if there is an entry in the bit vector which
is empty, then we can just output that as our solution. This
is what is being implemented in steps 8 and 16-17 of the
algorithm.

Finally, we now know that the minimum frequency is
at least Ω(mε/ log(1/ε)) and at most O(mε log(1/ε)). At
this point if we randomly sample O((log6 1/ε)/ε) stream el-
ements, then by Chernoff bounds all item frequencies are
preserved up to a relative error factor of (1± 1/ log2(1/ε)),
and in particular the relative minimum frequency is guaran-
teed to be preserved up to an additive ε. At this point we
just maintain the exact counts in the sampled stream but
truncate them once they exceed poly(log(1/ε))) bits, since
we know such counts do not correspond to the minimum.
Thus we only need O(log log(1/ε)) bits to represent their
counts. This is implemented in step 11 and step 20 of the
algorithm.

3.4 Borda and Maximin
We defer describing the algorithms for Borda and Max-

imin to the appendix.

Algorithm 3 for ε-Minimum

Input: A stream S = (xi)i∈[m] ∈ Um of length m over U ;
let f(x) be the frequency of x ∈ U in S

Output: An item x ∈ U such that f(x) 6 f(y) + εm for
every y ∈ U

1: Initialize:

2: `1 ← log(6/εδ)/ε, `2 ← log(6/δ)/ε2, `3 ← log6(6/δε)/ε
3: p1 ← 6`1/m, p2 ← 6`2/m, p3 ← 6`3/m
4: S1,S2,S3 ← ∅
5: B1 ← the bit vector for S1

6:
7: procedure Insert(x)
8: Put x in S1 with probability p1 by updating the bit

vector B1

9: if the number of distinct items in the stream so far
is at most 1/(ε log(1/ε)) then

10: Pick x with probability p2 and put the id of x in
S2 and initialize the corresponding counter to 1 if x /∈ S2

and increment the counter corresponding to x by 1.

11: Pick x with probability p3, put the id of x in S3

and initialize the corresponding counter to 1 if xi /∈ S3

and increment the counter corresponding to xi by 1.
Truncate counters of S3 at 2 log7(2/εδ).

12:
13: procedure Report( )
14: if |U| > 1/((1−δ)ε) then
15: return an item x from the first 1/((1−δ)ε) items

in U (ordered arbitrarily) uniformly at random

16: if S1 6= U then
17: return any item from U \ S1

18: if the number of distinct items in the stream is at
most 1/(ε log(1/ε)) then

19: return an item in S2 with minimum counter
value in S2

20: return the item with minimum frequency in S3

Theorem 5. Assume the length of the stream is
known beforehand. Then there is a randomized one-
pass algorithm A for (ε, ϕ)-List Borda problem
which succeeds with probability at least 1 − δ using
O
(
n
(
logn+ log 1

ε
+ log log 1

δ

)
+ log logm

)
bits of space.

Theorem 6. Assume the length of the stream is
known beforehand. Then there is a randomized one-
pass algorithm A for (ε, ϕ)-List maximin problem
which succeeds with probability at least 1 − δ us-
ing O

(
nε−2 log2 n+ nε−2 logn log δ−1 + log logm

)
bits of

space.

3.5 Unknown stream length
Now we consider the case when the length of the stream

is not known beforehand. We present below an algorithm
for (ε, ϕ)-List heavy hitters and ε-Maximum problems in
this setting.

Theorem 7. There is a randomized one-
pass algorithm for (ε, ϕ)-List heavy hitters
and ε-Maximum problems with space complexity
O
(
ε−1 log ε−1 + ϕ−1 logn+ log logm

)
bits and update

time O(1) even when the length of the stream is not known
beforehand.



Proof. We describe below a randomized one-pass algo-
rithm for the (8ε, ϕ)-List heavy hitters problem. We may
assume that the length of the stream is at least 1/ε2; oth-
erwise, we use the algorithm in Theorem 1 and get the re-
sult. Now we guess the length of the stream to be 1/ε2, but
run an instance I1 of Algorithm 1 with ` = log(6/δ)/ε3 at
line 2. By the choice of the size of the sample (which is
Θ(log(1/δ)/ε3)), I1 outputs correctly with probability at least
(1 − δ), if the length of the stream is in [1/ε2, 1/ε3]. If the
length of the stream exceeds 1/ε2, we run another instance
I2 of Algorithm 1 with ` = log(6/δ)/ε3 at line 2. Again by
the choice of the size of the sample, I2 outputs correctly
with probability at least (1− δ), if the length of the stream
is in [1/ε3, 1/ε4]. If the stream length exceeds 1/ε3, we dis-
card I1, free the space it uses, and run an instance I3 of
Algorithm 1 with ` = log(6/δ)/ε3 at line 2 and so on. At any
point of time, we have at most two instances of Algorithm 1
running. When the stream ends, we return the output of
the older of the instances we are currently running. We use
the approximate counting method of Morris [57] to approx-
imately count the length of the stream. We know that the
Morris counter outputs correctly with probability (1−2−

k/2)
using O(log logm+k) bits of space at any point in time [29].
Also, since the Morris counter increases only when an item is
read, it outputs correctly up to a factor of four at every po-
sition if it outputs correctly at positions 1, 2, 4, . . . , 2blog2mc;
call this event E. Then we have Pr(E) > 1− δ by choosing
k = 2 log2(log2m/δ) and applying a union bound over the

positions 1, 2, 4, . . . , 2blog2mc. The correctness of the algo-
rithm follows from the correctness of Algorithm 1 and the
fact that we are discarding at most εm many items in the
stream (by discarding a run of an instance of Algorithm 1).
The space complexity and the O(1) update time of the al-
gorithm follow from Theorem 1, the choice of k above, and
the fact that we have at most two instances of Algorithm 1
currently running at any point of time.

The algorithm for the ε-Maximum problem is same as the
algorithm above except we use the algorithm in Theorem 3
instead of Algorithm 1.

Note that this proof technique does not seem to apply to
our optimal Algorithm 2. Similarly to Theorem 7, we get
the following result for the other problems.

Theorem 8. There are randomized one-pass algorithms
for ε-Minimum, (ε, ϕ)-Borda, and (ε, ϕ)-Maximin prob-
lems with space complexity O ((1/ε) log log(1/εδ) + log logm),
O
(
n
(
log log n+ log 1

ε
+ log log 1

δ

)
+ log logm

)
, and

O
(
n log2 n log(1/δ)/ε2 + log logm

)
bits respectively even

when the length of the stream is not known beforehand.
Moreover, the update time for ε-Minimum is O(1).

4. HARDNESS
In this section, we prove space complexity lower bounds

for the ε-Heavy hitters, ε-Minimum, ε-Borda, and ε-
maximin problems. We present reductions from certain
communication problems for proving space complexity lower
bounds. Let us first introduce those communication prob-
lems with necessary results.

4.1 Communication Complexity

Definition 10. ( Indexingm,t)
Let t and m be positive integers. Alice is given a string

x = (x1, · · · , xt) ∈ [m]t. Bob is given an index i ∈ [t]. Bob
has to output xi.

The following is a well known result [42].

Lemma 4. R1-way
δ (Indexingm,t) = Ω(t logm) for con-

stant δ ∈ (0, 1).

[67] defines a communication problem called Perm, which
we generalize to ε-Perm as follows.

Definition 11. (ε-Perm)
Alice is given a permutation σ over [n] which is partitioned
into 1/ε many contiguous blocks. Bob is given an index i ∈
[n] and has to output the block in σ where i belongs.

Our lower bound for ε-Perm matches the lower bound for
Perm in Lemma 1 in [67] when ε = 1/n.

Lemma 5. R1-way
δ (ε − Perm) = Ω(n log(1/ε)), for any

constant δ < 1/10.

Finally, we consider the Greater-than problem.

Definition 12. (Greater-thann)
Alice is given an integer x ∈ [n] and Bob is given an integer
y ∈ [n], y 6= x. Bob has to output 1 if x > y and 0 otherwise.

The following result is due to [53, 66]. We provide a simple
proof of it in the appendix for completeness5.

Lemma 6. R1-way
δ (Greater-thann) = Ω(logn), for ev-

ery δ < 1/4.

4.2 Reductions
We observe that a trivial Ω((1/ϕ) logn) bits lower bound

for (ε, ϕ)-List heavy hitters, (ε, ϕ)-List borda, (ε, ϕ)-
List maximin follows from the fact that any algorithm may
need to output 1/ϕ many items from the universe. Also, there
is a trivial Ω(n logn) lower bound for (ε, ϕ)-List borda and
(ε, ϕ)-List maximin because each stream item is a permu-
tation on [n], hence requiring Ω(n logn) bits to read.

We show now a space complexity lower bound of
Ω( 1

ε
log 1

ϕ
) bits for the ε-Heavy hitters problem.

Theorem 9. Suppose the size of universe n is at least
1/4ε(ϕ−ε). Any randomized one pass (ε, ϕ)-Heavy hitters
algorithm with success probability at least (1 − δ) must use
Ω((1/ε) log 1/ϕ) bits of space, for constant δ ∈ (0, 1).

Proof. Consider the Indexing1/2(ϕ−ε),1/2ε problem
where Alice is given a string x = (x1, x2, · · · , x1/ε) ∈
[1/2(ϕ−ε)]

1/2ε and Bob is given an index i ∈ [1/2ε]. We assume
ϕ > 2ε. The stream we generate is over [1/2(ϕ−ε)]×[1/2ε] ⊆ U
(this is possible since |U| > 1/(4ε(ϕ−ε))). Alice generates a
stream of length 1/2ε by inserting one copy of (xj , j) for
each j ∈ [1/2ε]. Alice now sends the memory content of the
algorithm to Bob. Bob resumes the run of the algorithm
by generating another stream of length 1/2ε by inserting
ϕ/ε−1 copies of (j, i) for each j ∈ [1/ϕ−ε]. The length of the
stream is ε−1, the frequency of the item (xi, i) is ϕ/ε, while
the frequency of every other item is ϕ/ε − 1 or 1. Hence
from the output of the (ε, ϕ)-Heavy hitters algorithm,
Bob knows i with probability at least (1 − δ). Now the
result follows from Lemma 4, since 1

ε
log 1

ϕ−ε >
1
ε

log 1
ϕ

.

5A similar proof appears in [40] but theirs gives a slightly
weaker bound.



We now use the same idea as in the proof of Theorem 9
to prove an Ω( 1

ε
log 1

ε
) space complexity lower bound for the

ε-Maximum problem.

Theorem 10. Suppose the size of universe n is at least
1
ε2

. Any randomized one pass ε-Maximum algorithm with

success probability at least (1 − δ) must use Ω( 1
ε

log 1
ε
) bits

of space, for constant δ ∈ (0, 1).

Proof. Consider the Indexing1/ε,1/ε problem where Al-

ice is given a string x = (x1, x2, · · · , x1/ε) ∈ [1/ε]
1/ε and Bob

is given an index i ∈ [1/ε]. The stream we generate is over
[1/ε] × [1/ε] ⊆ U (this is possible since |U| > 1

ε2
). Alice

generates a stream of length m/2 in such a way that the fre-
quency of every item in {(xj , j) : j ∈ [1/ε]} is at least bεm/2c
and the frequency of any other item is 0. Alice now sends
the memory content of the algorithm to Bob. Bob resumes
the run of the algorithm by generating another stream of
length m/2 in such a way that the frequency of every item
in {(j, i) : j ∈ [1/ε]} is at least bεm/2c and the frequency of
any other item is 0. The frequency of the item (xi, i) is at
least bεmc where as the frequency of every other item is at
most bεm/2c. Hence the ε/5-Maximum algorithm must out-
put (xi, i) with probability at least (1 − δ). Now the result
follows from Lemma 4.

For ε-Minimum, we prove a space complexity lower bound
of Ω(1/ε) bits.

Theorem 11. Suppose the universe size n is at least 1/ε.
Then any randomized one pass ε-Minimum algorithm must
use Ω(1/ε) bits of space.

Proof. We reduce from Indexing2,5/ε to ε-Minimum
thereby proving the result. Let the inputs to Alice and Bob
in Indexing2,5/ε be (x1, . . . , x5/ε) ∈ {0, 1}5/ε and an index
i ∈ [5/ε] respectively. Alice and Bob generate a stream S
over the universe [(5/ε) + 1]. Alice puts two copies of item j
in S for every j ∈ U with xj = 1 and runs the ε-Minimum
algorithm. Alice now sends the memory content of the al-
gorithm to Bob. Bob resumes the run of the algorithm by
putting two copies of every item in U \ {i, (5/ε) + 1} in the
stream S. Bob also puts one copy of (5/ε) + 1 in S. Sup-
pose the size of the support of (x1, . . . , x5/ε) be `. Since
1/(2`+(2/ε)−1) > ε/5, we have the following. If xi = 0, then
the ε-Minimum algorithm must output i with probability at
least (1− δ). If xi = 1, then the ε-Minimum algorithm must
output (5/ε) + 1 with probability at least (1 − δ). Now the
result follows from Lemma 4.

We show next a Ω(n log(1/ε)) bits space complexity lower
bound for ε-Borda.

Theorem 12. Any one pass algorithm for ε-Borda must
use Ω(n log(1/ε)) bits of space.

Proof. We reduce ε-Perm to ε-Borda. Suppose Alice
has a permutation σ over [n] and Bob has an index i ∈ [n].
The item set of our reduced election is U = [n] t D, where
D = {d1, d2, . . . , d2n}. Alice generates a vote v over the item
set U from σ as follows. The vote v is B1 � B2 � · · · � B1/ε

where Bj for j = 1, . . . , 1/ε is defined as follows.

Bj = d(j−1)2εn+1 � d(j−1)2εn+2 � · · · � d(2j−1)εn

� σjεn+1 � · · · � σ(j+1)εn � d(2j−1)ε+1 � · · · � d2jεn

Alice runs the ε-Borda algorithm with the vote v and
sends the memory content to Bob. Let D−i = D \ {i},
−−→
D−i be an arbitrary but fixed ordering of the items in D−i,
and
←−−
D−i be the reverse ordering of

−−→
D−i. Bob resumes the

algorithm by generating two votes each of the form i �
−−→
D−i

and i �
←−−
D−i. Let us call the resulting election E . The

number of votes m in E is 5. The Borda score of the item i
is at least 12n. The Borda score of every item x ∈ U is at
most 9n. Hence for ε < 1/15, the ε-Borda algorithm must
output the item i. Moreover, it follows from the construction
of v that an εmn additive approximation of the Borda score
of the item i reveals the block where i belongs in the ε-Perm
instance.

We next give a nearly-tight lower bound for the ε-maximin
problem.

Theorem 13. Any one-pass algorithm for ε-maximin re-
quires Ω(n/ε2) memory bits of storage.

Proof. We reduce from Indexing. Let γ = 1/ε2. Sup-
pose Alice has a string y of length (n − γ) · γ, partitioned
into n − γ blocks of length γ each. Bob has an index
` = i + (j − γ − 1) · γ where i ∈ [γ], j ∈ {γ + 1, . . . , n}.
The Indexing problem is to return y` for which there is a
Ω(|y|) = Ω(n/ε2) lower bound (Lemma 4).

The initial part of the reduction follows the construction
in the proof of Theorem 6 in [69], which we encapsulate in
the following lemma.

Lemma 7 (Theorem 6 in [69]). Given y, Alice can
construct a matrix P ∈ {0, 1}n×γ using public randomness,
such that if P i and P j are the i’th and j’th rows of P respec-
tively, then with probability at least 2/3, ∆(P i, P j) > γ

2
+
√
γ

if y` = 1 and ∆(a, b) 6 γ
2
−√γ if y` = 0.

Let Alice construct P according to Lemma 7 and then
adjoin the bitwise complement of the matrix P below P to
form the matrix P ′ ∈ {0, 1}2n×γ ; note that each column of
P ′ has exactly n 1’s and n 0’s. Now, we interpret each row
of P as a candidate and each column of P as a vote in the
following way: for each v ∈ [γ], vote v has the candidates in
{c : P ′c,v = 1} in ascending order in the top n positions and
the rest of the candidates in ascending order in the bottom
n positions. Alice inserts these γ votes into the stream and
sends the state of the ε-Maximin algorithm to Bob as well as
the Hamming weight of each row in P ′. Bob inserts γ more
votes, in each of which candidate i comes first, candidate j
comes second, and the rest of the 2n − 2 candidates are in
arbitrary order.

Note that because of Bob’s votes, the maximin score of j
is the number of votes among the ones casted by Alice in
which j defeats i. Since i < j, in those columns v where
Pi,v = Pj,v, candidate i beats candidate j. Thus, the set of
votes in which j defeats i is {v | Pi,v = 0, Pj,v = 1}. The
size of this set is 1

2

(
∆(P i, P j) + |P j | − |P i|

)
. Therefore, if

Bob can estimate the maximin score of j upto
√
γ/4 additive

error, he can find ∆(P i, P j) upto
√
γ/2 additive error as Bob

knows |P i| and |P j |. This is enough, by Lemma 7, to solve
the Indexing problem with probability at least 2/3.

Finally, we show a space complexity lower bound that
depends on the length of the stream m.



Theorem 14. Any one pass algorithm for ε-Heavy hit-
ters, ε-Minimum, ε-Borda, and ε-maximin must use
Ω(log logm) memory bits, even if the stream is over a uni-
verse of size 2, for every ε < 1

4
.

Proof. It is enough to prove the result only for ε-Heavy
hitters since the other three problems reduce to ε-Heavy
hitters for a universe of size 2. Suppose we have a ran-
domized one pass ε-Heavy hitters algorithm which uses
s(m) bits of space. Using this algorithm, we will show a
communication protocol for the Greater-thanm problem
whose communication complexity is s(2m) thereby proving
the statement. The universal set is U = {0, 1}. Alice gen-
erates a stream of 2x many copies of the item 1. Alice now
sends the memory content of the algorithm. Bob resumes
the run of the algorithm by generating a stream of 2y many
copies of the item 0. If x > y, then the item 1 is the only
ε-winner; whereas if x < y, then the item 0 is the only ε-
winner.

References
[1] G. Adomavicius and A. Tuzhilin. Toward the next gen-

eration of recommender systems: A survey of the state-
of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng., 17(6):734–749, 2005.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. 20th Inter-
national Conference on Very Large Data Bases, pages
487–499, 1994.

[3] A. Arasu, S. Babu, and J. Widom. CQL: A language for
continuous queries over streams and relations. In Proc.
9th International Workshop on Database Programming
Languages DBPL, pages 1–19, 2003.

[4] J. A. Aslam and M. Montague. Models for metasearch.
In Proc. 24th Annual international ACM SIGIR con-
ference on Research and Development in Information
Retrieval, pages 276–284. ACM, 2001.

[5] R. Berinde, P. Indyk, G. Cormode, and M. J. Strauss.
Space-optimal heavy hitters with strong error bounds.
ACM Trans. Database Syst, 35(4):26, 2010.

[6] K. S. Beyer and R. Ramakrishnan. Bottom-up com-
putation of sparse and iceberg cubes. In Proc. ACM
SIGMOD International Conference on Management of
Data, pages 359–370, 1999.

[7] D. K. Blandford and G. E. Blelloch. Compact dictionar-
ies for variable-length keys and data with applications.
ACM Trans. Algor., 4(2):17, 2008.

[8] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proc. 2nd International Confer-
ence on Mobile Data Management, MDM, pages 3–14,
2001.

[9] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia. Handbook of computational social choice,
2015.

[10] V. Braverman, S. R. Chestnut, N. Ivkin, J. Nelson,
Z. Wang, and D. P. Woodruff. BPTree: an ` 2
heavy hitters algorithm using constant memory. 2016.
arXiv:1603.00759.

[11] V. Braverman, S. R. Chestnut, N. Ivkin, and
D. P. Woodruff. Beating countsketch for heavy hit-
ters in insertion streams. Technical report, 2016.
arXiv:1511.00661. To appear in STOC ‘16.

[12] E. J. Candes, J. Romberg, and T. Tao. Stable signal re-
covery from incomplete and inaccurate measurements.
Commun. Pur. Appl. Math., 59:1207–1223, 2006.

[13] I. Caragiannis and A. D. Procaccia. Voting almost
maximizes social welfare despite limited communica-
tion. Artif. Intell., 175(9–10):1655 – 1671, 2011.

[14] B. Carterette and D. Petkova. Learning a ranking from
pairwise preferences. In Proc. 29th Annual Interna-
tional ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 629–630. ACM,
2006.

[15] Y. Chabchoub, C. Fricker, and H. Mohamed. Analysis
of a bloom filter algorithm via the supermarket model.
In Proc. 21st International Teletraffic Congress, ITC,
pages 1–8, 2009.

[16] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. Theor. Comput. Sci.,
312(1):3–15, 2004.

[17] V. Conitzer and T. Sandholm. Communication com-
plexity of common voting rules. In Proc. 6th ACM Con-
ference on Electronic Commerce, pages 78–87. ACM,
2005.

[18] G. Cormode. Sketch techniques for massive data. In
G. Cormode, M. Garofalakis, P. J. Haas, and C. Jer-
maine, editors, Synopses for Massive Data: Samples,
Histograms, Wavelets, Sketches, volume 4 of Founda-
tions and Trends in Databases, pages 1–294. Now Pub-
lishers Inc., Hanover, MA, USA, Jan. 2012.

[19] G. Cormode and M. Hadjieleftheriou. Finding frequent
items in data streams. Proceedings of the VLDB En-
dowment, 1(2):1530–1541, 2008.

[20] G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Finding hierarchical heavy hitters in streaming
data. ACM Trans. Knowl. Discov. Data, 1(4), 2008.

[21] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its appli-
cations. J. Algorithms, 55(1):58–75, 2005.

[22] T. M. Cover and J. A. Thomas. Elements of informa-
tion theory. John Wiley & Sons, 2012.

[23] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Fre-
quency estimation of internet packet streams with lim-
ited space. In Proc. 10th Annual European Symposium
on Algorithms, pages 348–360. Springer, 2002.

[24] P. Dey and A. Bhattacharyya. Sample complexity for
winner prediction in elections. In Proc. 14th Interna-
tional Conference on Autonomous Systems and Multi-
agent Systems (AAMAS-15), 2015.

[25] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and
M. Penttonen. A reliable randomized algorithm for the
closest-pair problem. J. Algorithms, 25(1):19–51, 1997.

[26] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic
minimax character of the sample distribution function
and of the classical multinomial estimator. Ann. Math.
Stat., 27(3):642 – 669, 1956.

[27] C. Estan and G. Varghese. New directions in traf-
fic measurement and accounting: Focusing on the ele-
phants, ignoring the mice. Theor. Comput. Syst.,
21(3):270–313, 2003.

[28] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. D. Ullman. Computing iceberg queries
efficiently. In Proc. 24rd International Conference on
Very Large Data Bases, pages 299–310, 1998.



[29] P. Flajolet. Approximate counting: a detailed analysis.
BIT Numerical Mathematics, 25(1):113–134, 1985.

[30] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Ver-
shynin. One sketch for all: fast algorithms for com-
pressed sensing. In Proc. 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA,
June 11-13, 2007, pages 237–246, 2007.

[31] J. Han, J. Pei, G. Dong, and K. Wang. Efficient com-
putation of iceberg cubes with complex measures. In
Proc. 2001 ACM SIGMOD International Conference on
Management of Data,, pages 1–12, 2001.

[32] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. 2000 ACM
SIGMOD International Conference on Management of
Data, pages 1–12, 2000.

[33] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst., 22(1):5–53, 2004.

[34] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Tóth.
Space complexity of hierarchical heavy hitters in multi-
dimensional data streams. In Proc. Twenty-fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 338–347, 2005.

[35] C. Hidber. Online association rule mining. In SIGMOD
1999, Proc. ACM SIGMOD International Conference
on Management of Data, pages 145–156, 1999.

[36] T. K. Ho, J. J. Hull, and S. N. Srihari. Decision com-
bination in multiple classifier systems. IEEE Trans.
Pattern Anal. Mach. Intell., 16(1):66–75, 1994.

[37] A. Jiang, L. S. Marcolino, A. D. Procaccia, T. Sand-
holm, N. Shah, and M. Tambe. Diverse randomized
agents vote to win. In Proc. Annual Conference on Neu-
ral Information Processing Systems, pages 2573–2581,
2014.

[38] R. M. Karp, S. Shenker, and C. H. Papadimitriou.
A simple algorithm for finding frequent elements in
streams and bags. ACM Trans. Database Syst.,
28(1):51–55, 2003.

[39] P. Kellner, J. Twyman, and A. Wells. Polling voting in-
tentions. In Political Communication in Britain, pages
94–108. Springer, 2011.

[40] I. Kremer, N. Nisan, and D. Ron. On randomized one-
round communication complexity. Comput. Complex.,
8(1):21–49, 1999.

[41] A. Kumar and J. J. Xu. Sketch guided sampling - us-
ing on-line estimates of flow size for adaptive data col-
lection. In Proc. 25th IEEE International Conference
on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 2006.

[42] E. Kushilevitz and N. Nisan. Communication Complex-
ity. Cambridge University Press, New York, NY, USA,
1997.

[43] K. G. Larsen, J. Nelson, H. L. Nguyen, and M. Tho-
rup. Heavy hitters via cluster-preserving clustering.
arXiv:1604.01357, Apr. 2016.

[44] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cor-
men. Introduction to algorithms. The MIT press, 5:2–2,
2001.

[45] H. Li. Learning to rank for information retrieval and
natural language processing. In Synthesis Lectures on
Human Language Technologies, volume 7, pages 1–121.
Morgan & Claypool Publishers, 2014.

[46] A. Lumini and L. Nanni. Detector of image orientation
based on borda count. Pattern Recogn. Lett., 27(3):180–
186, 2006.

[47] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Che-
ung. Efficient top-k aggregation of ranked inputs. ACM
Trans. Database Syst, 32(3):19, 2007.

[48] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. 28th International
Conference on Very Large Data Bases, pages 346–357.
VLDB Endowment, 2002.

[49] A. Mao, A. D. Procaccia, and Y. Chen. Social Choice
for Human Computation. In Proc. Fourth Workshop on
Human Computation (HCOMP-12), 2012.

[50] A. Mao, A. D. Procaccia, and Y. Chen. Better Human
Computation Through Principled Voting. In Proc. 27th
Conference on Artificial Intelligence (AAAI’13), 2013.

[51] A. Marian, N. Bruno, and L. Gravano. Evaluating top-
k queries over web-accessible databases. ACM Trans.
Database Syst., 29(2):319–362, 2004.

[52] A. Metwally, D. Agrawal, and A. El Abbadi. Effi-
cient computation of frequent and top-k elements in
data streams. In Proc. 10th International Conference
on Database Theory, ICDT’05, pages 398–412, Berlin,
Heidelberg, 2005. Springer-Verlag.

[53] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigder-
son. On data structures and asymmetric communica-
tion complexity. J. Comput. Syst. Sci., 57(1):37–49,
1998.

[54] J. Misra and D. Gries. Finding repeated elements. Sci.
Comput. Program., 2(2):143–152, 1982.

[55] M. M. Monwar and M. L. Gavrilova. Multimodal bio-
metric system using rank-level fusion approach. IEEE
Trans. Syst. Man. Cybern. B, Cybern., 39(4):867–878,
2009.

[56] J. S. Moore. J. Algorithm, June 1981. p. 208–209.
[57] R. Morris. Counting large numbers of events in small

registers. Commun. ACM, 21(10):840–842, 1978.
[58] D. Mullen and B. Roth. Decision making: Its logic and

practice. Savage, MD: Rowman and Littlefield Publish-
ers, Inc., 1991.

[59] S. Muthukrishnan. Data streams: Algorithms and ap-
plications. Now Publishers Inc, 2005.

[60] J. Nelson. Sketching and streaming algorithms for pro-
cessing massive data. XRDS: Crossroads, The ACM
Magazine for Students, 19(1):14–19, 2012.

[61] R. Nuray and F. Can. Automatic ranking of informa-
tion retrieval systems using data fusion. Inf. Process
Manag., 42(3):595–614, 2006.

[62] A. Prasad, H. Pareek, and P. Ravikumar. Distributional
rank aggregation, and an axiomatic analysis. In Proc.
32nd International Conference on Machine Learning
(ICML-15), pages 2104–2112, 2015.

[63] P. Resnick and H. R. Varian. Recommender systems.
Commun. ACM, 40(3):56–58, 1997.

[64] A. Savasere, E. Omiecinski, and S. B. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proc. 21th International Conference on
Very Large Data Bases, pages 432–444, 1995.

[65] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for
sensor networks. In Proc. 2nd International Conference
on Embedded Networked Sensor Systems, pages 239–
249, 2004.



[66] D. Smirnov. Shannon’s information methods for lower
bounds for probabilistic communication complexity.
Master’s thesis, Moscow University, 1988.

[67] X. Sun and D. P. Woodruff. Tight bounds for graph
problems in insertion streams. In Proc. 18th. In-
ternational Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX
2015), pages 435–448, 2015.

[68] H. Toivonen. Sampling large databases for association
rules. In Proc. 22th International Conference on Very
Large Data Bases, pages 134–145, 1996.

[69] D. Van Gucht, R. Williams, D. P. Woodruff, and
Q. Zhang. The communication complexity of dis-
tributed set-joins with applications to matrix multipli-
cation. In Proc. 34th ACM Symposium on Principles
of Database Systems, pages 199–212. ACM, 2015.

[70] M. N. Volkovs and R. S. Zemel. New learning methods
for supervised and unsupervised preference aggregation.
J. Mach. Learn. Res., 15(1):1135–1176, 2014.

[71] G. Wang and F. H. Lochovsky. Feature selection with
conditional mutual information maximin in text cat-
egorization. In Proc. 13th ACM International Con-
ference on Information and Knowledge Management,
pages 342–349. ACM, 2004.

[72] D. P. Woodruff. New Algorithms for Heavy Hitters in
Data Streams. 2016. arXiv 1603.01733. Appeared in
ICDT ’16.

[73] L. Xia. Computing the margin of victory for various
voting rules. In Proc. 13th ACM Conference on Elec-
tronic Commerce, pages 982–999. ACM, 2012.

[74] A. C.-C. Yao. Some complexity questions related to
distributive computing (preliminary report). In Proc.
11th annual ACM Symposium on Theory of computing,
pages 209–213. ACM, 1979.

APPENDIX
Appendix A
Information Theory Facts
For a discrete random variable X with possible values
{x1, x2, . . . , xn}, the Shannon entropy of X is defined as
H(X) = −

∑n
i=1 Pr(X = xi) log2 Pr(X = xi). Let Hb(p) =

−p log2 p − (1 − p) log2(1 − p) denote the binary entropy
function when p ∈ (0, 1). For two random variables X and
Y with possible values {x1, x2, . . . , xn} and {y1, y2, . . . , ym},
respectively, the conditional entropy of X given Y is defined

as H(X | Y ) =
∑
i,j Pr(X = xi, Y = yj) log2

Pr(Y=yj)

Pr(X=xi,Y=yj)
.

Let I(X;Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X)
denote the mutual information between two random vari-
ables X,Y . Let I(X;Y | Z) denote the mutual information
between two random variables X,Y conditioned on Z, i.e.,
I(X;Y | Z) = H(X | Z) − H(X | Y,Z). The following
summarizes several basic properties of entropy and mutual
information.

Proposition 1. Let X,Y, Z,W be random variables.

1. If X takes value in {1, 2, . . . ,m}, then H(X) ∈
[0, logm].

2. H(X) > H(X | Y ) and I(X;Y ) = H(X)−H(X | Y ) >
0.

3. If X and Z are independent, then we have
I(X;Y | Z) > I(X;Y ). Similarly, if X,Z are inde-
pendent given W , then I(X;Y | Z,W ) > I(X;Y | W ).

4. (Chain rule of mutual information) I(X,Y ;Z) =
I(X;Z) + I(Y ;Z | X). More generally, for
any random variables X1, X2, . . . , Xn, Y ,
I(X1, . . . , Xn;Y ) =

∑n
i=1 I(Xi;Y | X1, . . . , Xi−1).

Thus, I(X,Y ;Z | W ) > I(X;Z | W ).

5. (Fano’s inequality) Let X be a random variable chosen
from domain X according to distribution µX , and Y
be a random variable chosen from domain Y according
to distribution µY . For any reconstruction function
g : Y → X with error δg,

Hb(δg) + δg log(|X | − 1) > H(X | Y ).

We refer readers to [22] for a nice introduction to infor-
mation theory.

Appendix B
We now present the missing proofs.

Lemma 1. Suppose m is a power of two6. Then there
is an algorithm A for choosing an item with probability 1/m
that has space complexity of O(log logm) bits and time com-
plexity of O(1) in the unit-cost RAM model.

Proof. We generate a log2 m bits integer C uniformly at
random and choose the item, say x, only if C = 0.

We remark that the algorithm in Lemma 1 has optimal
space complexity as shown in Proposition 2 below which
may be of independent interest.

Proposition 2. [?] Any algorithm that chooses an item
from a set of size n with probability p for 0 < p 6 1

n
, in unit

cost RAM model must use Ω(log logm) bits of memory.

Proof. The algorithm generates t bits uniformly at ran-
dom (the number of bits it generates uniformly at random
may also depend on the outcome of the previous random
bits) and finally picks an item from the say x. Consider
a run R of the algorithm where it chooses the item x with
smallest number of random bits getting generated; say it gen-
erates t random bits in this run R. This means that in any
other run of the algorithm where the item x is chosen, the
algorithm must generate at least t many random bits. Let
the random bits generated in R be r1, · · · , rt. Let si be
the memory content of the algorithm immediately after it
generates ith random bit, for i ∈ [t], in the run R. First
notice that if t < log2 n, then the probability with which
the item x is chosen is more than 1

n
, which would be a

contradiction. Hence, t > log2 n. Now we claim that all
the si’s must be different. Indeed otherwise, let us assume
si = sj for some i < j. Then the algorithm chooses the item
x after generating t − (j − i) many random bits (which is
strictly less than t) when the random bits being generated
are r1, · · · , ri, rj+1, · · · , rt. This contradicts the assumption
that the run R we started with chooses the item x with
smallest number of random bits generated.
6In all our algorithms, whenever we pick an item with prob-
ability p > 0, we can assume, without loss of generality, that
1/p is a power of two. If not, then we replace p with p′ where
1/p′ is the largest power of two less than 1/p. This does not
affect correctness and performance of our algorithms.



Lemma 2. For S ⊆ A, δ ∈ (0, 1), and universal family
of hash functions H = {h|h : A→ [d|S|2/δe]}:

Pr
h∈unifH

[∃i 6= j ∈ S, h(i) = h(j)] 6 δ

Proof. For every i 6= j ∈ S, since H is a universal family
of hash functions, we have

Pr
h picked uniformly at random from H

{h(i) = h(j)} 6 1/d|S|2/δe

Now we apply a union bound to get

Pr
h picked uniformly at random from H

{∃i 6= j ∈ S, h(i) = h(j)}

6 |S|2/d|S|2/δe

6 δ

Proof of Theorem 2. Pseudocode appears in Algo-
rithm 2. Note that the numerical constants are chosen for
convenience of analysis and have not been optimized. Also,
for the sake of simplicity, the pseudocode does not have the
optimal reporting time, but it can be modified to achieve
this; see the end of this proof for details.

By standard Chernoff bounds, with probability at least
99/100, the length of the sampled stream `/10 6 s 6 10`.
For x ∈ [n], let fsamp(x) be the frequency of x in the sampled
stream. By Lemma 3, with probability at least 9/10, for all
x ∈ [n]: ∣∣∣∣fsamp(x)

s
− f(x)

m

∣∣∣∣ 6 ε

4

Now, fix j ∈ [10 logϕ−1] and x ∈ [n]. Let i = hj(x) and fi =∑
y:hj(y)=hj(x) fsamp(y). Then, for a random hj ∈ H, the

expected value of fi
s
− fsamp(x)

s
is ε

100
, since H is a universal

mapping to a space of size 100ε−1. Hence, using Markov’s
inequality and the above:

Pr

[∣∣∣∣f(x)

m
− fi

s

∣∣∣∣ > ε

2

]
6 Pr

[∣∣∣∣f(x)

m
− fsamp

s

∣∣∣∣ > ε

4

]
+ Pr

[∣∣∣∣fsamp(x)

m
− fi

s

∣∣∣∣ > ε

4

]
<

1

10
+

1

25
<

3

20
(1)

In Lemma 8 below, we show that for each j ∈
[200 log(12ϕ−1)], with error probability at most 3/10, f̂j(x)
(in line 23) estimates fi with additive error at most 5000ε−1,

hence estimating fi
s

with additive error at most ε
2
. Taking

the median over 200 log(12ϕ−1) repetitions (line 24) makes
the error probability go down to ϕ

6
using standard Chernoff

bounds. Hence, by the union bound, with probability at
least 2/3, for each of the 2/ϕ keys x with nonzero values in

T1, we have an estimate of f(x)
m

within additive error ε, thus
showing correctness.

Lemma 8. Fix x ∈ [n] and j ∈ [200 log 12ϕ−1], and let

i = hj(x). Then, Pr[|f̂j(x) − fi| > 5000ε−1] 6 3/10, where

f̂j is the quantity computed in line 23.

Proof. Index the sampled stream elements 1, 2, . . . , s,
and for b ∈ [s], let fi(b) be the frequency of items with
hash id i restricted to the first b elements of the sampled
stream. Let f̄i(b) denote the value of T2[i, j] · ε−1 after the

procedure Insert has been called for the first b items of the
sampled stream.

Claim 1. With probability at least 9/10, for all b ∈ [s]
such that fi(b) > 100ε−1, f̄i(b) is within a factor of 4 of
fi(b).

Proof. Fix b ∈ [s]. Note that E
[
f̄i(b)

]
= fi(b) as T2

is incremented with rate ε. Var[f̄i(b)] 6 fi/ε, and so by
Chebyshev’s inequality:

Pr[|f̄i(b)− fi(b)| > fi(b)/2] <
4

fi(b)ε

We now break the stream into chunks, apply this inequality
to each chunk and then take a union bound to conclude.
Namely, for any integer t > 0, define bt to be the first b such
that 100ε−12t 6 fi(b) < 100ε−12t+1 if such a b exists. Then:

Pr[∃t > 0 : |f̄i(bt)− fi(bt)| > fi(bt)/2] <
∑
t

4

100 · 2t−1

<
1

10

So, with probability at least 9/10, every f̄i(bt) and fi(bt)
are within a factor of 2 of each other. Since for every b >
b0, fi(b) is within a factor of 2 from some fi(bt), the claim
follows.

Assume the event in Claim 1 henceforth. Now, we are ready
to analyze T3 and in particular, f̂j(x). First of all, observe
that if t < 0 in line 15, at some position b in the stream,
then T2[i, j] at that time must be at most 1000, and so by
standard Markov and Chernoff bounds, with probability at
least 0.85,

fi(b)

{
< 4000ε−1, if t < 0

> 100ε−1, if t > 0
(2)

Assume this event. Then, fi − 4000ε−1 6 E
[
f̂j(x)

]
6 fi.

Claim 2.

Var(f̂j(x)) 6 20000ε−2

Proof. If the stream element at position b causes an
increment in T3 with probability ε2t (in line 17), then

1000 · 2t/2 6 T2[i, j] 6 1000 · 2(t+1)/2, and so, f̄i(b) 6
1000ε−12(t+1)/2. This must be the case for the highest
b = b̄t at which the count for i in T3 increments at the
t’th slot. The number of such occurrences of i is at most
fi(b̄t) 6 4f̄i(b̄t) 6 4000ε−12(t+1)/2 by Claim 1 (which can
be applied since fi(b) > 100ε−1 by Equation 2). So:

Var[f̂j(x)] 6
∑
t>0

fi(b̄t)

ε2t
6
∑
t>0

4000

ε2
2−t/3 6 20000ε−2

Elements inserted with probability 1 obviously do not con-
tribute to the variance.

So, conditioning on the events mentioned, the probability
that f̂j(x) deviates from fi by more than 5000ε−1 is at most
1/50. Removing all the conditioning yields what we wanted:

Pr[|f̂j(x)− fi| > 5000ε−1] 6
1

50
+

3

20
+

1

10
6 0.3

We next bound the space complexity.



Claim 3. With probability at least 2/3, Algorithm 2 uses
O(ε−1 logϕ−1 +ϕ−1 logn+ log logm) bits of storage, if n =
ω(ε−1).

Proof. The expected length of the sampled stream is ` =
O(ε−2). So, the number of bits stored in T1 is O(ϕ−1 logn).
For T2, note that in lines 13-15, for any given j, T2 is storing
a total of ε` = O(ε−1) elements in expectation. So, for
k > 0, there can be at most O((ε2k)−1) hashed id’s with
counts between 2k and 2k+1. Summing over all k’s and
accounting for the empty cells gives O(ε−1) bits of storage,
and so the total space requirement of T2 is O(ε−1 logϕ−1).
.

The probability that a hashed id i gets counted in table T3

is at most 10−6ε3f̄2
i (s) from line 15 and our definition of f̄i

above. Moreover, from Claim 1, we have that this is at most
16·10−6ε3f2

i (s) if fi > 100ε−1. Therefore, if fi = 2k ·100ε−1

with k > 0, then the expected value of a cell in T3 with first
coordinate i is at most 1600 · 22kε = 2O(k). Taking into
account that there are at most O((ε2k)−1) many such id’s
i and that the number of epochs t associated with such an
i is at most log(16 · 10−6ε2f2

i ) = O(log(εfi)) = O(k) (from
line 15), we get that the total space required for T3 is:

O(logϕ−1)∑
j=1

(
O(ε−1) +

∞∑
k=0

O((ε2k)−1) ·O(k) ·O(k)

)
= O(ε−1 logϕ−1)

where the first O(ε−1) term inside the summation is for the
i’s with fi < 100ε−1. Since we have an expected space
bound, we obtain a worst-case space bound with error prob-
ability 1/3 by a Markov bound.

The space required for sampling is an additional
O(log logm), using Lemma 1.

We note that the space bound can be made worst case by
aborting the algorithm if it tries to use more space.

The only remaining aspect of Theorem 2 is the time com-
plexity. As observed in Section 3.1, the update time can be
made O(1) per insertion under the standard assumption of
the stream being sufficiently long. The reporting time can
also be made linear in the output by changing the bookkeep-
ing a bit. Instead of computing f̂j and f̂ at reporting time,
we can maintain them after every insertion. Although this
apparently makes INSERT costlier, this is not true in fact
because we can spread the cost over future stream insertions.
The space complexity grows by a constant factor.

Theorem 4. Assume the length of the stream is known
beforehand. Then there is a randomized one-pass algorithm
A for the ε-Minimum problem which succeeds with probabil-
ity at least 1 − δ using O ((1/ε) log log(1/εδ) + log logm) bits
of space. Moreover, the algorithm A has an update time of
O(1).

Proof of Theorem 4. The pseudocode of our ε-
Minimum algorithm is in Algorithm 3. If the size of the
universe |U| is at least 1/((1−δ)ε), then we return an item x
chosen from U uniformly at random. Note that there can be
at most 1/ε many items with frequency at least εm. Hence
every item x among other remaining δ/((1−δ)ε) many items
has frequency less than εm and thus is a correct output of the
instance. Thus the probability that we answer correctly is
at least (1−δ). From here on, let us assume |U| < 1/((1−δ)ε).

Now, by the value of pj , it follows from the proof of The-
orem 1 that we can assume `j < |Sj | < 11`j for j = 1, 2, 3
which happens with probability at least (1− (δ/3)). We first
show that every item in U with frequency at least εm is
sampled in S1 with probability at least (1− (δ/6)). For that,
let Xj

i be the indicator random variable for the event that
the jth sample in S1 is item i where i ∈ U is an item with
frequency at least εm. Let H ⊂ U be the set of items with
frequencies at least εm. Then we have the following.

Pr[Xj
i = 0] = 1− ε

⇒ Pr[Xj
i = 0 ∀j ∈ S1] 6 (1− ε)`1 6 exp{−ε`1} = εδ/6

Now applying a union bound we get the following.

Pr[∃i ∈ H, Xj
i = 0 ∀j ∈ S1] 6 (1/ε)εδ/6 6 δ/6

Hence with probability at least (1− (δ/3)− (δ/6)) > (1− δ),
the output at line 17 is correct. Now we show below that if
the frequency of any item x ∈ U is at most ε ln(6/δ)/ln(6/εδ),
then x ∈ S1 with probability at least (1− (δ/6)).

Pr[x /∈ S1] = (1− ε ln(6/δ)/ln(6/εδ))
ln(6/εδ)/ε 6 δ/6

Hence from here onwards we assume that the frequency of
every item in U is at least εm ln(6/δ)/ln(6/εδ).

If the number of distinct elements is at most 1/(ε ln(1/ε)),
then line 19 outputs the minimum frequency item up
to an additive factor of εm due to Chernoff bound (see
[24]). Note that we need only O(ln(1/((1−δ)ε))) bits of
space for storing ids. Hence S2 can be stored in space
O((1/ε ln(1/ε)) ln(1/((1−δ)ε) ln ln(1/δ)) = O(1/ε ln ln(1/δ)).

Now we can assume that the number of distinct elements
is at least 1/(ε ln(1/ε)). Hence if f(t) is the frequency of the
item t with minimum frequency, then we have mε/ln(1/ε) 6
f(t) 6 mε ln(1/ε).

Let fi be the frequency of item i ∈ U , ei be the counter
value of i in S3, and f̂i = eim/`3. Now again by applying
Chernoff bound we have the following for any fixed i ∈ U .

Pr[|fi − f̂i| > fi/ln2(1/ε)] 6 2 exp{−`3fi/(m ln4(1/ε))}
6 2 exp{−fi ln2(6/εδ)/(εm)}
6 εδ/6.

Now applying a union bound we get the following using the
fact that |U| 6 1/ε(1−δ).

Pr[∀i ∈ U , |fi − f̂i| 6 fi/ln2(1/ε)] > 1− δ/6

Again by applying Chernoff bound and union bound we get
the following.

Pr[∀i ∈ U with fi > 2mε ln(1/ε), |fi − f̂i| 6 fi/2] > 1− δ/6

Hence the items with frequency more than 2mε ln(1/ε) are
approximated up to a multiplicative factor of 1/2 from below
in S3. The counters of these items may be truncated. The
other items with frequency at most 2mε ln(1/ε) are be ap-
proximated up to (1±1/ln2(1/ε)) relative error and thus up to
an additive error of εm/3. The counters of these items would
not get truncated. Hence the item with minimum counter
value in S3 is the item with minimum frequency up to an
additive εm.

We need O(ln(1/εδ)) bits of space for the bit vector B1

for the set S1. We need O(ln2(1/εδ)) bits of space for the
set S2 and O((1/ε) ln ln(1/εδ)) bits of space for the set S3

(by the choice of truncation threshold). We need an addi-
tional O (ln lnm) bits of space for sampling using Lemma 1.



Moreover, using the data structure of Section 3.3 of [23] Al-
gorithm 3 can be performed in O(1) time. Alternatively, we
may also use the strategy described in Section 3.1 of spread-
ing update operations over several insertions to make the
cost per insertion be O(1).

Theorem 3. Assume the length of the stream
is known beforehand. Then there is a randomized
one-pass algorithm A for the ε-Maximum problem
which succeeds with probability at least 1 − δ using
O (min{1/ε, n}(log 1/ε + log log 1/δ) + logn+ log logm) bits
of space. Moreover, the algorithm A has an update time of
O(1).

Proof. Instead of maintaining the table T2 in Algo-
rithm 1, we just store the actual ID of the item with maxi-
mum frequency in the sampled items.

Theorem 5. Assume the length of the stream is
known beforehand. Then there is a randomized one-
pass algorithm A for (ε, ϕ)-List Borda problem
which succeeds with probability at least 1 − δ using
O
(
n
(
logn+ log 1

ε
+ log log 1

δ

)
+ log logm

)
bits of space.

Proof. Let ` = 6ε−2 log(6nδ−1) and p = 6 /̀m. On each
insertion of a vote v, select v with probability p and store
for every i ∈ [n], the number of candidates that candidate i
beats in the vote v. Keep these exact counts in a counter of
length n.

Then it follows from the proof of Theorem 1 that ` 6
|S| 6 11` with probability at least (1 − δ/3). Moreover,
from a straightforward application of the Chernoff bound
(see [24]), it follows that if ŝ(i) denotes the Borda score of
candidate i restricted to the sampled votes, then:

Pr

[
∀i ∈ [n],

∣∣∣∣ m|S| ŝ(i)− s(i)
∣∣∣∣ < εmn

]
> 1− δ

The space complexity for exactly storing the counts is
O(n log(n`)) = O(n(logn + log ε−1 + log log δ−1)) and the
space for sampling the votes is O(log logm) by Lemma 1.

Theorem 6. Assume the length of the stream is
known beforehand. Then there is a randomized one-
pass algorithm A for (ε, ϕ)-List maximin problem
which succeeds with probability at least 1 − δ us-
ing O

(
nε−2 log2 n+ nε−2 logn log δ−1 + log logm

)
bits of

space.

Proof. Let ` = (8/ε2) ln(6n/δ) and p = 6 /̀m. We put
the current vote in a set S with probability p. Then it
follows from the proof of Theorem 1 that ` 6 |S| 6 11`
with probability at least (1 − δ/3). Suppose |S| = `1; let
S = {vi : i ∈ [`1]} be the set of votes sampled. Let DS(x, y)
be the weight of the edge in the weighted majority graph
constructed from the votes in S for items x, y ∈ U . Then
by the choice of ` it follows that |DS(x, y)m/`1−DE(x, y)| 6
εm/2 for every item x, y ∈ U [24]. Note that each vote can
be stored in O(n lnn) bits of space. Hence simply finding
DS(x, y) for every x, y ∈ U by storing S and returning all
the items with maximin score at least ϕ`1 in S requires
O
(
n ln2 n ln(1/δ)/ε2 + ln lnm

)
bits of memory.

Rather than simply storing all the items, we can do as
follows. From S, we generate another stream S̄ of elements
belonging to the universe U × U . Let a vote v ∈ S be c1 �

c2 � · · · � cn. From v we put (cj , ck) in S̄ for every j <
k. We count the frequency of every item in S by simply
keeping one counter for every items in the universe U×U and
output all the items with maximin score at least ϕ`1 in S.
This requires O

(
n2 (ln lnn+ ln(1/ε + ln ln(1/δ))}+ ln lnm

)
bits of space. The correctness of the algorithm follows from
the argument above.

Lemma 5. R1-way
δ (ε − Perm) = Ω(n log(1/ε)), for any

constant δ < 1/10.

Proof. Let us assume σ, the permutation Alice has, is
uniformly distributed over the set of all permutations. Let τj
denotes the block the item j is in for j ∈ [n], τ = (τ1, . . . , τn),
and τ<j = (τ1, . . . , τj−1). Let M(τ) be Alice’s message to
Bob, which is a random variable depending on the random-
ness of σ and the private coin tosses of Alice. Then we
have R1−way(ε − Perm) > H(M(τ)) > I(M(τ); τ). Hence
it is enough to lower bound I(M(τ); τ). Then we have the
following by chain rule.

I(M(τ); τ) =

n∑
j=1

I(M(τ); τj |τ<j)

=

n∑
j=1

H(τj |τ<j)−H(τj |M(τ), τ<j)

>
n∑
j=1

H(τj |τ<j)−
n∑
j=1

H(τj |M(τ))

= H(τ)−
n∑
j=1

H(τj |M(τ))

The number of ways to partition n items into 1/ε blocks
is n!/((εn)!)(

1/ε) which is Ω((n/e)n/(εn/e)n). Hence we have
H(τ) = n log(1/ε). Now we consider H(τj |M(τ)). By the
correctness of the algorithm, Fano’s inequality, we have
H(τj |M(τ)) 6 H(δ) + (1/10) log2((1/ε) − 1) 6 (1/2) log(1/ε).
Hence we have the following.

I(M(τ); τ) > (n/2) log(1/ε)

Lemma 6. R1-way
δ (Greater-thann) = Ω(logn), for ev-

ery δ < 1/4.

Proof. We reduce the Augmented-indexing2,dlogne+1

problem to the Greater-thann problem thereby prov-
ing the result. Alice runs the Greater-thann protocol
with its input number whose representation in binary is
a = (x1x2 · · ·xdlogne1)2. Bob participates in the Greater-
thann protocol with its input number whose representa-
tion in binary is b = (x1x2 · · ·xi−11 0 · · · 0︸ ︷︷ ︸

(dlogne−i+1) 0′s

)2. Now

xi = 1 if and only if a > b.


	Introduction
	Our Contributions
	Motivations for Variants of Heavy Hitters

	Preliminaries
	Model of Input Data
	Communication Complexity
	Model of Computation
	Universal Family of Hash Functions
	Problem Definitions

	Algorithms
	List Heavy Hitters
	A simpler, near-optimal algorithm
	An optimal algorithm

	Maximum
	Minimum
	Borda and Maximin
	Unknown stream length

	Hardness
	Communication Complexity
	Reductions


