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Abstract
The equality problem is usually one’s first encounter with communication complexity and is
one of the most fundamental problems in the field. Although its deterministic and randomized
communication complexity were settled decades ago, we find several new things to say about the
problem by focusing on three subtle aspects. The first is to consider the expected communication
cost (at a worst-case input) for a protocol that uses limited interaction—i.e., a bounded number
of rounds of communication—and whose error probability is zero or close to it. The second is
to treat the false negative error rate separately from the false positive error rate. The third is
to consider the information cost of such protocols. We obtain asymptotically optimal rounds-
versus-cost tradeoffs for equality: both expected communication cost and information cost
scale as Θ(log log · · · logn), with r− 1 logs, where r is the number of rounds. These bounds hold
even when the false negative rate approaches 1. For the case of zero-error communication cost,
we obtain essentially matching bounds, up to a tiny additive constant. We also provide some
applications.
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1 Introduction

1.1 Context
Over the last three decades, communication complexity [44] has proved itself to be among
the most useful of abstractions in computer science. A number of basic problems in com-
munication complexity have found a wide range of applications throughout the theory of
computing, with equality, index, and disjointness being notable superstars.

Revisiting these basic problems and asking more nuanced questions or studying natural
variants has extended their range of application. We highlight two examples. Our first
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example is disjointness. The optimal Ω(n) lower bound for this problem [29, 41] was al-
ready considered one of the major results in communication complexity before disjointness
was revisited in the multi-party number-in-hand model to obtain a number of data stream
lower bounds [3, 4, 13, 23] culminating in optimal space bounds for the (higher) frequency
moments. Later, disjointness was revisited in an asymmetric communication setting [40]
yielding an impressive array of lower bounds for data structures in the cell-probe model.
Very recently, disjointness was revisited yet again in a high-error setting, yielding deep
insights into extended formulations for the max-clique problem [8]. Our second example
is index. The straightforward Ω(n) lower bound on its one-way communication complex-
ity [1] is already an important starting point for numerous other lower bounds. Revisiting
index in an interactive communication setting and considering communication tradeoffs has
led to new classes of data stream lower bounds for memory-checking problems [34, 12, 14].
Separately, lower bounding the quantum communication complexity of index [39] has led,
among other things, to strong lower bounds for locally decodable codes [30, 16].

1.2 Our Results
In this work we revisit the equality problem: Alice and Bob each hold an n-bit string,
and their task is to decide whether these strings are equal. This is arguably the most
basic communication problem that admits a nontrivial protocol: using randomization and
allowing a constant error rate, the problem can be solved with just O(1) communication (this
becomes O(logn) if one insists on private coins only); see, e.g., Kushilevitz and Nisan [32,
Example 3.13] and Freivalds [22]. This is why a student’s first encounter with communication
complexity is usually through the equality problem. Such a fundamental problem deserves
the most thorough of studies.

At first glance, equality might appear “solved”: its deterministic communication com-
plexity is at least n, whereas its randomized complexity is O(1) as noted above, as is its
information complexity [6] (for more on this, see Section 1.3). However, one can ask the
following more nuanced question. What happens if Alice and Bob want to be certain (or
nearly certain) that their inputs are indeed equal when the protocol directs them to say so?
And what happens if Alice and Bob want to run a protocol with limited interaction, i.e., a
bounded number of back-and-forth rounds of communication?

Formally, let eqn : {0, 1}n×{0, 1}n → {0, 1} denote the Boolean function that underlies
this communication problem, defined by eqn(x, y) = 1 ⇐⇒ x = y. Consider the zero-error
case: the players must always correctly output eqn(x, y) on every input (x, y). However, the
players may use a randomized protocol and their goal is to minimize the expected number
of bits they exchange. If their protocol is required to use only one round—this means that
Alice sends a message to Bob, who then outputs the answer—then it is easy to see that
Alice’s message must uniquely identify her input to Bob. From this it is easy to show that
on some input, x, Alice must send at least n bits to Bob, even in expectation.

Things improve a lot if one allows two rounds of communication—Alice sends a message
to Bob, who replies to Alice, who then outputs the answer. Using standard techniques, Alice
can send Bob a dlogne-bit1 fingerprint of x. When x 6= y, this fingerprint demonstrates with
probability at least 1 − 1/n that eqn(x, y) = 0. If necessary, Bob responds to this failure
by sending y to Alice, which costs only 1 bit in expectation. The net result is an expected
communication cost of O(logn) on unequal inputs, and O(n) on equal inputs. Generalizing

1 Throughout this paper we use “log” to denote the logarithm to the base 2.
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this idea, we obtain an r-round protocol where the expected cost drops to O(ilogr−1 n) on
unequal inputs, where ilogj n := log log · · · logn (with j logs).

Our main high-level message in this work is that the above tradeoff between the number of
rounds and the communication cost is optimal, and that this remains the case even allowing
for some false positives, even allowing for a false negative rate of 1 − o(1), and even if
we consider information cost. We shall get precise about information cost measures in
Section 2, but for now we remark that an information cost lower bound is stronger than a
communication cost bound, even in our expected-cost model.

While our main focus is on equality, our rounds-versus-information tradeoff can be ap-
plied to three other problems: or-equality, disjointness, and private-intersection.
It is well known that information cost has clean direct-sum properties [15, 4, 5]. Together
with our results for equality, this gives us lower bounds for the bounded-round random-
ized communication complexity of the or-equality problem, whose underlying function
is oreqn,k : {0, 1}nk × {0, 1}nk → {0, 1}, defined by oreqn,k(x1, . . . , xk, y1, . . . , yk) =∨k
i=1 eqn(xi, yi): Alice holds each xi ∈ {0, 1}n and Bob holds each yi ∈ {0, 1}n. The

oreq problem is closely related to disjointness, especially the variant called small set
disjointness or k-disjN . Here, Alice and Bob are given sets A,B ⊆ {1, 2, . . . , N} respec-
tively, with the promise that |A| ≤ k and |B| ≤ k, where 1 ≤ k ≤ N . Their goal is to
output 1 iff A∩B = ∅. Using this close relation (see Lemma 54 for a formal treatment), we
obtain bounded-round lower bounds for k-disj as well. For low-error protocols, our bounds
asymptotically match those recently given by Sağlam and Tardos [42]; our proof is quite
different and should be of independent interest. Additionally, our lower bound also allows
a false negative rate of 1− o(1) — we show that if players only need to verify equal inputs
with probability, say, 0.001, the problem remains difficult.

Another key property is that information cost is a measure of privacy of a protocol for
a function f . Klauck [31] defines2 the privacy of a protocol Π with respect to a distribution
µ:

PRIVµ(Π) := I(X : Π(X,Y ) | Y, f(X,Y )) + I(Y : Π(X,Y ) | X, f(X,Y )) .

This definition coincides with ICµ(Π) up to the conditioning on f(X,Y ) in the mutual
information expressions. However, in many cases, including this paper, this conditioning
does not asymptotically affect the definition, and one has PRIVµ(Π) = Θ(icostµ(Π)). One
can then naturally define PRIVδ(f) = minδ-error Π maxinput dist µ PRIVµ(Π), and one has
that PRIVδ(f) = Θ(ICδ(f)).

There is a large body of work on trying to solve equality privately. These are known as
private equality tests in the cryptography and privacy literature [19, 38]. A harder problem
is that of determining the intersection A∩B of sets A,B in some finite universe, where each
of |A| and |B| is promised to be at most k. This is a fundamental problem studied in private
datamining, see, e.g., the work by Freedman et al. [21]. We refer to the latter problem as
the private-intersection problem. It is worth noting that the private-intersection
problem is studied both under computational assumptions on the players, as in the work
by Freedman et al. [21], and also using information-theoretic notions of privacy, such as
PRIVδ(f), as in the work by Ada et al. [2]. Note that for the private-intersection
problem, we are asking for a correct protocol which reveals as little information about A
and B as possible, with no constraints on the communication.

2 We have replaced the max in Klauck’s definition with a sum; this agrees with Klauck’s original definition
up to a factor of 2.
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While the information complexity of private-intersection is known to be Θ(k), in
certain applications the players can only exchange messages in a bounded number r of
rounds, since, e.g., the number of rounds is related to the overall latency of the protocol.
The number of rounds may in fact influence the latency drastically while the actual number
of bits communicated may not. This is because the more interactive protocols are, i.e., the
larger the number of rounds, the more coordination is needed between the players, which
may not be possible if, e.g., a player goes offline.

We apply our information complexity lower bound for equality to the private-intersection
problem in which each player should locally output the entire set intersection S ∩ T . Our
information complexity lower bound for equality can be combined with a recent direct
sum theorem with aborts, which (roughly speaking) states that the information complexity
of solving all k copies of a problem is k times the information cost of solving each copy
with a protocol that is allowed to output “abort” with a constant 1/10 probability but,
conditioned on non-abortion, is correct with a very high 1 − 1/k probability [37].3 By
changing such a protocol for equality so that whenever it would have output “abort”, it
instead declares that x 6= y, we show how to obtain an Ω(k ilogr k) information cost bound
for private-intersection for any r-round protocol with constant success probability. As
I(Π : S | T, S ∩ T ) + I(Π : T | S, S ∩ T ) = I(Π : S | T ) + I(Π : T | S)± O(k), it follows that
PRIV1/3(private-intersection) = Ω(k ilogr k).

For a concise (yet technically precise) listing of our results, please see Section 2.

1.3 Related Work
The study of the equality problem goes back to the original communication complex-
ity paper of Yao [44], who showed that the deterministic communication complexity of
eqn is at least n, using a fooling set argument. Mehlhorn and Schmidt [35] developed
the rank lower bound technique, which can recover this result. They further examined or-
equality, giving a lower bound of nk bits for deterministic protocols that compute oreqn,k
via the rank technique. They also gave O(n + logn) and O(n logn) bounds for the nonde-
terministic and co-nondeterministic communication complexities of oreqn,n, respectively.
Furthermore, they studied the “Las Vegas” communication complexity of oreqn,n, which
brought them close to some of the things we study here. Specifically, they gave a zero-error
private-coin randomized protocol such that the expected communication cost on any inputs
(x1, . . . , xn, y1, . . . , yn) is at most O(n(logn)2).

Feder et al. [20] studied the randomized communication complexity of equality in the
direct-sum setting. Here, players have k strings each and must compute (eqn(x1, y1), . . . ,eqn(xk, yk)):
thus, the output is a k-bit string. Feder et al. showed that O(k) communication suffices to
compute equality on all k instances, with error exponentially small in k. This shows that
the “amortized” communication complexity of eqn is O(1), even under tiny error. More

3 It is crucial for us to use a strong direct sum theorem of [37] in the lower bound for private-
intersection. Unlike generic direct sum and direct product theorems which apply to any function the
strong direct sum of [37] only applies to Equality-type functions but gives a much stronger guarantee
in the constant error regime that we study here. This is in contrast with the bounded round direct prod-
uct theorem of [26, 27] (and other similar results such as [28]), who show that for r-round public-coin
randomized information complexity ICr,pub

1−(1−ε/2)Ω(kε2/r2)(f
k) = Ω

(
(εk/r) · (ICr,pub

ε (f)− O(r2/ε2))
)
,

where ε > 0 is arbitrary (the results of [26, 27] are stated in terms of communication complexity but their
techniques also imply an information cost lower bound). One cannot apply this theorem to our problem,
as one would need to set ε = Θ(k−1/3) to obtain our results. Because ICr,pub

1/k1/3(Equality) = o(k2/3)
this theorem gives a trivial bound.
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recently, Braverman and Rao [9] showed that amortized communication complexity nearly
equals information complexity. Furthermore, Braverman [6] gave a specific protocol for eqn
that has zero error and achieves information cost O(1) regardless of the input distribution.

The problem oreqn,k is potentially easier than the k-fold direct sum of eqn, and has
itself been studied a few times before. Chakrabarti et al. [15] showed that its simultaneous-
message complexity is Ω(k

√
n), which is k times the complexity of eqn in that model.

More recently, Kushilevitz and Weinreb [33] studied the deterministic complexity of oreqn,k
under the promise that xi = yi for at most one i ∈ [k]. Computing oreqn,k under this “0/1
intersection” promise is closely related to the clique-vs.-independent set problem. In this
problem, Alice is given a clique in a graph. Bob is given an independent set, and they must
decide if their inputs intersect. Kushilevitz and Weinreb were able to show that computing
oreqn,k under this promise still requires Ω(kn) communication whenever k ≤ n/ logn.
Extending this lower bound to the setting where k = n is an important open problem with
several implications.

For the k-disj problem, Håstad and Wigderson [25] gave an O(k)-bit randomized pro-
tocol; a matching lower bound follows easily from the Ω(n) lower bound for general dis-
jointness. The Håstad–Wigderson protocol is clever and crucially exploits both the public
randomness and the interactive communication between players. Sağlam and Tardos [42]
extend this protocol to interpolate between the one-round and unbounded-round situations,
showing that to compute k-disj in r rounds, Θ(k ilogr k) bits are necessary and sufficient.
This lower bound extends tight Ω(k log k) lower bounds for one-round protocols recently
given by Dasgupta, Kumar, and Sivakumar [18] and by Buhrman et al. [11]

Since initial announcement of this work [10], we have learned that the communication
complexity lower bound of Sağlam and Tardos [42], together with work of Harsha et al. [24]
also give lower bounds for information complexity of or-equality and similarly disjoint-
ness. Additionally, with the recent direct product theorem for bounded-round communica-
tion complexity of Jain et al. [27] and the existing result equating information and amortized
communication of Braverman and Rao [9] these results also extend to give information com-
plexity lower bounds for bounded-round protocols for equality. Still, equality is one of
the most important communication complexity problems; as such, it deserves careful study.
Our information cost lower bounds are more direct and shed more light on this important
problem. Additionally, previous results do not differentiate between errors for false positives
and false negatives and cannot therefore admit the high false negative rate our bounds apply
to.

The recent work of Braverman et al. [7] is similar in spirit to some of our results. They
consider zero-error communication protocols for the even more fundamental and function,
obtaining exact information cost bounds. From this they derive nearly exact communication
bounds for low-error protocols for disjointness and k-disj. They also consider rounds-vs.-
information tradeoffs for and, showing that the information complexity of r-round protocols
decays as Θ(1/r2). Our work shows that the information complexity of equality decays
exponentially with each additional round.

1.4 Road Map
The rest of the paper is organized as follows. Section 2 gives careful definitions of our
model of computation and error and cost measures, followed by a listing of all our results.
The listing provides pointers to later sections of the paper where these results are proved.
Section 3 provides a sketch of our main result, which gives an information cost lower bound
for equality.
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We include complete details of our results including full proofs in the Appendix. Sec-
tion A gives basic definitions and lemmas relating to information theory. The next two
sections provide some warm-up. Section B gives upper bounds for equality including
the iterated-log upper bound described informally above. Section C gives matching lower
bounds for expected communication cost, first under zero error and then under two-sided
error. Though the proofs in Sections B and C are not too complex, the combined story
they tell is important. Together, these results paint a nearly complete picture of the be-
havior of equality in a bounded-round expected-communication setting, and highlight the
importance of studying yes and no instances separately.

Section D contains the full proof of our Main Theorem, which gives an information
cost lower bound for equality. Section E obtains lower bounds for oreq and k-disj
as an application of the Main Theorem. Finally, Section F obtains lower bounds for
private-intersection.

2 Definitions and Formal Statement of Results

Throughout this paper we reserve the symbols “n” for input length of equality instances,
“k” for list length of or-equality instances and set size of k-disj instances, and “N” for
universe size of k-disj instances. Many definitions and results will be parametrized by these
quantities but to keep the notation clean we shall not make this parametrization explicit.
We tacitly assume that n, k and N are sufficiently large integers.

Unless otherwise stated, all communication protocols appearing in this paper are public-
coin randomized protocols involving two players named Alice and Bob. Because our work
concerns expected communication cost in a bounded-round setting, we make the following
careful definition of what communication is allowed. In each round, the player whose turn
it is to speak sends the other player a message from a prefix-free subset4 of {0, 1}∗. This
subset can depend on the communication history. After the final round in the protocol, the
player that receives the last message announces the output (which, for us, is always a single
bit): this announcement does not count as a round.

Let P be a communication protocol that takes inputs (x, y) ∈ X × Y. The transcript of
P on input (x, y) is defined to be the concatenation of the messages sent by the players, in
order, as they execute P on (x, y). We denote this transcript by P(x, y) and remark that
it is, in general, a random variable. We include the output as the final “message” in the
transcript. We denote the output of a transcript t by out(t). We denote the length of a
binary string z by |z|. The communication cost and worst-case communication cost of P on
input (x, y) are defined to be

cost(P;x, y) := E
[
|P(x, y)|

]
, and cost*(P;x, y) := max |P(x, y)| ,

where the expectation and the max are taken over the protocol’s random coin tosses.
We now define complexity measures based on this notion of communication cost. Ordi-

narily we would just define the communication complexity of a function f as the minimum
over protocols for f of the worst-case (over all inputs) cost of the protocol. When f = eqn,
such a measure turns out to be too punishing, and hides the subtleties that we seek to study.
Notice that the r-round protocol outlined in Section 1.2 achieves its cost savings only on
unequal inputs, i.e., on f−1(0). On inputs in f−1(1), the protocol ends up costing at least

4 A set of strings is said to be prefix-free if no string in the set is a proper prefix of any other.
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n bits. The intuition is that it is much cheaper for Alice and Bob to refute the purported
equality of their inputs than to verify it. Indeed, verification is so hard that interaction has
no effect on the verification cost, whereas each additional round of communication decreases
refutation cost exponentially.

In fact, this intuition can be turned into precise theorems, both in zero-error and positive-
error settings, as we shall see. To formalize things, we now define a family of complexity
measures.

I Definition 1 (Cost, Error, and Complexity Measures). Let P be a protocol that is supposed
to compute a Boolean function f : X ×Y → {0, 1}. We define its refutation cost, verification
cost, overall cost, refutation error (or false positive rate, or soundness error), and verification
error (or false negative rate, or completeness error) as follows, respectively:

rcost(P) := max(x,y)∈f−1(0) cost(P;x, y) ,
vcost(P) := max(x,y)∈f−1(1) cost(P;x, y) ,
cost(P) := max(x,y)∈X×Y cost(P;x, y) ,
rerr(P) := max(x,y)∈f−1(0) Pr[out(P(x, y)) = 1] ,
verr(P) := max(x,y)∈f−1(1) Pr[out(P(x, y)) = 0] .

Let λ be a probability distribution on the input space X × Y. We then define the λ-
distributional error errλ(P) as well as the λ-distributional refutation cost, etc., as follows:

rcostλ(P) := E(X,Y )∼λ[cost(P;X,Y ) | f(X,Y ) = 0] ,
vcostλ(P) := E(X,Y )∼λ[cost(P;X,Y ) | f(X,Y ) = 1] ,
costλ(P) := E(X,Y )∼λ[cost(P;X,Y )] ,
rerrλ(P) := E(X,Y )∼λ[Pr[out(P(X,Y )) = 1 | f(X,Y ) = 0]] ,
verrλ(P) := E(X,Y )∼λ[Pr[out(P(X,Y )) = 0 | f(X,Y ) = 1]] ,
errλ(P) := E(X,Y )∼λ[Pr[out(P(X,Y )) 6= f(X,Y )] .

We shall usually restrict P to be deterministic when considering these distributional mea-
sures. Although these measures depend on both P and f , we do not indicate f in our
notation to keep things simple.

Let r ≥ 1 be an integer and let ε, δ ∈ [0, 1] be reals. We define the r-round randomized
refutation complexity and r-round λ-distributional refutation complexity of f as follows,
respectively:

R(r),ref
ε,δ (f) := min{rcost(P) : P uses r rounds, rerr(P) ≤ ε, verr(P) ≤ δ} ,

Dλ,(r),ref
ε,δ (f) := min{rcostλ(P) : P is deterministic and uses r rounds, rerrλ(P) ≤ ε, verrλ(P) ≤ δ} .

We also define measures of verification complexity and overall complexity analogously, re-
placing “rcost” above with “vcost” and “cost” respectively, and denote them by

R(r),ver
ε,δ (f) , Dλ,(r),ver

ε,δ (f) , R(r)
ε,δ(f) , and Dλ,(r)

ε,δ (f) ,

respectively. We define the total complexity of f as follows:

R∗,(r)ε,δ (f) := min{cost*(P) : P uses r rounds, rerr(P) ≤ ε, verr(P) ≤ δ} , where

cost*(P) := max(x,y)∈X×Y cost*(P;x, y) .
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Notice that refutation, verification, and overall complexities use (expected) communication
cost as the underlying measure, whereas total complexity uses the (more standard) worst-
case communication cost.

I Definition 2 (Information Cost and Complexity). Let P, f , and λ be as above, and suppose
the players in P are allowed to use private coins in addition to a public random string R.
The λ-information cost of P and the r-round λ-information complexity of f are defined as
follows, respectively:

icostλ(P) := I(XY : P(X,Y ) | R) ,

ICλ,(r)ε,δ (f) := inf{icostλ(P) : P uses r rounds, rerr(P) ≤ ε, verr(P) ≤ δ} .

where I(_ : _ | _) denotes conditional mutual information. For readers familiar with recent
literature on information complexity [5, 6], we note that this is technically the “external”
information cost rather than the “internal” one. However, we shall study information costs
mostly with respect to a uniform input distribution, and in this setting there is no difference
between external and internal information cost.

It has long been known that information complexity lower bounds standard worst-case
communication complexity: this was the main reason for defining the notion [15]. The
simple proof boils down to

I(XY : P(X,Y ) | R) ≤ H(P(X,Y )) ≤ max |P(X,Y )| .

In our setting, with communication cost defined in the expected sense, it is still the case
that

ICλ,(r)ε,δ (f) ≤ R(r)
ε,δ(f) (1)

This time the proof boils down to the inequality H(P(X,Y )) ≤ E[ |P(X,Y )| ], which follows
from Shannon’s source coding theorem (see Fact 29 in appendix).

2.1 Summary of Results: Equality
The functions eqn and oreqn,k have been defined in Section 1 already. To formalize our
bounds for these problems, we introduce the iterated logarithm functions ilogk : R+ → R+,
which are defined as follows.

ilog0 z := max{1, z} , ∀ z ∈ R+ ,

ilogk z := max{1, log(ilogk−1 z)} , ∀ k ∈ N, z ∈ R+ .

For all practical purposes, we may pretend that ilog0 = id, and ilogk = log ◦ ilogk−1, for
k ∈ N.

We use ξ to denote the uniform distribution on {0, 1}n, and put µ := ξ ⊗ ξ. Thus µ is
the uniform distribution on inputs to eqn. Strictly speaking these should be denoted ξn and
µn, but we choose to let n be understood from the context. In all our complexity bounds,
we tacitly assume that n is sufficiently large. The various parts of the summary theorems
below are proved later in the paper, and we indicate on the right where these detailed proofs
can be found.

I Theorem 3 (Zero-Error Bounds). The complexity of equality satisfies the following
bounds:
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1. R(r),ref
0,0 (eqn) ≤ ilogr−1 n+ 3.

2. R(r),ver
0,0 (eqn) ≤ n.

3. R(r),ref
0,0 (eqn) = Dµ,(r),ref

0,0 (eqn) ≥ ilogr−1 n− 1. [Theorem 32]
4. R(r),ver

0,0 (eqn) = Dµ,(r),ver
0,0 (eqn) ≥ n. [Theorem 35]

Notice that these bounds are almost completely tight, differing at most by the tiny
additive constant 4. Next, we allow our protocols some error. We continue to have bounds
tight up to an additive constant for the verification cost (the case of one-sided error is
especially interesting: just set δ = 0 in the results below), and we have bounds tight up to
a multiplicative constant in the other cases. To better appreciate the next several bounds,
let us first consider the “trivial” one-round protocol for eqn that achieves ε refutation
error. This protocol communicates min{n, log(1/ε)} bits: it’s as though the instance size
drops from n to min{n, log(1/ε)} when we allow this refutation error. This motivates the
following definition.

I Definition 4 (Effective Instance Size). When considering protocols for eqn with refutation
and verification errors bounded by ε and δ, respectively, we define the effective instance size
to be

n̂ := min{n+ log(1− δ), log((1− δ)2/ε)} .

I Theorem 5 (Two-Sided-Error Bounds). equality satisfies the following:

5. R(r),ref
ε,δ (eqn) ≤ (1− δ) ilogr−1 n̂+ 5. [Corollary 26]

6. R(r),ver
ε,δ (eqn) ≤ (1− δ)n̂+ 3. [Corollary 27]

7. Dµ,(r),ver
ε,δ (eqn) ≥ (1− δ)(n̂− 1) . [Theorem 43]

8. R(r),ver
ε,δ (eqn) ≥ 1

8 (1− δ)2(n̂+ log(1− δ)− 5). [Theorem 44]
9. Dµ,(r),ref

ε,δ (eqn) = Ω((1 − δ)2 ilogr−1 n̂). This bound holds for all ε, δ such that δ ≤
1− 2−n/2 and ε/(1− δ)2 < 1/8. [Theorem 41]

10. R(r),ref
ε,δ (eqn) = Ω((1−δ)3 ilogr−1 n̂). This bound holds for all ε, δ such that δ ≤ 1−2−n/2

and ε/(1− δ)3 ≤ 1/64. [Theorem 42]

Observe that the “constant refutation error” setting ε = O(1) is not very interesting, as
it makes these complexities constant. But observe also that the situation is very different
for the verification error, δ: we continue to obtain strong lower bounds even when δ is very
close to 1. This is in accordance with our intuition that verification (of equality) is much
harder than refutation.

Finally, we turn to information complexity and arrive at the most important result of
this paper.

I Theorem 6 (Main Theorem: Information Complexity Bound). Suppose δ ≤ 1−8(ilogr−2 n̂)−1/8.
Then

11. ICµ,(r)ε,δ (eqn) = Ω((1− δ)3 ilogr−1 n̂). [Theorem 51]

2.1.0.1 Applications.

As applications, we can recover weaker lower bounds for or-equality, disjointness, and
private-intersection. We emphasize that our main result is our thorough study of
equality, including the direct development of information cost bounds for bounded-round
protocols and the analysis of verification vs. refutation error.
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2.2 On Yao’s Minimax Lemma

Distributional lower bounds imply worst-case randomized ones by an averaging argument
that constitutes the “easy” direction of Yao’s minimax lemma [43]. Yet, in Theorem 5
we claim somewhat weaker randomized bounds than the corresponding distributional ones.
The reason is that in our setting, the averaging argument will need to fix the random coins
of a protocol so as to preserve multiple measures (e.g., refutation error as well as cost).
Though this is easily accomplished, we pay a penalty of small constant factor increase in
our measures.

Ironically, the “hard” direction of Yao’s minimax lemma is particularly easy in the case
of eqn, because equality is in a sense uniform self-reducible. See Theorem 25, where we
show how to turn a protocol designed for the uniform distribution into a randomized one
with worst-case guarantees. In this way, the uniform distribution is provably the hardest
distribution for equality.

3 Main Theorem: Bounded-Round Information Complexity of
Equality

In this section we prove Theorem 6, which we think of as the most important result of this
paper. We wish to lower bound the bounded-round information complexity of equality
with respect to the uniform distribution. Recall that we are concerned chiefly with protocols
that achieve very low refutation error, though they may have rather high verification error.
We will prove our lower bound by proving a round elimination lemma for eqn that targets
information cost, and then applying this lemma repeatedly.

This proof has much more technical complexity than our other lower bound proofs. Let
us see why. There are two main technical difficulties and they arise, ultimately, from the
same source: the inability to use (the easy direction of) Yao’s minimax lemma. When
proving a lower bound on communication cost, Yao’s lemma allows us to fix the random
string used by any purported protocol, which immediately moves us into the clean world of
deterministic protocols. This hammer is unavailable to us when working with information
cost. The most we can do is to “average away” the public randomness. We then have to
deal with (private coin) randomized protocols the entire way through the round elimination
argument. As a result, our intermediate protocols, obtained by eliminating some rounds of
our original protocol, do not obey straightforward cost and error guarantees. This is the first
technical difficulty, and our solution to it leads us to the concept of a “kernel” in Definition 7
below.

The second technical difficulty is that we are unable to switch to the simpler case of zero
verification error like we did in the proof of Theorem 5, Parts (9) and (10). Therefore, all
our intermediate protocols continue to have verification error. Since errors scale up with
each round elimination, and the verification error starts out high, we cannot afford even
a constant-factor scaling. We must play very delicately with our error parameters, which
leads us to the somewhat complicated parametrization seen in Definition 8 below.

3.1 The Round Elimination Argument

A standard round elimination argument works by showing that if there is a “good” r-round
protocol, then there exists a “good” (r − 1)-round protocol. What it means to be a “good”
protocol is typically parameterized, with the parameters degrading each time a round is
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eliminated. The trick is to carefully control how the parameters degrade, so that after all
communication has been eliminated, a nontrival problem instance remains.

We follow the same approach for our round elimination argument. Central to our pa-
rameterization of equality protocols is the notion of a kernel. Roughly speaking, we start
by assuming there is an r-round protocol for inputs that are nearly uniformly distributed
over some set S, and we show that after elminating the first message, we can construct a
protocol for inputs nearly uniformly distributed over a set S′ ⊆ S. The sets S, S′ are our
kernels, and they capture where the remaining “action” is.

I Definition 7 (Kernel). Let p and q be probability distributions on {0, 1}n, let S ⊆ {0, 1}n,
and let ` ≥ 0 be a real number. The triple (p, q, S) is defined to be an `-kernel if the following
properties hold.

[K1] H(p) ≥ n− ` and H(q) ≥ n− `.
[K2] p(S) ≥ 2−` and q(S) ≥ 1

2 .
[K3] For all x ∈ S we have q(x) ≥ 2−n−`.

I Definition 8 (Parametrized Protocols). Suppose we have an integer r ≥ 1, and nonnegative
reals `, a, b, and c. A protocol P for eqn is defined to be an [r, `, a, b, c]-protocol if there
exists an `-kernel (p, q, S) such that the following properties hold.

[P1] The protocol P is private-coin and uses r rounds, with Alice speaking in the first
round.

[P2] We have errp⊗q|S×S(P) = Pr(X,Y )∼p⊗q[out(P(X,Y )) 6= eqn(X,Y ) | (X,Y ) ∈ S ×
S] ≤ 2−a.

[P3] We have verrp⊗ξ|S×S(P) = PrX∼p[out(P(X,X)) = 0 | X ∈ S] ≤ 1− 2−b.
[P4] We have icostp⊗q(P) ≤ c.

We alert the reader to the fact that [P2] considers overall error, and not refutation error.
We encourage the reader to take a careful look at [P3] and verify the equality claimed
therein. It is straightforward, once one revisits Definition 1 and recalls that ξ denotes the
uniform distribution on {0, 1}n.

Since we have a number of parameters at play, it is worth recording the following simple
observation.
I Fact 9. Suppose that `′ ≥ `, c′ ≥ c, a′ ≤ a, and b′ ≥ b. Then every `-kernel is also an
`′-kernel, and every [r, `, a, b, c]-protocol is also an [r, `′, a′, b′, c′]-protocol. J

I Theorem 10 (Information-Theoretic Round Elimination for equality). If there exists an
[r, `, a, b, c]-protocol with r ≥ 1 and c ≥ 4, then there exists an [r − 1, `′, a′, b′, c′]-protocol,
where

`′ := (c+ `)2`+2b+7 , a′ := a− (c+ `)2`+2b+8 ,

b′ := b+ 2 , c′ := (c+ 2)2`+2b+6 .

Proof. Let P be an [r, `, a, b, c]-protocol, and let (p, q, S) be an `-kernel satisfying the con-
ditions in Definition 8. Assume WLOG that each message in P is generated using a fresh
random string. Let X ∼ p and Y ∼ q be independent random variables denoting an input to
P. Let M1, . . . ,Mr be random variables denoting the messages sent in P on input (X,Y ),
with Mj being the jth message; note that these variables depend on X,Y , and the random
strings used by the players. We then have

c ≥ icostp⊗q(P) = I(XY : M1M2 . . .Mr) = I(X : M1) + I(XY : M2 . . .Mr |M1) , (2)
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where the final step uses the chain rule for mutual information, and the fact that M1 and Y
are independent. In particular, we have I(X : M1) ≤ c, and so H(X | M1) = H(X)− I(X :
M1) ≥ n− `− c. By Lemma 19,

H(X |M1, X ∈ S) ≥ n− `+ c+ 1
p(S) ≥ n− (`+ c+ 1)2` . (3)

Let M be the set of messages that Alice sends with positive probability as her first
message in P, given the random input X, i.e., M := {m : Pr[M1 = m] > 0}. Consider
a particular message m ∈ M. Let P ′m denote the following protocol for eqn. The players
simulate P on their input, except that Alice is assumed to have sent m as her first message.
As a result, P ′m has r− 1 rounds and Bob is the player to send the first message in P ′m. Let
πm and q′ be the distributions of (X |M1 = m ∧X ∈ S) and (Y | Y ∈ S), respectively.

Observe that icostπm⊗q′(P ′m) = I(XY : M2 . . .Mr | M1 = m ∧ (X,Y ) ∈ S × S). Letting
L denote a random first message distributed identically to M1, we now get

EL
[

icostπL⊗q
′
(P ′L)

]
= I(XY : M2 . . .Mr |M1, (X,Y ) ∈ S × S)

≤ I(XY : M2 . . .Mr |M1) + 1
p(S)q(S) ≤ (c+ 1)2`+1 , (4)

where the first inequality uses Lemma 18 and the second inequality uses (2) and Prop-
erty [K2]. Examining Properties [P2] and [P3], we obtain

EL
[

errπL⊗q
′
(P ′L)

]
= errp⊗q|S×S(P) ≤ 2−a , (5)

EL
[

verrπL⊗ξ(P ′L)
]

= verrp⊗ξ|S×S(P) ≤ 1− 2−b . (6)

I Definition 11 (Good message). A message m ∈ M is said to be good if the following
properties hold:

[G1] H(πm) = H(X |M1 = m ∧X ∈ S) ≥ n− (`+ c+ 1)2`+b+3,
[G2] icostπm⊗q′(P ′m) ≤ 2`+b+4(c+ 1),
[G3] errπm⊗q′(P ′m) ≤ 2−a+b+3,
[G4] verrπm⊗ξ(P ′m) ≤ 1− 2−b−1.

Notice that for all m ∈M we have H(X |M1 = m, X ∈ S) ≤ n. Hence, viewing (3), (4),
(5) and (6) as upper bounds on the expected values of certain nonnegative functions of L,
we may apply Markov’s inequality to these four conditions and conclude that

Pr[L is good] ≥ 1− 2−b−3 − 2−b−3 − 2−b−3 − 1− 2−b

1− 2−b−1 ≥ 2−b−1 − 3 · 2−b−3 > 0 .

Thus, there exists a good message. From now on, we fix m to be such a good message.
We may rewrite the left-hand side of [G4] as EZ∼πm

[Pr[out(P ′m(Z,Z)) = 0]]. So if we
define the set T :=

{
x ∈ S : Pr[out(P ′m(x, x)) = 0] ≤ 1 − 2−b−2} and apply Markov’s

inequality again, we obtain

πm(T ) ≥ 1− 1− 2−b−1

1− 2−b−2 ≥ 2−b−2 . (7)

Defining the distribution p′ := πm | T and the set S′ := {x ∈ T : p′(x) ≥ 2−n−`′}, we now
make two claims.

Claim 1: The triple (q′, p′, S′) is an `′-kernel.
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Claim 2: We have errp′⊗q′|S′×S′(P ′m) ≤ 2−a′ , verrq′⊗ξ|S′×S′(P ′m) ≤ 1−2−b′ , and icostp′⊗q′(P ′m) ≤
c′.

We prove these claims in Appendix D. Notice that these claims essentially say that P ′m has
all the properties listed in Definition 8, except that Bob starts P ′m. Interchanging the roles
of Alice and Bob in P ′m gives us the desired [r− 1, `′, a′, b′, c′]-protocol, which completes the
proof of the theorem.

J

The following easy corollary of Theorem 10 will be useful shortly; we defer its proof to
Appendix D.

I Corollary 12. Let ñ, j, r ∈ N and a, b ∈ R with ñ sufficiently large, j ≥ 1, r ≥ 1, and b ≥ 0.
Suppose there exists an [r, `, a − `, b, `]-protocol, with b ≤ ` = 1

8 ilogj ñ. Then there exists
an [r − 1, `′, a− `′, b+ 2, `′]-protocol with b+ 2 ≤ `′ = (ilogj−1 ñ)1/2 ≤ 1

8 ilogj−1 ñ.

3.2 Finishing the Proof
We are now ready to state and prove the main lower bound on protocols with two-sided
error.

I Theorem 13 (Restatement of Main Theorem). Let ñ = min{n+ log(1− δ), log((1− δ)/ε)}.
Suppose δ ≤ 1− 8(ilogr−2 ñ)−1/8. Then we have ICµ,(r)ε,δ (eqn) = Ω((1− δ)3 ilogr−1 ñ).

Proof. We may assume that r ≤ log∗ ñ, for otherwise there is nothing to prove. The slight
difference between ñ above and n̂, as in Definition 4, is insignificant and can be absorbed
by the Ω(·) notation.

Suppose, to the contrary, that there exists an r-round randomized protocol P∗ for eqn,
with rerrµ(P∗) ≤ ε, verrµ(P∗) ≤ δ and icostµ(P∗) ≤ 2−16(1− δ)3 ilogr−1 ñ. Recall that we
denote the uniform distribution on {0, 1}n by ξ and that µ = ξ ⊗ ξ. We have

errµ(P∗) = (1− 2−n) rerrµ(P∗) + 2−n verrµ(P∗) ≤ ε+ 2−n(δ − ε) ≤ ε+ 2−n .

Let P∗s be the private-coin protocol for eqn obtained from P∗ by fixing the public random
string of P∗ to be s. We have Es[errµ(P∗s )] ≤ ε+2−n, Es[verrµ(P∗s )] ≤ δ, and Es[icost(P∗s )] ≤
2−16(1−δ)3 ilogr−1 ñ. By Markov’s inequality, there exists s such that P∗s simultaneously has
errµ(P∗s ) ≤ 4(ε+2−n)/(1−δ), verrµ(P∗s ) ≤ (1+δ)/2, and icost(P∗s ) ≤ 2−14(1−δ)2 ilogr−1 ñ:
this is because

1− 1− δ
4 − 2δ

1 + δ
− 1− δ

4 = (1− δ)2

2(1 + δ) > 0 .

Let P = P∗s for this s. Then (ξ, ξ, {0, 1}n) is a 0-kernel and P is an [r, 0, log 1−δ
4(ε+2−n) , log 2

1−δ , 2−14(1−
δ)2 ilogr−1 ñ]-protocol. Recalling Fact 9 and using log 1−δ

ε+2−n ≥ ñ− 1, we see that

P is an
[
r, 0, ñ− 3, log 1

1−δ + 1, 2−14(1− δ)2 ilogr−1 ñ
]
-protocol.

Put `j := 1
8 ilogj ñ for j ∈ N. Applying round elimination (Theorem 10) to P and weakening

the resulting parameters (using Fact 9) gives us an [r − 1, `r−1, ñ− `r−1, log 1
1−δ + 3, `r−1]-

protocol P ′.
The upper bound on δ gives us log 1

1−δ +3 ≤ `r−1, and so the conditions for Corollary 12
apply. Starting with P ′ and applying that corollary repeatedly, each time using the looser
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estimate on `′ in that corollary, we obtain a sequence of protocols with successively fewer
rounds. Eventually we reach a [1, `1, ñ − `1, log 1

1−δ + 2(r − 1) + 1, `1]-protocol. Apply-
ing Theorem 10 one more time, and using the tighter estimate on `′ this time, we get a
[0, ñ1/2, ñ− ñ1/2, log 1

1−δ + 2r + 1, ñ1/2]-protocol Q. Weakening parameters again, we see
that Q is a [0, ñ1/2, 1

2 ñ,
1
3 log ñ, ñ1/2]-protocol. Let (p, q, S) be the ñ1/2-kernel for Q. By

Property [K1], we have H(q) ≥ n− ñ1/2. Using Lemma 19 and Property [K2], we then have

H(q | S) ≥ n− ñ1/2 + 1
q(S) ≥ n− (2ñ1/2 + 2) . (8)

Since Q involves no communication, it must behave identically on any two input dis-
tributions that have the same marginal on Alice’s input. In particular, this gives us the
following crucial equation:

Pr
X∼p

[out(Q(X,X)) = 1 | X ∈ S] = Pr
(X,Y )∼p⊗q

[out(Q(X,Y )) = 1 | (X,Y ) ∈ S × S] . (9)

Let α denote the above probability. Considering the left-hand side of (9), we have

α = 1− verrp⊗ξ|S×S(Q) ≥ 2− 1
3 log ñ = ñ−1/3 . (10)

On the other hand, whenever Q outputs 1 on an input (x, y), then either x = y or Q errs
on (x, y). Therefore, considering the right-hand side of (9), we have

α ≤ Pr
(X,Y )∼p⊗q

[X = Y | (X,Y ) ∈ S × S] + Pr
(X,Y )∼p⊗q

[out(P(X,Y )) 6= eqn(X,Y ) | (X,Y ) ∈ S × S]

≤ max
x∈S

Pr
Y∼q|S

[Y = x] + errp⊗q|S×S(Q)

≤ 2ñ1/2 + 3
n

+ 2− 1
2 ñ (11)

≤ 2ñ−1/2 + 3ñ−1 + 2− 1
2 ñ , (12)

where (11) follows from (8) by applying Lemma 20, and (12) uses ñ ≤ n.
The bounds (10) and (12) are in contradiction for sufficiently large ñ, which completes

the proof. J
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40 Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011.

41 Alexander Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992. Preliminary version in Proc. 17th International Colloquium on
Automata, Languages and Programming, pages 249–253, 1990.

42 Mert Saglam and Gábor Tardos. On the communication complexity of sparse set disjoint-
ness and exists-equal problems. In Proc. 54th Annual IEEE Symposium on Foundations of
Computer Science, pages 678–687, 2013.

43 Andrew C. Yao. Probabilistic computations: Towards a unified measure of complexity. In
Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, pages 222–227,
1977.



J. Brody and A. Chakrabarti and R. Kondapally and D. P. Woodruff and G. Yaroslavtsev 17

44 Andrew C. Yao. Some complexity questions related to distributive computing. In Proc.
11th Annual ACM Symposium on the Theory of Computing, pages 209–213, 1979.

A Information theory

A.1 Basic probability, properties of entropy and mutual information
We will use the following fact about collision probability of a random function.
I Fact 14. Given a subset S ⊆ [n] for size |S| ≥ 2, i ≥ 0 and t = Θ(|S|i+2), a random
function h : [n] → [t] has no collisions with probability at least 1 − 1/|S|i, namely for all
x, y ∈ S such that x 6= y it holds that h(x) 6= h(y). Moreover, a random hash function
satisfying such guarantee can be constructed using only O(logn) random bits.

I Definition 15. Let λ be a probability distribution on a finite set S and let T ⊆ S be an
event with λ(T ) 6= 0. We write λ | T to denote the distribution obtained by conditioning λ
on T . To be explicit, λ | T is given by

(λ | T )(x) =
{

0 , if x /∈ T ,
λ(x)/λ(T ) , if x ∈ T .

Also, we write H(λ) to denote the entropy of a random variable distributed according to λ,
i.e., H(λ) = H(X), where X ∼ λ.

I Lemma 16 (Equivalent to Lemma 30). With λ, S and T as above, let f : S → R+ be a
nonnegative function. Then EX∼λ|T [f(X)] ≤ EX∼λ[f(X)]/λ(T ). J

We give a summary of basic properties of the entropy of a discrete random variable X,
denoted as H(X), and the mutual information between two discrete random variables X
and Y , denoted as I(X : Y ) = H(X) − H(X | Y ), below (see Chapter 2 in [17] for the
proofs). We denote the support of a random variable X as supp(X).
I Proposition 17. 1. Entropy span: 0 ≤ H(X) ≤ log |supp(X)|.
2. I(X : Y ) ≥ 0 because H(X | Y ) ≤ H(X).
3. Chain rule: I(X1, X2, . . . , Xn : Y | Z) =

∑n
i=1 I(Xi : Y | X1, . . . , Xi−1, Z).

4. Subadditivity: H(X,Y | Z) ≤ H(X | Z) + H(Y | Z), where the equality holds if and
only if X and Y are independent conditioned on Z.

5. Fano’s inequality: Let A be a random variable, which can be used as “predictor” of X,
namely there exists a function g such that Pr[g(A) = X] ≥ 1 − δ for some δ < 1/2. If
|supp(X)| ≥ 2 then H(X | A) ≤ δ log(|supp(X)|− 1) +h2(δ), where h2(δ) = δ log(1/δ) +
(1− δ) log 1

1−δ is the binary entropy.

I Lemma 18. Let Z,W be jointly distributed random variables. Let E be an event. Then,

I(Z : W ) ≥ Pr[E ] I(Z : W | E)− 1 .

Proof. Let D be the indicator random variable for E . Then we have

I(Z : W | D) = Pr[E ] I(Z : W | E) + Pr[¬E ] I(Z : W | ¬E) ≥ Pr[E ] I(Z : W | E) . (13)

Note that I(Z : D | W ) ≤ H(D | W ) ≤ H(D) ≤ 1. Using the chain rule for mutual
information twice, we get

I(Z : W | D) ≤ I(Z : WD) = I(Z : W ) + I(Z : D |W ) ≤ I(Z : W ) + 1 . (14)

The lemma follows by combining inequalities (13) and (14). J
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To appreciate the next two lemmas, it will help to imagine that d� n.

I Lemma 19. Let Z,W be jointly distributed random variables, with Z taking values in
{0, 1}n, and let E be an event. Then

H(Z |W ) ≥ n− d =⇒ H(Z |W, E) ≥ n− (d+ 1)/Pr[E ] .

In particular, taking W to be a constant, we have H(Z) ≥ n− d =⇒ H(Z | E) ≥ n− (d+
1)/Pr[E ].

Proof. We use the fact that the entropy of Z can be at most n, even after arbitrary condi-
tioning. This gives

n− d ≤ H(Z |W )
= Pr[E ] H(Z |W, E) + (1− Pr[E ]) H(Z |W,¬E) + Hb(Pr[E ])
≤ Pr[E ] H(Z |W, E) + (1− Pr[E ])n+ 1 ,

where Hb(x) := −x log x− (1− x) log(1− x). The lemma follows by rearranging the above
inequality. J

I Lemma 20. Let Z be a random variable taking values in {0, 1}n and let z ∈ {0, 1}n. Then

H(Z) ≥ n− d =⇒ Pr[Z = z] ≤ (d+ 1)/n .

Proof. The lemma follows by rearranging the following inequality, which is a consequence
of Lemma 19:

0 = H(Z | Z = z) ≥ n− d+ 1
Pr[Z = z] . J

A.2 Protocols with abortion
We recall standard definitions from information complexity and introduce the information
complexity for protocols with abortion, denoted as ICµα,β,δ(f | ν). Given a communication
problem f : X × Y → Z, consider the augmented space X × Y × D for some D. Let λ be
a distribution over X × Y × D, which induces marginals µ on X × Y and ν on D. We say
that ν partitions µ, if µ is a mixture of product distributions, namely for a random variable
(X,Y,D) ∼ λ, conditioning on any value of D makes the distribution of (X,Y ) product.

To simplify the notation, a δ-protocol for f is one that for all inputs (x, y) ∈ X × Y
computes f(x, y) with probability at least 1− δ (over the randomness of the protocol).

I Definition 21 (Protocols with abortion). Consider a communication problem given by f :
X×Y → Z and a probability distribution µ over X×Y. We say that a deterministic protocol
PD (β, δ)-computes f with respect to µ if it satisfies the following (where (X,Y ) ∼ µ):

1. (Abortion probability) Pr[PD(X,Y ) = ‘abort’] ≤ β
2. (Failure probability) Pr[PD(X,Y ) 6= f(X,Y ) | PD(X,Y ) 6= ‘abort’] ≤ δ.

We can view randomized protocols as distributions over deterministic protocols (both for
private-coin and public-coin protocols). We say that a randomized protocol P (α, β, δ)-
computes f with respect to µ if Pr

PD∼P
[PD (β, δ)-computes f ] ≥ 1 − α. The probability is

taken over all randomness of the parties.
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Using the definitions above we can now introduce the notion of information complexity
for protocols with abortions formally.

I Definition 22 (Information complexity for protocols with abortion). Let P be a protocol,
which computes f . The conditional information cost of P under λ is defined as I(P(X,Y ) :
X,Y | D), where (X,Y,D) ∼ λ. The conditional information complexity of f with respect
to λ, denoted by ICµ,δ(f | ν), is defined as the minimum conditional information cost of
a δ-protocol for f . The information complexity with aborts, denoted by ICµα,β,δ(f | ν), is
the minimum conditional information cost of a protocol that (α, β, δ)-computes f . The
analogous quantities ICµ,(r)δ (f | ν) and ICµ,(r)α,β,δ(f | ν) are defined by taking the respective
minimums over only r-round protocols.

B Upper Bounds

In this section, we provide deterministic and randomized protocols for eqn with low refu-
tation cost and low verification cost. Recall Definition 4, which introduced the quantity
n̂ = min

{
n+ log(1− δ), log (1−δ)2

ε

}
as the effective instance size. One can derive one-sided-

error and zero-error versions of these results by setting δ and/or ε to zero as needed, and
using the convention log(w/0) = +∞ for w > 0. One can in fact tighten the analysis for the
case ε = δ = 0 to obtain the bounds in Theorem 3.

I Theorem 23. Suppose n, r ∈ N and ε, δ ∈ [0, 1] are such that δ < 1−2−n/2 and ilogr−1 n̂ ≥
4. Then

Dµ,(r),ref
ε,δ (eqn) ≤ (1− δ) ilogr−1 n̂+ 5 .

Proof. To gain intuition, we first consider δ = 0, in which case we have n̂ = min{n, log(1/ε)}.
The basic idea was already outlined in Section 1. Since we need only handle a random input,
we do not need fingerprints. Instead, Alice and Bob take turns revealing increasingly longer
prefixes of their inputs: in the jth round, the player to speak sends the next ≈ ilogr−j n̂
bits of her input. Whenever a player witnesses a mismatch in prefixes, she aborts (and the
protocol outputs 0). If the protocol ends without an abortion, it outputs 1. The protocol
described so far clearly has no false negatives, and after filling in some details (see below),
we can show that it has the desired refutation cost and refutation error.

To achieve further savings for nonzero δ, we partition {0, 1}n into sets S, T ⊆ {0, 1}n
such that |S| ≈ (1 − δ)2n. Each player aborts the protocol at her first opportunity if her
input lies in T . Otherwise, they emulate the above protocol on the smaller input space
S × S.

We now make things precise. Set

n′ := n+ dlog(1− δ)e ,
n′′ := min{n′, 2 + dlog((1− δ)2/ε)e} ,

tj :=
{
dilogr−j n̂e , if 1 ≤ j < r ,

n′′ −
∑r−1
j=1 tj , if j = r .

Choose an arbitrary partition of {0, 1}n into subsets S and T such that |S| = 2n′ . Fix an
arbitrary bijection g : S → {0, 1}n′ .

The protocol—which we call P—works as follows on input (x, y) ∈ {0, 1}n × {0, 1}n.
We write x[i1 : i2] to denote the substring xi1xi1+1 . . . xi2 of x. Each nonempty message in
the protocol will be either the string “0”, indicating abortion, or “1” followed by a payload
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string. Each player maintains a variable ` that records the length of the prefix that has been
compared so far; initially they set `← 0.

The players keep track of whether an abortion has occurred. Once an abortion occurs, all
further messages in the protocol will be empty strings. Once r rounds have been completed,
the appropriate player will output 0 if an abortion has occurred, and 1 otherwise.

Round j proceeds as follows. Let P ∈ {Alice, Bob} be the player who speaks in this
round, and let z ∈ {x, y} be their input. If necessary, P aborts if z ∈ T . Now suppose that an
abortion has not yet occurred. If j = 1, then P sends the substring g(z)[1 : t1], sets `← t1,
and the round ends. Otherwise, suppose P receives a non-aborting message with payload
w. If P finds that w 6= g(z)[`+ 1 : `+ tj−1] then she aborts, else if j < r, she continues the
protocol by sending the next tj bits of g(z), i.e., she sends g(z)[`+ tj−1 + 1 : `+ tj−1 + tj ],
sets `← `+ tj−1 + tj , and the round ends.

The protocol’s logic is shown in pseudocode form below, for readers who prefer that
presentation.

Algorithm 1: Round j of the protocol P. Here t0 = 0 and “Round r+ 1” is the output
announcement.

if j ≤ r then
if aborted then send emptystring ;
else

if z ∈ T then abort;
w ← payload of most recently received message ;
if w 6= g(z)[` + 1 : ` + tj−1] then abort;
send “1” followed by g(x)[` + tj−1 + 1 : ` + tj−1 + tj ], and set `← ` + tj−1 + tj ;

else
if aborted then output 0 ;
else

w ← payload of most recently received message ;
if w 6= g(z)[` + 1 : ` + tj−1] then output 0 else output 1 ;

It is easy to see that verrµ(P) ≤ δ, since players only abort an (x, x) input when x ∈ T .
Next, note that a false positive occurs only when (x, y) ∈ S × S and g(x)[1 : n′′] = g(y)[1 :
n′′]. When n′′ = n′ (which corresponds, roughly, to ε < (1− δ)2−n), Alice and Bob end up
comparing all bits of g(x) and g(y), and we get rerrµ(P) = 0. In the other case, we have
n′′ = 2 + dlog((1− δ)2/ε)e. Letting (X,Y ) ∼ µ, we have

rerrµ(P) = Pr[(X,Y ) ∈ S × S | X 6= Y ] · Pr
[
g(X)[1 : n′′] = g(Y )[1 : n′′] | g(X) 6= g(Y )

]
≤
(
2n
′−n)2 · 2n′−n′′ − 1

2n′ − 1 ≤ 22dlog(1−δ)e · 2−n
′′
≤ 22(1+log(1−δ)) · ε

4(1− δ)2 = ε .

Finally, we analyze the refutation cost. Let aj denote the expected total communication
in rounds ≥ j, conditioned on not aborting before round j. For convenience, set ar+1 = 0.
We claim that aj ≤ 3 for all j > 2 and prove so by induction from r + 1  3. The base
case (j = r + 1) is trivial. Conditioned on not aborting before the jth round, the player
whose turn it is to speak receives tj−1 bits to compare with her own input. Estimating as
above, this will fail to cause an abortion with probability at most 2−tj−1 . Therefore, the
player to speak will send at most 1 bit in this round to indicate abortion (or not) plus, with
probability at most 2−tj−1 , will continue the communication, which will cost tj bits in this
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round and aj+1 bits in expectation in subsequent rounds. The net result is that

aj ≤ 1 + 2−tj−1(tj + aj+1) ≤ 1 + 1
ilogr−j d

(
dilogr−j de+ 3

)
≤ 2 + 4

ilogr−j d
≤ 3 .

The first two rounds are slightly different, because each player summarily aborts when her
input lies in T . In the first round, Alice aborts with probability at most δ. In the second
round, conditioned on Alice not aborting, Bob aborts with probability all but (1 − δ)2−t1 .
The refutation cost of r-round protocols is therefore bounded by

rcostµ(P) = a1 ≤ 1 + (1− δ)t1 + (1− δ)
(
1 + (1− δ)2−t1(t2 + a3)

)
≤ 1 + (1− δ)(dilogr−1 n̂e+ 1) + (1− δ)2 dilogr−2 n̂e+ 3

ilogr−2 n̂

≤ 1 + (1− δ) ilogr−1 n̂+ 2(1− δ) + (1− δ)2
(

1 + 4
ilogr−2 n̂

)
≤ 1 + (1− δ) ilogr−1 n̂+ 2(1− δ) + 2(1− δ)2

≤ 5 + (1− δ) ilogr−1 n̂ . J

I Theorem 24. With n, r, ε, δ as above, we have Dµ,(r),ver
ε,δ (eqn) ≤ (1− δ)n̂+ 3.

Proof. We construct a one-round protocol achieving the stated verification cost, using S, T, g
as in Theorem 23. On input (x, y), Alice aborts if x ∈ T . Otherwise, she sends Bob a prefix
of g(x) of length min{n + dlog(1− δ)e, 2 + dlog((1− δ)2/ε)e. Bob outputs 0 (“unequal”) if
(i) Alice aborted, (ii) y ∈ T , or (iii) Alice’s prefix does not match that of g(y).

As in the previous proof, this protocol—call it Q—only produces false negatives when
inputs lie in T , so that verrµ(Q) ≤ δ. And as before, we get rerrµ(Q) = 0 for small ε and
rerrµ(Q) ≤ 22dlog(1−δ)e · ε

4(1−δ)2 ≤ ε otherwise. As for verification cost, the protocol always
sends a bit to indicate abortion (or not), and for all (x, x) ∈ S × S the protocol sends at
most n̂+ 2 bits. Thus, vcostµ(Q) ≤ 1 + (1− δ)(n̂+ 2) ≤ (1− δ)n̂+ 3. J

I Theorem 25. Let P be an r-round deterministic protocol for eqn. Then, there exists
an r-round randomized protocol Q for eqn with verr(Q) = verrµ(P), rerr(Q) = rerrµ(P),
rcost(Q) = rcostµ(P), and vcost(Q) = vcostµ(P).

Proof. Construct Q as follows. Alice and Bob use public randomness to generate a uniform
bijection G : {0, 1}n → {0, 1}n. On input (x, y), they run P on (G(x), G(y)). Note that if
x = y then (G(x), G(y)) is uniform over eq−1

n (1), and if x 6= y then (G(x), G(y)) is uniform
over eq−1

n (0). Thus, distributional guarantees for P under the uniform distribution become
worst-case guarantees for Q. J

Together with Theorems 23 and 24, this gives upper bounds for randomized protocols.
I Corollary 26. R(r),ref

ε,δ (eqn) ≤ (1− δ) ilogr−1 n̂+ 5.

I Corollary 27. R(r),ver
ε,δ (eqn) ≤ (1− δ)n̂+ 3.

C Bounded-Round Communication Lower Bounds for Equality

In this section, we prove all of our communication cost lower bounds on eqn. We deal with
information cost in the next section. We think of these lower bounds as “combinatorial” (as
opposed to “information theoretic”). An important ingredient in some of these combinatorial
lower bounds is the round elimination technique, which dates back to the work of Miltersen
et al. [36].
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C.1 Preliminaries
We recall two well-known results from information theory (see, e.g., Cover and Thomas [17]),
and state a convenient estimation lemma. The second fact below is one direction of Shan-
non’s source coding theorem. It states that any prefix-free code must have expected length
at least the entropy of the source.
I Fact 28 (Kraft Inequality). Let S ⊆ {0, 1}∗ be a prefix-free set. Then∑

x∈S
2−|x| ≤ 1 .

I Fact 29 (Source Coding Theorem). LetX be a random variable taking values in a prefix-free
set S ⊆ {0, 1}∗. Then

E[ |X| ] ≥ H(X) .

I Lemma 30. Let X,X ′ be uniformly distributed over sets X ,X ′, respectively, with X ′ ⊆ X .
Let f : X → R+ be a nonnegative function. Then, we have EX′ [f(X ′)] ≤

(
|X |/|X ′|

)
EX [f(X)].

Proof. By the nonnegativity of f , we have

EX [f(X)] = 1
|X |

∑
x∈X

f(x) ≥ 1
|X |

∑
x∈X ′

f(x) =
(
|X ′|
|X |

)
1
|X ′|

∑
x∈X ′

f(x) = |X
′|
|X |

EX′ [f(X ′)] .J

I Lemma 31. For a ≤ 2n/2, t ≤ log∗ n−2, and x ∈
[ 1
a , 1
]
, we have ilogt−1 n ≥ ilogt(2nx) ≥(

1− log a
n

)
ilogt−1 n.

Proof. The upper bound is trivial. We prove the lower bound by induction on t. We have
log(2nx) = n+ log x ≥ n− log a >

(
1− log a

n

)
n, and the claim holds for t = 1. For t > 1, we

have

ilogt(2nx) ≥ log
(

1− log a
n

)
+ log

(
ilogt−2 n

)
[by induction hypothesis]

≥ −2 log a
n

+ ilogt−1 n [using 1− w ≥ 2−2w for 0 ≤ w ≤ 1/2]

≥
(

1− log a
n

)
ilogt−1 n [using ilogt−1 n ≥ 2] . J

C.2 Lower Bounds for Zero-Error Protocols
In this section, we provide nearly exact bounds for zero-error protocols.

I Theorem 32. For all r < log∗ n we have Dµ,(r),ref
0,0 (eqn) ≥ ilogr−1 n− 1.

To prove this theorem, we must analyze equality protocols on finite sets of arbitrary
size. Given a finite set S, define eqS to be the equality problem, but when x, y ∈ S.

I Theorem 33. For all integers r > 0, we have Dµ,(r),ref
0,0 (eqS) ≥ ilogr |S| − 1.

Proof. Assume ilogr |S| > 1 as otherwise there is nothing to prove. Define m to be the
unique real such that m = log |S|. It might be helpful to think of m as an integer, but this
is not necessary.

The proof proceeds by induction on r. When r = 1, Alice must send her entire input
to achieve zero error in a single round. This costs dme > ilog1m− 1 bits, and the theorem
holds. Now, assume Dµ,(`),ref

0,0 (eqT ) ≥ ilog` |T | − 1 for all finite sets T , and let P be an
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optimal (` + 1)-round deterministic protocol for eqS . We aim to show that rcostµ(P) ≥
ilog`+1 |S|− 1 = ilog`m− 1. Let m1, . . . ,mt be the possible messages Alice sends in the first
round of P. For 1 ≤ i ≤ t, Let Ai denote the set of inputs on which Alice sends mi, and let
`i denote the length of mi. Assume without loss of generality that `1 ≤ `2 ≤ · · · ≤ `t. Since
P is optimal, we must have |A1| ≥ |A2| ≥ · · · ≥ |At|: otherwise, we can permute which
messages are sent on which sets Ai and reduce the overall cost of the protocol.

We analyze the cost of P by conditioning on Alice’s first message. Under the uniform
distribution, Alice sends mi with probability pi := |Ai|/2m. If y 6∈ Ai, Bob refutes equality
and the protocol aborts. Thus, over x 6= y inputs, the probability that Bob aborts is
(|Ai| − 1)/(2m − 1). Furthermore, conditioned on the events that (i) Alice’s first message is
mi and that (ii) Bob doesn’t abort, Alice and Bob’s inputs are each uniform over Ai. Thus,
the remaining communication is at least Dµ,(`),ref

0,0 (eqAi).
Fix τ := 2/ ilog`−1m. Call the ith message small if pi ≤ τ and large otherwise. We

bound

rcostµ(P) =
∑

1≤i≤t
pi

(
`i + |Ai| − 1

2m − 1 Dµ,(`),ref
0,0 (eqAi)

)
≥
∑

1≤i≤t
pi

(
− log pi + (pi − 2−m) Dµ,(`),ref

0,0 (eqAi)
)

≥
∑

small mi

pi(− log pi) +
∑

large mi

pi

(
− log pi + (pi − 2−m)(ilog` |Ai| − 1)

)
≥ Pr[small message] · (ilog`(m)− 1) +

∑
large mi

pi

(
− log pi + pi ilog` |Ai| − pi − 1

)
= Pr[small message] · (ilog`(m)− 1) +

∑
large mi

pif(pi) ,

where we define f(x) := − log x + x ilog`(2mx) − x − 1. The first inequality holds by the
source coding theorem (Fact 29) and the third inequality holds because pi ≤ τ for all small
messages.

We now claim that f ′(x) > 0 for all x ∈ [τ, 1]. We prove this by explicitly calculating
the derivative of f . If x ≥ τ , then −1/(x ln 2) ≥ − ilog`−1(m)/(2 ln 2). By Lemma 31, we
have

f ′(x) = − 1
x ln 2 + ilog`(2mx)− 1

(ln 2)(ln x · 2m)
∏`−2
j=0 ln(ilogj x · 2m)

− 1

≥ − ilog`−1m

2 ln 2 + ilog`−1m− (ilog`−1m) ilog`m
m

− o(1)− 1

=
(

ilog`−1m
)(

1− 1
2 ln 2

)
− 1− o(1) = Ω(ilog`−1m) ,

which proves the claim. It now follows that for large messages, f(pi) is minimized at f(τ).
Note that

f(τ) = − log τ + τ ilog`(2mτ)− τ − 1

≥ ilog`m− 1 + 2
ilog`−1m

ilog`−1m
(

1− ilog`(m)− 1
m

)
− 2

ilog`−1m
− 1

> ilog`m− 1 .

Plugging this back into our inequality for the cost of P, we get

rcostµ(P) ≥ Pr[small message]·(ilog`m−1)+Pr[large message]·(ilog`m−1) = ilog`m−1 .J
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I Theorem 34. Dµ,(r),ver
0,0 (eqn) ≥ n. Note that this lower bound is independent of r.

Proof. Let P be a deterministic zero-error protocol for eqn. As the protocol has no error,
the communication matrix is partitioned into monochromatic rectangles. In particular,
there are 2n 1-rectangles, since each (x, x) input must map to a different rectangle.5 Let
Rx, Tx, and `x denote the rectangle consisting of the input pair (x, x), the protocol transcript
corresponding to (x, x), and the length of this protocol transcript, respectively. Note that
{Tx} form a prefix-free coding of {0, 1}n. By Kraft’s inequality, we have

∑
x 2−`x ≤ 1.

Therefore, in expectation E[2−`x ] ≤ 2−n, and by Jensen’s inequality, we get the following.

−n ≥ logE[2−`x ] ≥ E[log(2−`x)] = −E[`x] .

Multiplying each side of the inequality by −1, we have Ex[`x] ≥ n. This is precisely
vcostµ(P), thus the proof is complete. J

I Theorem 35. R(r),ver
0,0 (eqn) ≥ n. As above, this lower bound is independent of r.

Proof. Let P be a randomized zero-error protocol for eqn. Given any string s, let Ps denote
the deterministic protocol obtained by fixing the public randomness to s. Proceeding along
the same lines as in the proof of Theorem 34, we have E[`x,s] ≥ n, where `x,s is the length of
the protocol transcript in Ps on input (x, x). This holds for every Ps, hence Ex,s[`x,s] ≥ n.
Therefore, there exists x such that Es[`x,s] ≥ n. Recalling the definition of vcost, we have
vcost(P) ≥ cost(P;x, x) = Es[`x,s] ≥ n, completing the proof. J

C.3 Refutation Lower Bounds for Protocols with Two-Sided Error
In this section, we give combinatorial lower bounds on the refutation cost of equality
protocols that admit error. All of the bounds in this section will be asymptotic rather than
nearly exact. For this reason, we will strive for simplicity of the proofs at the possible
expense of some technical accuracy. For instance, we will often drop ceilings or floors in
the mathematical notation. We will also assume that players have the ability to instantly
abort a protocol when equality has been refuted. This is easily implemented, as seen in
Section C.2 at negligible communication cost. We prefer to avoid the technical machinery
needed to express this explicitly.

I Definition 36. An 〈n, r, ε, δ, c〉-equality protocol P is a r-round deterministic protocol
with rerrµ(P) ≤ ε, verrµ(P) ≤ δ, and rcostµ(P) ≤ c.

For the sake of brevity, we often drop the “equality” and simply refer to an 〈n, r, ε, δ, c〉-
protocol. Our first lemma demonstrates that disallowing false negatives changes the com-
munication complexity very little.

I Lemma 37. If there exists a 〈n, r, ε, δ, c〉-equality protocol, then there exists a 〈n′, r, ε′, 0, c′〉-
equality protocol, where n′ = n+ log(1− δ), ε′ = 2ε/(1− δ)2, and c′ = 2c/(1− δ)2.

Proof. Let S = {x : out(P(x, x)) = 0} be the set of inputs on which P gives a false negative,
and let T = {0, 1}n \ S. Since P has false negative rate δ under the uniform distribution,
we have |T | ≥ (1− δ)2n = 2n′ .

5 If (x, x) and (y, y) were in the same rectangle, then so would (x, y) and (y, x). Thus, the protocol would
err on these inputs.
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First create a new eqn protocol P ′ which works as follows. On input (x, y), Alice aborts
and outputs 0 if x ∈ S; otherwise, the players emulate P and output out(P(x, y)). Note
that P ′ makes precisely the same false negatives as in P, and aborting when x ∈ S can
only decrease the false positive rate and the expected communication on inputs in eq−1

n (0).
Thus, P ′ is also a 〈n, r, ε, δ, c〉-protocol.

Next, fix an arbitrary bijection g : {0, 1}n′ → T , and construct an eqn′ protocol Q in
the following way. On input (X,Y ), players emulate P ′ on input (g(X), g(Y )) and output
out(P ′(g(X), g(Y ))). Note that g(X), g(Y ) ∈ T , so there are no false negatives. There can
be as many false positives as in P ′. However, the sample space is smaller (22n′ − 2n′ vs
22n − 2n), so the false positive rate can increase. By Lemma 30, the overall error is at most
2ε/(1 − δ)2. Similarly, the communication in Q on any input (X,Y ) is the same as the
communication in P ′ on input (g(X), g(Y )), but since the sample space is smaller (again
22n′ − 2n′ vs. 22n − 2n), the expected communication can increase. However, the overall
increase in communication is at most a factor of 2/(1− δ)2 by Lemma 30. J

I Lemma 38 (Combinatorial Round Elimination for equality). If there is an 〈n, r, ε, 0, c〉-
equality protocol, then there is an 〈n− 3c− 2, r − 1, 12ε23c, 0, 12c23c〉-equality protocol.

Proof. Let P be a 〈n, r, ε, 0, c〉-protocol. Let Z(x, y) = 1 if the protocol errs on input (x, y),
and let Z(x, y) = 0 otherwise. Then we have

Ex [Ey 6=x[|P(x, y)|]] ≤ c, and Ex [Ey 6=x[Z(x, y)]] ≤ ε .

Call x good if (1) Ey 6=x[P(x, y)|] ≤ 3c, and (2) Ey 6=x[Z(x, y)] ≤ 3ε. By two applications
of Markov’s inequality and a union bound, at least 2n/3 x are good. Next, fix Alice’s first
messagem so it is constant over the maximal number of good x. It follows thatm is constant
over a set A of good x of size |A| ≥ 2n−3c−2. This induces a (r − 1)-round protocol Q for
eqA. It remains to bound the cost and error of Q. Applying Lemma 30 twice, we have that
the cost and error are bounded by (respectively)

rcostµ(Q) = Ex∈A [Ey∈A,y 6=x[|P(x, y)|]] ≤ 2n

2n−3c−2 Ex∈A
[
Ey∈{0,1}n,y 6=x[|P(x, y)|]

]
≤ 12c23c ,

verrµ(Q) = Ex∈A [Ey∈A,y 6=x[Z(x, y)]] ≤ 2n

2n−3c−2 Ex∈A
[
Ey∈{0,1}n,y 6=x[Z(x, y)]

]
≤ 12ε23c .J

I Corollary 39. Let n, j, r, d be integers with n > d, d sufficiently large, and r ≥ 1. Sup-
pose there exists an 〈n, r, ε`, 0, `〉-protocol, where ` = 1

6 ilogj d. Then, there exists an
〈n− 3`− 2, r − 1, ε`′, 0, `′〉-protocol with `′ = 1

6 ilogj−1 d.

Proof. This boils down to the following estimations, which are valid for all sufficiently large
d.

12`23` = 2(ilogj d)2 1
2 ilogj d = 2 ilogj d

√
ilogj−1 d <

1
6 ilogj−1 d . J

I Theorem 40 (Lower Bound for Protocols with False Negatives Disallowed). Let n be a
sufficiently large integer, ε < 1/4 a real, and r ≥ 1. Fix ñ := min{n, log(1/ε)}. Then,
Dµ,(r),ref
ε,0 (eqn) = Ω(ilogr−1 ñ).

Proof. In this proof we tacitly assume ilogr−1 ñ ≥ 100.
Suppose for the sake of a contradiction that there exists a 〈n, r, ε, 0, 1

6 ilogr−1 ñ〉-protocol
P. Applying Lemma 38 gives an 〈n− 3

5 ilogr−1 ñ, r − 1, ε6 ilogr−2 ñ, 0, 1
6 ilogr−2 ñ〉-protocol
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P ′. Next, applying Corollary 39 repeatedly, a total of r−2 times, gives an 〈n− 3
5
∑r−1
j=1 ilogj ñ, 1, ε6 ñ, 0, ñ6 〉-

protocol. Finally, applying Lemma 38 once more gives an 〈n− 3
5
∑r−1
j=0 ilogj ñ, 0, 2εñ2ñ/2, 0, 2ñ2ñ/2〉-

protocol Q.
Note that since Q has false negative rate zero, Q must output 1 with certainty. Thus, Q

errs on all X 6= Y inputs; i.e., Q has false positive rate 1. On the other hand, ñ ≤ log(1/ε),
so the false positive rate of Q is 2εñ2ñ/6 ≤

√
ε < 1/2. This is a contradiction as long as the

problem remains nontrivial.
Since ilogj ñ ≥ 100, we have

∑r−1
j=t+1 ilogj ñ < 1

5 ilogt ñ. Also notice that since ñ ≤ n,
we have n − 3

5
∑r−1
j=0 ilogj ñ > n/5. Thus, we have a zero-round protocol for eqn′ for

some n′ = Ω(n) that has false positive rate < 1/2 but must output 1 with certainty, a
contradiction. J

I Theorem 41 (Lower Bound for Protocols with Two-Sided Error). Let n be a sufficiently
large integer, and let ε, δ be reals such that δ ≤ 1− 2−n/2 and ε/(1− δ)2 < 1/8. Let n̂ be as
given in Definition 4. Then, Dµ,(r),ref

ε,δ (eqn) = Ω((1− δ)2 ilogr−1 n̂).

Proof. Fix d = min{n/2, log((1 − δ)2/2ε)}, so that log d = Θ(log n̂). Suppose, to the
contrary, that there exists an 〈n, r, ε, δ, 1

12 (1− δ)2 ilogr−1 d〉-protocol P. Since n+log(1−δ) >
n/2, Lemma 37 gives an 〈n/2, r, 2ε/(1− δ)2, 0, 1

6 ilogr−1 d〉-protocol. The rest of the proof
echoes the proof of Theorem 40. J

Next, we prove a combinatorial lower bound for randomized communication complexity.

I Theorem 42. Let n be a sufficiently large integer, ε and δ reals such that δ < 1− 21−n/2

and 64ε < (1−δ)3. Then, R(r),ref
ε,δ (eqn) = Ω((1−δ)3 ilogr−1 n̂), where n̂ is as in Definition 4.

Proof. Let P be an r-round randomized protocol with rerr(P) = ε, verr(P) = δ, and
rcostµ(P) = c. Define z = 1 − δ, ε̂ = 4ε/(1 − δ), and ĉ = 4c/(1 − δ). Let Ps denote
the deterministic protocol obtained from P by setting its random string to s. Call a string
s good if (i) verrµ(Ps) ≤ 1 − z/2, (ii) rerrµ(Ps) ≤ ε̂, and (iii) rcostµ(Ps) ≤ ĉ. Applying a
Markov argument to each of these three conditions, we see that

Pr[s is bad] < 1− z
1− z/2 + z

4 + z

4 < 1 ,

where we used (1 − z)/(1 − z/2) < 1 − z/2. Thus there exists a good string s. Note that
Ps is a [n, r, ε̂, δ̂, ĉ]-protocol, and by Theorem 41, ĉ = Ω((1 − δ)2 ilogr−1 n̂). Therefore,
c = Ω((1− δ)3 ilogr−1 n̂). J

C.4 Verification Lower Bounds for Protocols with Two-Sided Error
I Theorem 43. Dµ,(r),ver

ε,δ (eqn) ≥ (1− δ)(n̂− 1), where n̂ is as in Definition 4.

Proof. Fix a deterministic protocol P achieving rerrµ(P) = ε and verrµ(P) = δ. This pro-
tocol naturally partitions the communication matrix for eqn into combinatorial rectangles.
Let R1, . . . , Rc be the rectangles on which P outputs 1. Let si denote the number of (x, x)
inputs in Ri. Since P has false negative rate δ, we have

∑
i si = 2n(1− δ). Let pi = si/2n

and qi = pi/(1− δ). Notice that pi is the probability that (x, x) ∈ Ri for a uniformly chosen
x. Similarly, qi is the probability that (x, x) ∈ Ri conditioned on P verifying equality on
(x, x). We now analyze the false positive rate. Recall that there are 22n − 2n total x 6= y

inputs. It is easy to see that Ri contains at least s2
i − si false positives. Therefore, we have

ε ≥ 1
22n − 2n

c∑
i=1

(s2
i − si) =

c∑
i=1

si(si − 1)
2n(2n − 1) ≥

c∑
i=1

pi(pi − 2−n) = −2−n(1− δ) +
c∑
i=1

p2
i .
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Rearranging terms and noting that qi = pi/(1− δ), we have

E[qi] =
c∑
i=1

q2
i = 1

(1− δ)2

c∑
i=1

p2
i ≤

1
(1− δ)2

(
ε+ 2−n(1− δ)

)
= ε

(1− δ)2 + 2−n

(1− δ) ≤ 2·2−n̂ .

Next, we analyze the verification cost of P. Let `i denote the length of the protocol transcript
for inputs in the rectangle Ri. Observe that the transcripts P(x, x) with out(P(x, x)) = 1
give a prefix-free encoding of the set of rectangles {R1, . . . , Rc}. Therefore,

vcostµ(P) =
∑

x∈{0,1}n

|P(x, x)|
2n ≥

c∑
i=1

pi`i = (1− δ)
c∑
i=1

qi`i ≥ (1− δ)
c∑
i=1

qi(− log qi)

= −(1− δ)E[log qi] ≥ −(1− δ) logE[qi] ≥ −(1− δ)(−n̂+ 1) = (1− δ)(n̂− 1) ,

where the second inequality is from the source coding theorem (Fact 29) and the third is
from Jensen’s inequality. J

I Theorem 44. R(r),ver
ε,δ (eqn) > 1

8 (1− δ)2(n̂+ log(1− δ)− 5).

Proof. Suppose there exists a randomized protocol P with rerr(P) ≤ ε, verr(P) ≤ δ, and
vcost(P) ≤ m. For a string s, let Ps denote the deterministic protocol obtained from
P by fixing the public randomness to s. By the cost and error guarantees of P, for all
(x, y) ∈ eq−1

n (1) we have Es [cost(Ps;x, y)] ≤ m and Es [Pr[out(Ps(x, y)) = 0]] ≤ δ, while
for (x, y) ∈ eq−1(0) we have Es [Pr[out(Ps(x, y)) = 1]] ≤ ε. In particular, letting (X,Y ) ∼ µ,
we have

Es,X,Y [Pr[out(Ps(X,Y )) = 1 | X 6= Y ]] ≤ ε ,
Es,X,Y [Pr[out(Ps(X,Y ) = 0 | X = Y ]] ≤ δ ,

Es,X,Y [cost(Ps;X,Y ) | X = Y ] ≤ m.

Define z = 1 − δ, ε̂ = 4ε/(1 − δ), δ̂ = 1 − z/2, and m̂ = 4m/(1 − δ). Call a string s good
if (i) verr(Ps) ≤ 1 − z/2, (ii) rerr(Ps) ≤ ε̂, and (iii) vcostµ(P) ≤ m̂. Applying a Markov
argument to each condition,

Pr[s is bad] < 1− z
1− z/2 + z

4 + z

4 < 1 ,

where we used (1 − z)/(1 − z/2) < 1 − z/2. Thus, there exists a good string s. Note that
Ps is a deterministic (ε̂, δ̂)-error eqn protocol. Using Definition 4 to figure the new effective
instance size and applying Theorem 43, we obtain

4m
1− δ ≥ vcostµ(Ps) ≥

z

2

(
min

{
n+ log(z/2), log z(z/2)2

4ε

}
− 1
)
≥ z

2(n̂+ log z − 5) .

The proof is completed by rearranging the above inequality and substituting z = 1− δ. J

The analysis in the above proof is very loose when δ is bounded away from 1. In particular,
when there are no false negatives (i.e., when δ = 0), we are able to show that R(r),ver

ε,0 ≥ cn̂

for every constant c < 1.
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D Main Theorem: Bounded-Round Information Complexity of
Equality

In this section we prove Theorem 6, which we think of as the most important result of this
paper. We wish to lower bound the bounded-round information complexity of equality
with respect to the uniform distribution. Recall that we are concerned chiefly with protocols
that achieve very low refutation error, though they may have rather high verification error.
We will prove our lower bound by proving a round elimination lemma for eqn that targets
information cost, and then applying this lemma repeatedly.

This proof has much more technical complexity than our earlier lower bound proofs.
Let us see why. There are two main technical difficulties and they arise, ultimately, from
the same source: the inability to use (the easy direction of) Yao’s minimax lemma. When
proving a lower bound on communication cost, Yao’s lemma allows us to fix the random
string used by any purported protocol, which immediately moves us into the clean world of
deterministic protocols. This hammer is unavailable to us when working with information
cost. The most we can do is to “average away” the public randomness. We then have to
deal with (private coin) randomized protocols the entire way through the round elimination
argument. As a result, our intermediate protocols, obtained by eliminating some rounds
of our original protocol, do not obey straightforward cost and error guarantees. This is
the first technical difficulty, and our solution to it leads us to the concept of a “kernel” in
Definition 45 below.

The second technical difficulty is that we are unable to switch to the simpler case of zero
verification error like we did in the proof of Theorem 5, Parts (9) and (10). Therefore, all
our intermediate protocols continue to have verification error. Since errors scale up with
each round elimination, and the verification error starts out high, we cannot afford even
a constant-factor scaling. We must play very delicately with our error parameters, which
leads us to the somewhat complicated parametrization seen in Definition 46 below.

D.1 The Round Elimination Argument
I Definition 45 (Kernel). Let p and q be probability distributions on {0, 1}n, let S ⊆ {0, 1}n,
and let ` ≥ 0 be a real number. The triple (p, q, S) is defined to be an `-kernel if the following
properties hold.

[K1] H(p) ≥ n− ` and H(q) ≥ n− `.
[K2] p(S) ≥ 2−` and q(S) ≥ 1

2 .
[K3] For all x ∈ S we have q(x) ≥ 2−n−`.

I Definition 46 (Parametrized Protocols). Suppose we have an integer r ≥ 1, and nonnega-
tive reals `, a, b, and c. A protocol P for eqn is defined to be an [r, `, a, b, c]-protocol if there
exists an `-kernel (p, q, S) such that the following properties hold.

[P1] The protocol P is private-coin and uses r rounds, with Alice speaking in the first
round.

[P2] We have errp⊗q|S×S(P) = Pr(X,Y )∼p⊗q[out(P(X,Y )) 6= eqn(X,Y ) | (X,Y ) ∈ S ×
S] ≤ 2−a.

[P3] We have verrp⊗ξ|S×S(P) = PrX∼p[out(P(X,X)) = 0 | X ∈ S] ≤ 1− 2−b.
[P4] We have icostp⊗q(P) ≤ c.

We alert the reader to the fact that [P2] considers overall error, and not refutation error.
We encourage the reader to take a careful look at [P3] and verify the equality claimed
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therein. It is straightforward, once one revisits Definition 1 and recalls that ξ denotes the
uniform distribution on {0, 1}n.

Since we have a number of parameters at play, it is worth recording the following simple
observation.
I Fact 47. Suppose that `′ ≥ `, c′ ≥ c, a′ ≤ a, and b′ ≥ b. Then every `-kernel is also an
`′-kernel, and every [r, `, a, b, c]-protocol is also an [r, `′, a′, b′, c′]-protocol. J

I Theorem 48 (Information-Theoretic Round Elimination for equality). If there exists an
[r, `, a, b, c]-protocol with r ≥ 1 and c ≥ 4, then there exists an [r − 1, `′, a′, b′, c′]-protocol,
where

`′ := (c+ `)2`+2b+7 , a′ := a− (c+ `)2`+2b+8 ,

b′ := b+ 2 , c′ := (c+ 2)2`+2b+6 .

Proof. Let P be an [r, `, a, b, c]-protocol, and let (p, q, S) be an `-kernel satisfying the con-
ditions in Definition 46. Assume WLOG that the each message in P is generated using a
fresh random string. Let X ∼ p and Y ∼ q be independent random variables denoting an
input to P. Let M1, . . . ,Mr be random variables denoting the messages sent in P on input
(X,Y ), with Mj being the jth message; note that these variables depend on X,Y , and the
random strings used by the players. We then have

c ≥ icostp⊗q(P) = I(XY : M1M2 . . .Mr) = I(X : M1) + I(XY : M2 . . .Mr |M1) , (15)

where the final step uses the chain rule for mutual information, and the fact that M1 and Y
are independent. In particular, we have I(X : M1) ≤ c, and so H(X | M1) = H(X)− I(X :
M1) ≥ n− `− c. By Lemma 19,

H(X |M1, X ∈ S) ≥ n− `+ c+ 1
p(S) ≥ n− (`+ c+ 1)2` . (16)

Let M be the set of messages that Alice sends with positive probability as her first
message in P, given the random input X, i.e., M := {m : Pr[M1 = m] > 0}. Consider
a particular message m ∈ M. Let P ′m denote the following protocol for eqn. The players
simulate P on their input, except that Alice is assumed to have sent m as her first message.
As a result, P ′m has r− 1 rounds and Bob is the player to send the first message in P ′m. Let
πm and q′ be the distributions of (X |M1 = m ∧X ∈ S) and (Y | Y ∈ S), respectively.

Observe that icostπm⊗q′(P ′m) = I(XY : M2 . . .Mr | M1 = m ∧ (X,Y ) ∈ S × S). Letting
L denote a random first message distributed identically to M1, we now get

EL
[

icostπL⊗q
′
(P ′L)

]
= I(XY : M2 . . .Mr |M1, (X,Y ) ∈ S × S)

≤ I(XY : M2 . . .Mr |M1) + 1
p(S)q(S) ≤ (c+ 1)2`+1 , (17)

where the first inequality uses Lemma 18 and the second inequality uses (15) and Prop-
erty [K2]. Examining Properties [P2] and [P3], we obtain

EL
[

errπL⊗q
′
(P ′L)

]
= errp⊗q|S×S(P) ≤ 2−a , (18)

EL
[

verrπL⊗ξ(P ′L)
]

= verrp⊗ξ|S×S(P) ≤ 1− 2−b . (19)

I Definition 49 (Good message). A message m ∈ M is said to be good if the following
properties hold:
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[G1] H(πm) = H(X |M1 = m ∧X ∈ S) ≥ n− (`+ c+ 1)2`+b+3,
[G2] icostπm⊗q′(P ′m) ≤ 2`+b+4(c+ 1),
[G3] errπm⊗q′(P ′m) ≤ 2−a+b+3,
[G4] verrπm⊗ξ(P ′m) ≤ 1− 2−b−1.

Notice that for all m ∈ M we have H(X | M1 = m, X ∈ S) ≤ n. Hence, viewing (16),
(17), (18) and (19) as upper bounds on the expected values of certain nonnegative functions
of L, we may apply Markov’s inequality to these four conditions and conclude that

Pr[L is good] ≥ 1− 2−b−3 − 2−b−3 − 2−b−3 − 1− 2−b

1− 2−b−1 ≥ 2−b−1 − 3 · 2−b−3 > 0 .

Thus, there exists a good message. From now on, we fix m to be such a good message.
We may rewrite the left-hand side of [G4] as EZ∼πm

[Pr[out(P ′m(Z,Z)) = 0]]. So if we
define the set T :=

{
x ∈ S : Pr[out(P ′m(x, x)) = 0] ≤ 1 − 2−b−2} and apply Markov’s

inequality again, we obtain

πm(T ) ≥ 1− 1− 2−b−1

1− 2−b−2 ≥ 2−b−2 . (20)

Defining the distribution p′ := πm | T and the set S′ := {x ∈ T : p′(x) ≥ 2−n−`′}, we now
make two claims.

Claim 1: The triple (q′, p′, S′) is an `′-kernel.
Claim 2: We have errp′⊗q′|S′×S′(P ′m) ≤ 2−a′ , verrq′⊗ξ|S′×S′(P ′m) ≤ 1−2−b′ , and icostp′⊗q′(P ′m) ≤

c′.

Notice that these claims essentially say that P ′m has all the properties listed in Definition 46,
except that Bob starts P ′m. Interchanging the roles of Alice and Bob in P ′m gives us the
desired [r − 1, `′, a′, b′, c′]-protocol, which completes the proof of the theorem.

It remains to prove the above claims. We start with Claim 1. Starting with the lower
bound on H(πm) given by Property [G1] of the good message m, and using Lemma 19
followed by (20), we obtain

H(p′) = H(πm | T ) ≥ n− (c+ `+ 1)2`+b+3 + 1
πm(T ) ≥ n− (c+ `+ 2)2`+2b+5 ≥ n− `′ . (21)

We may lower bound H(q′) using Properties [K1] and [K2] for (p, q, S) and applying Lemma 19.
We have

H(q′) = H(Y | Y ∈ S) ≥ n− `+ 1
q(S) ≥ n− 2(`+ 1) ≥ n− `′ .

Thus, (q′, p′, S′) satisfies Property [K1] for an `′-kernel. It is immediate that it also satisfies
Property [K3]: by definition, for all x ∈ S′, we have p′(x) ≥ 2−n−`′ .

It remains to verify Property [K2], which entails showing that p′(S′) ≥ 1
2 and that

q′(S′) ≥ 2−`′ . We can lower bound p′(S′) as follows:

p′(S′) = 1−
∑

x∈{0,1}n\S′
p′(x) = 1−

∑
x∈{0,1}n

p′(x)<2−n−`′

p′(x) ≥ 1− 2−`
′
≥ 1

2 . (22)

To prove the second inequality, we first derive a lower bound on H(p′ | S′), thence on |S′|,
and finally on q′(S′). We already showed that H(p′) ≥ n − (c + ` + 2)2`+2b+5, at (21). By
Lemma 19 and (22), we get

H(p′ | S′) ≥ n− (c+ `+ 2)2`+2b+5 + 1
p′(S′) ≥ n−

(
(c+ `+ 2)2`+2b+6 + 2

)
≥ n−(c+`+4)2`+2b+6 ,
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and so |S′| ≥ 2n−(c+`+4)2`+2b+6 . Since q′ = q | S and S′ ⊆ S, we have

q′(S′) ≥ q(S′) ≥ |S′|min
y∈S′

q(y) ≥ |S′|min
y∈S

q(y) ≥ 2n−(c+`+4)2`+2b+6
2−n−` = 2−`−(c+`+4)2`+2b+6

,

where the final inequality uses Property [K3]. Recalling the definition of `′ and applying
a crude estimate (using the bound c ≥ 4), we get q′(S′) ≥ 2−`′ . This finishes the proof of
Claim 1.

We now prove Claim 2. Of the three bounds we need to prove, the verification error
bound is the easiest. Recalling how T was defined, and noting that S′ ⊆ T , we immediately
obtain

verrq
′⊗ξ|S′×S′(P ′m) = EY ′∼q′ [Pr[out(P ′m(Y ′, Y ′)) = 0 | Y ′ ∈ S′]] ≤ 1− 2−b−2 .

To establish the overall error bound, we use

errp
′⊗q′|S′×S′(P ′m) ≤ errp′⊗q′(P ′m)

p′(S′)q′(S′) ≤
errπm⊗q′(P ′m)

πm(T )p′(S′)q′(S′) ≤
2−a+b+3

2−b−2 · 1
2 · 2−`

′ (23)

= 2−a+2b+6+(c+`)2`+2b+7
≤ 2−a+(c+`)2`+2b+8

, (24)

where the final inequality in (23) follows from Property [K2] for an `′-kernel and Prop-
erty [G3], and (24) just uses a crude estimate (this time c ≥ 1 suffices). The last thing
remaining is to establish the information cost bound in Claim 2. We do this as follows.

icostp
′⊗q′(P ′m) = I(XY : M2 . . .Mr |M1 = m ∧X ∈ T ∧ Y ∈ S)

≤ I(XY : M2 . . .Mr |M1 = m ∧ (X,Y ) ∈ S × S) + 1
Pr[X ∈ T |M1 = m ∧ (X,Y ) ∈ S × S] (25)

= icostπm⊗q′(P ′m) + 1
πm(T ) (26)

≤ 2b+`+4(c+ 1) + 1
2−b−2 ≤ (c+ 2)2`+2b+6 , (27)

where (25) uses Lemma 18, (26) uses the independence of X and Y and (27) uses Prop-
erty [G2] and Eq. (20).

This completes the proof of Claim 2 and, with it, the proof of the theorem. J

The following easy corollary of Theorem 48 will be useful shortly.
I Corollary 50. Let ñ, j, r ∈ N and a, b ∈ R with ñ sufficiently large, j ≥ 1, r ≥ 1, and b ≥ 0.
Suppose there exists an [r, `, a − `, b, `]-protocol, with b ≤ ` = 1

8 ilogj ñ. Then there exists
an [r − 1, `′, a− `′, b+ 2, `′]-protocol with b+ 2 ≤ `′ = (ilogj−1 ñ)1/2 ≤ 1

8 ilogj−1 ñ.

Proof. This simply boils down to the following estimation, which is valid for all sufficiently
large ñ:

(`+ `)2`+2b+8 = 27(ilogj ñ)2(3/8) ilogj ñ = 27(ilogj−1 ñ)3/8 log(ilogj−1 ñ) ≤ (ilogj−1 ñ)1/2 .J

D.2 Finishing the Proof
We are now ready to state and prove the main lower bound on protocols with two-sided
error.

I Theorem 51 (Restatement of Main Theorem). Let ñ = min{n+ log(1− δ), log((1− δ)/ε)}.
Suppose δ ≤ 1− 8(ilogr−2 ñ)−1/8. Then we have ICµ,(r)ε,δ (eqn) = Ω((1− δ)3 ilogr−1 ñ).
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Proof. We may assume that r ≤ log∗ ñ, for otherwise there is nothing to prove. The slight
difference between ñ above and n̂, as in Definition 4, is insignificant and can be absorbed
by the Ω(·) notation.

Suppose, to the contrary, that there exists an r-round randomized protocol P∗ for eqn,
with rerrµ(P∗) ≤ ε, verrµ(P∗) ≤ δ and icostµ(P∗) ≤ 2−16(1− δ)3 ilogr−1 ñ. Recall that we
denote the uniform distribution on {0, 1}n by ξ and that µ = ξ ⊗ ξ. We have

errµ(P∗) = (1− 2−n) rerrµ(P∗) + 2−n verrµ(P∗) ≤ ε+ 2−n(δ − ε) ≤ ε+ 2−n .

Let P∗s be the private-coin protocol for eqn obtained from P∗ by fixing the public random
string of P∗ to be s. We have Es[errµ(P∗s )] ≤ ε+2−n, Es[verrµ(P∗s )] ≤ δ, and Es[icost(P∗s )] ≤
2−16(1−δ)3 ilogr−1 ñ. By Markov’s inequality, there exists s such that P∗s simultaneously has
errµ(P∗s ) ≤ 4(ε+2−n)/(1−δ), verrµ(P∗s ) ≤ (1+δ)/2, and icost(P∗s ) ≤ 2−14(1−δ)2 ilogr−1 ñ:
this is because

1− 1− δ
4 − 2δ

1 + δ
− 1− δ

4 = (1− δ)2

2(1 + δ) > 0 .

Let P = P∗s for this s. Then (ξ, ξ, {0, 1}n) is a 0-kernel and P is an [r, 0, log 1−δ
4(ε+2−n) , log 2

1−δ , 2−14(1−
δ)2 ilogr−1 ñ]-protocol. Recalling Fact 47 and using log 1−δ

ε+2−n ≥ ñ− 1, we see that

P is an
[
r, 0, ñ− 3, log 1

1−δ + 1, 2−14(1− δ)2 ilogr−1 ñ
]
-protocol.

Put `j := 1
8 ilogj ñ for j ∈ N. Applying round elimination (Theorem 48) to P and weakening

the resulting parameters (using Fact 47) gives us an [r− 1, `r−1, ñ− `r−1, log 1
1−δ + 3, `r−1]-

protocol P ′.
The upper bound on δ gives us log 1

1−δ +3 ≤ `r−1, and so the conditions for Corollary 50
apply. Starting with P ′ and applying that corollary repeatedly, each time using the looser
estimate on `′ in that corollary, we obtain a sequence of protocols with successively fewer
rounds. Eventually we reach a [1, `1, ñ − `1, log 1

1−δ + 2(r − 1) + 1, `1]-protocol. Apply-
ing Theorem 48 one more time, and using the tighter estimate on `′ this time, we get a
[0, ñ1/2, ñ− ñ1/2, log 1

1−δ + 2r + 1, ñ1/2]-protocol Q. Weakening parameters again, we see
that Q is a [0, ñ1/2, 1

2 ñ,
1
3 log ñ, ñ1/2]-protocol. Let (p, q, S) be the ñ1/2-kernel for Q. By

Property [K1], we have H(q) ≥ n− ñ1/2. Using Lemma 19 and Property [K2], we then have

H(q | S) ≥ n− ñ1/2 + 1
q(S) ≥ n− (2ñ1/2 + 2) . (28)

Since Q involves no communication, it must behave identically on any two input dis-
tributions that have the same marginal on Alice’s input. In particular, this gives us the
following crucial equation:

Pr
X∼p

[out(Q(X,X)) = 1 | X ∈ S] = Pr
(X,Y )∼p⊗q

[out(Q(X,Y )) = 1 | (X,Y ) ∈ S × S] . (29)

Let α denote the above probability. Considering the left-hand side of (29), we have

α = 1− verrp⊗ξ|S×S(Q) ≥ 2− 1
3 log ñ = ñ−1/3 . (30)

On the other hand, whenever Q outputs 1 on an input (x, y), then either x = y or Q errs
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on (x, y). Therefore, considering the right-hand side of (29), we have

α ≤ Pr
(X,Y )∼p⊗q

[X = Y | (X,Y ) ∈ S × S] + Pr
(X,Y )∼p⊗q

[out(P(X,Y )) 6= eqn(X,Y ) | (X,Y ) ∈ S × S]

≤ max
x∈S

Pr
Y∼q|S

[Y = x] + errp⊗q|S×S(Q)

≤ 2ñ1/2 + 3
n

+ 2− 1
2 ñ (31)

≤ 2ñ−1/2 + 3ñ−1 + 2− 1
2 ñ , (32)

where (31) follows from (28) by applying Lemma 20, and (32) uses ñ ≤ n.
The bounds (30) and (32) are in contradiction for sufficiently large ñ, which completes

the proof. J

E Applications, Including Bounded-Round Small-Set Disjointness

E.1 Lower Bounds
In this section we apply our new understanding of the bounded-round information complexity
of equality to obtain two new lower bounds: one for or-equality, and the other for the
much-studied disjointness problem with small-sized sets. As we shall see, both lower
bounds are arguably tight.

I Theorem 52 (Lower Bound for Or-Equality). Let k, n, r ∈ N and δ, ε ∈ [0, 1]. Put ε′ =
ε+ k/2n and ñ = log 1−δ

ε′ . For δ < 1− 8(ilogr−2 ñ)−1/8, we have

R(r)
ε,δ(oreqn,k) ≥ k · ICµ,(r)ε′,δ (eqn) = Ω(k(1− δ)3 ilogr−1 ñ) .

Proof. We just need to show the first inequality and then apply Theorem 6. That inequality
is proved via standard direct sum arguments for information complexity [15, 4, 5]. In fact,
the old simultaneous-message lower bound for oreqn,k from Chakrabarti et al. [15] applies
more-or-less unchanged. For completeness, we now give a self-contained proof.

Let P be an r-round protocol for oreqn,k with rerr(P) ≤ ε, verr(P) ≤ δ, and R(r)
ε,δ(oreqn,k) ≥

max{rcost(P), vcost(P)}. Alice and Bob solve eqn by the following protocol Qj , where j is
some fixed index in {1, 2, . . . , k}. Given an input (x, y) ∈ {0, 1}n × {0, 1}n, they generate
X := (X1, . . . , Xk) ∼ ξ⊗k and Y := (Y1, . . . , Yk) ∼ ξ⊗k respectively, using private coins.
They “plug in” x and y into the jth coordinates of X and Y respectively, thereby creating

Zj,x := (X1, . . . , Xj−1, x,Xj+1, . . . , Xk) and Wj,y := (Y1, . . . , Yj−1, y, Yj+1, . . . , Yk) ,

respectively. Finally, they emulate P on input (Zj,x,Wj,y). Observe that

oreqn,k(Zj,x,Wj,y) 6= eqn(x, y) =⇒ (x 6= y) ∧
(
∃ i ∈ [k] \ {j} : Xi = Yi

)
.

Therefore, verr(Qj) ≤ verr(P) ≤ δ and, by a union bound,

rerr(Qj) ≤ rerr(P) +
n∑
i=1

Pr[Xi = Yi] ≤ ε+ k/2n = ε′ .

Since Qj solves eqn with these error guarantees, it follows that icostµ(Qj) ≥ ICµ,(r)ε′,δ (eqn).
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Now, let (X,Y ) ∼ µ and let R denote the public randomness used by P. We can now
lower bound R(r)

ε,δ(oreqn,k) as follows:

R(r)
ε,δ(oreqn,k) ≥ maxx1,...,xk,y1,...,yk∈{0,1}kn×{0,1}kn cost(P;x1, . . . , xk, y1, . . . , yk)

≥ E[cost(P;X1, . . . , Xk, Y1, . . . , Yk)]
≥ H(P(X1, . . . , Xk, Y1, . . . , Yk)) (33)
≥ I(P(X1, . . . , Xk, Y1, . . . , Yk) : X1Y1 . . . XkYk | R)

≥
k∑
j=1

I(P(X1, . . . , Xk, Y1, . . . , Yk) : Xi, Yi | R) (34)

=
k∑
j=1

I(Qj(X,Y ) : XY | R) (35)

=
k∑
j=1

icostµ(Qj) ≥ k · ICµ,(r)ε′,δ (eqn) ,

where (33) uses Fact 29 and (34) uses the independence of {X1Y1, . . . , XkYk} and the re-
sulting subadditivity of mutual information, and (35) holds because, for all j ∈ [k], the
distributions of (Qj(X,Y ), X, Y,R) and (P(X1, . . . , Xk, Y1, . . . , Yk), Xj , Yj ,R) are identical.
This completes the proof. J

By plugging in ε = 0, δ = 0 in Theorem 52 we obtain the following corollary.
I Corollary 53. R(r)

0,0(oreqn,k) = Ω(k ilogr−1(n− log k)). J

Armed with the above lower bound, we now derive a lower bound for k-disj via a simple
reduction, which is probably folklore. For completeness, we again give a formal proof. Note
that the reduction interchanges verification and refutation errors.

I Lemma 54 (Reduction from oreq to k-disj). Let k,N be integers such that N ≥ kc for
some constant c > 2. Let n =

⌊
log
(
N
k

)⌋
. If there exists a protocol P for k-disjN then there

exists a protocol Q for oreqn,k such that rerr(Q) ≤ verr(P) and verr(Q) ≤ rerr(P) and
vcost(Q) ≤ rcost(P) and rcost(Q) ≤ vcost(P).

Proof. Given an input instance (x1, . . . , xk, y1, . . . , yk) of oreqn,k, we can transform it into
an instance (A,B) of k-disjN as follows:

A = {x1, x2 + 2n, x3 + 2 · 2n, . . . , xk + (k − 1)2n}
B = {y1, y2 + 2n, y3 + 2 · 2n, . . . , yk + (k − 1)2n} .

It is easy to observe that A ∩ B 6= ∅ iff ∃ i ∈ [k] such that xi = yi because xi ∈
{0, 1, . . . , 2n−1}. Therefore, oreqn,k(x1, . . . , xk, y1, . . . , yk) = ¬ k-disjN (A,B), which com-
pletes the proof. J

I Corollary 55. We have R(r)
δ,ε(k-disjN ) ≥ R(r)

ε,δ(oreqblog(N/k)c,k). J

Combining Corollary 55 with Theorem 52, we arrive at the following theorem.

I Theorem 56 (Lower Bound for k-Disjointness). Let k,N, r ∈ N, ε, δ ∈ [0, 1] and c > 2 be
such that N ≥ kc and δ < 1− 8(ilogr−2 ñ)−1/8, where ñ = log 1−δ

ε+k2/N . Then

R(r)
δ,ε(k-disjN ) = Ω(k(1− δ)3 ilogr−1 ñ) .

In particular, with δ = 1− Ω(1) and ε ≤ k−Θ(1), we have R(r)
δ,ε(k-disjN ) = Ω(k ilogr k). J
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By plugging in ε = δ = 0 above we arrive at a further special case that is worth
highlighting.
I Corollary 57. With N ≥ k2+Ω(1), we have R(r)

0,0(k-disjN ) = Ω(k ilogr k). J

E.2 Tightness
Our lower bounds in Section E.1 have the weakness that they apply only in zero-error
or small-error settings. However, they are still tight in the following sense. We can design
protocols that give matching upper bounds under similarly small error settings. For oreq, we
give such a protocol below. For k-disj, a suitable analysis of a recent protocol of Sağlam and
Tardos[42] gives similar results.

I Theorem 58. For all r < log∗ k, there exists a r-round protocol P for oreqn,k with
worst-case communication cost O(k ilogr k), rerr(P) < 2−

∏r

j=1
ilogj k, and verr(P) = 0.

Proof. For ease of presentation, we give the details for a slightly weaker result, with refu-
tation error < k−10.

We begin with a high-level sketch of the proof, before giving formal proof details. Alice
begins the protocol by sending, in parallel, k different t-bit equality tests, one for each of
her inputs. Note that for any i where xi 6= yi, Bob witnesses non-equality with probability
1−2−t. Assuming oreqn,k(x, y) = 0, there will be roughly k/2t coordinates i where xi 6= yi
has not yet been witnessed. Bob now tells Alice which of his coordinates remain “alive”
and sends t′-bit equality tests for each of these coordinates, where t′ = 2t. Note that
Bob’s overall communication is roughly k bits, and that after receiving this message, Alice
witnesses non-equality on all but a 2−t′ -fraction of unequal pairs. In each round, players
end up sending an exponentially longer equality test on an exponentially smaller number
of coordinates. When communication ends, players output oreq(x1, . . . , xk, y1, . . . , yk) = 1
unless xi 6= yi has been witnessed for all i. One potential issue with the above protocol
is that too many coordinates could remain, and players wouldn’t be able to communicate
exponentially more bits about the remaining coordinates. This could happen both when an
unusually large number of equality tests fail, or just for the simple reason that xi = yi for
many coordinates. In either case, the players simply abort and output oreqn,k = 1. This
will cause an increase in error, but the increase will be small, and it will only increase the
false positive rate. A formal proof lies below.

The protocol proceeds in a number of rounds. Throughout, players maintain a vector
w ∈ {0, 1}k (initialized to w = 1k), where wi = 0 iff xi 6= yi has been witnessed. Coordinate
i is deemed “live” if wi = 1.

In the first round of communication, Alice sends a (2 ilogr k)-bit equality test for each of
the k live coordinates, at a total cost of O(k ilogr k) bits.

In the jth round of communication (1 < j < r), the player to speak first updates her
copy of w by considering the (j− 1)th message: for for each live i, she sets wi = 0 if xi 6= yi
is witnessed. Now, if more than 2k/ ilogr+1−j k coordinates remain live, she sends “1”,
signifying that the protocol should abort and output oreqn,k = 1. Otherwise, she sends
“0”, followed by her updated copy of w, followed by a (2 ilogr+1−j k)-bit equality test for
each live coordinate. Thus the jth message is O(k) bits long.

The final round of communication is similar, except that the equality tests are (12 log k)-
bits long rather than 2 ilogr+1−r k = 2 log k bits. The receiver of the final message updates
his copy of w, evaluates each equality test, and outputs oreqn,k = 1 if any coordinates
remain live. Otherwise, he outputs oreqn,k = 0.
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The overall communication is thus O(k ilogr k) bits. Note also that the protocol outputs
oreqn,k = 0 only when xi 6= yi was witnessed for every i. Thus, the protocol produces no
false negatives.

A false positive can happen for one of two reasons: either the protocol aborts (outputting
oreqn,k = 1), or one or more coordinates remain live at the end of the protocol, despite
having xi 6= yi for all i.

In the former case, note that (conditioned on not aborting before round j) we have
at most 2k/ ilogr+1−j k live coordinates during round j. Players execute a (2 ilogr+1−j k)-
bit equality test during this round. Thus, a coordinate remains live after this test with
probability at most 2−2 ilogr+1−j k < 1/ ilogr−j k. Therefore, we expect at most k/ ilogr−j k
coordinates to be live in the next round. By a (crude) Chernoff bound argument, the
probability of aborting during round j + 1 (again, conditioned on not previously aborting)
is less than k−20, and the overall probability of aborting before the end of the protocol is
less than k−12 (say).

In the latter case, note that the final equality test uses 12 log k bits per coordinate.
Therefore, players fail to witness xi 6= yi with probability at most 2−12 log k = k−12. By a
union bound, the overall false positive rate is at most k−10. J

F Direct Sum for Equality with Constant Error

In this section we prove our results for private-intersection. In the proof we will use the
following modification of the strong direct sum theorem of [37] (Theorem 2.1), which uses
protocols with abortion (see definitions in Appendix A.2). The simulation procedure used
in the proof of this theorem in [37] preserves the number of rounds in the protocol, which
allows us to state their theorem as:

I Theorem 59 (Strong Direct Sum [37]). Let δ ≤ 1/3. Then for every function f : X×Y → Z
and distribution λ on X × Y × D with marginal µp on X × Y and marginal νp on D, such
that µp is partitioned by νp, it holds that ICµ

k
p,(r)
δ (fk|νkp ) ≥ Ω(k) ICµp,(r)1

20 ,
1
10 ,

δ
k

(f |νp).

Using the direct sum above it remains to show the following:

I Lemma 60. There exists a distribution on X × Y × D with marginals µp on X × Y and
νp on D, such that νp partitions µp and ICµp,(r)1/20,1/10,δ/k(eqn/k |νp) = Ω(ilogr k).

Proof. In the proof we can use the same hard distribution as in [37]. Let ` = n/k. To
construct µp and νp, let D0 be a random variable uniformly distributed on {0, 1} and let
D be a random variable uniformly distributed on {0, 1}`. Let (X,Y) be a random variable
supported on {0, 1}`×{0, 1}` such that, conditioned on D0 = 0 we have X and Y distributed
independently and uniformly on {0, 1}`, and conditioned on D0 = 1 we have X = Y = D.
Let µp be the distribution of (X,Y) and let νp be the distribution of (D0D). Note that νp
partitions µp. Also, this distribution satisfies that Pr[X = Y] ≥ 1/3 and Pr[X 6= Y] ≥ 1/3.

Let W be a random variable distributed according to νp. Let E be an indicator variable
over the private randomness of P which is equal to 1 if and only if conditioned on this
private randomness P satisfies that it aborts with probability at most 1/10 and succeeds with
probability at least 1− δ/k conditioned on non-abortion. Given such protocol with abortion
P we transform it into a protocol P ′ which never aborts, has almost the same information
complexity and gives correct output on non-equal instances with high probability, while being
correct on equal instances with constant probability. This is done by constructing P ′ so that
whenever P outputs “abort”, the output of P ′ is X 6= Y , otherwise P = P ′. Under the
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distribution µp conditioned on the event E = 1 the protocol P ′ has the property that if X 6=
Y , then it outputs X = Y with probability at most (1/k)/Prµp [X 6= Y ] ≤ 3/k. However,
if X = Y , then the protocol may output X 6= Y with probability 1/10 + (1/k)/Prµ′p [X =
Y ] ≤ 1/10 + 3/k ≤ 1/5, where the latter follows for k ≥ 30. Thus, conditioned on E = 1,
the protocol P ′ has failure probability ε = 1/k on non-equal instances X 6= Y , and constant
failure probability δ = 1/5 on equal instances X = Y , as desired. In this regime we can use
Theorem 6. We have:

ICµp,(r)1/20,1/10,δ/k(eqn/k |νp) ≥ I(P : X,Y |W ) = Ω(I(P : X,Y |W,E = 1))− 1 = Ω(I(P ′ : X,Y |W,E = 1))− 2.

Here the inequality is by definition of information compelxity and the equalities follows
from Proposition 17 together with the fact that H(E) ≤ 1, Pr[E = 1] = 19/20, and the fact
that the transcripts of the protocols P and P ′ only differ in a single bit. The right-hand
side can be bounded as follows.

I(P ′ : X,Y |W,E = 1)) = Ω(ICµ,(r)1/k,1/5(eqn/k)). (36)

This follows from the construction of the distributions µp and νp that we use. If D0 = 0
then X = Y and the information revealed by P is equal to zero. Otherwise, if D0 = 1 then
the distribution of (X,Y) is uniform. Because the latter happens with probability 1/2 we
have I(P ′ : X,Y |W,E = 1)) ≥ 1/2 · ICµ,(r)1/k,1/5(eqn/k)) as desired.

Using (36) we have ICµp,(r)1/20,1/10,δ/k(eqn/k |νp) = Ω(ICµ,(r)1/k,1/5(eqn/k)). The proof is com-
pleted by noting that setting ε = 1/k and δ = 1/5 in Theorem 6 gives ICµ,(r)1/k,1,5(eqn/k) =
Ω(ilogr k). J
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