Sketching as a Tool for Numerical Linear Algebra All Lectures

David Woodruff IBM Almaden

Massive data sets

Examples

- Internet traffic logs
- Financial data
- etc.

Algorithms

- Want nearly linear time or less
- Usually at the cost of a randomized approximation

Regression

 Statistical method to study dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

Ohm's law V = R · I

Example Regression

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law V = R · I
- Find linear function that best fits the data

100

150

50

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable b
- A set of predictor variables a₁,..., a₀
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

- ε is assumed to be noise and the x_i are model parameters we want to learn
- Can assume $x_0 = 0$
- Now consider n observations of b

Matrix form

Input: $n \times d$ -matrix A and a vector $b = (b_1, ..., b_n)$ n is the number of observations; d is the number of predictor variables

Output: x* so that Ax* and b are close

- Consider the over-constrained case, when n ≫ d
- Can assume that A has full column rank

Least Squares Method

- Find x* that minimizes $|Ax-b|_2^2 = \sum (b_i \langle A_{i^*}, x \rangle)^2$
- A_{i*} is i-th row of A
- Certain desirable statistical properties

Geometry of regression

- We want to find an x that minimizes |Ax-b|₂
- The product Ax can be written as

$$A_{*1}X_1 + A_{*2}X_2 + ... + A_{*d}X_d$$

where A_{*i} is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in I₂-norm

Solving least squares regression via the normal equations

- How to find the solution x to $min_x |Ax-b|_2$?
- Equivalent problem: min_x |Ax-b |₂²
 - Write b = Ax' + b', where b' orthogonal to columns of A
 - Cost is $|A(x-x')|_2^2 + |b'|_2^2$ by Pythagorean theorem
 - Optimal solution x if and only if $A^{T}(Ax-b) = A^{T}(Ax-Ax^{2}) = 0$
 - Normal Equation: $A^TAx = A^Tb$ for any optimal x
 - $x = (A^TA)^{-1} A^T b$
- If the columns of A are not linearly independent, the Moore-Penrose pseudoinverse gives a minimum norm solution x

Moore-Penrose Pseudoinverse

Singular Value Decomposition (SVD)

Any matrix $A = U \cdot \Sigma \cdot V^{T}$

- U has orthonormal columns
- Σ is diagonal with non-increasing non-negative entries down the diagonal
- V^T has orthonormal rows
- Pseudoinverse $A^- = V \Sigma^{-1}U^T$
 - Where Σ⁻¹ is a diagonal matrix with i-th diagonal entry equal to $1/\Sigma_{ii}$ if $\Sigma_{ii} > 0$ and is 0 otherwise
- min_x |Ax-b |₂² not unique when columns of A are linearly independent, but $x = A^{-}b$ has minimum norm

Moore-Penrose Pseudoinverse

- Any optimal solution x has the form $A^-b + (I V'V'^T)z$, where V' corresponds to the rows i of V^T for which $\Sigma_{i,i} > 0$
- Why?
- Because $A(I V'V'^T)z = 0$, so $A^-b + (I V'V'^T)z$ is a solution. This is a d-rank(A) dimensional affine space so it spans all optimal solutions
- Since A⁻b is in column span of V', by Pythagorean theorem, $|A^-b| + (I V'V'^T)z|_2^2 = |A^-b|_2^2 + |(I V'V'^T)z|_2^2 \ge |A^-b|_2^2$

Time Complexity

Solving least squares regression via the normal equations

- Need to compute x = A-b
- Naively this takes nd² time
- Can do nd^{1.376} using fast matrix multiplication
- But we want much better running time!

Sketching to solve least squares regression

- How to find an approximate solution x to min_x |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ ≤ (1+ε) min_x |Ax-b|₂
 with high probability
- Draw S from a k x n random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution x' to $\min_{x'} |(SA)x-(Sb)|_2$
 - x' = (SA)-Sb

How to choose the right sketching matrix S?

- Recall: output the solution x' to min_{x'} |(SA)x-(Sb)|₂
- Lots of matrices work
- S is d/ε² x n matrix of i.i.d. Normal random variables
- To see why this works, we introduce the notion of a subspace embedding

Subspace Embeddings

- Let $k = O(d/\epsilon^2)$
- Let S be a k x n matrix of i.i.d. normal N(0,1/k) random variables
- For any fixed d-dimensional subspace, i.e., the column space of an n x d matrix A
 - W.h.p., for all x in R^d , $|SAx|_2 = (1\pm\epsilon)|Ax|_2$
- Entire column space of A is preserved

Why is this true?

Subspace Embeddings – A Proof

- Want to show $|SAx|_2 = (1\pm\epsilon)|Ax|_2$ for all x
- Can assume columns of A are orthonormal (since we prove this for all x)
- Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random variables
 - First property: for two independent random variables X and Y, with X drawn from $N(0,a^2)$ and Y drawn from $N(0,b^2)$, we have X+Y is drawn from $N(0,a^2+b^2)$

X+Y is drawn from N(0, $a^2 + b^2$)

- Probability density function f_Z of Z = X+Y is convolution of probability density functions f_X and f_Y
- $f_Z(z) = \int f_Y(z-x)f_X(x) dx$

•
$$f_{\chi}(\chi) = \frac{1}{a(2\pi)^{.5}} e^{-\chi^2/2a^2}$$
 , $f_{y}(y) = \frac{1}{b(2\pi)^{.5}} e^{-\chi^2/2b^2}$

•
$$f_Z(z) = \int \frac{1}{a(2\pi)^{.5}} e^{-(z-x)^2/2a^2} \frac{1}{b(2\pi)^{.5}} e^{-x^2/2b^2} dx$$

$$= \frac{1}{(2\pi)^{.5}(a^2+b^2)^{.5}} e^{-z^2/2(a^2+b^2)} \int \frac{(a^2+b^2)^{.5}}{(2\pi)^{.5}ab} e^{-\frac{2\left(\frac{(ab)^2}{a^2+b^2}\right)^2}{(2\pi)^{.5}ab}} dx$$

X+Y is drawn from N(0, $a^2 + b^2$)

Calculation:
$$e^{-\frac{(z-x)^2}{2a^2} - \frac{x^2}{2b^2}} = e^{-\frac{z^2}{2(a^2+b^2)} - \frac{\left(x - \frac{b^2z}{a^2+b^2}\right)^2}{2\left(\frac{(ab)^2}{a^2+b^2}\right)}}$$

$$-\frac{\left(x-\frac{b^2z}{a^2+b^2}\right)^2}{\left(2\pi\right)^{.5}ab}e^{-\frac{\left(\left(ab\right)^2}{a^2+b^2}\right)^2}$$
 Density of Gaussian distribution:
$$\int \frac{\left(a^2+b^2\right)^{.5}}{\left(2\pi\right)^{.5}ab}e^{-\frac{2\left(\frac{(ab)^2}{a^2+b^2}\right)^2}{a^2+b^2}} dx = 1$$

Rotational Invariance

- Second property: if u, v are vectors with <u, v> = 0, then <g,u> and <g,v> are independent, where g is a vector of i.i.d. N(0,1/k) random variables
- Why?
- If g is an n-dimensional vector of i.i.d. N(0,1) random variables, and R is a fixed matrix, then the probability density function of Rg is

$$f(x) = \frac{1}{\det(RR^T)(2\pi)^{d/2}} e^{-\frac{x^T(RR^T)^{-1}x}{2}}$$

- RR^T is the covariance matrix
- For a rotation matrix R, the distribution of Rg and of g are the same

Orthogonal Implies Independent

- Want to show: if u, v are vectors with <u, v> = 0, then
 <g,u> and <g,v> are independent, where g is a vector of i.i.d. N(0,1/k) random variables
- Choose a rotation R which sends u to αe_1 , and sends v to βe_2
- $< g, u > = < gR, R^Tu > = < h, \alpha e_1 > = \alpha h_1$
- < g, v > = < gR, R^Tv > = < h, βe_2 > = βh_2 where h is a vector of i.i.d. N(0, 1/k) random variables
- Then h₁ and h₂ are independent by definition

Where were we?

- Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random variables
- Proof: The rows of SA are independent
 - Each row is: $< g, A_1 >, < g, A_2 >, ..., < g, A_d >$
 - First property implies the entries in each row are N(0,1/k) since the columns A_i have unit norm
 - Since the columns A_i are orthonormal, the entries in a row are independent by our second property

Back to Subspace Embeddings

- Want to show $|SAx|_2 = (1\pm\epsilon)|Ax|_2$ for all x
- Can assume columns of A are orthonormal
- Can also assume x is a unit vector
- SA is a k x d matrix of i.i.d. N(0,1/k) random variables
- Consider any fixed unit vector $x \in \mathbb{R}^d$
- $|SAx|_2^2 = \sum_{i \in [k]} \langle g_i, x \rangle^2$, where g_i is i-th row of SA
- Each $< g_i, x >^2$ is distributed as $N(0, \frac{1}{k})^2$
- $E[\langle g_i, x \rangle^2] = 1/k$, and so $E[|SAx|_2^2] = 1$

How concentrated is $|SAx|_2^2$ about its expectation?

Johnson-Lindenstrauss Theorem

- Suppose $h_1, ..., h_k$ are i.i.d. N(0,1) random variables
- Then G = $\sum_{i} h_{i}^{2}$ is a χ^{2} -random variable
- Apply known tail bounds to G:
 - (Upper) $Pr[G \ge k + 2(kx)^{.5} + 2x] \le e^{-x}$
 - (Lower) $Pr[G \le k 2(kx)^{.5}] \le e^{-x}$
- If $x = \frac{\epsilon^2 k}{16}$, then $Pr[G \in k(1 \pm \epsilon)] \ge 1 2e^{-\epsilon^2 k/16}$
- If $k = \Theta(\epsilon^{-2}\log(\frac{1}{\delta}))$, this probability is 1- δ
- $\Pr[|SAx|_2^2 \in (1 \pm \epsilon)] \ge 1 2^{-\Theta(d)}$

This only holds for a fixed x, how to argue for all x?

Net for Sphere

- Consider the sphere S^{d-1}
- Subset N is a γ -net if for all $x \in S^{d-1}$, there is a $y \in N$, such that $|x y|_2 \le \gamma$
- Greedy construction of N
 - While there is a point $x \in S^{d-1}$ of distance larger than γ from every point in N, include x in N
- The sphere of radius $\gamma/2$ around ever point in N is contained in the sphere of radius 1+ γ around 0^d
- Further, all such spheres are disjoint
- Ratio of volume of d-dimensional sphere of radius 1+ γ to dimensional sphere of radius γ is $(1 + \gamma)^d/(\gamma/2)^d$, so $|N| \le (1 + \gamma)^d/(\gamma/2)^d$

Net for Subspace

- Let M = {Ax | x in N}, so $|M| \le (1 + \gamma)^d / (\gamma/2)^d$
- Claim: For every x in S^{d-1} , there is a y in M for which $|Ax y|_2 \le \gamma$
- Proof: Let x' in S^{d-1} be such that $|x-x'|_2 \le \gamma$ Then $|Ax-Ax'|_2 = |x-x'|_2 \le \gamma$, using that the columns of A are orthonormal. Set y = Ax'

Net Argument

- For a fixed unit x, $Pr[|SAx|_2^2 \in (1 \pm \epsilon)] \ge 1 2^{-\Theta(d)}$
- For a fixed pair of unit x, x', $|SAx|_2^2$, $|SAx'|_2^2$, $|SA(x x')|_2^2$ are all $1 \pm \epsilon$ with probability $1 2^{-\Theta(d)}$
- $|SA(x x')|_2^2 = |SAx|_2^2 + |SAx'|_2^2 2 < SAx, SAx' >$
- $|A(x x')|_2^2 = |Ax|_2^2 + |Ax'|_2^2 2 < Ax, Ax' >$ - So $Pr[< Ax, Ax' > = < SAx, SAx' > \pm O(\epsilon)] = 1 - 2^{-\Theta(d)}$
- Choose a $\frac{1}{2}$ -net M = {Ax | x in N} of size 5^d
- By a union bound, for all pairs y, y' in M, $< y, y' > = < Sy, Sy' > \pm O(\epsilon)$
- Condition on this event
- By linearity, if this holds for y, y' in M, for αy , $\beta y'$ we have $< \alpha y$, $\beta y' > = \alpha \beta < Sy$, $Sy' > \pm O(\epsilon \alpha \beta)$

Finishing the Net Argument

- Let y = Ax for an arbitrary $x \in S^{d-1}$
- Let $y_1 \in M$ be such that $|y y_1|_2 \le \gamma$
- Let α be such that $|\alpha(y y_1)|_2 = 1$
 - $-\alpha \ge 1/\gamma$ (could be infinite)
- Let $y_2' \in M$ be such that $|\alpha(y y_1) y_2'|_2 \le \gamma$
- Then $\left| y y_1 \frac{y_2'}{\alpha} \right|_2 \le \frac{\gamma}{\alpha} \le \gamma^2$
- Set $y_2 = \frac{y_2'}{\alpha}$. Repeat, obtaining $y_1, y_2, y_3, ...$ such that for all integers i,

$$|y - y_1 - y_2 - ... - y_i|_2 \le \gamma^i$$

• Implies $|y_i|_2 \le \gamma^{i-1} + \gamma^i \le 2\gamma^{i-1}$

Finishing the Net Argument

• Have $y_1, y_2, y_3, ...$ such that $y = \sum_i y_i$ and $|y_i|_2 \le 2\gamma^{i-1}$

•
$$|Sy|_{2}^{2} = |S\sum_{i}y_{i}|_{2}^{2}$$

= $\sum_{i}|Sy_{i}|_{2}^{2} + 2\sum_{i,j} < Sy_{i}, Sy_{j} >$
= $\sum_{i}|y_{i}|_{2}^{2} + 2\sum_{i,j} < y_{i}, y_{j} > \pm O(\epsilon)\sum_{i,j}|y_{i}|_{2}|y_{j}|_{2}$
= $|\sum_{i}y_{i}|_{2}^{2} \pm O(\epsilon)$
= $|y|_{2}^{2} \pm O(\epsilon)$
= $1 \pm O(\epsilon)$

• Since this held for an arbitrary y = Ax for unit x, by linearity it follows that for all x, $|SAx|_2 = (1\pm\epsilon)|Ax|_2$

Back to Regression

We showed that S is a subspace embedding, that is, simultaneously for all x, |SAx|₂ = (1±ε)|Ax|₂

What does this have to do with regression?

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \le (1+\epsilon) \min_y |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \varepsilon) |Ax-b|_2$ for all x
- Solve argmin_y |(SA)y (Sb)|₂
- Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd²) time

How to choose the right sketching matrix S? [S]

- S is a Subsampled Randomized Hadamard Transform
 - S = P*H*D
 - D is a diagonal matrix with +1, -1 on diagonals
 - H is the Hadamard transform
 - P just chooses a random (small) subset of rows of H*D
 - S*A can be computed in O(nd log n) time

Why does this work?

- We can again assume columns of A are orthonormal
- It suffices to show $|SAx|_2^2 = |PHDAx|_2^2 = 1 \pm \epsilon$ for all x
- HD is a rotation matrix, so $|HDAx|_2^2 = |Ax|_2^2 = 1$ for any x
 - Notation: let y = Ax
- Flattening Lemma: For any fixed y,

$$\Pr[|HDy|_{\infty} \ge C \quad \frac{\log^{.5} nd/\delta}{n^{.5}}] \le \frac{\delta}{2d}$$

Proving the Flattening Lemma

- Flattening Lemma: $\Pr[|HDy|_{\infty} \ge C \quad \frac{\log^{.5} nd/\delta}{n^{.5}}] \le \frac{\delta}{2d}$
- Let C > 0 be a constant. We will show for a fixed i in [n],

$$\Pr[|(HDy)_i| \ge C \frac{\log^{.5} nd/\delta}{n^{.5}}] \le \frac{\delta}{2nd}$$

- If we show this, we can apply a union bound over all i
- $|(HDy)_i| = \sum_j H_{i,j} D_{j,j} y_j$
- (Azuma-Hoeffding) $\Pr[|\sum_j Z_j| > t] \le 2e^{-(\frac{t^2}{2}\sum_j \beta_j^2)}$, where $|Z_j| \le \beta_j$ with probability 1
 - $Z_j = H_{i,j}D_{j,j}y_j$ has 0 mean
 - $|Z_j| \le \frac{|y_j|}{n^{.5}} = \beta_j$ with probability 1
 - $\sum_{j} \beta_{j}^{2} = \frac{1}{n}$

$$\Pr\left[\left|\sum_{j} Z_{j}\right| > \frac{C \log^{.5}\left(\frac{nd}{\delta}\right)}{n^{.5}}\right] \leq 2e^{-\frac{C^{2} \log\left(\frac{\delta}{nd}\right)}{2}} \leq \frac{\delta}{2nd}$$

Consequence of the Flattening Lemma

- Recall columns of A are orthonormal
- HDA has orthonormal columns
- Flattening Lemma implies $|HDAe_i|_{\infty} \le C \frac{\log^{.5} nd/\delta}{n^{.5}}$ with probability $1 \frac{\delta}{2d}$ for a fixed $i \in [d]$
- With probability $1 \frac{\delta}{2}$, $\left| e_j HDAe_i \right| \le C \frac{\log^{.5} nd/\delta}{n^{.5}}$ for all i,j
- Given this, $\left| e_j HDA \right|_2 \le C \frac{d^{.5} \log^{.5} nd/\delta}{n^{.5}}$ for all j

(Can be optimized further)

Matrix Chernoff Bound

Let $X_1, ..., X_s$ be independent copies of a symmetric random matrix $X \in R^{dxd}$ with E[X] = 0, $|X|_2 \le \gamma$, and $\left| E[X^TX] \right|_2 \le \sigma^2$. Let $W = \frac{1}{s} \sum_{i \in [s]} X_i$. For any $\epsilon > 0$, $\Pr[|W|_2 > \epsilon] \le 2d \cdot e^{-s\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$

(here
$$|W|_2 = \sup |Wx|_2/|x|_2$$
)

- Let V = HDA, and recall V has orthonormal columns
- Suppose P in the S = PHD definition samples uniformly with replacement. If row i is sampled in the j-th sample, then $P_{j,i}=n$, and is 0 otherwise
- Let Y_i be the i-th sampled row of V = HDA
- Let $X_i = I_d n \cdot Y_i^T Y_i$
 - $E[X_i] = I_d n \cdot \sum_j \left(\frac{1}{n}\right) V_i^T V_i = I_d V^T V = 0^d$
 - $|X_i|_2 \le |I_d|_2 + n \cdot \max |e_j HDA|_2^2 = 1 + n \cdot C^2 \log \left(\frac{nd}{\delta}\right) \cdot \frac{d}{n} = \Theta(d \log \left(\frac{nd}{\delta}\right))$

Matrix Chernoff Bound

- Recall: let Y_i be the i-th sampled row of V = HDA
- Let $X_i = I_d n \cdot Y_i^T Y_i$
- $E[X^{T}X + I_{d}] = I_{d} + I_{d} 2n E[Y_{i}^{T}Y_{i}] + n^{2}E[Y_{i}^{T}Y_{i}Y_{i}^{T}Y_{i}]$ $= 2I_{d} 2I_{d} + n^{2} \sum_{i} \left(\frac{1}{n}\right) \cdot v_{i}^{T}v_{i}v_{i}^{T}v_{i} = n \sum_{i} v_{i}^{T}v_{i} \cdot |v_{i}|_{2}^{2}$
- Define $Z = n \sum_{i} v_{i}^{T} v_{i} C^{2} \log \left(\frac{nd}{\delta}\right) \cdot \frac{d}{n} = C^{2} \operatorname{dlog}\left(\frac{nd}{\delta}\right) I_{d}$
- Note that $X^TX + I_d$ and Z are real symmetric, with non-negative eigenvalues
- Claim: for all vectors y, we have: $y^T X^T X y + y^T y \le y^T Z y$
- Proof: $y^T X^T X y + y^T y = n \sum_i y^T v_i^T v_i y |v_i|_2^2 = n \sum_i < v_i, y >^2 |v_i|_2^2$ and $y^T Z y = n \sum_i y^T v_i^T v_i y C^2 \log \left(\frac{nd}{\delta}\right) \cdot \frac{d}{n} = n \sum_i < v_i, y >^2 C^2 \log \left(\frac{nd}{\delta}\right)$
- Hence, $|E[X^TX]|_2 \le |E[X^TX] + I_d|_2 + |I_d|_2 = |E[X^TX + I_d]|_2 + 1$ $\le |Z|_2 + 1 \le C^2 d \log \left(\frac{nd}{\delta}\right) + 1$
- Hence, $|E[X^TX]|_2 = O\left(d\log\left(\frac{nd}{\delta}\right)\right)$

Matrix Chernoff Bound

- Hence, $|E[X^TX]|_2 = O\left(d\log\left(\frac{nd}{\delta}\right)\right)$
- Recall: (Matrix Chernoff) Let $X_1, ..., X_s$ be independent copies of a symmetric random matrix $X \in R^{dxd}$ with E[X] = 0, $|X|_2 \le \gamma$, and $\left| E[X^TX] \right|_2 \le \sigma^2$. Let $W = \frac{1}{s} \sum_{i \in [s]} X_i$. For any $\epsilon > 0$, $\Pr[|W|_2 > \epsilon] \le 2d \cdot e^{-s\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$

$$\Pr\left[|I_{d} - (PHDA)^{T}(PHDA)\right] \Big|_{2} > \epsilon \le 2d \cdot e^{-s \epsilon^{2}/(\Theta(d \log(\frac{nd}{\delta})))}$$

• Set $s = d \log \left(\frac{nd}{\delta}\right) \frac{\log \left(\frac{d}{\delta}\right)}{\epsilon^2}$, to make this probability less than $\frac{\delta}{2}$

SRHT Wrapup

- Have shown $|I_d (PHDA)^T(PHDA)|_2 < \epsilon$ using Matrix Chernoff Bound and with $s = d \log \left(\frac{nd}{\delta}\right) \frac{\log \left(\frac{d}{\delta}\right)}{\epsilon^2}$ samples
- Implies for every unit vector x,
 |1-|PHDAx|₂²| = |x^Tx x(PHDA)^T(PHDA)x| < ε,
 so |PHDAx|₂² ∈ 1 ± ε for all unit vectors x
- Considering the column span of A adjoined with b, we can again solve the regression problem
- The time for regression is now only O(nd log n) + $\operatorname{poly}(\frac{d \log(n)}{\epsilon})$. Nearly optimal in matrix dimensions (n >> $\overset{\text{d}}{d}$)

Faster Subspace Embeddings S [CW,MM,NN]

- CountSketch matrix
- Define k x n matrix S, for k = O(d²/ε²)
- S is really sparse: single randomly chosen non-zero entry per column

nnz(A) is number of non-zero entries of A

Simple Proof [Nguyen]

- Can assume columns of A are orthonormal
- Suffices to show |SAx|₂ = 1 ± ε for all unit x
 - For regression, apply S to [A, b]
- SA is a 2d²/ε² x d matrix
- Suffices to show $|A^TS^TSA I|_2 \le |A^TS^TSA I|_F \le \varepsilon$
- Matrix product result shown below: $\Pr[|\mathsf{CS^TSD} \mathsf{CD}|_\mathsf{F}^2 \leq [3/(\delta(\# \text{ rows of S}))] * |\mathsf{C}|_\mathsf{F}^2 |\mathsf{D}|_\mathsf{F}^2] \geq 1 \delta$
- Set $C = A^T$ and D = A.
- Then $|A|^2_F = d$ and (# rows of S) = 3 $d^2/(\delta \epsilon^2)$

Matrix Product Result [Kane, Nelson]

- Show: $\Pr[|CS^TSD CD|_{F^2} \le [3/(\delta(\# \text{ rows of S}))] * |C|_{F^2} |D|_{F^2}] \ge 1 \delta$
- (JL Property) A distribution on matrices $S \in R^{kx n}$ has the (ϵ, δ, ℓ) -JL moment property if for all $x \in R^n$ with $|x|_2 = 1$,

$$|\mathbf{E}_{\mathbf{S}}||\mathbf{S}\mathbf{x}|_{2}^{2}-\mathbf{1}|^{\ell} \leq \epsilon^{\ell} \cdot \delta$$

• (From vectors to matrices) For $\epsilon, \delta \in \left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ) -JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$\Pr_{S} \left[\left| A^{T} S^{T} S B - A^{T} B \right|_{F} \ge 3 \epsilon |A|_{F} |B|_{F} \right] \le \delta$$

From Vectors to Matrices

• (From vectors to matrices) For $\epsilon, \delta \in \left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ) -JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$\Pr_{S} \left[\left| A^{T} S^{T} S B - A^{T} B \right|_{F} \ge 3 \epsilon |A|_{F} |B|_{F} \right] \le \delta$$

- Proof: For a random scalar X, let $|X|_p = (E|X|^p)^{1/p}$
 - Sometimes consider $X = |T|_F$ for a random matrix T
 - $||T|_F||_p = (E[|T|_F^p])^{1/p}$
- Can show |. |p is a norm
 - Minkowski's Inequality: $|X + Y|_p \le |X|_p + |Y|_p$
- For unit vectors x, y, need to bound $|\langle Sx, Sy \rangle \langle x, y \rangle|_{\ell}$

From Vectors to Matrices

For unit vectors x, y, $|\langle Sx, Sy \rangle - \langle x, y \rangle|_{\ell}$ $= \frac{1}{2} |(|Sx|_2^2 - 1) + (|Sy|_2^2 - 1) - (|S(x - y)|_2^2 - |x - y|_2^2)|_{\ell}$ $\leq \frac{1}{2} (||Sx|_2^2 - 1|_{\ell} + ||Sy|_2^2 - 1|_{\ell} + ||S(x - y)|_2^2 - |x - y|_2^2|_{\ell})$ $\leq \frac{1}{2} (\epsilon \cdot \delta^{\frac{1}{\ell}} + \epsilon \cdot \delta^{\frac{1}{\ell}} + |x - y|_2^2 \epsilon \cdot \delta^{\frac{1}{\ell}})$ $\leq 3\epsilon \cdot \delta^{\frac{1}{\ell}}$

- By linearity, for arbitrary x, y, $\frac{|\langle Sx,Sy \rangle \langle x,y \rangle|_{\ell}}{|x|_2|y|_2} \le 3 \in \delta^{\frac{1}{\ell}}$
- Suppose A has d columns and B has e columns. Let the columns of A be $A_1, ..., A_d$ and the columns of B be $B_1, ..., B_e$
- Define $X_{i,j} = \frac{1}{|A_i|_2 |B_j|_2} \cdot (\langle SA_i, SB_j \rangle \langle A_i, B_j \rangle)$
- $|A^{T}S^{T}SB A^{T}B|_{F}^{2} = \sum_{i} \sum_{j} |A_{i}|_{2}^{2} \cdot |B_{j}|_{2}^{2} X_{i,j}^{2}$

From Vectors to Matrices

- Have shown: for arbitrary x, y, $\frac{|\langle Sx,Sy \rangle \langle x,y \rangle|_{\ell}}{|x|_2|y|_2} \le 3 \in \delta^{\frac{1}{\ell}}$
- For $X_{i,j} = \frac{1}{|A_i|_2 |B_j|_2} \cdot (\langle SA_i, SB_j \rangle \langle A_i, B_j \rangle) : |A^T S^T SB A^T B|_F^2 = \sum_i \sum_j |A_i|_2^2 \cdot |B_j|_2^2 X_{i,j}^2$

$$\begin{aligned} & \cdot ||\mathbf{A}^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}\mathbf{B} - \mathbf{A}^{\mathsf{T}}\mathbf{B}|_{\mathsf{F}}^{2}|_{\ell/2} = \left| \sum_{i} \sum_{j} |\mathbf{A}_{i}|_{2}^{2} \cdot |\mathbf{B}_{j}|_{2}^{2} \mathbf{X}_{i,j}^{2} \right|_{\ell/2} \\ & \leq \sum_{i} \sum_{j} |\mathbf{A}_{i}|_{2}^{2} \cdot |\mathbf{B}_{j}|_{2}^{2} |\mathbf{X}_{i,j}^{2}|_{\ell/2} \\ & = \sum_{i} \sum_{j} |\mathbf{A}_{i}|_{2}^{2} \cdot |\mathbf{B}_{j}|_{2}^{2} |\mathbf{X}_{i,j}|_{\ell}^{2} \\ & \leq \left(3 \epsilon \delta^{\frac{1}{\ell}} \right)^{2} \sum_{i} \sum_{j} |\mathbf{A}_{i}|_{2}^{2} |\mathbf{B}_{j}|_{2}^{2} \\ & = \left(3 \epsilon \delta^{\frac{1}{\ell}} \right)^{2} |\mathbf{A}|_{\mathsf{F}}^{2} |\mathbf{B}|_{\mathsf{F}}^{2} \end{aligned}$$

- Since $E\left[\left|A^TS^TSB A^TB\right|_F^\ell\right] = \left|\left|A^TS^TSB A^TB\right|_F^2\right|_{\frac{\ell}{2}}^{\ell/2}$, by Markov's inequality,
- $\Pr\left[\left|A^TS^TSB A^TB\right|_F > 3\epsilon |A|_F |B|_F\right] \le \left(\frac{1}{3\epsilon |A|_F |B|_F}\right)^{\ell} E\left[\left|A^TS^TSB A^TB\right|_F^{\ell}\right] \le \delta$

Result for Vectors

- Show: $Pr[|CS^TSD CD|_F^2 \le [3/(\delta(\# \text{ rows of S}))] * |C|_F^2 |D|_F^2] \ge 1 \delta$
- (JL Property) A distribution on matrices $S \in R^{kx n}$ has the (ϵ, δ, ℓ) -JL moment property if for all $x \in R^n$ with $|x|_2 = 1$,

$$|\mathbf{E}_{\mathbf{S}}||\mathbf{S}\mathbf{x}|_{2}^{2}-1|^{\ell} \leq \epsilon^{\ell} \cdot \delta$$

• (From vectors to matrices) For $\epsilon, \delta \in \left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ) -JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$\Pr_{S} \left[\left| A^{T} S^{T} S B - A^{T} B \right|_{F} \ge 3 \epsilon |A|_{F} |B|_{F} \right] \le \delta$$

 Just need to show that the CountSketch matrix S satisfies JL property and bound the number k of rows

CountSketch Satisfies the JL Property

• (JL Property) A distribution on matrices $S \in R^{kx n}$ has the (ϵ, δ, ℓ) -JL moment property if for all $x \in R^n$ with $|x|_2 = 1$,

$$|E_S||Sx|_2^2 - 1|^{\ell} \le \epsilon^{\ell} \cdot \delta$$

- We show this property holds with $\ell=2$. First, let us consider $\ell=1$
- For CountSketch matrix S, let
 - h:[n] -> [k] be a 2-wise independent hash function
 - $\sigma: [n] \to \{-1,1\}$ be a 4-wise independent hash function
- Let $\delta(E) = 1$ if event E holds, and $\delta(E) = 0$ otherwise

$$\begin{split} & \quad \mathbb{E}[|Sx|_2^2] = \sum_{j \in [k]} \mathbb{E}[\left(\sum_{i \in [n]} \delta(h(i) = j) \sigma_i x_i\right)^2] \\ & \quad = \sum_{j \in [k]} \sum_{i1,i2 \in [n]} \mathbb{E}[\delta(h(i1) = j) \delta(h(i2) = j) \sigma_{i1} \sigma_{i2}] x_{i1} x_{i2} \\ & \quad = \sum_{j \in [k]} \sum_{i \in [n]} \mathbb{E}[\delta(h(i) = j)^2] x_i^2 \\ & \quad = \left(\frac{1}{k}\right) \sum_{j \in [k]} \sum_{i \in [n]} x_i^2 = |x|_2^2 \end{split}$$

CountSketch Satisfies the JL Property

- $E[|Sx|_2^4] = E[\sum_{j \in [k]} \sum_{j' \in [k]} \left(\sum_{i \in [n]} \delta(h(i) = j) \sigma_i x_i \right)^2 \left(\sum_{i' \in [n]} \delta(h(i') = j') \sigma_i x_{i'} \right)^2] = 0$
- $\sum_{j_1,j_2,i_1,i_2,i_3,i_4} E[\sigma_{i1}\sigma_{i2}\sigma_{i3}\sigma_{i4}\delta(h(i_1)=j_1)\delta(h(i_2)=j_1)\delta(h(i_3)=j_2)\delta(h(i_4=j_2))]x_{i1}x_{i2}x_{i3}x_{i4}$
- We must be able to partition $\{i_1, i_2, i_3, i_4\}$ into equal pairs
- Suppose $i_1 = i_2 = i_3 = i_4$. Then necessarily $j_1 = j_2$. Obtain $\sum_j \frac{1}{k} \sum_i x_i^4 = |x|_4^4$
- Suppose $i_1 = i_2$ and $i_3 = i_4$ but $i_1 \neq i_3$. Then get $\sum_{j_1, j_2, i_1, i_3} \frac{1}{k^2} x_{i_1}^2 x_{i_3}^2 = |x|_2^4 |x|_4^4$
- Suppose $i_1=i_3$ and $i_2=i_4$ but $i_1\neq i_2$. Then necessarily $j_1=j_2$. Obtain $\sum_j \frac{1}{k^2} \sum_{i_1,i_2} x_{i_1}^2 x_{i_2}^2 \leq \frac{1}{k} |x|_2^4$. Obtain same bound if $i_1=i_4$ and $i_2=i_3$.
- Hence, $E[|Sx|_2^4] \in [|x|_2^4, |x|_2^4(1+\frac{2}{k})] = [1, 1+\frac{2}{k}]$
- So, $E_S ||Sx|_2^2 1|^2 \le \left(1 + \frac{2}{k}\right) 2 + 1 = \frac{2}{k}$. Setting $k = \frac{1}{2\epsilon^2 \delta}$ finishes the proof

Where are we?

• (JL Property) A distribution on matrices $S \in R^{kx \, n}$ has the (ϵ, δ, ℓ) -JL moment property if for all $x \in R^n$ with $|x|_2 = 1$,

$$|\mathbf{E}_{\mathbf{S}}||\mathbf{S}\mathbf{x}|_{2}^{2}-1|^{\ell} \leq \epsilon^{\ell} \cdot \delta$$

• (From vectors to matrices) For $\epsilon, \delta \in \left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ) -JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$\Pr_{S} \left[\left| A^{T} S^{T} S B - A^{T} B \right|^{2}_{F} \ge 3 \epsilon^{2} |A|_{F}^{2} |B|_{F}^{2} \right] \le \delta$$

- We showed CountSketch has the JL property with $\ell=2$, and $k=\frac{2}{\epsilon^2\delta}$
- Matrix product result we wanted was:

$$Pr[|CS^{T}SD - CD|_{F}^{2} \le (3/(\delta k)) * |C|_{F}^{2} |D|_{F}^{2}] \ge 1 - \delta$$

We are now down with the proof CountSketch is a subspace embedding

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling

Affine Embeddings

- Want to solve $\min_{X} |AX B|_F^2$, A is tall and thin with d columns, but B has a large number of columns
- Can't directly apply subspace embeddings
- Let's try to show $|SAX SB|_F = (1 \pm \epsilon)|AX B|_F$ for all X and see what properties we need of S
- Can assume A has orthonormal columns
- Let $B^* = AX^* B$, where X^* is the optimum
- $|S(AX B)|_F^2 |SB^*|_F^2 = |SA(X X^*) + S(AX^* B)|_F^2 |SB^*|_F^2$ $= |SA(X X^*)|_F^2 2tr[(X X^*)^T A^T S^T S B^*]$ $∈ |SA(X X^*)|_F^2 \pm 2|X X^*|_F |A^T S^T S B^*|_F \text{ (use } tr(CD) ≤ |C|_F |D|_F)$ $∈ |SA(X X^*)|_F^2 \pm 2ε|X X^*|_F |B^*|_F \text{ (if we have approx. matrix product)}$ $∈ |A(X X^*)|_F^2 \pm ε(|A(X X^*)|_F^2 + 2|X X^*|_F |B^*|) \text{ (subspace embedding for } ^{52}A)$

Affine Embeddings

- We have $|S(AX B)|_F^2 |SB^*|_F^2 \in |A(X X^*)|_F^2 \pm \epsilon (|A(X X^*)|_F^2 + 2|X X^*|_F |B^*|)$
- Normal equations imply that

$$|AX - B|_F^2 = |A(X - X^*)|_F^2 + |B^*|_F^2$$

$$|S(AX - B)|_F^2 - |SB^*|_F^2 - (|AX - B|_F^2 - |B^*|_F^2)$$

$$\in \epsilon(|A(X - X^*)|_F^2 + 2|X - X^*|_F |B^*|_F)$$

$$\in \pm \epsilon(|A(X - X^*)|_F + |B^*|_F)^2$$

$$\in \pm 2\epsilon(|A(X - X^*)|_F^2 + |B^*|_F^2)$$

$$= \pm 2\epsilon|AX - B|_F^2$$

• $|SB^*|_F^2 = (1 \pm \epsilon)|B^*|_F^2$ (this holds with constant probability)

Affine Embeddings

- Know: $|S(AX B)|_F^2 |SB^*|_F^2 (|AX B|_F^2 |B^*|_F^2) \in \pm 2\epsilon |AX B|_F^2$
- Know: $|SB^*|_F^2 = (1 \pm \epsilon)|B^*|_F^2$

$$|S(AX - B)|_F^2 = (1 \pm 2\epsilon)|AX - B|_F^2 + \epsilon|B^*|_F^2$$
$$= (1 \pm 3\epsilon)|AX - B|_F^2$$

Completes proof of affine embedding!

Affine Embeddings: Missing Proofs

- Claim: $|A + B|_F^2 = |A|_F^2 + |B|_F^2 + 2Tr(A^TB)$
- Proof: $|A + B|_F^2 = \sum_i |A_i + B_i|_2^2$

$$= \sum_{i} |A_{i}|_{2}^{2} + \sum_{i} |B_{i}|_{2}^{2} + 2\langle A_{i}, B_{i} \rangle$$

$$= |A|_F^2 + |B|_F^2 + 2Tr(A^TB)$$

Affine Embeddings: Missing Proofs

- Claim: $Tr(AB) \le |A|_F |B|_F$
- Proof: $Tr(AB) = \sum_{i} \langle A^{i}, B_{i} \rangle$ for rows A^{i} and columns B_{i}

$$\leq \sum_{i} |A^{i}|_{2} |B_{i}|_{2}$$
 by Cauchy-Schwarz for each i

$$\leq \left(\sum_{i} \left|A^{i}\right|_{2}^{2}\right)^{\frac{1}{2}} \left(\sum_{i} \left|B_{i}\right|_{2}^{2}\right)^{\frac{1}{2}}$$
 another Cauchy-Schwarz

$$= |A|_F |B|_F$$

Affine Embeddings: Homework Proof

- Claim: $|SB^*|_F^2 = (1 \pm \epsilon)|B^*|_F^2$ with constant probability if CountSketch matrix S has $k = O(\frac{1}{\epsilon^2})$ rows
- Proof:
- $|SB^*|_F^2 = \sum_i |SB_i^*|_2^2$
- By our analysis for CountSketch and linearity of expectation, $E[|SB^*|_F^2] = \sum_i E[|SB_i^*|_2^2] = |B^*|_F^2$
- $E[|SB^*|_F^4] = \sum_{i,j} E[|SB_i^*|_2^2 |SB_j^*|_2^2]$
- By our CountSketch analysis, $E[|SB_i^*|_2^4]] \le |B_i^*|_2^4(1 + \frac{2}{k})$
- For cross terms see Lemma 40 in [CW13]

Low rank approximation

- A is an n x d matrix
 - Think of n points in R^d
- E.g., A is a customer-product matrix
 - A_{i,j} = how many times customer i purchased item j
- A is typically well-approximated by low rank matrix
 - E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
 - Easy to store, data more interpretable

What is a good low rank approximation?

Singular Value Decomposition (SVD)

Any matrix $A = U \cdot \Sigma \cdot V$

- U has orthonormal columns
- Σ is diagonal with non-increasing positive entries down the diagonal
- V has orthonormal rows
- Rank-k approximation: $A_k = U_k \cdot \Sigma_k \cdot V_k$
 - rows of V_k are the top k principal components

$$\left(\begin{array}{c}\mathbf{A}\end{array}\right)=\left(\begin{array}{c}\mathbf{U}_k\end{array}\right)\left(\begin{array}{c}\mathbf{\Sigma}_k\end{array}\right)\left(\begin{array}{c}\mathbf{V}_k\end{array}\right)+\left(\begin{array}{c}\mathbf{E}\end{array}\right)$$

What is a good low rank approximation?

$$A_k = argmin_{rank \ k \ matrices \ B} |A-B|_F$$

$$(|C|_F = (\Sigma_{i,j} C_{i,j}^2)^{1/2})$$

Computing A_k exactly is expensive

$$\left(egin{array}{c} \mathbf{A} \end{array}
ight) = \left(egin{array}{c} \mathbf{U}_k \end{array}
ight) \left(egin{array}{c} \mathbf{\Sigma}_k \end{array}
ight) \left(egin{array}{c} \mathbf{V}_k \end{array}
ight) + \left(egin{array}{c} \mathbf{E} \end{array}
ight)$$

Low rank approximation

• Goal: output a rank k matrix A', so that $|A-A'|_F \le (1+\epsilon) |A-A_k|_F$

- Can do this in nnz(A) + (n+d)*poly(k/ε) time [S,CW]
 - nnz(A) is number of non-zero entries of A

Solution to low-rank approximation [S]

- Given n x d input matrix A
- Compute S*A using a random matrix S with k/ε << n rows. S*A takes random linear combinations of rows of A

SA

 Project rows of A onto SA, then find best rank-k approximation to points inside of SA.

What is the matrix S?

- S can be a k/ε x n matrix of i.i.d. normal random variables
- [S] S can be a k/ε x n Fast Johnson Lindenstrauss
 Matrix
 - Uses Fast Fourier Transform
- [CW] S can be a poly(k/ε) x n CountSketch matrix

S · A can be computed in nnz(A) time

Why do these Matrices Work?

- Consider the regression problem $\min_{X} |A_k X A|_F$
- Write A_k = WY, where W is n x k and Y is k x d
- Let S be an affine embedding
- Then $|SA_kX SA|_F = (1 \pm \epsilon)|A_kX A|_F$ for all X
- By normal equations, $\underset{X}{\operatorname{argmin}}|SA_kX SA|_F = (SA_k)^-SA$
- So, $|A_k(SA_k)^-SA A|_F \le (1 + \epsilon)|A_k A|_F$
- But $A_k(SA_k)^-SA$ is a rank-k matrix in the row span of SA!
- Let's formalize why the algorithm works now...

Why do these Matrices Work?

$$\min_{\text{rank-k X}} |XSA - A|_F^2 \le |A_k(SA_k)^-SA - A|_F^2 \le (1 + \epsilon)|A - A_k|_F^2$$

By the normal equations,

$$|XSA - A|_F^2 = |XSA - A(SA)^-SA|_F^2 + |A(SA)^-SA - A|_F^2$$

Hence,

$$\min_{\text{rank-k X}} |XSA - A|_F^2 = |A(SA)^-SA - A|_F^2 + \min_{\text{rank-k X}} |XSA - A(SA)^-SA|_F^2$$

- Can write $SA = U \Sigma V^T$ in its SVD, where U, Σ are k x k and V^T is k x d
- Then, $\min_{\text{rank-k X}} |XSA A(SA)^-SA|_F^2 = \min_{\text{rank-k X}} |XU\Sigma A(SA)^-U\Sigma|_F^2$ = $\min_{\text{rank-k Y}} |Y - A(SA)^-U\Sigma|_F^2$
- Hence, we can just compute the SVD of A(SA)⁻UΣ
- But how do we compute $A(SA)^-U\Sigma$ quickly?

Caveat: projecting the points onto SA is slow

- Current algorithm:
 - 1. Compute S*A
 - 2. Project each of the rows onto S*A
 - 3. Find best rank-k approximation of projected points inside of rowspace of S*A
- Bottleneck is step 2

 $\min_{\text{rank-k X}} |X(SA)R-AR|_F^2$

Can solve with affine embeddings

- [CW] Approximate the projection
 - Fast algorithm for approximate regression
 min_{rank-k X} |X(SA)-A|_F²
 - Want nnz(A) + (n+d)*poly(k/ε) time

Using Affine Embeddings

- We know we can just output $\arg\min_{\operatorname{rank-k} X} |XSA A|_F^2$
- Choose an affine embedding R:

$$|XSAR - AR|_F^2 = (1 \pm \epsilon)|XSA - A|_F^2$$
 for all X

- Note: we can compute AR and SAR in nnz(A) time
- Can just solve min |XSAR AR|²_F
- $\min_{\text{rank-k X}} |XSAR AR|_F^2 = |AR(SAR)^-(SAR) AR|_F^2 + \min_{\text{rank-k X}} |XSAR AR(SAR)^-(SAR)|_F^2$
- Compute $\min_{\text{rank}=k} |Y AR(SAR)^{-}(SAR)|_F^2$ using SVD which is $(n+d)\text{poly}\left(\frac{k}{\epsilon}\right)$ time
- Necessarily, Y = XSAR for some X. Output $Y(SAR)^{-}SA$ in factored form. We're done!

Low Rank Approximation Summary

- 1. Compute SA
- 2. Compute SAR and AR
- 3. Compute $\min_{\text{rank}=k\ Y} |Y AR(SAR)^{-}(SAR)|_F^2$ using SVD
- 4. Output Y(SAR)⁻SA in factored form

Overall time: $nnz(A) + (n+d)poly(k/\epsilon)$

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling

High Precision Regression

- Goal: output x' for which $|Ax'-b|_2 \le (1+\epsilon) \min_x |Ax-b|_2$ with high probability
- Our algorithms all have running time poly(d/ε)
- Goal: Sometimes we want running time poly(d)*log(1/ε)
- Want to make A well-conditioned

•
$$\kappa(A) = \sup_{|x|_2=1} |Ax|_2 / \inf_{|x|_2=1} |Ax|_2$$

- Lots of algorithms' time complexity depends on $\kappa(A)$
- Use sketching to reduce $\kappa(A)$ to O(1)!

Small QR Decomposition

- Let S be a $1 + \epsilon_0$ subspace embedding for A
- Compute SA
- Compute QR-factorization, $SA = QR^{-1}$
- Claim: $\kappa(AR) = \frac{(1+\epsilon_0)}{1-\epsilon_0}$
- For all unit x, $(1 \epsilon_0)|ARx|_2 \le |SARx|_2 = 1$
- For all unit x, $(1 + \epsilon_0)|ARx|_2 \ge |SARx|_2 = 1$
- So $\kappa(AR) = \sup_{|x|_2=1} |ARx|_2 / \inf_{|x|_2=1} |ARx|_2 \le \frac{1+\epsilon_0}{1-\epsilon_0}$

Finding a Constant Factor Solution

- Let S be a $1 + \epsilon_0$ subspace embedding for AR
- Solve $x_0 = \underset{x}{\operatorname{argmin}} |SARx Sb|_2$
- Time to compute AR and x_0 is nnz(A) + poly(d) for constant ϵ_0
- $x_{m+1} \leftarrow x_m + R^T A^T (b AR x_m)$
- $AR(x_{m+1} x^*) = AR(x_m + R^T A^T (b ARx_m) x^*)$ = $(AR - ARR^T A^T AR)(x_m - x^*)$ = $U(\Sigma - \Sigma^3)V^T(x_m - x^*)$,

where $AR = U \Sigma V^{T}$ is the SVD of AR

•
$$|AR(x_{m+1} - x^*)|_2 = |(\Sigma - \Sigma^3)V^T(x_m - x^*)|_2 = O(\epsilon_0)|AR(x_m - x^*)|_2$$

$$|ARx_m - b|^2_2 = |AR(x_m - x^*)|_2^2 + |ARx^* - b|_2^2$$

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling

Leverage Score Sampling

- This is another subspace embedding, but it is based on sampling!
 - If A has sparse rows, then SA has sparse rows!
- Let $A = U \Sigma V^T$ be an n x d matrix with rank d, written in its SVD
- Define the i-th leverage score $\ell(i)$ of A to be $\left|U_{i,*}\right|_2^2$
- What is $\sum_{i} \ell(i)$?
 - Let $(q_1, ..., q_n)$ be a distribution with $q_i \ge \frac{\beta \ell(i)}{d}$, where β is a parameter
- Define sampling matrix $S = D \cdot \Omega^T$, where D is k x k and Ω is n x k
 - Ω is a sampling matrix, and D is a rescaling matrix
 - For each column j of Ω , D, independently, and with replacement, pick a row index i in [n] with probability q_i , and set $\Omega_{i,j} = 1$ and $D_{i,j} = (q_i k)^{\wedge}(.5)$

Leverage Score Sampling

- Note: leverage scores do not depend on choice of orthonormal basis U for columns of A
- Indeed, let U and U' be two such orthonormal bases
- Claim: $|e_i U|_2^2 = |e_i U'|_2^2$ for all i
- Proof: Since both U and U' have column space equal to that of A, we have U = U'Z for change of basis matrix Z
- Since U and U' each have orthonormal columns, Z is a rotation matrix (orthonormal rows and columns)
- Then $|e_iU|_2^2 = |e_iU'Z|_2^2 = |e_iU'|_2^2$

Leverage Score Sampling gives a Subspace Embedding

- Want to show for $S = D \cdot \Omega^T$, that $|SAx|_2^2 = (1 \pm \epsilon)|Ax|_2^2$ for all x
- Writing $A = U \Sigma V^T$ in its SVD, this is equivalent to showing $|SUy|_2^2 = (1 \pm \epsilon)|Uy|_2^2 = (1 \pm \epsilon)|y|_2^2$ for all y
- As usual, we can just show with high probability, $\left| \mathbf{U}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{U} \mathbf{I} \right|_{2} \leq \epsilon$
- How can we analyze U^TS^TSU?
- (Matrix Chernoff) Let $X_1, ..., X_k$ be independent copies of a symmetric random matrix $X \in R^{dxd}$ with E[X] = 0, $|X|_2 \le \gamma$, and $|E[X^TX]|_2 \le \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,

$$\Pr[|W|_2 > \epsilon] \le 2d \cdot e^{-k\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$$
 (here $|W|_2 = \sup \frac{|Wx|_2}{|x|_2}$. Since W is symmetric, $|W|_2 = \sup_{|x|_2 = 1} x^T W x$.)

Leverage Score Sampling gives a Subspace Embedding

- Let i(j) denote the index of the row of U sampled in the j-th trial
- Let $X_j = I_d \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the j-th sampled row of U
- The X_i are independent copies of a symmetric matrix random variable

•
$$E[X_j] = I_d - \sum_i q_i \left(\frac{U_i^T U_i}{q_i}\right) = I_d - I_d = 0^d$$

$$|X_j|_2 \le |I_d|_2 + \frac{|U_{i(j)}^T U_{i(j)}|_2}{q_{i(j)}} \le 1 + \max_i \frac{|U_i|_2^2}{q_i} \le 1 + \frac{d}{\beta}$$

$$\begin{split} & \quad \mathbb{E}[\mathbf{X}^T\mathbf{X}] = \mathbf{I}_d - 2\mathbb{E}\left[\frac{\mathbf{U}_{i(j)}^T\mathbf{U}_{i(j)}}{\mathbf{q}_{i(j)}}\right] + \mathbb{E}\left[\frac{\mathbf{U}_{i(j)}^T\mathbf{U}_{i(j)}\mathbf{U}_{i(j)}^T\mathbf{U}_{i(j)}}{\mathbf{q}_{i(j)}^2}\right] \\ & \quad = \sum_i \frac{\mathbf{U}_i^T\mathbf{U}_i\mathbf{U}_i^T\mathbf{U}_i}{\mathbf{q}(i)} - \mathbf{I}_d \leq \left(\frac{d}{\beta}\right)\sum_i \mathbf{U}_i^T\mathbf{U}_i \ - \mathbf{I}_d \leq \left(\frac{d}{\beta} - 1\right)\mathbf{I}_d, \end{split}$$

where $A \le B$ means $x^TAx \le x^TBx$ for all x

• Hence, $|E[X^TX]|_2 \le \frac{d}{\beta} - 1$

Applying the Matrix Chernoff Bound

• (Matrix Chernoff) Let $X_1, ..., X_k$ be independent copies of a symmetric random matrix $X \in R^{dxd}$ with E[X] = 0, $|X|_2 \le \gamma$, and $|E[X^TX]|_2 \le \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,

$$\Pr[|W|_2 > \epsilon] \le 2d \cdot e^{-k\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$$
 (here $|W|_2 = \sup_{|x|_2 = 1} \frac{|Wx|_2}{|x|_2}$. Since W is symmetric, $|W|_2 = \sup_{|x|_2 = 1} x^T Wx$.)

- $\gamma = 1 + \frac{d}{\beta}$, and $\sigma^2 = \frac{d}{\beta} 1$
- $X_j = I_d \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, and recall how we generated $S = D \cdot \Omega^T$: For each column j of Ω , D, independently, and with replacement, pick a row index i in [n] with probability q_i , and set $\Omega_{i,j} = 1$ and $D_{i,j} = (q_i k)^{\wedge}(.5)$
 - Implies $W = I_d U^T S^T S U$
- $\Pr\left[\left|I_d U^T S^T S U\right|_2 > \epsilon\right] \le 2d \cdot e^{-k\epsilon^2 \Theta\left(\frac{\beta}{d}\right)}$. Set $k = \Theta\left(\frac{d \log d}{\beta\epsilon^2}\right)$ and we're done.

Fast Computation of Leverage Scores

- Naively, need to do an SVD to compute leverage scores
- Suppose we compute SA for a subspace embedding S
- Let $SA = QR^{-1}$ be such that Q has orthonormal columns
- Set $\ell'_i = |e_iAR|_2^2$
- Since AR has the same column span of A, $AR = UT^{-1}$
 - $(1 \epsilon)|ARx|_2 \le |SARx|_2 = |x|_2$
 - $(1 + \epsilon)|ARx|_2 \ge |SARx|_2 = |x|_2$
 - $(1 \pm O(\epsilon))|x|_2 = |ARx|_2 = |UT^{-1}x|_2 = |T^{-1}x|_2$,
- $\ell_i = |e_i ART|_2^2 = (1 \pm O(\epsilon))|e_i AR|_2^2 = (1 \pm O(\epsilon))\ell_i'$
- But how do we compute AR? We want nnz(A) time

Fast Computation of Leverage Scores

- $\ell_i = (1 \pm O(\epsilon)) \ell_i'$
- Suffices to set this ϵ to be a constant
- Set $\ell'_i = |e_iAR|_2^2$
 - This takes too long
- Let G be a d x O(log n) matrix of i.i.d. normal random variables
 - For any vector z, $\Pr[|zG|_2^2 = (1 \pm \frac{1}{2})|z|^2] \ge 1 \frac{1}{n^2}$
- Instead set $\ell'_i = |e_iARG|_2^2$.
 - Can compute in (nnz(A) + d²) log n time
- Can solve regression in nnz(A) log n + poly(d(log n)/ε) time

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed Low Rank Approximation

Distributed low rank approximation

- We have fast algorithms for low rank approximation, but can they be made to work in a distributed setting?
- Matrix A distributed among s servers
- For t = 1, ..., s, we get a customer-product matrix from the t-th shop stored in server t. Server t's matrix = A^t
- Customer-product matrix A = A¹ + A² + ... + A^s
 - Model is called the arbitrary partition model
- More general than the row-partition model in which each customer shops in only one shop

The Communication Model

- Each player talks only to a Coordinator via 2-way communication
- Can simulate arbitrary point-to-point communication up to factor of 2
 (and an additive O(log s) factor per message)

Communication cost of low rank approximation

- Input: n x d matrix A stored on s servers
 - Server t has n x d matrix A^t
 - $A = A^1 + A^2 + ... + A^s$
 - Assume entries of A^t are O(log(nd))-bit integers
- Output: Each server outputs the same k-dimensional space W
 - $C = A^1P_W + A^2P_W + ... + A^sP_W$, where P_W is the projector onto W
 - $|A-C|_F \leq (1+\epsilon)|A-A_k|_F$
 - Application: k-means clustering
- Resources: Minimize total communication and computation.
 Also want O(1) rounds and input sparsity time

Work on Distributed Low Rank Approximation

- [FSS]: First protocol for the row-partition model.
 - O(sdk/ε) real numbers of communication
 - Don't analyze bit complexity (can be large)
 - SVD Running time, see also [BKLW]
- [KVW]: O(skd/ε) communication in arbitrary partition model
- [BWZ]: O(skd) + poly(sk/ε) words of communication in arbitrary partition model. Input sparsity time
 - Matching Ω(skd) words of communication lower bound
- Variants: kernel low rank approximation [BLSWX], low rank approximation of an implicit matrix [WZ], sparsity [BWZ]

Outline of Distributed Protocols

[FSS] protocol

[KVW] protocol

[BWZ] protocol

Constructing a Coreset [FSS]

- Let $A = U \Sigma V^T$ be its SVD
- Let $m = k + k/\epsilon$
- Let Σ_m agree with Σ on the first m diagonal entries, and be 0 otherwise
- Claim: For all projection matrices Y=I-X onto (n-k)-dimensional subspaces,

$$\left|\Sigma_m V^T Y\right|_F^2 = (1\pm \varepsilon)|AY|_F^2 + c,$$
 where $c=|A-A_m|_F^2$ does not depend on Y

• We can think of S as U_m^T so that $SA = U_m^T U \Sigma V^T = \Sigma_m V^T$ is a sketch

Constructing a Coreset

Claim: For all projection matrices Y=I-X onto (n-k)-dimensional subspaces,

$$\left|\Sigma_{\rm m} V^{\rm T} Y\right|_{\rm F}^2 + c = (1 \pm \epsilon) |AY|_{\rm F}^2,$$

where $c = |A - A_m|_F^2$ does not depend on Y

• Proof:
$$|AY|_F^2 = |U\Sigma_m V^T Y|_F^2 + |U(\Sigma - \Sigma_m) V^T Y|_F^2$$

 $\leq |\Sigma_m V^T Y|_F^2 + |A - A_m|_F^2 = |\Sigma_m V^T Y|_F^2 + c$

Also,
$$|\Sigma_{m}V^{T}Y|_{F}^{2} + |A - A_{m}|_{F}^{2} - |AY|_{F}^{2}$$

$$= |\Sigma_{m}V^{T}|_{F}^{2} - |\Sigma_{m}V^{T}X|_{F}^{2} + |A - A_{m}|_{F}^{2} - |A|_{F}^{2} + |AX|_{F}^{2}$$

$$= |AX|_{F}^{2} - |\Sigma_{m}V^{T}X|_{F}^{2}$$

$$= |(\Sigma - \Sigma_{m})V^{T}X|_{F}^{2}$$

$$\leq |(\Sigma - \Sigma_{m})V^{T}|_{2}^{2} \cdot |X|_{F}^{2}$$

$$\leq \sigma_{m+1}^{2} k \leq \varepsilon \sigma_{m+1}^{2} (m - k + 1) \leq \varepsilon \sum_{i \in \{k+1, ..., m+1\}} \sigma_{i}^{2} \leq \varepsilon |A - A_{k}|_{F}^{2}$$

88

Unions of Coresets

- Suppose we have matrices $A^1, ..., A^s$ and construct $\Sigma_m^1 V^{T,1}, \Sigma_m^2 V^{T,2}, ..., \Sigma_m^s V^{T,s}$ as in the previous slide, together with $c_1, ..., c_s$
- Then $\sum_i \left| \sum_m^i V^{T,i} Y \right|_F^2 + c_i = (1 \pm \epsilon) |AY|_F^2$, where A is the matrix formed by concatenating the rows of A^1, \dots, A^s
- Let B be the matrix obtained by concatenating the rows of $\Sigma_m^1 V^{T,1}, \Sigma_m^2 V^{T,2}, ..., \Sigma_m^s V^{T,s}$
- Suppose we compute $B = U \Sigma V^T$ and compute $\Sigma_m V^T$ and $|B B_m|_F^2$
- Then $\left| \Sigma_m V^T Y \right|_F^2 + c + \sum_i c_i = (1 \pm \epsilon) |BY|_F^2 + \sum_i c_i = (1 \pm O(\epsilon)) |AY|_F^2$
- So $\Sigma_m V^T$ and the constant $c + \sum_i c_i$ are a coreset for A

[FSS] Row-Partition Protocol

- Server t sends the top k/ϵ + k principal components of P^t , scaled by the top k/ϵ + k singular values Σ^t , together with c^t
- Coordinator returns top k principal components of $[\Sigma^1 V^1; \Sigma^2 V^2; ...; \Sigma^s V^s]$

[FSS] Row-Partition Protocol

[KVW] protocol will handle 2, 3, and 4

Problems:

- 1. sdk/ε real numbers of communication
- 2. bit complexity can be large
- 3. running time for SVDs [BLKW]
- 4. doesn't work in arbitrary partition model

This is an SVD-based protocol. Maybe our random matrix techniques can improve communication just like they improved computation?

[KVW] Arbitrary Partition Model Protocol

- Inspired by the sketching algorithm presented earlier
- Let S be one of the k/ε x n random matrices discussed
 - S can be generated pseudorandomly from small seed
 - Coordinator sends small seed for S to all servers
- Server t computes SA^t and sends it to Coordinator
- Coordinator sends $\Sigma_{t=1}^s$ SA^t = SA to all servers
- There is a good k-dimensional subspace inside of SA. If we knew it, t-th server could output projection of A^t onto it

[KVW] Arbitrary Partition Model Protocol

Problems:

- Can't output projection of A^t onto SA since the rank is too large
- Could communicate this projection to the coordinator who could find a k-dimensional space, but communication depends on n

[KVW] Arbitrary Partition Model Protocol

Fix:

- Instead of projecting A onto SA, recall we can solve $\min_{rank-k | X} |A(SA)^TXSA A|_F^2$
- Let T_1 , T_2 be affine embeddings, solve $\min_{\substack{\text{rank}-k \ X}} \left| T_1 A (SA)^T X S A T_2 T_1 A T_2 \right|_F^2$ (optimization problem is small and has a closed form solution)
- Everyone can then compute XSA and then output k directions

[KVW] protocol

- Phase 1:
- Learn the row space of SA

$$cost \leq (1+\epsilon)|A-A_k|_F$$

[KVW] protocol

- Phase 2:
- Find an approximately optimal space W inside of SA

$$cost \leq (1+\epsilon)^2 |A-A_k|_F$$

[BWZ] Protocol

- Main Problem: communication is O(skd/ε) + poly(sk/ε)
- We want O(skd) + poly(sk/ε) communication!
- Idea: use projection-cost preserving sketches [CEMMP]
- Let A be an n x d matrix
- If S is a random k/ϵ^2 x n matrix, then there is a constant $c \ge 0$ so that for all k-dimensional projection matrices P: $|SA(I P)|_F + c = (1 \pm \epsilon)|A(I P)|_F$

[BWZ] Protocol

Intuitively, U looks like top k left singular vectors of SA

- Let S be a k/ϵ^2 x n projection-cost preserving sketch
- Let T be a d x k/ϵ^2 projection-cost preserving sketch
- Server t sends SA^tT to Coordinator
- Coordinator sends back SAT = $\sum_t SA^tT$ to servers
- Each server computes k/ε²x k matrix U of top k left singular vectors of SAT

Thus, U^TSA looks like top k right singular vectors of SA

- Server t sends U^TSA^t to Coordinator
- Coordinator returns the space $U^{T}SA = \sum_{t} U^{T}SA^{t}$ to output

Top k right singular vectors of SA work because S is a projection-cost preserving sketch!

[BWZ] Analysis

- Let W be the row span of U^TSA, and P be the projection onto W
- Want to show $|A AP|_F \le (1 + \epsilon)|A A_k|_F$
- Since T is a projection-cost preserving sketch,

(*)
$$|SA - SAP|_F \le |SA - UU^TSA|_F + c_1 \le (1 + \epsilon)|SA - [SA]_k|_F$$

Since S is a projection-cost preserving sketch, there is a scalar c > 0, so that for all k-dimensional projection matrices P,

$$|SA - SAP|_F + c = (1 \pm \epsilon)|A - AP|_F$$

Add c to both sides of (*) to conclude $|A - AP|_F \le (1 + \epsilon)|A - A_k|_{F_{99}}$

Conclusions for Distributed Low Rank Approximation

- [BWZ] Optimal O(sdk) + poly(sk/ε) communication protocol for low rank approximation in arbitrary partition model
 - Handle bit complexity by adding Tao/Vu noise
 - Input sparsity time
 - 2 rounds, which is optimal [W]
 - Optimal data stream algorithms improves [CW, L, GP]
- Communication of other optimization problems?
 - Computing the rank of an n x n matrix over the reals
 - Linear Programming
 - Graph problems: Matching
 - etc.

Additional Time-Permitting Topics

- Will cover some recent topics at a research-level (many details omitted)
- Weighted Low Rank Approximation
- Regression and Low Rank Approximation with M-Estimator Loss Functions
- Finding Heavy Hitters in a Data Stream optimally