Sketching as a Tool for Numerical
Linear Algebra
All Lectures

David Woodruff
IBM Almaden



Massive data sets

Examples
Internet traffic logs
Financial data
etc.

Algorithms
Want nearly linear time or less
Usually at the cost of a randomized approximation



Regression analysis

Regression

Statistical method to study dependencies between
variables in the presence of noise.
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Regression analysis

Linear Regression

Statistical method to study linear dependencies
between variables in the presence of noise.
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Regression analysis

Linear Regression

Statistical method to study linear dependencies between
variables in the presence of noise.

Standard Setting
One measured variable b
A set of predictor variables a,,..., a,
Assumption:
b =x,+ar x1+...+a, X, +t¢

¢ Is assumed to be noise and the x; are model
parameters we want to learn

Can assume x, =0
Now consider n observations of b



Regression analysis

Matrix form

Input: nxd-matrix A and a vector b=(b,,..., b,)
n is the number of observations; d is the number of
predictor variables

Output: x” so that Ax* and b are close

Consider the over-constrained case, when n > d

Can assume that A has full column rank



Regression analysis

Least Squares Method
Find x* that minimizes |Ax-b|,? = Z (b; — <A;., X>)?
A.. 1s i-th row of A

Certain desirable statistical properties



Regression analysis

Geometry of regression
We want to find an x that minimizes |Ax-b|,
The product Ax can be written as

A Xy + AX, + o0+ AdgXy
where A, is the i-th column of A

This is a linear d-dimensional subspace

The problem is equivalent to computing the point of the
column space of A nearest to b in |,-norm



Regression analysis

Solving least squares regression via the normal equations
How to find the solution x to min, |Ax-b|, ?

Equivalent problem: min, |Ax-b |,?
Write b = AX’ + b’, where b’ orthogonal to columns of A
Cost is |A(x-X')|,% + |b’[,? by Pythagorean theorem
Optimal solution x if and only if AT(Ax-b) = AT(Ax-Ax’) =0
Normal Equation: ATAx = ATb for any optimal x
x = (ATA)TAT b

If the columns of A are not linearly independent, the Moore-
Penrose pseudoinverse gives a minimum norm solution x



Moore-Penrose Pseudoinverse

Singular Value Decomposition (SVD)
Any matrixA=U - % - VT
= U has orthonormal columns
» 2 is diagonal with non-increasing non-negative
entries down the diagonal
= VT has orthonormal rows

= Pseudoinverse A~ =V 20T
= Where 21 is a diagonal matrix with i-th diagonal
entry equal to 1/%;; if £;; > 0 and is O otherwise

= min, |Ax-b [,2 not unique when columns of A are
linearly independent, but x = A'b has minimum norm



Moore-Penrose Pseudoinverse

* Any optimal solution x has the form A™b +
(I—V'V'T)z, where V'’ corresponds to the rows i of
VT for which Z;; >0

Why?

« Because A(I-V'VT)z=0,s0 A"b+ (1-V'V'T)z
IS a solution. This is a d-rank(A) dimensional
affine space so it spans all optimal solutions

« Since A" b is in column span of V', by
Pythagorean theorem, [A™b + (I — V'V'T)z|3 =
|ATbI3 + |(1—V'V'T)z|3 = |A™D|3



Time Complexity

Solving least squares regression via the normal equations
Need to compute x = ADb
Naively this takes nd? time
Can do nd!37¢ using fast matrix multiplication

But we want much better running time!



Sketching to solve least squares regression

How to find an approximate solution x to min, |Ax-b|, ?

Goal: output x* for which |Ax’-b|, < (1+€) min, |Ax-b|,
with high probability

Draw S from a k x n random family of matrices, for a
value k <<n

Compute S*A and S*b

Output the solution x* to min,. |(SA)x-(Sb)|,
X' = (SA)Sb



How to choose the right sketching matrix S?

Recall: output the solution x* to min,. |(SA)x-(Sb)|,

Lots of matrices work

S is d/e? x n matrix of i.i.d. Normal random variables
To see why this works, we woo T
introduce the notion of a
subspace embedding




Subspace Embeddings

Let k = O(d/e?)
Let S be a k x n matrix of i.i.d. normal
N(0,1/k) random variables

For any fixed d-dimensional subspace, i.e.,
the column space of an n x d matrix A

—W.h.p., for all x in R9, [SAX|, = (1£¢€)|AX|
Entire column space of A is preserved

Why is this true?



Subspace Embeddings — A Proof

* Want to show [SAX|, = (1x€)|Ax|, for all x

« Can assume columns of A are orthonormal
(since we prove this for all x)

« Claim: SAis a k x d matrix of i.i.d. N(0,1/k)
random variables

— First property: for two independent random variables X
and Y, with X drawn from N(0,a%) and Y drawn from
N(0,b?), we have X+Y is drawn from N(0, a* + b?)



X+Y is drawn from N(0, a? + b?)

* Probability density function f, of Z = X+Y is
convolution of probability density functions f; and f;

fz(2) = ffY(Z — x)fx(x) dx

. . 2/2a2 — 1 —X2/2b2
fx( ) a(Zn) 5 ’ fy(y) b(ZTL')'S e

e f,(2) _f (zn)se—(z—x)z/Za2 1 e—xz/Zbde

b(2m)->
o b2z 2
a2 +b?

5 (ab)?
_ 1 —z2%/2(a?+b?) (a®+b?) 2<a2 _b2>
@m)5(a+b2)5 | Gmsape Y dx




X+Y is drawn from N(0, a? + b?)

2 2
o bz
)
(z—x)%2  x2 A 2( (ab)?2 )
Calculation: e 242 202 = ¢ aZ+b2

. . . 21p2)”° 2(M
Density of Gaussian distribution: [ (a”+b") e
(2m)->ab



Rotational Invariance

« Second property: if u, v are vectors with <u, v> =0,
then <g,u> and <g,v> are independent, where g is a
vector of i.i.d. N(0,1/k) random variables

 Why?
 |f g is an n-dimensional vector of i.i.d. N(0,1)

random variables, and R is a fixed matrix, then
the probability density function of Rg is

xT(RRT)_lx
2

1 —_
fr)= det(RRT)(2m) /2 ©

- RR! is the covariance matrix

— For a rotation matrix R, the distribution of Rg
and of g are the same



Orthogonal Implies Independent

« Want to show: if u, v are vectors with <u, v> =0, then
<g,u> and <g,v> are independent, where g is a vector of
1.i.d. N(0,1/k) random variables

« Choose a rotation R which sends u to ae,, and sends v
to Be,

« <gu>=<gRRlu>=<h,ae; >=ahy
¢ <gv>=<gRR'v>=<h,Be, >=ph,

where h is a vector of i.i.d. N(O, 1/k) random variables

 Then h; and h, are independent by definition



Where were we?

« Claim: SAis a k x d matrix of i.i.d. N(0,1/k) random
variables

* Proof: The rows of SA are independent
— Eachrowis: < g A, >,<g A, >,..,<gAg >

— First property implies the entries in each row are
N(0,1/k) since the columns A; have unit norm

— Since the columns A; are orthonormal, the entries in a
row are independent by our second property



Back to Subspace Embeddings

Want to show |SAX|, = (1x¢)|Ax|, for all x

Can assume columns of A are orthonormal

Can also assume x is a unit vector

SAis a k x d matrix of i.i.d. N(0,1/k) random variables

Consider any fixed unit vector x € R¢
SAX|5 = Yicpg < 81X >%, where g; is i-th row of SA

2
Each < g;,x >? is distributed as N (0, %)

E[< g;,x >%] = 1/k, and so E[|SAx|3] = 1
How concentrated is |SAx|5 about its expectation?



Johnson-Lindenstrauss Theorem

Suppose hy, ..., hy are i.i.d. N(0,1) random variables
Then G =}, h? is a y2-random variable

Apply known tail bounds to G:

— (Upper) Pr[G = k + 2(kx)> + 2x] < e™X

— (Lower) Pr[G <k — 2(kx)°] < e7*

2
Ifx ===, then Pr[G € k(1 £ €) ] > 1 — 2e~<"/16

If k = ©(e2log(5)), this probability is 1-5

Pr[|SAx|2 € (1+€)]>1—279D
This only holds for a fixed x, how to argue for all x?



Net for Sphere

Consider the sphere S4-1

Subset N is a y-net if for all x € S471, thereisay € N,
such that [x—y|, <Yy

Greedy construction of N

— While there is a point x € S4-1 of distance larger than
y from every point in N, include x in N

The sphere of radius y/2 around ever point in N is
contained in the sphere of radius 1+ y around 0¢

Further, all such spheres are disjoint

Ratio of volume of d-dimensional sphere of radius 1+ vy
to dimensional sphere of radius y is (1 +v)9/(y/2)4, so

IN| < (1 +v)9/(v/2)"



Net for Subspace
+ LetM ={Ax|xin N} so|M| < (1 +7v)4/(y/2)¢

« Claim: For every x in S471, there is a 'y in M for which
|Ax —yl, <y

 Proof: Let X’ in S471 be such that |x — x'|, <y

Then |Ax — Ax'|, = |[x — x|, <y, using that the
columns of A are orthonormal. Sety = AxX’



Net Argument

For a fixed unit x, Pr[|SAx|2 € (1+¢€)] > 1— 279

For a fixed pair of unit x, X', |SAx|3, [SAX'[5, [SA(x — x")|5
are all 1 + € with probability 1 — 270

ISA(x — x")|5 = |SAx|5 + |SAX'|5 — 2 < SAx, SAx' >

IA(x — x)|5 = |Ax|5 + |[AX'|5 — 2 < Ax, Ax' >

— So Pr[< Ax,Ax' > =< SAx,SAX' > +0(e)] =1 — 279@
Choose a ¥2-net M = {Ax | x in N} of size 5¢

By a union bound, for all pairs y, y’ in M,
<y,y >=<Sy,Sy > + 0(e)
Condition on this event

By linearity, if this holds for y, y’ in M, for ay, By’ we have
< ay, By >=ap <Sy,Sy > + 0(e afy)



Finishing the Net Argument

Let y = Ax for an arbitrary x € S4-1

Lety; € M be such that |y —y,|, <Yy

Let a be such that |a(y —y,)|, =1

- a = 1/y (could be infinite)

Let y, € M be such that |a(y —y,) — v,/ <V

Then ‘y—yl—%'z S%Syz

Sety, = % Repeat, obtaining y,,v,, y3, ... such that for
all integers |,

y=yi—y2— «—yil2 <Y
Implies |y;|, < y'™! +y! < 2y'!



Finishing the Net Argument

- Have y;,vy,,y3,...such thaty = Y.y, and |y;|, < 2y'™?

o ISyl3 = [SZ;yil3
= Y.ilSyils + 225 < Sy, Syj >
= Zi|yi|% + 2 Zi,j <Vypyj > = O(e) Zi,j |Yi|2|}’j|2
= | Xiyils £0(e)

= |yl5 = 0(e)
=1+ 0(e)

« Since this held for an arbitrary y = Ax for unit x, by
linearity it follows that for all x, |SAXx|, = (1+€)|Ax|,



Back to Regression

* We showed that S is a subspace
embedding, that is, simultaneously for all x,

ISAX], = (12€)|AX],

What does this have to do with regression?



Subspace Embeddings for
Regression

» Want x so that |[Ax-b|, < (1+¢€) min, |Ay-b|,

« Consider subspace L spanned by columns of A
together with b

 ThenforallyinlL, |[Sy|, = (1t €) |y,

* Hence, |S(Ax-b)|, = (1% €) |Ax-b|, for all x
* Solve argmin, |[(SA)y — (Sb)l,

* Given SA, Sb, can solve in poly(d/e) time

Only problem is computing SA takes O(nd?) time



How to choose the right sketching matrix S7? [S]

S is a Subsampled Randomized Hadamard Transform
S =P*HD

D is a diagonal matrix with +1, -1 on diagonals

H is the Hadamard transform

P just chooses a random (small) subset of rows of H*D
S*A can be computed in O(nd log n) time

Why does it work?



Why does this work?

We can again assume columns of A are orthonormal
It suffices to show |SAx|3 = |[PHDAx|5 = 1 + € for all x

HD is a rotation matrix, so |[HDAx|5 = |Ax|5 = 1 for any x
Notation: let y = Ax

Flattening Lemma: For any fixed v,

log® nd/6
05

Pr[|HDy|s, = C




Proving the Flattening Lemma

.5
Flattening Lemma: Pr [[HDylo, = € =522 < 2
Let C > 0 be a constant. We will show for a fixed i in [n],
log> nd/$ 5
PrICGHDYNl = C 25 < o

If we show this, we can apply a union bound over all i
|(HDy);| = 2 Hi;Dj;y;
.
(Azuma-Hoeffding) Pr[| ¥;Z;| > t] < 2e **%, where |Z| < B; with
probability 1
Z] = HI,JD],]y] has O mean

lyjl

1Z;| < s = B; with probability 1
%8 =
n 2 10g(£>
)] gt
PI‘[|Z]-Z]| > oy < 2e 2 Sﬂ



Consequence of the Flattening Lemma

Recall columns of A are orthonormal

HDA has orthonormal columns
log® nd/&

Flattening Lemma implies |HDAe;|,, < C ——— with
probability 1 — % for a fixed i € [d]
.5
With probability 1 -, |e;HDAe;| <€ “ELforall i
.5 .5
Given this, |e;HDA| < C d~log” nd/S for all j
) 2 n.5

(Can be optimized further)



Matrix Chernoff Bound

Let X4, ..., X be independent copies of a symmetric random matrix X € R4xd
with E[X] = 0, [X|, < v, and [E[X"X]|, < 0% LetW = iZie[s] X:. Forany e > 0,

Ye
Pr[W], > €] < 2d - e %€ /(@ +3)
(here [W]; = sup [Wx|,/[x]3)

Let V = HDA, and recall V has orthonormal columns

Suppose P in the S = PHD definition samples uniformly with replacement. If
row i is sampled in the j-th sample, then P,; = n, and is 0 otherwise

Let Y; be the i-th sampled row of V = HDA

LetX; =14 —n-Y{Y;
1
E[X] =14 —n-%() VTV, = 1g - VTV = 0¢
d
n

1Xil> < |Iq], + n - max |ejHDA|z =1+n-C?log (ns—d) -— = 0(dlog (r;—d))



Matrix Chernoff Bound

Recall: let Y; be the i-th sampled row of V = HDA
LetX; =14 —n- Y'Y
EIXTX + I4] = 1g + Iq — 2n E[Y{'Y;]| + n2E[Y{'Y;Y; Y]
1

= 2lq — 2lg + n?Y}; (H) vivivivi = n Y viv; - |vil3
Define Z=n ¥, v.v; C?log (ns—d) % = C2dlog (n?d) I,
Note that X7 X + I; and Z are real symmetric, with non-negative
eigenvalues

Claim: for all vectors y, we have: y"XTXy + yTy < yTZy
Proof: yTXTXy + yTy =n X, y™v] vy [v;l3 =n ¥; < v,y >2 |13 and
T T, T 2 nd\ d 2 2 nd
y Zy=nZy v; v;y C*log 5 -£=n2<vi,y> C“log 35

l l

Hence, |[E[XTX]|, < |E[XTX] + I4], + 4], = |E[XTX + 14]|, + 1

nd
<|Z|,+1< Czdlog(7>+1

Hence, |[E[X™X]|. = O0(dlog nd
2 8



Matrix Chernoff Bound

Hence, [E[X"X]|, =0 (d log (n‘o‘_d))

Recall: (Matrix Chernoff) Let X4, ..., X be independent copies of a
symmetric random matrix X € R%4 with E[X] = 0, |X|, <y, and |E[XTX]|2 <

ye
o2 LetW = izie[s] X;. Forany e > 0, Pr[|W|, > €] < 2d - e /(0" *3

o2 nd
Pr[|ld — (PHDA)T(PHDA) | > e] <2d-e ¢ /@ 1og("5 )
2

log(d
Sets =dlog (“?d)%gﬁ), to make this probability less than g



SRHT Wrapup

Have shown |I; — (PHDA)T(PHDA) |, < € using Matrix

d
1 =
Chernoff Bound and with s = d log (nsd) OiSS) samples
Implies for every unit vector x,
|1—|PHDAx|3| = |[xTx — x(PHDA)T(PHDA)x| < €,
so |PHDAx|5 € 1 + e for all unit vectors x

Considering the column span of A adjoined with b, we can
again solve the regression problem

The time for regression is now only O(nd log n) +

poly (& lof(n)). Nearly optimal in matrix dimensions (n >> d)




Faster Subspace Embeddings S [CW,MM,NN]

CountSketch matrix
Define k x n matrix S, for k = O(d?/¢?)

S is really sparse: single randomly chosen non-zero
entry per column

00100100 Can compute
10000000 S-Ain nnz(A)
000-110-10

0-100 00 O 1

nnz(A) is number of non-zero entries of A



Simple Proof [Nguyen]

Can assume columns of A are orthonormal

Suffices to show |SAXx|, = 1 + € for all unit x
For regression, apply S to [A, b]

SAis a 2d?4/€2 x d matrix

Suffices to show | ATST SA— 1|, < |ATSTSA- |- < ¢

Matrix product result shown below:
Pr[|CSTSD — CD|? < [3/(6(# rows of S))] * |C|2 ID|g2] =1 -6

SetC=ATand D =A.
Then |AJ]’c = d and (# rows of S) = 3 d?%/(d¢€?)



Matrix Product Result [Kane, Nelson]

Show: Pr{|CSTSD — CDJ:2 < [3/(5(# rows of S))] * |C|-2 |D|:2] = 1 — &

(JL Property) A distribution on matrices S € R ™ has the (¢, §, #)-JL
moment property if for all x € R™ with [x|, =1,

Eg|Isxl2 — 1| < ¢ -5

(From vectors to matrices) For e, 6 € (O, %) let D be a distribution on

matrices S with k rows and n columns that satisfies the (g, §, £)-JL
moment property for some ¢ > 2. Then for A, B matrices with n rows,

PSr“ATSTSB ~ATB| >3 e|A|F|B|F] <$



From Vectors to Matrices

(From vectors to matrices) For e, 6§ € (0, %) let D be a distribution on matrices

S with k rows and n columns that satisfies the (g, 6, #)-JL moment property
for some ¢ > 2. Then for A, B matrices with n rows,

Pr “ATSTSB ~ATB| >3 (—:IAIFIBIF] <$

Proof: For a random scalar X, let [X|, = (E[X[P)*/P

Sometimes consider X = |T|g for a random matrix T
1/p
| ITle 1= (E[ITIE])

Can show |. |, is a norm
Minkowski's Inequality: [X + Y|, < [X|, + [Y],

For unit vectors X, y, need to bound |(Sx, Sy) - (X, y)|,



From Vectors to Matrices

For unit vectors X, y, |(Sx, Sy) - (X, )|,
1
~lAsx13—1) + ISyl — D = (S = y)I3 = Ix = yI3)le

1
=7 (|Isx1% — 1|{,+ |ISyl3 — 1|{,+ lISCx —y)I3 — |X—Y|%|{,)
1 1 1 1
< (e- 8 +e- 87+ |x —y|5 € §7)
1
< 3€-6¢

|(SX:Sy )-(X,Y)I{J < 3 €. 6%
1x|21yl2 -

By linearity, for arbitrary x, v,

Suppose A has d columns and B has e columns. Let the columns of A be
A4, ...,Aq and the columns of B be B4, ..., B,

1
|Ail2|Bjl

Define X;; = - ((SA;, SBy) — (A, By))

|ATSTSB — ATB|12: = ¥ XilAil5 - |B,-|2ij



From Vectors to Matrices

_ 1
Have shown: for arbitrary x, y, KSX’E{ 3|' >|y<|xy)le <3¢€- 8
2 2

For Xi,j

-+ (543, 5B;) — (A3, By)): [ATSTSB — ATB[. = 3, 51A:13 - |B; | X;

|A; |2| L)

||ATSTSB —ATB| le2 = | % Z51A013 - B Xu|{,/2
< X %ilAls - |Bj|2|Xi,j le/2
= %55 1A03 - (B[ X1

< Ges?) 5,5 A030B)[°

2
— (3e57) |A|BI2

- TQT TRl TQT tp|?| o i -
Since E [|A STSB — A B|F] = ||A STSB— A B|F|{, , by Markov’s inequality,
2

'
Pr||ATSTSB — ATB|, > 3¢lAlr|Blr| < (575 5-) EIATSTSB - ATBIF] <8



Result for Vectors

Show: Pr[|CSTSD — CD|:2 < [3/(5(# rows of S))] * |C|2 |D|2] = 1 — &

(JL Property) A distribution on matrices S € R has the (g, §, £)-JL moment
property if for all x € R" with |x|, = 1,

Eg|IsxI2 — 1| < €f- &

(From vectors to matrices) For e, 6 € (O, %) let D be a distribution on matrices

S with k rows and n columns that satisfies the (g, 6, £)-JL moment property
for some ¢ = 2. Then for A, B matrices with n rows,

Pr[|ATSTSB — ATB|,, = 3 clAlp|Blg| < &

Just need to show that the CountSketch matrix S satisfies JL property and
bound the number k of rows



CountSketch Satisfies the JL Property

(JL Property) A distribution on matrices S € RX*™ has the (g, §, £)-JL moment
property if for all x € R" with |x|, = 1,

?
Es|ISx|3 — 1| <€'-6
We show this property holds with £ = 2. First, let us consider £ = 1

For CountSketch matrix §, let
h:[n] -> [K] be a 2-wise independent hash function
o:[n] — {—1,1} be a 4-wise independent hash function

Let 8(E) = 1 if event E holds, and 6(E) = 0 otherwise

E[ISx13] = Zjepg El(Ziern 810 = Doixi) |
= Dje[k] Zit,ize[n] E[8(h(i1) = j)8(h(i2) = j)0j1 052 ]Xi1Xi2
= Xje[k] Ziern] E[8(h (D) = D?1x

1
= (E) Zje[k[ Zie[n] Xiz = |x|3



CountSketch Satisfies the JL Property

E[SXI4] = E[Sjepg Zepg Cierny 8O0 = Doixi)” (Ziepny SO = Doixi) ] =

21'1.1'2 iy.dz)iaie E[0110120130146 (h(i1) = j1)6(h(iz) = j1)6(h(i3) = j2)5(h(i4 = jz))]xil Xi2Xi3Xi4
We must be able to partition {i4, i,, i3, i4} into equal pairs
Suppose i; =i, = i3 = i,. Then necessarily j; = j,. Obtain Zjizix{* = |x|3

Suppose i; = i, and i3 = i, buti; # i3. Thenget}; . ; lgﬁx xi = |x|3 — |x|3

Suppose i1 = i3 and i, =i, buti; #i,. Then necessarily j; = j,. Obtain
. kzle i, XX |x|2 Obtain same bound if i; = i, and i, = is.

2 2
Hence, E[ISx|3] € [IxI3, [x|3(1 + )] = [1,1 + ]

So, EsIsxl3 —1]* < (1+2) -2+ 1=2. Setting k = -5



Where are we?

(JL Property) A distribution on matrices S € R has the (g, §, £)-JL
moment property if for all x € R with |x], =1,

Es|Isxlz2 —1|" < €5

(From vectors to matrices) For e, 6 € (0, %) let D be a distribution on

matrices S with k rows and n columns that satisfies the (¢, 6, #)-JL moment
property for some £ > 2. Then for A, B matrices with n rows,

Pr||ATSTSE — ATB|", = 3 €2 |AI3|BIZ| < &

We showed CountSketch has the JL property with £ = 2, and k = —

€26

Matrix product result we wanted was:
Pr[|CSTSD — CD|¢? < (3/(6k)) * |IC|2 D2l =1 -6
We are now down with the proof CountSketch is a subspace embedding



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices
Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings
Application to low rank approximation

High precision regression

Leverage score sampling



Affine Embeddings

Want to solve mXinlAX — B|%, Ais tall and thin with d columns, but B has a large
number of columns

Can’t directly apply subspace embeddings

Let’s try to show |SAX — SB|g = (1 *+ €)|AX — B|g for all X and see what properties
we need of S

Can assume A has orthonormal columns
Let B* = AX" — B, where X™ is the optimum

IS(AX — B)I2 — |SB™|2 = SA(X — X*) + S(AX" — B)|% — |SB"|2
= |SA(X — X*)|2 — 2tr[(X — X*)TATSTSB*]
€ [SAX — X" £ 21X — X*|p|ATSTSB*|r (use tr(CD) < |C|¢|D|r)
€ |SA(X — X*)|2 +2€|lX — X*||B*|g  (if we have approx. matrix product)
€EJAX — X2 +e(JAX — XH)|2 + 2|X — X*|¢|B*]) (subspace embedding forA)



Affine Embeddings

We have |S(AX — B)|3 —|SB*|%2 € |A(X — X")|2 +
e(JAX — X")|f + 21X — X*|g|B*[)

Normal equations imply that
|AX — Bl = |A(X — X")I% + |B*|}

IS(AX — B)|z — |SB*|z — (|AX — Bl — |B*|%)
€ e(|AX — XM + 21X — X*|¢|B*|F)
* * 2
€ ie(lA(X—X )r + |B |F)
e £2¢(JAX — X)) +1B*2 )
= +2¢|AX — B4

|ISB*|%2 = (1 + €)|B*|% (this holds with constant probability)



Affine Embeddings

Know: |S(AX — B)|z — ISB*|# — (|JAX — B|z — |B*|3) €
+2€|AX — B|%

Know: |SB*|2 = (1 + €)|B*|%

IS(AX — B)|% = (1 + 2€)|AX — B|3+€|B*|%
= (1+3¢)|AX — B|%

Completes proof of affine embedding!



Affine Embeddings: Missing Proofs

Claim: |A + B|2 = |A]% + |B|& + 2Tr(ATB)

Proof: |A + B|z = Yi|A; + B;l3

= 2|Ai|% + z|Bi|% + 2(Aj, Bj)
i i

= |A|% + |B|% + 2Tr(ATB)



Affine Embeddings: Missing Proofs

Proof: Tr(AB) = Y..(A}, B;) for rows A! and columns B;
< %i|A'|, IB;l, by Cauchy-Schwarz for each |

1

; P 1
< (21|Al|2 )2 (X:|B;|2 )z another Cauchy-Schwarz

= |Alr|Blg



Affine Embeddings: Homework Proof

Claim: |[SB*|2 = (1 & €)|B*|& with constant probability if
CountSketch matrix S has k = O(Eiz) rows

Proof:
ISB*[§ = XISB{15

By our analysis for CountSketch and linearity of expectation,
E[ISB"|§| = X; E[ISB]I3] = IB*|

E[ISB*[¢] = Xi; E[ISB{ 3

By our CountSketch analysis,E[|SB|3]] < |B{|5(1 + E)

For cross terms see Lemma 40 in [CW13]



Low rank approximation

Alis an n x d matrix
Think of n points in R

E.g., Alis a customer-product matrix
A;; = how many times customer i purchased item |

A is typically well-approximated by low rank matrix
E.g., high rank because of noise

Goal: find a low rank matrix approximating A
Easy to store, data more interpretable



What is a good low rank approximation?

Singular Value Decomposition (SVD)
Any matrixA=U -2 -V
» U has orthonormal columns
= 2 is diagonal with non-increasing positive
entries down the diagonal
* \/ has orthonormal rows

= Rank-k approximation: A, = U, - 2, - V,
= rows of V, are the top k principal components

(N [ ) T

A = U, ():;.;)( Vi )-I— E




What is a good low rank approximation?

Ak = argmmrank k matrices B |A'B|F
(ICle = (% Ci,j2)1/2)

Computing A, exactly is expensive




Low rank approximation

Goal: output a rank k matrix A’, so that
A-Ae < (1+€) |A-A_

Can do this in nnz(A) + (n+d)*poly(k/e) time [S,CW]
nnz(A) is number of non-zero entries of A



Solution to low-rank approximation [S]

Given n x d input matrix A

Compute S*A using a random matrix S with k/e <<n
rows. S*A takes random linear combinations of rows of A

Project rows of A onto SA, then find best rank-k
approximation to points inside of SA.



What is the matrix S?

= S can be a k/e x n matrix of i.i.d. normal random

variables

= [S] S can be a k/e x n Fast Johnson Lindenstrauss

Matrix
= Uses Fast Fourier Transform

= [CW] S can be a poly(k/e) x n CountSketch matrix

00100100
10000000
000-110-10
0-100 00 O 1

S - Acan be
computed in
nnz(A) time




Why do these Matrices Work?

Consider the regression problem mXinlAkX — Alg

Write A, = WY, where WisnxkandYiskxd

Let S be an affine embedding

Then [SA X — SA|gp = (1 + €)|AxX — Alg for all X

By normal equations, argmin|SA X — SA|r = (SAyx)~SA
X

SO, |Ak(SAk)_SA — AlF < (1 + E)lAk — AlF

But A (SAy)~SA is a rank-k matrix in the row span of SA!

Let’s formalize why the algorithm works now...



Why do these Matrices Work"?

min |XSA AlZ < |Ax(SA) SA—AlE < (1+6e)|A—AKklE

rank—k

By the normal equations,
|XSA — A|2 = |XSA — A(SA)"SA|% + |A(SA)"SA — Al

Hence,
min |XSA — A|F—|A(SA) SA — A|F+ rr11<1n |XSA — A(SA)~ SA|F

rank—-k X

Can write SA = UXVT inits SVD, where U,Z are k xkand VT isk x d

Then, min |XSA A(SA)"SAJE = Hll(ll’l |XUZ — A(SA)~UZ|z
ran

"rank—k
= rarrlr&n%(YlY A(SA)"UZ|4

Hence, we can just compute the SVD of A(SA)"UZ

But how do we compute A(SA)~UX quickly?



Caveat: projecting the points onto SA is slow

Current algorithm:
Compute S*A
Project each of the rows onto S*A

Find best rank-k approximation of projected points
inside of rowspace of S*A

rnir]rank-kX |X(SA)R'AR|F2
Bottleneck is step 2
Can solve with affine embeddings

[CW] Approximate the projection
Fast algorithm for approximate regression /
minrank-kX |X(SA)'A|F2

Want nnz(A) + (n+d)*poly(k/c) time



Using Affine Embeddings

We know we can just output arg rrll(m X|XSA AlZ
rank—

Choose an affine embedding R:
IXSAR — AR|%4 = (1 £ €)|XSA — A|% for all X

Note: we can compute AR and SAR in nnz(A) time

Can just solve min |XSAR — AR|

rank—k X

min [XSAR — AR| = |AR(SAR)™(SAR) — AR[Z + min |XSAR — AR(SAR)™(SAR)I
rank—

rank—-k X

Compute mm |Y AR(SAR)™(SAR)|% using SVD which is (n + d)poly( )tlme

rank—

Necessarily, Y = XSAR for some X. Output Y(SAR)~SA in factored form. We’re done!



Low Rank Approximation Summary

Compute SA

Compute SAR and AR

Compute min |Y — AR(SAR)™(SAR)|% using SVD
rank—kY

Output Y(SAR)~SA in factored form

Overall time: nnz(A) + (n+d)poly(k/e)



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices
Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings
Application to low rank approximation

High precision regression

Leverage score sampling



High Precision Regression

= (oal: output x' for which |Ax'-b|, < (1+€) min, |AX-b|,
with high probability

» Qur algorithms all have running time poly(d/¢)
= Goal: Sometimes we want running time poly(d)*log(1/¢)

= \Want to make A well-conditioned
= k(A) = sup |Ax]|, / 1nf |Ax|,

1X[2=1
= | ots of algorithms’ time complexity depends on k(A)

» Use sketching to reduce k(A) to O(1)!



Small QR Decomposition

» LetSbeal+ ¢, -subspace embedding for A
= Compute SA

= Compute QR-factorization, SA = QR™1

(1+€0)
—€p

= Claim: x(AR) =

= For all unit x, (1 —€y)|ARx|, < |SARx|,=1

= Forall unit x, (1 + ¢€3)|ARx|, = |SARx|, =1

1+€0

= So k(AR) = sup |ARx]|, / 1nf |ARx|, <

x|2=1 1=¢€o



Finding a Constant Factor Solution

Let S be a 1+ ¢, - subspace embedding for AR

Solve x, = argmin|SARx — Sb|,
X

Time to compute AR and x; is nnz(A) + poly(d) for constant ¢,
Xmi1 < Xm + RTAT(b — AR %)

AR(Xp4+q1 — X*) = AR (% + RTAT(b — ARx,,) — x*)
= (AR — ARRTATAR)(x, — x*)
= U - 23V (xy —x7),

where AR = UXVT is the SVD of AR

[AR(Xm41 — Xz = |@ = Z3)V (X — x*)|, = 0(€0) [AR(Xpm — x*) |2
|ARx, — b|?, = [AR(x, — x¥)|5 + |ARX" — b3



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices
Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings
Application to low rank approximation

High precision regression

Leverage score sampling



Leverage Score Sampling

This is another subspace embedding, but it is based on sampling!
If A has sparse rows, then SA has sparse rows!

Let A = U XVT be an n x d matrix with rank d, written in its SVD

Define the i-th leverage score #(i) of Ato be |U;, z
What is );; £(i)?

B£()
d

Let (q4, ..., qy) be a distribution with q; > , Where B is a parameter

Define sampling matrix S = D - QF, where D is k x k and Q is n x k
Q is a sampling matrix, and D is a rescaling matrix

For each column j of Q, D, independently, and with replacement, pick a row
index i in [n] with probability q;, and set Q;; = 1 and D;; = (q;k)"(.5)



Leverage Score Sampling

Note: leverage scores do not depend on choice of orthonormal
basis U for columns of A

Indeed, let U and U’ be two such orthonormal bases
Claim: |e;U|3 = |e;U’|5 for all |

Proof: Since both U and U’ have column space equal to that of A,
we have U = U’Z for change of basis matrix Z

Since U and U’ each have orthonormal columns, Z is a rotation
matrix (orthonormal rows and columns)

Then |e;U|5 = |e;U'Z|5 = |e;U’|5



Leverage Score Sampling gives a Subspace Embedding

Want to show for S = D - Q7, that |SAx|3 = (1 + €)|Ax|3 for all x

Writing A = U XVT in its SVD, this is equivalent to showing
ISUyl3 = (1 £ ©)|Uyl3 = (1 £ e)lyl3 forally

As usual, we can just show with high probability, [UTSTSU —1| <

How can we analyze UTSTSU?

(Matrix Chernoff) Let X4, ..., X be independent copies of a symmetric
random matrix X € R¥*4 with E[X] = 0, |X|, <y, and |E[XTX]|2 < o2 LetW =
1
- Zjefig Xj- Forany e >0,
Ye€
Pr[[W], > €] < 2d - e K€/ (@*+3)

(here |[W|, = sup I\lflllez .Since W is symmetric, |[W|, = sup xTWx.)

1x],=1




Leverage Score Sampling gives a Subspace Embedding

Let i(j) denote the index of the row of U sampled in the j-th trial

Ui Uig . .
Let X; = Iq — %})(’) where U is the j-th sampled row of U

The X; are independent copies of a symmetric matrix random variable

Ul u;
E[X)] = lg - Zya (L) = 1y — 1g = 0°

|UiT(j)Ui(n|

Ujl3 d
|Xj| < |I4l; + 2<1+max| 2 <144
2 di(j) di B
T T T
E[XTX] = I4 — 2E VipUio | | g Ui(j)Ui(j)zUi(j)Ui(j)
di(j) i)

5 < (90 1= (1)

where A < B means xTAx < xTBx for all x

Hence, |E[X™X]|, < E -1



Applying the Matrix Chernoff Bound

(Matrix Chernoff) Let X4, ..., X be independent copies of a symmetric
random matrix X € R4*4 with E[X] = 0, |X|, <y, and |E[XTX]|2 < o2 LetW =

%Zje[k] X;. Forany e > 0,

Y€
Pr[[W|, > €] < 2d - e K€/ +3)

|Wx|,

(here W[, = sup 0,

.Since W is symmetric, [W|, = sup xTWx.)
1x|2=1

X, = Iq — UiT(ci)i(‘jJ)i(i)
column j of Q, D, independently, and with replacement, pick a row index i in
[n] with probability g;, and set Q;; = 1 and D;; = (q;k)"(.5)

Implies W = Iy — UTSTSU

, and recall how we generated S = D - QT: For each

Pr “Id —UTsTsul, > (—:] <2d-e*®(0), set k = @(d log d) and we're done.



Fast Computation of Leverage Scores

Naively, need to do an SVD to compute leverage scores
Suppose we compute SA for a subspace embedding S
Let SA = QR be such that Q has orthonormal columns
Set 'gi = |e1AR|%
Since AR has the same column span of A, AR = UT?
(1 —€e)|ARx|; < [SARx[; = [x];
(1 + E)lARXlZ = |SARX|2 = |X|2
(1£0(e)Ixl; = |IARx|, = [UT x|, = |T™ x|y,

¢ = |&ARTIZ = (1+ 0()|eARIZ = (14 0()4/

But how do we compute AR? We want nnz(A) time



Fast Computation of Leverage Scores

£ = (1 £0(e)¥
Suffices to set this € to be a constant

Set #; = |e;AR|3
This takes too long

Let G be a d x O(log n) matrix of i.i.d. normal random variables

For any vector z, Pr[|zG|5 = (1 i%) z|?] =1 _n_12

Instead set #] = |e;ARG]|3.
Can compute in (nnz(A) + d?) logn time

Can solve regression in nnz(A) log n + poly(d(log n)/¢) time



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings
Application to low rank approximation

High precision regression
Leverage score sampling

Distributed Low Rank Approximation



Distributed low rank approximation

We have fast algorithms for low rank approximation, but
can they be made to work in a distributed setting?

Matrix A distributed among s servers

Fort=1, ..., s, we get a customer-product matrix from
the t-th shop stored in server t. Server t's matrix = At

Customer-product matrix A=A + A2 + ... + AS
Model is called the arbitrary partition model

More general than the row-partition model in which each
customer shops in only one shop



The Communication Model

Coordinator

Server 1 Server 2 Server s

« Each player talks only to a Coordinator via 2-way communication

« Can simulate arbitrary point-to-point communication up to factor of 2
(and an additive O(log s) factor per message)



Communication cost of low rank approximation

Input: n x d matrix A stored on s servers
Server t has n x d matrix Al
A=AT+A%+  +As
Assume entries of At are O(log(nd))-bit integers

Output: Each server outputs the same k-dimensional space W
C = APy + A%Py + ...+ APy, where Py is the projector onto W
|A-Cle < (1+€)|A-Alr
Application: k-means clustering

Resources: Minimize total communication and computation.
Also want O(1) rounds and input sparsity time



Work on Distributed Low Rank Approximation

[FSS]: First protocol for the row-partition model.
O(sdk/g) real numbers of communication
Don’t analyze bit complexity (can be large)
SVD Running time, see also [BKLW]

[KVW]: O(skd/e) communication in arbitrary partition model

[BWZ]: O(skd) + poly(sk/e) words of communication in
arbitrary partition model. Input sparsity time

Matching Q(skd) words of communication lower bound

Variants: kernel low rank approximation [BLSWX], low rank
approximation of an implicit matrix [WZ], sparsity [BWZ]



Outline of Distributed Protocols

[FSS] protocol

[KVW] protocol

[BW/Z] protocol



Constructing a Coreset [FSS]

Let A=UZ2XVT beits SVD
Letm =k + k/e

Let X, agree with X on the first m diagonal entries, and be 0
otherwise

Claim: For all projection matrices Y=I-X onto (n-k)-dimensional
subspaces,

% VTY|® = (1 + €)|AY|2 + ¢,
F F

where ¢ = |A — A,,,|% does not depend on Y

We can think of S as Ul so that SA = UL UZVT =X VT is a sketch



Constructing a Coreset

Claim: For all projection matrices Y=I-X onto (n-k)-dimensional subspaces,
ZaVTY]) + ¢ = (1 £ ©lAYE,

where c = |A — A, |% does not depend on Y

Proof: |AY|Z = [UZ,VTY|" + U - £)VTY|

< [ZmVTY[L + 1A = AplE = [ZVTY[ +c

Also, |, VTY|. + A — Apl3 — |AY|Z
= [ZnVT]s = [ZmVTX]) + 1A = Al — |AIZ + |AXIE
= |AXIE — [ZnVTX]
= | - Zn)VTX|
< | -2V - IXIE

2 2
< o k< eof(m—k+1) < EZiE{k+1,..,m+1} of < €|lA—Aglg



Unions of Coresets

Suppose we have matrices Al, ..., AS and construct
>yl »2yTz %S VTS asin the previous slide, together with cy, ..., cg

Then Y, |Z§nVT'iY|12: +¢; = (1 +¢€)|AY|3, where A is the matrix formed by
concatenating the rows of Al, ..., AS

Let B be the matrix obtained by concatenating the rows of
DERVEEI AL - A A

Suppose we compute B = UXVT and compute £,,VT and |B — B, |4
Then |ZmVTY|12: +c+Yici=1+6e)|BY|E+ Y = (1+0(e)|AY|E

So X,,VT and the constant c + Y, c; are a coreset for A



[FSS] Row-Partition Protocol

Coordinator

PleR“1Xd Pzeanxd PSERnSXd

= Server t sends the top k/¢e + k principal components of Pt, scaled by the top
k/e + k singular values X%, together with ¢t

= Coordinator returns top k principal components of [Z1V1; 22V?; ...; Z5V3]



[FSS] Row-Partition Protocol KVWI protocol

will handle 2, 3,
and 4

Problems:
1. sdk/e real numbers of communication

2. bit complexity can be large
3. running time for SVDs [BLKW]
4. doesn’t work in arbitrary partition model

This is an SVD-based protocol. Maybe
our random matrix techniques can
iImprove communication just like they
improved computation?



[KVW] Arbitrary Partition Model Protocol

Inspired by the sketching algorithm presented earlier
Let S be one of the k/e x n random matrices discussed
S can be generated pseudorandomly from small seed
Coordinator sends small seed for S to all servers
Server t computes SAt and sends it to Coordinator

Coordinator sends Z,_,5 SA! = SA to all servers

There is a good k-dimensional subspace inside of SA. If
we knew it, t-th server could output projection of At onto it



[KVW] Arbitrary Partition Model Protocol

<~

Problems:

= Can’t output projection of At onto SA since
the rank is too large

» Could communicate this projection to the
coordinator who could find a k-dimensional
space, but communication depends on n




[KVW] Arbitrary Partition Model Protocol

>

Fix:

» |nstead of projecting A onto SA, recall

we can solve min |A(SA)TXSA — Al
rank—k F

» LetT;, T, be affine embeddings, solve

: T B 2
. _min X|T1A(SA) XSAT, — Ty AT, |
(optimization problem is small and has

a closed form solution)
= Everyone can then compute XSA and

< then output k directions /




[KVW] protocol

Phase 1:

Learn the row space of SA

optimal k-dimensional
— space in SA

cost < (1+¢)|A-A ¢



[KVW] protocol

Phase 2:

Find an approximately optimal space W inside of SA

® O
O . .
optimal space in SA
/
: |
4 "\ approximate

SA | ) |
space W in SA

cost < (1+€)?|A-A|r




[IBWZ] Protocol

Main Problem: communication is O(skd/g) + poly(sk/g)
We want O(skd) + poly(sk/e) communication!

|dea: use projection-cost preserving sketches [CEMMP]
Let A be an n x d matrix

If S is a random k/? x n matrix, then there is a constant
c = 0 so that for all k-dimensional projection matrices P:
ISA(I—-P)[g+c =1 xe)A—-P)[g



[BWZ] Protocol Intuitively, U looks like top k
left singular vectors of SA

Let S be a k/e? x n projection-cost preserving sketch
Let T be a d x k/? projection-cost preserving sketch
Server t sends SA'T to Coordinator

Coordinator sends back SAT = ). SA'T to servers

Each server computes k/e“x k matrix U of top k left singular
vectors of SAT

Thus, UTSA looks like top k
right singular vectors of SA

Server t sends UTSA! to Coordinator
Coordinator returns the space UTSA = Y, UTSA' to output

Top k right singular vectors of SA
work because S is a projection-
cost preserving sketch!



[BWZ] Analysis

Let W be the row span of UTSA, and P be the projection onto W
Want to show |[A — AP|g < (1 + €)|A — Aylf
Since T is a projection-cost preserving sketch,

(*) |SA—SAP|g < |[SA — UUTSA|F +c; < (1+€)|SA - [SAlklp

Since S is a projection-cost preserving sketch, there is a scalar c >
0, so that for all k-dimensional projection matrices P,

ISA —SAP|z + ¢ = (14 €)|A — AP|g

Add c to both sides of (*) to conclude |A — AP|gp < (1 + €)|A — Al



Conclusions for Distributed Low Rank Approximation

[BWZ] Optimal O(sdk) + poly(sk/e) communication protocol for low
rank approximation in arbitrary partition model

Handle bit complexity by adding Tao/Vu noise

Input sparsity time

2 rounds, which is optimal [W]

Optimal data stream algorithms improves [CW, L, GP]

Communication of other optimization problems?
Computing the rank of an n x n matrix over the reals
Linear Programming
Graph problems: Matching
etc.



Additional Time-Permitting Topics

Will cover some recent topics at a research-level (many
details omitted)

Weighted Low Rank Approximation

Regression and Low Rank Approximation with M-
Estimator Loss Functions

Finding Heavy Hitters in a Data Stream optimally



