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Abstract

We undertake a systematic study of sketching a quadratic form: given an n × n matrix A,
create a succinct sketch sk(A) which can produce (without further access to A) a multiplicative
(1 + ε)-approximation to xTAx for any desired query x ∈ Rn. While a general matrix does
not admit non-trivial sketches, positive semi-definite (PSD) matrices admit sketches of size
Θ(ε−2n), via the Johnson-Lindenstrauss lemma, achieving the “for each” guarantee, namely,
for each query x, with a constant probability the sketch succeeds. (For the stronger “for all”
guarantee, where the sketch succeeds for all x’s simultaneously, again there are no non-trivial
sketches.)

We design significantly better sketches for the important subclass of graph Laplacian ma-
trices, which we also extend to symmetric diagonally dominant matrices. A sequence of work
culminating in that of Batson, Spielman, and Srivastava (SIAM Review, 2014), shows that by
choosing and reweighting O(ε−2n) edges in a graph, one achieves the “for all” guarantee. Our
main results advance this front.

1. For the “for all” guarantee, we prove that Batson et al.’s bound is optimal even when we
restrict to “cut queries” x ∈ {0, 1}n. Specifically, an arbitrary sketch that can (1 + ε)-
estimate the weight of all cuts (S, S̄) in an n-vertex graph must be of size Ω(ε−2n) bits.
Furthermore, if the sketch is a cut-sparsifier (i.e., itself a weighted graph and the estimate
is the weight of the corresponding cut in this graph), then the sketch must have Ω(ε−2n)
edges. In contrast, previous lower bounds showed the bound only for spectral-sparsifiers.
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2. For the “for each” guarantee, we design a sketch of size Õ(ε−1n) bits for “cut queries”
x ∈ {0, 1}n. We apply this sketch to design an algorithm for the distributed minimum cut
problem. We prove a nearly-matching lower bound of Ω(ε−1n) bits. For general queries
x ∈ Rn, we construct sketches of size Õ(ε−1.6n) bits.

Our results provide the first separation between the sketch size needed for the “for all” and
“for each” guarantees for Laplacian matrices.

1 Introduction

Sketching emerges as a fundamental building block used in numerous algorithmic contexts to reduce
memory, runtime, or communication requirements. Here we focus on sketching quadratic forms,
defined as follows: Given a matrix A ∈ Rn×n, compute a sketch of it, sk(A), which suffices to
estimate the quadratic form xTAx for every query vector x ∈ Rn. Typically, we aim at (1 + ε)-
approximation, i.e., the estimate is in the range (1 ± ε)xTAx, and sketches that are randomized.
The randomization guarantee comes in two flavors. The first one requires that the sketch sk(A)
succeeds (produces a (1+ε)-approximation) on all queries x simultaneously. The second one requires
that for every fixed query x, the sketch succeeds with high probability. The former is termed the
“for all” guarantee and the latter the “for each” guarantee, following the prevalent terminology in
compressive sensing. The main goal is then to design a sketch sk(A) of small size.

Sketching quadratic forms is a basic task with many applications. In fact, the definition from
above abstracts several specific concepts studied before. One important example is the sparsification
of a graph G, where we take the matrix A to be the Laplacian of G and restrict the sketch to be of a
specific form, namely, a Laplacian of a sparse subgraph G′. Then a cut-sparsifier corresponds to the
setting of query vectors x ∈ {0, 1}n, in which case xTAx describes the weight of the corresponding
cut in G. Also, a spectral-sparsifier corresponds to query vectors x ∈ Rn in which case xTAx is a
Laplacian Rayleigh quotient. Cut queries to a graph have been studied in the context of privacy in
databases [GRU12, JT12, BBDS13, Upa13, Upa14] where, for example, vertices represent users and
edges represent email correspondence between users, and email correspondences between groups of
users are of prime interest. These papers study also directional covariance queries on a matrix,
which correspond to evaluating the quadratic form of a positive semidefinite (PSD) matrix, as well
as evaluating the quadratic form of a low-rank matrix, which could correspond to, e.g., a user-
movie rating matrix. Finally, sketching quadratic forms has appeared and has been studied in
other contexts [AHK05, AGM12a, AGM12b, KLM+14, McG14].

Quadratic form computations also arise in numerical linear algebra. Consider the least squares
regression problem of minimizing ‖By − c‖22 for an input matrix B and vector c. Writing the input
as an adjoined matrix M = [B, c] and denoting x = (y,−1), the objective is just ‖By − c‖22 =
‖Mx‖22 = xTMTMx, and thus regression queries can be modeled by a quadratic form over the
PSD matrix A = MTM . Indeed, for a concrete example where a small-space sketch sk(A) leads to
memory savings (in the data-stream model) in regression problems, see [CW09].

To simplify the exposition, let us assume that the matrix A is of size n × n and its entries
are integers bounded by a polynomial in n, and fix the success probability to be 90%. When we
consider a graph G, we let n denote its number of vertices, with edge-weights that are positive
integers bounded by a polynomial in n. We use Õ(f) to denote f · (log f)O(1), which suppresses the
distinction between counting bits and machine words.
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The general quadratic forms, i.e., when the square matrix A is arbitrary, require a sketch of
size Ω̃(n2) bits, even in the “for each” model (see Appendix A).

Hence we restrict our attention to the class of PSD matrices A, and its subclasses like graph
Laplacians, which occur in many applications. We provide tight or near-tight bounds for these
classes, as detailed in Table 1. Overall, our results show that the specific class of matrices as well
as the model (“for each” vs. “for all” guarantee) can have a dramatic effect on the sketch size,
namely, quadratic vs. linear dependence on n or on ε.

1.1 Our Contributions

We start by characterizing the sketching complexity for general PSD matrices A, in both the “for
all” and “for each” models. First, we show that, for the “for all” model, sketching an arbitrary
PSD matrix A requires Ω(n2) bits (Theorem 5.1); i.e., storing the entire matrix is essentially
optimal. In contrast, for the “for each” model, we show that the Johnson-Lindenstrauss lemma
immediately yields a sketch of size O(nε−2 log n) bits and this is tight up to the logarithmic factor
(see Section 5.2). We conclude that the bounds for the two models are quite different: quadratic
vs. linear in n.

Surprisingly, one can obtain significantly smaller sketches when A is the Laplacian of a graph G,
a subclass of PSD matrices that occurs in many applications. Specifically, we refer to a celebrated
result of Batson, Spielman, and Srivastava [BSS14], which is the culmination of a rich line of
research on graph sparsification [BK96, ST04, ST11, SS11, FHHP11, KP12]. They show that every
graph Laplacian A admits a sketch in the “for all” model whose size is O(nε−2 log n) bits. This
stands in contrast to the Ω̃(n2) lower bound for general PSD matrices. Their sketch has a particular
structure: it is itself a graph, consisting of a reweighted subset of edges in G and works in the “for
all” model. Batson et al. [BSS14] also prove a lower bound for the case of spectral sparsification
(for cut sparsifiers, the bound remained open).

The natural question is whether there are qualitatively better sketches we can construct by
relaxing the guarantees or considering more specific cases. Indeed, we investigate this research
direction by pursuing the following concrete questions:

Q1. Can we improve the “for all” upper bound O(nε−2) by using an arbitrary data structure?

Q2. Can we improve the bound by restricting attention to cut queries? Specifically, can the
optimal size of cut-sparsifiers be smaller than that of spectral-sparsifier?

Q3. Can we improve the “for each” bound beyond the Õ(nε−2) bound that follows from general
PSD matrices result (and also from the “for all” model via [BSS14])?

We make progress on all of the above questions, often providing (near) tight results.
In all of these questions, the main quantitative focus is the dependence on the accuracy param-

eter ε. We note that improving the dependence on ε is important for a variety of reasons. From
a theoretical angle, a quadratic dependence is common for estimates with two-sided error, and
hence sub-quadratic dependence elucidates new interesting phenomena. From a practical angle,
we can set ε to be the smallest value for which the sketch still fits in memory (i.e., we can get
better estimates with the same memory). In general, quadratic dependence might be prohibitive
for large-scale matrices: if, say, ε is 1% then 1/ε2 = 10000.

We answer Q1 negatively by showing that every sketch that satisfies the “for all” guarantee
requires Ω(nε−2) bits of space, even if the sketch is an arbitrary data structures (see Section 3). This
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“for all” model “for each” model
Matrix family upper bound lower bound upper bound lower bound

General Õ(n2) Ω(n2) Õ(n2) Ω(n2) App. A

PSD Õ(n2) Ω(n2) Sec. 5.1 Õ(nε−2) Sec. 5.2 Ω(nε−2) Sec. 5.2

Laplacian, SDD Õ(nε−2) [BSS14] Ω(nε−2) [BSS14] Õ(nε−1.6) Sec. 4.2 Ω(nε−1) Sec. 4.1
edge-count: O(nε−2) [BSS14] Ω(nε−2) [BSS14]

Laplacian+cut queries Õ(nε−2) [BSS14] Ω(nε−2) Sec. 3 Õ(nε−1) Sec. 4.1 Ω(nε−1) Sec. 4.1
edge-count: O(nε−2) [BSS14] Ω(nε−2) Sec. 3

Table 1: Bounds for sketching quadratic forms, expressed in bits, except when counting edges.

matches the upper bound of [BSS14] (up to a logarithmic factor, which stems from the difference
between counting words and bits).

Our answer to Q1 essentially answers Q2 as well: our lower bound actually holds even if we
only consider cut queries x ∈ {0, 1}n. Indeed, an immediate consequence of the Ω(nε−2) bits lower
bound is that a cut-sparsifier G′ must have Ω(nε−2/ log n) edges. We strengthen this further and
obtain a tight lower bound of Ω(nε−2) edges (even in the case when the cut-sparsifier G′ is a not
necessarily a subgraph of G). Such an edge lower bound was not known before. The previous lower
bound for a cut-sparsifier G′, due to Alon [Alo97], uses two additional requirements — that the
sparsifier G′ has regular degrees and uniform edge weights — to reach the same conclusion that G′

has Ω(n/ε2) edges. Put differently, Alon’s lower bound is quantitatively optimal — it concludes the
tight lower bound of Ω(n/ε2) edges — but it is unsatisfactory qualitatively, as it does not cover a
cut-sparsifier G′ that has edge weights or has non-regular degrees, which may potentially lead to
a smaller sparsifier. Similarly, the results of [Nil91, BSS14] apply to spectral-sparsification, which
is a harder problem than cut-sparsification. Our result subsumes all of these bounds, and for cut
sparsifiers it is in fact the first lower bound under no assumption. Our lower bound holds even for
input graphs G that are unweighted.

On the upside, we answer Q3 positively by showing how to achieve the “for each” guarantee
using nε−1 polylog(n) bits of space (see Section 4.1). This bound can be substantially smaller than
in the “for all” model when ε is small: e.g., when ε = 1/

√
n we obtain size n3/2 polylog(n) instead

of the O(n2) needed in the “for all” model. We also show that Ω(nε−1) bits of space is necessary
for the “for each” guarantee (Theorem 4.13).

We then give an application for the “for each” sketch to showcase that it is useful algorithmically
despite having a guarantee that is is weaker than that of a “for all” cut-sparsifier. In particular, we
show how to (1 + ε)-approximate the global minimum cut of a graph whose edges are distributed
across multiple servers (see Section 1.3).

Finally, we consider a “for each” sketch of a Laplacian matrix under arbitrary query vectors
x ∈ Rn, which we refer to as spectral queries on the graph G. Such spectral queries give more
flexibility than cut queries. For example, if the graph corresponds to a physical system, e.g., the
edges correspond to electrical resistors, then spectral queries can evaluate the total heat dissipation
of the system for a given set of potentials on the vertices. Also, a spectral query x that is a
permutation of {1, 2, . . . , n} gives the average squared distortion of a line embedding of G. We
design in Section 4.2 a sketch for spectral queries that uses nε−1.6 polylog(n) bits of space. These
upper bounds also apply to the symmetric diagonally-dominant (SDD) matrices.

Our results and previous bounds are summarized in Table 1.
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1.2 Highlights of Our Techniques

In this section we give technical overviews for our three main results: (1) the lower bound for cut
queries on Laplacian matrices (answering Q1 and Q2); (2) the upper bound for cut queries on
Laplacian matrices; and (3) the upper bound for spectral queries on Laplacian matrices (answering
Q3). We always use G to denote the corresponding graph of the considered Laplacian matrix.

1.2.1 Lower Bound for Sketching Laplacian Matrices with Cut Queries, “For All”
Model

We first prove our Ω(nε−2)-bit lower bound using communication complexity for arbitrary data
structures. We then show how to obtain an Ω(nε−2) edge lower bound for cut sparsifiers by
encoding a sparsifier in a careful way so that if it had o(n/ε2) edges, it would violate an Ω(nε−2)
bit lower bound in the communication problem.

For the Ω(nε−2) bit lower bound, the natural thing to do would be to give Alice a graph G,
and Bob a cut S. Alice produces a sketch of G and sends it to Bob, who must approximate the
capacity of S. The communication cost of this problem lower bounds the sketch size. However, as
we just saw, Alice has an upper bound with only Õ(nε−1) bits of communication. We thus need
for Bob to solve a much harder problem which uses the fact that Alice’s sketch preserves all cuts.

We let G be a disjoint union of ε2n/2 graphs Gi, where each Gi is a bipartite graph with 1
ε2

vertices in each part. Each vertex in the left part is independently connected to a random subset
of half the vertices in the right part. Bob’s problem is now, given a vertex v in the left part of
one of the Gi, as well as a subset T of half of the vertices in the right part of that Gi, decide if
|N(v)∩ T | > 1

4ε2
+ c

ε (N(v) is the set of neighboring vertices of v), or if |N(v)∩ T | < 1
4ε2
− c

ε , for a
small constant c > 0. Most vertices v will satisfy one of these conditions, by anti-concentration of
the binomial distribution. Note that this problem is not a cut query problem, and so a priori it is
not clear how Bob can use Alice’s sketch to solve it.

To solve the problem, Bob will do an exhaustive enumeration on cut queries, and here is where
we use that Alice’s sketch preserves all cuts. Namely, for each subset S of half of the vertices in
the left part of Gi, Bob queries the cut S ∪ T . As Bob ranges over all (exponentially many) such
cuts, what will happen is that for most vertices u in the left part for which |N(u) ∩ T | > 1

4ε2
+ c

ε ,
the capacity of S ∪ T is a “little bit” larger if u is excluded from S. This little bit is not enough
to be detected, since |N(u) ∩ T | = Θ

(
1
ε2

)
while the capacity of S ∪ T is Θ

(
1
ε4

)
. However, as

Bob range over all such S, he will eventually get lucky in that S contains all vertices u for which
|N(u)∩T | > 1

4ε2
+ c
ε , and now since there are about 1

2ε2
such vertices, the little c

ε bit gets “amplified”
by a factor of 1

2ε2
, which is just enough to be detected by a (1 + ε)-approximation to the capacity

of S ∪ T . If Bob finds the S which maximizes the (approximate) cut value S ∪ T , he can check if
his v is in S, and this gives him a correct answer with large constant probability.

We believe our main contribution is in designing a communication problem which requires
Alice’s sketch to preserve all cuts instead of only a single cut. There are also several details in the
communication lower bound for the problem itself, including a direct-sum theorem for a constrained
version of the Gap-Hamming-Distance problem, which could be independently useful.

For the Ω(nε−2) edge lower bound for cut sparsifiers, the straightforward encoding would encode
each edge using O(log n) bits, and cause us to lose a log n factor in the lower bound. Instead, we
show how to randomly round each edge weight in the sparsifier to an adjacent integer, and observe
that the integer weights sum up to a small value in our communication problem. This ultimately
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allows to transmit, in a communication-efficient manner, all the edge weights together with the
edge identities.

1.2.2 Upper Bound for Sketching Laplacian Matrices with Cut Queries, “For Each”
Model

To discuss the main ideas behind our Õ(nε−1)-bit sketch construction for Laplacian matrices with
queries x ∈ {0, 1}n, let us first give some intuition on why the previous algorithms cannot yield a
Õ(nε−1) bound, and show how our algorithm circumvents these roadblocks on a couple of illustrative
examples. For concreteness, it is convenient to think of ε = 1/

√
n.

All existing cut (and spectral) sparsifiers algorithms construct the sparsifier by taking a sub-
graph of the original graph G, with the “right” re-weightening of the edges [BK96, SS11, BSS14,
FHHP11, KP12]. In fact, except for [BSS14], they all proceed by sampling edges independently,
each with its own probability (that depends on the graph).

Consider for illustration the complete graph. In this case, these sampling schemes employ a

uniform probability p ≈ 1/ε2

n of sampling every edge. It is not hard to see that one cannot sample
edges with probability less than p, as otherwise anti-concentration results suggest that even the
degree of a vertex (i.e., the cut of a “singleton”) is not preserved within 1 + ε approximation.
Perhaps a more interesting example is a random graph Gn,1/2; if edges are sampled independently
with (roughly) uniform probability, then again it cannot be less than p, because of singleton cuts.
However, if we aim for a sketch for the complete graph or Gn,1/2, we can just store the degree of each
vertex using only O(n) space, and this will allow us to report the value of every singleton cut (which
is the most interesting case, as the standard deviation for these cut values have multiplicative order
roughly 1 ± ε). These observations suggest that sketching a graph may go beyond considering a
subgraph (or a different graph) to represent the original graph G.

Our general algorithm proceeds in several steps. The core of our algorithm is a procedure for
handling cuts of value ≈ 1/ε2 in a graph with unweighted edges, which proceeds as follows. First,
repeatedly partition the graph along every sparse cut, namely, any cut whose sparsity is below 1/ε.
This results with a partition of the vertices into some number of parts. We store the cross-edges
(edge connecting different parts) explicitly. We show the number of such edges is only Õ(nε−1),
and hence they fit into the space allocated for the sketch. Obviously, the contribution of these
edges to any desired cut w(S, S̄) is easy to compute from this sketch.

The sketching algorithm still needs to estimate the contribution (to a cut w(S, S̄) for a yet
unknown S ⊂ V ) from edges that are inside any single part P of the partition. To accomplish
this, we sample ≈ 1/ε edges out of each vertex, and also store the exact degrees of all vertices.
Then, to estimate the contribution of edges inside a part P to w(S, S̄), we take the sum of (exact)
degrees of all vertices in S ∩ P , minus an estimate for (twice) the number of edges inside S ∩ P
(estimated from the edge sample). This “difference-based” estimate has a smaller variance than a
direct estimate for the number edges in (S ∩P, S̄ ∩P ) (which would be the “standard estimate”, in
some sense employed by previous work). The smaller variance is achieved thanks to the facts that
(1) the assumed cut is of size (at most) 1/ε2; and (2) there are no sparse cuts in P .

Overall, we achieve a sketch size of Õ(nε−1). We can construct the sketch in polynomial
time by employing an O(

√
log n)-approximation algorithm for sparse cut [ARV09, She09] or faster

algorithms with (logO(1) n)-approximation [Mad10].
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1.2.3 Upper Bound for Sketching Laplacian Matrices with Spectral Queries, “For
Each” Model

Now we consider spectral queries x ∈ Rn, starting first with a space bound of nε−1.66polylog(n)
bits, and then discuss how to improve it further to nε−1.6 polylog(n).

We start by making several simplifying assumptions. The first is that the total number of edges
is O(nε−2). Indeed, we can first compute a spectral sparsifier [BSS14]. It is useful to note that if all
edges weights were between 1 and poly(n), then after spectral sparsification the edge weights are
between 1 and poly(n), for a possibly larger polynomial. Next, we can assume all edge weights are
within a factor of 2. Indeed, by linearity of the Laplacian, if all edge weights are in [1, poly(n)], then
we can group the weights into powers of 2 and sketch each subset of edges separately, incurring an
O(log n) factor blowup in space. Third, and most importantly, we assume that Cheeger’s constant
hG of each resulting graph G = (V,E) satisfies hG > ε1/3, where recall that hG = infS⊂V ΦG(S)
where

ΦG(S) =
w(S, S̄)

min{vol(S), vol(S̄)}
and vol(S) =

∑
u∈S

w({u}, V \ {u}).

We can assume hG > ε1/3 because if it were not, then by definition of hG there is a sparse cut, that
is, ΦG(S) ≤ ε1/3. We can find a sparse cut (a polylogarithmic approximation suffices), store all
sparse cut edges in our data structure, and remove them from the graph G. We can then recurse on
the two sides of the cut. By a charging argument we can bound the total number of edges stored
across all sparse cuts.

As for the actual data structure achieving our nε−1.66polylog(n) upper bound, we first store the
weighted degree δu(G) =

∑
v:(u,v)∈E w(u, v) of each node (as that for the cut queries). A difference is

that we now partition vertices into “heavy” and “light” classes VL and VH , where VH contains those
vertices whose weighted degree exceeds a threshold, and light consists of the remaining vertices.
We include all edges incident to light vertices in the data structure. The remaining edges have both
endpoints heavy and for each heavy vertex, we randomly sample about ε−5/3 of its neighboring
heavy edges; edge u, v is sampled with probability w(u,v)

δu(GH) where δu(GH) is the sum of weighted
edges from the heavy vertex u to neighboring heavy vertices v.

For the estimation procedure, we write xTLx =
∑

(u,v)∈E(xu − xv)2w(u, v) as

xTLx =
∑
u∈V

δu(G)x2
u −

∑
u∈VL,v∈V

xuxvw(u, v)

−
∑

u∈VH ,v∈VL

xuxvw(u, v)−
∑
u∈VH

∑
v∈VH

xuxvw(u, v)

and observe that our data structure has the first three summations on the right exactly; error
can only come from estimating

∑
u∈VH

∑
v∈VH xuxvw(u, v), for which we use our sampled heavy

edges. Since this summation has only heavy edges, we can control its variance and upper bound
it by ε10/3‖D1/2x‖42, where D is a diagonal matrix with the degrees of G on the diagonal. We can
then upper bound this norm by relating it to the first non-zero eigenvalue λ1(L̃) of the normalized
Laplacian L̃, which cannot be too small, since by Cheeger’s inequality, λ1(L̃) ≥ h2

G/2, and we have
ensured that hG is large.

To improve the upper bound to nε−1.6polylog(n) bits, we partition the edges of G into more
refined groups, based on the degrees of their endpoints. More precisely, we classify edges e by the
minimum degree of their two endpoints, call this number m(e), and two edges e, e′ are in the same
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class if the nearest power of 2 of m(e) and of m(e′) is the same. We note that the total number
of vertices with degree in ω(ε−2) is o(n), since we are starting with a graph with only O(nε−2)
edges; therefore, all edges e with m(e) = ω(ε−2) can be handled by applying our entire procedure
recursively on say, at most n/2 nodes. Thus, it suffices to consider m(e) ≤ ε−2.

The intuition now is that as m(e) increases, the variance of our estimator decreases since the
two endpoints have even larger degree now and so they are even “heavier” than before. Hence,
we need fewer edge samples when processing a subgraph restricted to edges with large m(e). On
the other hand, a graph on edges e for which every value of m(e) is small simply cannot have too
many edges; indeed, every edge is incident to a low degree vertex. Therefore, when we partition
the graph to ensure that Cheeger’s constant hG is small, since there are fewer total edges (before
we just assumed this number was upper bounded by nε−2), now we pay less to store all edges
across sparse cuts. Thus, we can balance these two extremes, and doing so we arrive at our overall
nε−1.6polylog(n) bit space bound.

Several technical challenges arise when performing this more refined partitioning. One is that
when doing the sparse cut partitioning to ensure the Cheeger’s constant is small, we destroy the
minimum degree of endpoints of edges in the graph. Fortunately we can show that for our setting
of parameters, the total number of edges removed along sparse cuts is small, and so only a small
number of vertices have their degree drop by more than a factor of 2. For these vertices, we can
afford to store all edges incident to them directly, so they do not contribute to the variance. Another
issue that arises is that to have small variance, we would like to “assign” each edge {u, v} to one
of the two endpoints u or v. If we were to assign it to both, we would have higher variance. This
involves creating a companion or “buddy graph” which is a directed graph associated with the
original graph. This directed graph assists us with the edge partitioning, and tells us which edges
to potentially sample from which vertices.

1.3 Application to Distributed Minimum Cut

We now illustrate how a “for each” sketch can be useful algorithmically despite its relaxed guar-
antees compared to a cut sparsifier. In particular, we show how to (1 + ε)-approximate the global
minimum cut of a graph whose edges are distributed across multiple servers. Distributed large-scale
graph computation has received recent attention, where protocols for distributed minimum span-
ning tree, breadth-first search, shortest paths, and testing connectivity have been studied, among
other problems, see, e.g., [KNPR15, WZ13]. In our case, each server locally computes the “for
each” data structure of Sec. 4.1 on its subgraph (for accuracy ε), and sends it to a central server.
Each server also computes a classical cut sparsifier, with fixed accuracy ε′ = 0.2, and sends it to
the central server. Using the fact that cut-sparsifiers can be merged, the central server obtains
a (1 ± ε′)-approximation to all cuts in the union of the graphs. By a result of Henzinger and
Williamson [HW96] (see also Karger [Kar00]), there are only O(n2) cuts strictly within factor 1.5
of the minimum cut, and they can be found efficiently from the sparsifier (see [Kar00] for an Õ(n2)
time way of implicitly representing all such cuts). The central server then evaluates each “for each”
data structure on each of these cuts, and sums up the estimates to evaluate each such cut up to
factor 1 + ε, and eventually reports the minimum found. Note that the “for each” data structures
can be assumed, by independent repetitions, to be correct with probability 1− 1/n4 for any fixed
cut (and at any server), and therefore correct with high probability on all O(n2) candidate cuts.
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2 Preliminaries

Let G = (V,E,w) be an undirected graph with weight function w : V × V → R≥0. Denote n = |V |
and m = |E|, and assume by convention that w(u, v) > 0 whenever (u, v) ∈ E, and w(u, v) = 0
otherwise. Let wmax and wmin be the maximum and minimum (positive) weights of edges in E
respectively.

For a vertex u ∈ V , let δu(G) be the weighted degree of u in G, i.e. δu(G) =
∑

v∈V w(u, v), and
let du(G) be the unweighted degree of u in G, i.e. du(G) = |{v ∈ V | w(u, v) > 0}|.

For two disjoint vertex sets A and B, let ∂(A,B) = {(u, v) ∈ E |u ∈ A, v ∈ B} be the set of
edges across two vertex sets A and B. Abusing the notation a little bit, let ∂(A,A) denotes the
set of edges whose endpoints are both inside A. Given a cut (S, S̄) with S ⊂ V , we denote the cut
weight in G as wG(S, S̄) =

∑
e∈∂(S,S̄)w(e) (we often omit the subscript G when it is clear from the

context).
Let ~G = (V, ~E,w) be a directed positively weighted graph. For a vertex u ∈ V , define weighted

in- and out-degree δinu (~G) =
∑

v:(v,u)∈ ~E w(v, u), δoutu (~G) =
∑

v:(u,v)∈ ~E w(u, v), and unweighted in-

and out-degree dinu (~G) = |{v | (v, u) ∈ ~E,w(v, u) > 0}|, and doutu (~G) = |{v | (u, v) ∈ ~E,w(u, v) >
0}|.

For a vertex set S ⊂ V , let G(S) be the vertex-induced subgraph of G, and E(S) be the edge
set of G(S). And for an edge set F ⊂ E, let G(F ) be the edge-induced subgraph of G, and V (F )
be the vertex set of G(F ); definitions will be the same if edges are directed.

Let L(G) be the unnormalized Laplacian of G, and let L̃(G) be the normalized Laplacian of G.
Let λ0(L), λ1(L), . . . , λn−1(L) be the eigenvaules of a Laplacian matrix L such that λ0(L) ≤

λ1(L) ≤ . . . ≤ λn−2(L) ≤ λn−1(L). Recall that the smallest eigenvalue of L is always λ0(L) = 0.
We can always assume G is connected, since otherwise we can sketch each connected component
separately. We thus have λ1(L) > 0.

A random variable X is called a (1 + ε, δ)-approximation of Y if Pr[X ∈ (1± ε)Y ] ≥ 1− δ. We
usually assume ε > 1/n (or similar) since otherwise the sketch can just store the whole graph.

We define cut and spectral sketch of a graph as follows.

Definition 2.1 ((1 + ε, δ)-cut-sketch) A sketch of G = (V,E,w), denoted sk(G), is called a (1 +
ε, δ)-cut-sketch of G if there is a reconstruction function that given sk(G) and S ⊂ V , outputs a
(1 + ε, δ)-approximation to the weight of the cut (S, S̄), i.e., w(S, S̄).

Definition 2.2 ((1 + ε, δ)-spectral-sketch) A sketch of G = (V,E,w), denoted sk(G), is called
a (1 + ε, δ)-spectral-sketch of G if there is a reconstruction function that given sk(G) and x ∈ Rn,
outputs a (1 + ε, δ)-approximation to xTL(G)x.

We will need Cheeger’s constant and Cheeger’s inequality.

Definition 2.3 (Cheeger’s constant) Given a graph G = (V,E,wG), for any S ⊂ V , let volG(S) =∑
u∈S δu(G) be the weighted volume of S in G. Let ΦG(S) = wG(S,S)

min{volG(S),volG(S̄)} be the conductance

of the cut (S, S̄). We define Cheeger’s constant to be hG = minS⊂V ΦG(S).

Lemma 2.4 (Cheeger’s inequality) Let G = (V,E,w) be an undirected positively weighted graph.
Let L̃ be the normalized Laplacian of G. Let hG be the Cheeger’s constant of graph G. The following
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inequality holds,

λ1(L̃) ≥
h2
G

2
. (1)

We introduce another parameter of a graph.

Definition 2.5 (Expansion constant) For any S ⊂ V , we define expansion constant of graph

G = (V,E) to be ΓG = min|S|≤n/2
|∂(S,S̄)|
|S| .

3 Symmetric Diagonally Dominant Matrices, “For All” Model

In this section we prove a lower bound Ω(n/ε2) on the size of “for all” sketches for symmetric
diagonally dominant (SDD) matrices. Our lower bound in fact applies even in the the special case
of a graph Laplacian A with query vectors x ∈ {0, 1}n. Concretely, we prove the following two
theorems in Sections 3.1 and 3.3, respectively. The first holds for arbitrary sketches, and the second
holds for sketches that take the form of a graph.

Theorem 3.1 Fix an integer n and ε ∈ (1/
√
n, 1), and let sk = skn,ε and est = estn,ε be possibly

randomized sketching and estimation algorithms for unweighted graphs on vertex set [n]. Suppose
that for every such graph G = ([n], E), with probability at least 3/4 we have1

∀S ⊂ [n], est
(
S, sk(G)

)
∈ (1± ε) · |∂(S, S̄)|.

Then the worst-case size of sk(G) is Ω(n/ε2) bits.

Theorem 3.2 For every integer n and ε ∈ (1/
√
n, 1), there is an n-vertex graph G for which every

(1 + ε)-cut sparsifier H has Ω(n/ε2) edges, even if H is not required to be a subgraph of G.

In addition, we show in Appendix B how to reduce the quadratic form of an SDD matrix can to
that of a Laplacian matrix (with only a modest increase in the matrix size, from order n to order
2n). Thus, the upper bound of sketching SDD matrices in both “for each” and “for all” cases will
be the same as that for Laplacians. Since in the “for all” case, we can build the cut (or spectral)
sparsifier for a graph using Õ(n/ε2) bits (using e.g. [BSS14]), we can also construct a “for all”
sketch for an SDD matrix using Õ(n/ε2) bits of space. This means that our Ω(n/ε2) lower bound
is tight up to some logarithmic factors.

3.1 Sketch-size Lower Bound

We prove Theorem 3.1 using the following communication lower bound for a version of the Gap-
Hamming-Distance problem, whose proof appears in section 3.2. Throughout, we fix c = 10−3 (or
a smaller positive constant), and assume ε ≤ c/10.

Theorem 3.3 Consider the following distributional communication problem: Alice has as input
n/2 strings s1, . . . , sn/2 ∈ {0, 1}1/ε

2
of Hamming weight 1

2ε2
, and Bob has an index i ∈ [n/2]

together with one string t ∈ {0, 1}1/ε2 of Hamming weight 1
2ε2

, drawn as follows:2

1The probability is over the randomness of the two algorithms; equivalently, the two algorithms have access to a
common source of random bits.

2Alice’s input and Bob’s input are not independent, but the marginal distribution of each one is uniform over its

domain, namely, {0, 1}(n/2)×(1/ε2) and [n]× {0, 1}1/ε
2

, respectively.
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• i is chosen uniformly at random;

• si and t are chosen uniformly at random but conditioned on their Hamming distance ∆(si, t)
being, with equal probability, either ≥ 1

2ε2
+ c

ε or ≤ 1
2ε2
− c

ε ;

• the remaining strings si′ for i′ 6= i are chosen uniformly at random.

Consider a (possibly randomized) one-way protocol, in which Alice sends to Bob an m-bit message,
and then Bob determines, with success probability at least 2/3, whether ∆(si, t) is ≥ 1

2ε2
+ c

ε or
≤ 1

2ε2
− c

ε . Then Alice’s message size is m ≥ Ω(n/ε2) bits.

We can interpret the lower bound of Theorem 3.3 as follows: Consider a (possibly randomized)
algorithm that produces an m-bit sketch of Alice’s input (s1, . . . , sn/2) ∈ {0, 1}n/2ε2 , and suppose
that the promise about ∆(si, t) can be decided correctly (with probability at least 3/4) given (only)
the sketch and Bob’s input (i, t) ∈ [n/2]× {0, 1}1/ε2 . Then m ≥ Ω(n/ε2).

We now prove Theorem 3.1 by a reduction to the above communication problem, interpreting
the one-way protocol as a sketching algorithm, as follows. Given the instance (s1, . . . , sn/2, i, t),
define an n-vertex graph G that is a disjoint union of the graphs {Gj : j ∈ [ε2n/2]}, where each Gj
is a bipartite graph, whose two sides, denoted L(Gj) and R(Gj), are of size

|L(Gj)| = |R(Gj)| = 1/ε2.

The edges of G are determined by s1, . . . , sn/2, where each string su is interpreted as a vector of
indicators for the adjacency between vertex u ∈ ∪j∈[ε2n/2]L(Gj) and the respective R(Gj).

Observe that Alice can compute G without any communication, as this graph is completely
determined by her input. She then builds a sketch of this graph, that with probability ≥ 99/100,
succeeds in simultaneously approximating all cut queries within factor 1 ± γε, where γ > 0 is
a small constant to be determined later. This sketch is obtained from the theorem’s assumption
about m-bit sketches by standard amplification of the success probability from 3/4 to 0.99 (namely,
repeating r = O(1) times independently and answering any query with the median value of the r
answers). Alice then sends this O(m)-bit sketch to Bob.

Bob then uses his input i to compute j = j(i) ∈ [ε2n/2] such that the graph Gj contains vertex
i (i.e., the vertex whose neighbors are determined by si). Bob also interprets his input string t
as a vector of indicators determining a subset T ⊆ R(Gj). By construction of Gj , the neighbor
sets N(v) of the vertices v ∈ L(Gj) \ {i} are uniformly distributed, independently of T and of each
other; in particular, each |N(v) ∩ T | has a Binomial distribution B( 1

ε2
, 1

4).

Lemma 3.4 Using the O(m)-bit sketch he received from Alice, Bob can compute a “list” B ⊂ L(Gj)
of size |B| = 1

2 |L(Gj)| = 1
2ε2

, and with probability at least 0.96, this list contains at least 4
5 -fraction

of the vertices in the set

Lhigh = {v ∈ L(Gj) : |N(v) ∩ T | ≥ 1
4ε2

+ c
ε}. (2)

Moreover, Bob uses no information about his input i other than j = j(i).

Before proving the lemma, let us show how to use it to decide about ∆(si, t) and derive the
theorem. We will need also the following simple claim, which we prove further below.

Claim 3.5 With probability at least 0.98, the relative size of Lhigh is
|Lhigh|
|L(Gj)| ∈ [1

2 − 10c, 1
2 ].
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We assume henceforth that the events described in the above lemma and claim indeed occur,
which happens with probability at least 0.94. Notice that ∆(si, t) = deg(i) + |T | − 2|N(i) ∩ T |.

Now suppose that ∆(si, t) ≤ 1
2ε2
− c

ε . Then |N(i) ∩ T | ≥ 1
4ε2

+ c
2ε , and because Bob’s list B is

independent of the vertex i ∈ L(Gj), we have Pr[i ∈ B] ≥ 4
5 |Lhigh|/|Lhigh| = 4

5 .
Next, suppose that ∆(si, t) ≥ 1

2ε2
+ c

ε . Then |N(i) ∩ T | ≤ 1
4ε2
− c

2ε , and using Claim 3.5,

Pr[i ∈ B] ≤
|B| − 4

5 |Lhigh|
|L(Gj)|

≤ 1

4
.

Thus, Bob can decide between the two cases with error probability at most 1/4. Overall, it follows
that Bob can solve the Gap-Hamming-Distance problem for (si, t), with overall error probability
at most 1/4 + 0.06 < 1/3, as required to prove the theorem.

Proof:[Proof of Claim 3.5] By basic properties of the Binomial distribution (or the Berry-Esseen
Theorem), there are absolute constants 1

5 ≤ K1 ≤ K2 ≤ 5 such that for each vertex v ∈ L(Gj),

Pr
[
v ∈ Lhigh

]
= Pr

[
|N(v) ∩ T | ≥ 1

4ε2
+ c

ε

]
∈ [1

2 −K2c,
1
2 −K1c].

Denoting Z = |Lhigh|, then E[Z] ∈ [ 1
2ε2
− K2c

ε2
, 1

2ε2
− K1c

ε2
]. We have by Hoeffding’s inequality,

Pr
[
|Z −E[Z]| > K1c

ε2

]
≤ 2e−

1
2 (K1c)2(1/ε2) ≤ 0.02.

Thus, with probability at least 0.98, we have both bounds

Z ≤ E[Z] + K1c
ε2
≤ 1

2ε2
− K1c

ε2
+ K1c

ε2
= 1

2ε2
, and

Z ≥ E[Z]− K1c
ε2
≥ 1

2ε2
− K1c

ε2
− K2c

ε2
≥ (1

2 − 2K2c)
1
ε2
≥ (1

2 − 10c) 1
ε2
.

The claim follows by noting |L(Gj)| = 1/ε2. �

Proof:[Proof of Lemma 3.4] We now show how Bob creates the “list” B ⊂ L(Gj) of size |B| = 1
2ε2

.
Bob estimates the cut value for S ∪ T for every subset S ⊆ L(Gj) of size exactly 1

2ε2
. Observe that

the cut value for a given S is

δ(S ∪ T ) =
∑
v∈S

deg(v) +
∑
u∈T

deg(u)− 2
∑
v∈S
|N(v) ∩ T |.

The cut value is bounded by the number of edges in Gj , which is at most 1/ε4, and since the
data structure maintains all the cut values within factor 1 + γε for an arbitrarily small constant
γ > 0, the additive error on each cut value is at most γ/ε3 . Further, we can assume Bob knows
the exact degrees of all vertices (by adding them to the sketch, using O(n log 1

ε ) bits), which he
can subtract off, and since scaling by −1/2 can only shrink the additive error, we can define the
“normalized” cut value

n(S, T ) =
∑
v∈S
|N(v) ∩ T |,

which Bob can estimate within additive error γ/ε3 . Bob’s algorithm is to compute these estimates
for all the values n(S, T ), and output a set S that maximizes his estimate for n(S, T ) as the desired
list B ⊂ L(Gj).

12



Let us now analyze the success probability of Bob’s algorithm. For each vertex v ∈ L(Gj), let
f(v) = |N(v) ∩ T |. Observe that each f(v) has a Binomial distribution B( 1

ε2
, 1

4), and they are
independent of each other. We will need the following bounds on the typical values of some order
statistics when taking multiple samples from such a Binomial distribution. Recall that the k-th
order statistic of a sample (multiset) x1, . . . , xm ∈ R is the k-th smallest element in that sample.
The following claim is proved further below.

Claim 3.6 Let {Xj}j=1,...,m be independent random variables with Binomial distribution B(t, 1
4).

Let α ∈ (0, 1
2) such that (1

2 + α)m is integral, and both t,m ≥ 10/α2. Then

Pr
[
the (1

2 − α)m order statistic of {Xj} is ≤ 1
4 t−

α
10

√
t
]
≥ 0.99, and

Pr
[
the (1

2 + α)m order statistic of {Xj} is ≥ 1
4 t+ α

10

√
t
]
≥ 0.99.

Sort the vertices v ∈ L(Gj) by their f(v) value, and denote them by v1, . . . , v1/ε2 such that

f(vi) ≤ f(vi+1). Applying the claim (for α = 0.05 and t,m = 1
ε2

), we see that with probability at
least 0.98, the difference

f(v0.55/ε2)− f(v0.45/ε2) ≥ 0.01/ε. (3)

We assume henceforth this event indeed occurs. Let S∗ include the 1
2ε2

vertices v ∈ L(Gj) with
largest f(v), i.e., S∗ = {vj}j>0.5/ε2 , and let S′ ⊂ L(Gj) be any subset of the same size such that at

least 1
10 -fraction of its vertices are not included in S∗ (i.e., their order statistic in L(Gj) is at most

1
2ε2

). Then we can write

n(S∗, T ) =
∑
j∈S∗

f(v) =
∑

j>0.5/ε2

f(vj),

n(S′, T ) =
∑
j∈S′

f(v) ≤
∑

j>0.6/ε2

f(vj) +
∑

0.4/ε2<j≤0.5/ε2

f(vj).

Now subtract them

n(S′, T )− n(S∗, T ) =
∑

0.5/ε2<j≤0.6/ε2

f(vj)−
∑

0.4/ε2<j≤0.5/ε2

f(vj),

observe that elements in the normalized interval (0.5, 0.55] dominate those in (0.45, 0.5],

≥
∑

0.55/ε2<j≤0.6/ε2

f(vj)−
∑

0.4/ε2<j≤0.45/ε2

f(vj)

and bound the remaining elements using (3),

≥ (0.05/ε2)
[
f(v0.55/ε2)− f(v0.45/ε2)

]
≥ 0.0005/ε3.

Bob’s estimate for each of the values n(S∗, T ) and n(S′, T ) has additive error at most γ/ε3, and
therefore for suitable γ = 10−4, the list B Bob computes cannot be this set S′. Thus, Bob’s list B
must contain at least 9/10-fraction of S∗, i.e., the 1

2ε2
vertices v ∈ L(Gj) with highest f(v).
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Recall from Claim 3.5 that with probability at least 0.98, we have 1
4ε2
≤ |Lhigh| ≤ 1

2ε2
, and

assume henceforth this event occurs. Since S∗ includes the 1
2ε2

vertices with highest f -value, it
must contain all the vertices of Lhigh, i.e., Lhigh ⊆ S∗. We already argued that Bob’s list B
contains all but at most 1

10 |S
∗| = 1

20ε2
vertices of S∗, and thus

|Lhigh \B|
|Lhigh|

≤ |S
∗ \B|
|Lhigh|

≤
1

20ε2

1
4ε2

=
1

5
.

This bound holds with probability at least 0.96 (because of two events that we ignored, each having
probability at most 0.02) and this proves Lemma 3.4. �

Proof:[Proof of Claim 3.6] The (1
2−α)m order statistic of {Xj} is smaller or equal to T = 1

4 t−
α
10

√
t

if and only if at least (1
2 − α)m elements are smaller or equal to T , which can be written as∑m

j=1 1{Xj≤T} ≥ (1
2 − α)m.

Now fix j ∈ {1, . . . , t}. Then

Pr[Xj ≤ T ] = Pr[Xj ≤ 1
4 t] ·Pr[Xj ≤ T | Xj ≤ 1

4 t], (4)

and by the Binomial distribution’s relationship between mean and median, Pr[Xj ≤ 1
4 t] ≥

1
2 .

Elementary but tedious calculations (or the Berry-Esseen Theorem) show there is an absolute
constant K ∈ (0, 5) such that

Pr
[

1
4 t−

α
10

√
t < Xj ≤ 1

4 t
]
≤ K α

10 ·Pr
[
Xj ≤ 1

4 t
]
,

and plugging into (4), we obtain Pr[Xj ≤ T ] ≥ 1
2(1−K α

10) ≥ 1
2 −

1
2α.

Now bound the expectation by E[
∑m

j=1 1{Xj≤T}] ≥ (1
2−

1
2α)m, and apply Hoeffding’s inequality,

Pr
[∑

j

1{Xj≤T} < (1
2 − α)m

]
≤ e−

1
2 (

1
2α)2m = e−α

2m/8 ≤ 0.01,

where the last inequality follows since α2m is sufficiently large. �

3.2 The Communication Lower Bound

We now prove Theorem 3.3 (see Theorem 3.10 below), by considering distributional communication
problems between two parties, Alice and Bob, as defined below. We restrict attention to the one-
way model, in which Alice sends to Bob a single message M that is a randomized function of her
input (using her private randomness), and Bob outputs the answer.

3.2.1 Distributional Versions of Gap-Hamming-Distance.

Recall that our analysis is asymptotic for ε tending to 0, and let 0 < c < 1 be a parameter,

considered to be a sufficiently small constant. Alice’s input is S ∈ {0, 1}
1
ε2 , Bob’s input is T ∈

{0, 1}
1
ε2 , where the Hamming weights are wt(S) = wt(T ) = 1

2ε2
, and Bob needs to evaluate the

partial function

fc(S, T ) =

{
1 if ∆(S, T ) ≥ 1

2ε2
+ c

ε ;

0 if ∆(S, T ) ≤ 1
2ε2
− c

ε .
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The distribution µ we place on the inputs (S, T ) is the following: S is chosen uniformly at random
with wt(S) = 1

2ε2
, and then with probability 1

2 , we choose T uniformly at random with wt(T ) = 1
2ε2

subject to the constraint that ∆(S, T ) ≥ 1
2ε2

+ c
ε , while with the remaining probability 1

2 , we choose
T uniformly at random with wt(T ) = 1

2ε2
subject to the constraint that ∆(S, T ) ≤ 1

2ε2
− c

ε . We say
Alice’s message M = M(S) is δ-error for (fc, µ) if Bob has a reconstruction function R for which

Pr(S,T )∼µ, private randomness[R(M,T ) = fc(S, T )] ≥ 1− δ.

Now consider a related but different distributional problem. Alice and Bob have S, T ∈ {0, 1}
1
ε2 ,

respectively, each of Hamming weight exactly 1
2ε2

, and Bob needs to evaluate the function

g(S, T ) =

{
1 if ∆(S, T ) > 1

2ε2
;

0 if ∆(S, T ) ≤ 1
2ε2

.

We place the following distribution ζ on the inputs (S, T ): S and T are chosen independently and
uniformly at random among all vectors with Hamming weight exactly 1

2ε2
. We say a message M is

δ-error for (g, ζ) if Bob has a reconstruction function R for which

Pr(S,T )∼ζ, private randomness[R(M,T ) = g(S, T )] ≥ 1− δ.

Let I(S;M) = H(S)−H(S|M) be the mutual information between S and M , where H is the en-
tropy function. Define ICµ,δ(fc) = minδ-error M for (fc, µ) I(S;M) and ICζ,δ(g) = minδ-error M for (g, ζ) I(S;M).

Lemma 3.7 For all δ > 0, ICµ,δ(fc) ≥ ICζ,δ+O(c)(g).

Proof: It suffices to show that if M is δ-error for (fc, µ), then M is (δ+O(c))-error for (g, ζ). Since
M is δ-error for (fc, µ), Bob has a reconstruction function R for which

Pr(S,T )∼µ, private randomness[R(M,T ) = fc(S, T )] ≥ 1− δ.

Now consider Pr(S,T )∼ζ, private randomness[R(M,T ) = g(S, T )]. Observe that whenever (S, T ) lies in
the support of µ, if R(M,T ) = fc(S, T ), then R(M,T ) = g(S, T ). The probability that (S, T ) lies in
the support of µ is 1−O(c), by standard anti-concentration arguments of the Binomial distribution
(or the Berry-Esseen Theorem), and conditioned on this event we have that (S, T ) is distributed
according to µ. Hence, Pr(S,T )∼ζ, private randomness[R(M,T ) = g(S, T )] ≥ [1 − O(c)][1 − δ] ≥ 1 −
O(c)− δ. �

We now lower bound ICζ,δ(g).

Lemma 3.8 For δ0 > 0 a sufficiently small constant, ICζ,δ0(g) = Ω
(

1
ε2

)
.

Proof: We use the following lower bound of Braverman, Garg, Pankratov and Weinstein [BGPW13]

for the following hc(S, T ) problem. Like before, Alice has S ∈ {0, 1}
1
ε2 , Bob has T ∈ {0, 1}

1
ε2 , and

needs to evaluate the partial function

hc(S, T ) =

{
1 if ∆(S, T ) ≥ 1

2ε2
+ c

ε ;

0 if ∆(S, T ) ≤ 1
2ε2
− c

ε .
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However, now wt(S) and wt(T ) may be arbitrary. Moreover, S and T are chosen independently

and uniformly at random from {0, 1}
1
ε2 . Denote this by (S, T ) ∼ η. Now it may be the case that∣∣∆(S, T )− 1

2ε2

∣∣ < c
ε , in which case Bob’s output is allowed to be arbitrary. A message M is δ-error

for (hc, η) if Bob has a reconstruction function R for which

Pr(S,T )∼η, private randomness

[
(R(M,T ) = hc(S, T )) ∧

(∣∣∣∣∆(S, T )− 1

2ε2

∣∣∣∣ ≥ c

ε

)]
≥ 1− δ.

It was proved in [BGPW13] that for a sufficiently small constant δ > 0,

ICη,δ(h1) = min
δ-error M for (h1, η)

I(S;M) ≥ C

ε2
,

for an absolute constant C > 0. We show how to apply this result to prove the lemma.
An immediate corollary of this result is that ICη,δ(g) = minδ-error M for (g, η) I(S;M) ≥ C

ε2
.

Indeed, if M is δ-error for (g, η), then it is also δ-error for (h1, η).
Now let M be a δ-error protocol for (g, ζ). Consider the following randomized protocol M ′ for

g with inputs distributed according to η. Given S, Alice computes s = wt(S). If s < 1
2ε2

, Alice
randomly chooses 1

2ε2
−s coordinates in S that are equal to 0 and replaces them with a 1, otherwise

she randomly chooses s− 1
2ε2

coordinates in S that are equal to 1 and replaces them with a 0. Let
S′ be the resulting vector. Alice sends M(S′) to Bob, i.e., M ′(S) = M(S′). Given the message
M(S′) and his input T , Bob first computes t = wt(T ). If t < 1

2ε2
, Bob randomly chooses 1

2ε2
− t

coordinates in T which are equal to 0 and replaces them with a 1, otherwise he randomly chooses
t− 1

2ε2
coordinates in T which are equal to 1 and replaces them with a 0. Let T ′ be the resulting

vector. Suppose R is such that Pr(S′,T ′)∼ζ, private randomness[R(M(S′), T ′) = g(S′, T ′)] ≥ 1− δ. Bob
outputs R(M(S′), T ′).

We now lower bound Pr[g(S′, T ′) = g(S, T )], where the probability is over (S, T ) ∼ η and the
random choices of Alice and Bob for creating S′, T ′ from S, T , respectively. First, the number
of coordinates changed by Alice or Bob is r = Θ(1/ε) with arbitrarily large constant probability.
Since S and T are independent and uniformly random, after performing this change, the Hamming
distance on these r coordinates is r

2 ± O(
√
r) with arbitrarily large constant probability. Finally,∣∣∆(S′, T ′)− 1

2ε2

∣∣ = ω(
√
r) with arbitrarily large constant probability. Hence, with arbitrarily large

constant probability, g(S′, T ′) = g(S, T ). It follows that Pr[g(S′, T ′) = g(S, T )] ≥ 1 − γ for an
arbitrarily small constant γ > 0, and therefore if R′ describes the above reconstruction procedure
of Bob, then Pr(S,T )∼η, private randomness[R

′(M ′(S), T ) = g(S, T )] ≥ 1− γ − δ.
Hence, M ′ is a (δ + γ)-error protocol for (g, η). We now bound I(M ′;S) in terms of I(M ;S′).

Let J be an indicator random variable for the event wt(S) ∈
[

1
2ε2
− 1

ε3/2
, 1

2ε2
+ 1

ε3/2

]
. Then Pr[J =

1] = 1− o(1), where o(1)→ 0 as ε→ 0. Since conditioning on a random variable Z can change the
mutual information by at most H(Z), we have

I(M ′;S) ≤ I(M ′;S | J) +H(J) ≤ I(M ′;S | J = 1) + 1. (5)

S is a probabilistic function of S′, which if J = 1, is obtained by changing at most 1/ε3/2 randomly
chosen coordinates A1, . . . , A1/ε3/2 of S′ from 0 to 1 or from 1 to 0. By the data processing inequality
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and the chain rule for mutual information,

I(M ′;S | J = 1) ≤ I(M ′;S′, A1, . . . , A1/ε3/2 | J = 1)

= I(M ′;S′ | J = 1) +

1/ε3/2∑
`=1

I(M ′;A` | J = 1, A1, . . . , A`−1)

≤ I(M ′;S′ | J = 1) +O

(
log(1/ε)

ε3/2

)
. (6)

Observe that the joint distribution of M ′(S′) and S′ is independent of J , and moreover is equal to
the joint distribution of M(S′) and S′ ∼ ζ. We can take M to be a δ-error protocol for (g, ζ) for

which I(M(S′);S′) = ICζ,δ(g). Combining this with (5) and (6), I(M ′;S) ≤ ICζ,δ(g)+O
(

log(1/ε)

ε3/2

)
.

Now since M ′ is a (δ + γ)-error protocol for (g, η), we have I(M ′;S) ≥ ICη,δ+γ(g) ≥ C
ε2

, provided

δ and γ are sufficiently small constants. It follows that ICζ,δ(G) ≥ C
ε2
− O

(
log(1/ε)

ε3/2

)
≥ C

2ε2
, as

desired. �

Corollary 3.9 For sufficiently small constants δ, c > 0, ICµ,δ(fc) = Ω(1/ε2).

Proof: This follows by combining Lemmas 3.7 and 3.8. �

3.2.2 n-fold Version of Gap-Hamming-Distance.

We now consider the n-fold problem in which Alice is given n strings S1, . . . , Sn ∈ {0, 1}1/ε
2
, and

Bob has an index I ∈ [n] together with one string T ∈ {0, 1}1/ε2 . Here (SI , T ) ∼ ζ, while Sj for
j 6= I, are chosen independently and uniformly at random from all Hamming weight 1

2ε2
vectors.

Thus the joint distribution of S1, . . . , Sn is n i.i.d. strings drawn uniformly from {0, 1}1/ε2 subject
to each of their Hamming weights being 1

2ε2
. Here I is drawn independently and uniformly from

[n]. We let ν denote the resulting input distribution.
We consider the one-way two-party model in which Alice sends a single, possibly randomized

message M of her inputs S1, . . . , Sn, and Bob needs to evaluate h(S1, . . . , Sn, T ) = fc(SI , T ). We
say M is δ-error for (h, ν) if Bob has a reconstruction function R for which

Prinputs∼ν, private randomness

[
(R(M,T, I) = fc(SI , T )) ∧

(∣∣∣∣∆(SI , T )− 1

2ε2

∣∣∣∣ ≥ c

ε

)]
≥ 1− δ.

Let ICν,δ(h) = minδ-error M for (h, ν) I(S1, . . . , Sn;M).

Theorem 3.10 For a sufficiently small constant δ > 0, ICν,δ(h) = Ω(n/ε2). In particular, the
distributional one-way communication complexity of h under input distribution ν is Ω(n/ε2).

Proof: Say an index i ∈ [n] is good if

Prinputs∼ν, private randomness

[
(R(M,T, I) = fc(SI , T )) ∧

(∣∣∣∆(SI , T )− c

2ε2

∣∣∣ ≥ 1

ε

)
| I = i

]
≥ 1− 2δ.
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By a union bound, there are at least n/2 good i ∈ [n]. By the chain rule for mutual information
and using that the Si are independent and conditioning does not increase entropy,

I(M ;S1, . . . , Sn) ≥
n∑
i=1

I(M ;Si) ≥
∑

good i

I(M ;Si).

We claim that for each good i, I(M ;Si) ≥ ICµ,2δ(fc). Indeed, consider the following protocol Mi

for fc under distribution µ. Alice, given her input S for fc, uses her private randomness to sample
Sj for all j 6= i independently and uniformly at random from {0, 1}1/ε2 subject to each of their
Hamming weights being 1

2ε2
. Bob sets I = i and uses his input T for fc as his input for h. Since i

is good, it follows that Mi is 2δ-error for (fc, ζ). Hence I(M ;Si) ≥ ICµ,2δ(fc), which by Corollary
3.9, is Ω(1/ε2) provided δ > 0 is a sufficiently small constant. Hence, ICν,δ = Ω(n/ε2). Since
ICν,δ(h) ≤ I(M ;S1, . . . , Sn) for each δ-error M for (h, ν), and I(M ;S1, . . . , Sn) ≤ H(M) which is
less than the length of M , the communication complexity lower bound follows. �

3.3 Cut-sparsifiers Lower Bound

We now prove Theorem 3.2. Fix n and ε, and assume that every n-vertex graph has a (1+γε/2)-cut
sparsifier with at most s edges, for a small constant γ > 0 to be determined later. We wish to prove
a lower bound on s. Consider then the random graph G constructed in the proof of Theorem 3.1,
as a disjoint union of graphs {Gj : j ∈ [ε2n/2]}, each being a bipartite graph with 1/ε2 vertices in
each side. By our assumption above, such G (always) has a subgraph H which is a (1 + γε/2)-cut
sparsifier having at most s edges. By Theorem 3.1, answering all possible cut queries correctly (in
the sense of approximation factor 1 ± ε with probability 1) requires sketch size Ω(n/ε2) bits. In
fact, by inspecting the proof (specifically, of Lemma 3.4) the above holds even if the correctness (1)
holds only for cut queries contained in a single Gj , i.e., queries S∪T for S ⊂ L(Gj) and T ⊂ R(Gj);
and (2) allows for each cut value an additive error of γ/ε3, where γ = 10−4. The idea now is to
encode H using m ≈ s bits in a way that suffices to correctly answer all such cut queries i.e., in
the context of Lemma 3.4, Alice will encode H and send it as her sketch to Bob. The sketch-size
bound m ≥ Ω(n/ε2) we proved for G would then imply a similar bound on s.

Consider then the sparsifier H, which is an edge-weighted graph, while the edges of G all have
unit weight. Observe that H must be a union of disjoint graphs Hj on L(Gj)∪R(Gj) for j ∈ [ε2n/2],
because H must preserve the corresponding cut, which has value zero. Let sj denote the number
of edges in Hj . It will be convenient to consider each such graph separately, so fix for now some
j ∈ [ε2n/2].

Consider first the case sj ≤ γ2/(6ε4), and let us show how to encode Hj . Construct from Hj

another graph H ′j by rounding every non-integral edge weight to one of its two nearby integers
independently at random, in an unbiased manner. Specifically, each edge weight w > 0 is rounded
upwards to w′ = dwe with probability w − bwc, and downwards to w′ = bwc otherwise. Now
consider a fixed cut query S ∪ T in Gj , denoting by δH(S ∪ T ) its cut value in H, and similarly for
H ′. Then E[δH′(S ∪ T )] = δH(S ∪ T ), and since the number of edges participating in this cut (in
Hj) is at most sj ≤ γ2/(6ε4), by Hoeffding’s inequality for t = γ/(2ε3),

Pr
[
|δH′(S ∪ T )− δH(S ∪ T )| > t

]
≤ e−2t2/sj ≤ e−3/ε2 .

Applying a union bound over at most 22/ε2 possible cut queries S∪T , we see that there exists H ′j (it
is in fact obtained with high probability) such that for every cut query, the cut value in H ′j is within
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additive γ/(2ε3) from the cut value in Hj , which in turn is within additive γε/2 · 1/ε4 = γ/(2ε3)
from the cut value in Gj . Hence, such H ′j approximates all the cut values in Gj sufficiently well
for our intended application, and Alice’s sketch will thus encode H ′j instead of Hj . To simplify the
description, let us include in H ′j also edges of weight zero, and then H ′j has exactly sj edges (same

as in Hj). We further claim that the total edge-weight in H ′j is at most 2/ε4. To see this, observe
that (i) the total edge-weight in H ′j (and similarly for Gj) is exactly twice the expected cut value
of a random query in that graph; and (ii) this expected cut value in H ′j differs from the respective

expectation in Gj by at most additive γ/(2ε3). It follows that the total edge-weight in H ′j is at

most 1/ε4 larger than that in Gj , which in turn is at most 1/ε4.
The encoding of H ′j has two parts, which describe separately the edges of H ′j (without their

weights), and their weights (assuming the edges are known). Since H ′j has 1/ε2 vertices in each

side, the number of possibilities for sj edges (without their weights) among
(

2/ε2

2

)
≤ 2/ε4 vertex

pairs is at most
(

2/ε4

sj

)
. Given the identity of sj edges in H ′j , the number of possibilities for their

weights (recall the weights are integral and add up to at most 2/ε4) is at most
(
sj+2/ε4

sj

)
≤
(

4/ε4

sj

)
.

We conclude that H ′j can be encoded, on its two parts, using O(log
(

4/ε4

sj

)
) bits.

The second case sj > γ2/(6ε4) is very simple, and just encodes the original Gj (instead of encod-
ing Hj), which trivially provides the value of every cut query inside Gj exactly. A straightforward
encoding of Gj takes 1/ε4 bits.

Concatenating these encodings over all j ∈ [ε2n/2], yields a sketch that can approximate the
value of all the needed cut queries (those that are inside a single Gj) within additive error γ/ε3.
It remains to bound the size of this sketch. The number of j’s that fall into the second case

sj > γ2/(6ε4) is at most
∑
j sj

γ2/(6ε4)
= 6ε4s

γ2
, and thus the total size of their encodings is at most

6s/γ2 bits. For j’s that fall into the first case, we use the fact
(
p
k

)
·
(
p′

k′

)
≤
(
p+p′

k+k′

)
, and get that

the total size of their encodings is at most
∑

j O(log
(

4/ε4

sj

)
) ≤ O(log

(
2n/ε2

s

)
) = O(s log(ε−2n/s))

bits. Altogether, there is a sketch of size m = O(s(γ−2 + log(ε−2n/s))) bits that encodes all the
relevant cuts in G within the desired accuracy. Recalling that γ is a constant and our sketch-size
lower bound m ≥ Ω(n/ε2) (from Lemma 3.4 and Theorem 3.3), we conclude that the number of
edges in H is s ≥ Ω(n/ε2), which proves Theorem 3.2.

4 Symmetric Diagonally Dominant Matrices, “For Each” Model

In this section, we consider sketching SDD matrices with “for each” guarantee. That is, we want
a sketch sk(A) of an n× n SDD matrix A, which can be used to produce a (1 + ε)-approximation
of xTAx for any fixed x ∈ Rn with constant probability (say 0.9). Note that we can always use
standard amplification argument (run the query on O(log n) independent copies of sketch, and
return the median outcome) to boost the success probability to 1− 1/n100.

Recall that we have a reduction from SDD matrices to Laplacian matrices (see Appendix B).
We thus only need to sketch Laplacian matrices, which we first do for cut queries x ∈ {0, 1}n
in Section 4.1, and then for spectral queries x ∈ Rn in Section 4.2 (for the main results, see
Theorems 4.12 and 4.28, respectively).
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Algorithm 1: Cut-S1(G, ε)

Input: An S1-Graph G = (V,E,w); a quality control parameter ε ∈ [1/n, 1/30]
Output: A (1 + 21ε, 1/9)-cut-sketch sk(G) of G

1 Let s = 1/ε;
2 sk(G)← ∅;
3 Add {δu(G) | u ∈ V } to sk(G);
4 for u ∈ V do
5 Eu ← {(u, v) | v ∈ V };
6 Sample (with replacement) s edges from Eu, where each time the probability of sampling

e = (u, v) ∈ Eu is pe = 1/du(G);
7 Add the sampled s edges to sk(G);

8 return sk(G);

4.1 Laplacian Matrices with Cut Queries

Given a Laplacian matrix L, let G = G(L) = (V,E,w) be the corresponding graph with n = |V |
vertices. In this section we will construct a sketch for G that can produce the weight of each cut
up to factor 1 + ε with constant probability. Our work plan has three parts, each uses the previous
one as a building block. We start with an important special case in Section 4.1.1, then extend it to
all graphs with polynomial edge weights in Section 4.1.2, and finally extend that to all edge weights
in Section 4.1.3.

We then turn to proving a nearly matching lower bound in Section 4.1.4.

4.1.1 Special Graphs and Special Queries

We start by sketching a class of special graphs with a special set of queries, which is sufficient to
illustrate our basic ideas.

Definition 4.1 (S1-graph) We say an undirected weighted graph G = (V,E,w) is an S1-graph
(reads “simple type-1 graph”) if it satisfies the followings.

1. All edge weights are within factor 2 of each other, i.e., there is γ > ε2 such that all e ∈ E
satisfy w(e) ∈ [γ, 2γ).

2. The expansion constant of G is ΓG ≥ 1
ε .

We consider a special set of cut queries where w(S, S̄) ≤ 5.
The sketching algorithm for S1-graph and the special cut queries is described in Algorithm 1,

which is fairly simple: we first add all weighted degrees of vertices to the sketch, and then for each
vertex we sample a set of adjacent edges and store them in the sketch.

We first show the correctness of Algorithm 1. Let Y v
u be the random variable denoting the

number of times edge (u, v) is sampled at Line 6 in Algorithm 1. It is easy to see that

E[Y v
u ] =

s

du(G)
and Var [Y v

u ] = s

(
1− 1

du(G)

)
1

du(G)
≤ s

du(G)
. (7)
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Given a cut (S, S̄) such that |S| ≤ |V |/2 and w(S, S̄) ≤ 5, we can approximate the cut weight
w(S, S̄) by the following estimator:

IG =
∑
u∈S

[
δu(G)− du(G)

s

∑
v∈S, (u,v)∈E

Y v
u w(u, v)

]
. (8)

Lemma 4.2 Let G = (V,E,w) be an S1-Graph and (S, S̄) be a cut of G such that |S| ≤ |V |/2 and
w(S, S̄) ≤ 5, then IG (defined in Equation (8)) is an unbiased estimator of w(S, S̄). Furthermore,
it gives a (1 + 21ε, 1/9)-approximation to w(S, S̄) for such cut (S, S̄).

Proof: Since E[Y v
u ] = s

du(G) (by (7)), it follows that

E[IG] =
∑
u∈S

[
δu −

∑
v∈S, (u,v)∈E

w(u, v)
]

= w(S, S̄).

We next analyze the variance of IG. Recall that |∂(A,B)| =
∑

e=(u,v)∈E 1{u∈A,v∈B} is the number
of edges between sets A and B.

Var [IG]

= Var

∑
u∈S

du(G)

s

∑
v∈S, (u,v)∈E

Y v
u w(u, v)


=

∑
u∈S

(du(G))2

s2

∑
v∈S, (u,v)∈E

Var [Y v
u ] (w(u, v))2

≤
∑
u∈S

(du(G))2

s2

∑
v∈S, (u,v)∈E

s

du(G)
(2γ)2 (by (7) and w(u, v) ∈ [γ, 2γ))

= 4εγ2
∑
u∈S

du(G)du(G(S)) (s = 1/ε and G(S) is the subgragh of G induced by vertices in S)

≤ 4εγ2|S|
∑
u∈S

du(G) (du(G(S)) ≤ |S|)

≤ 4εγ2|S| ·
[ ∣∣∂(S, S̄)

∣∣+ 2|S|2
]

(
∣∣∂(S, S̄)

∣∣ =
∑
u∈S

du(G)− 2 |∂(S, S)| and |∂(S, S)| ≤ |S|2)

≤ 4ε2γ2(
∣∣∂(S, S̄)

∣∣)2
[
1 + 2ε2

∣∣∂(S, S̄)
∣∣ ] (|S| ≤ ε

∣∣∂(S, S̄)
∣∣)

≤ 4ε2(w(S, S̄))2
[
1 + 2γ

∣∣∂(S, S̄)
∣∣ ] (γ

∣∣∂(S, S̄)
∣∣ ≤ w(S, S̄) and γ ≥ ε2)

≤ 44ε2(w(S, S̄))2. (γ
∣∣∂(S, S̄)

∣∣ ≤ w(S, S̄) ≤ 5) (9)

Now by a Chebyshev’s inequality, with probability at least 8/9, we have∣∣IG − w(S, S̄))
∣∣ ≤ 3

√
44ε2(w(S, S̄))2 ≤ 21εw(S, S̄).

�

We summarize our result for S1-graph as below.
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Theorem 4.3 There is a sketching algorithm which given an S1-graph, outputs a (1 + ε, 1/9)-cut-
sketch of size Õ(n/ε) for any cut (S, S̄) such that S ⊆ V and w(S, S̄) ≤ 5.

Proof: The correctness immediately follows from Lemma 4.2. We only need to show the size of the
sketch. Note that in Algorithm 1 we only store all weighted degrees of vertices, and sample 1/ε
edges for each vertex. Thus the size of sketch can be bounded by Õ(n/ε). �

4.1.2 Graphs with Polynomial Weights

We now show how to sketch general graphs with polynomial integer weights, say, in [1, n5], by
extending Algorithm 1. In Section 4.1.3 we will extend the construction to graphs with general
weights.

Sketching. Our sketching algorithm consists of two components. The first component is a standard
1.2-cut sparsifier (recall that a (1 + ε)-cut sparsifier is a sparse graph H on the same vertex-set
as G that approximates every cut in G within a factor of 1 + ε). We can use the construction of
Benczúr and Karger [BK96], or subsequent constructions [SS11, BSS14, FHHP11, KP12] (some of
which produce a spectral sparsifier, which is only stronger); any of these methods will produce a
graph H with Õ(n) edges.

The second component is the main ingredient of the sketch, which preprocesses a given graph
into a bunch of S1-graphs. Let C̃ = {1.4i | 0 ≤ i ≤ log1.4 n

5} be the set of size O(log n) such that
each cut value in G is 1.4-approximated by some value c ∈ C̃. For each value c ∈ C̃ we construct a
data structure Dc as follows.

1. By scaling all the edge weights, let us assume c = 1. We discard all edges e whose (scaled)
weight w(e) > 5. Note that those edges are too heavy to be included into any cut whose
weight is at most 5.

2. Apply the importance sampling: We sample each (remaining) edge e ∈ E independently
with probability pe = min{w(e)/ε2, 1}, and assign each sampled edge e with a new weight
w̃(e) = w(e)/pe. Notice that w̃(e) ∈ [ε2, 5]. (It may be convenient to consider the non-sampled
edges as having weight w̃(e) = 0.) Let Ẽ be the set of sampled edges. We further partition
Ẽ into l = O(log 1

ε ) classes according to the (new) edge weights, namely, Ẽ = L1 ∪ · · · ∪ Ll
where Li = {e ∈ Ẽ : w̃(e) ∈ (5 · 2−i, 5 · 2−i+1]}.

3. For each class Li, we recursively partition the graph (V,Li) as follows: For each connected
component P = (VP , EP ) in (V,Li) which contains a subset S′ ⊂ VP of size |S′| ≤ |VP |/2 such
that

∣∣∂(S′, S̄′)
∣∣ /|S′| < 1/ε (where S̄′ = VP \ S′), we replace P with its two vertex-induced

subgraphs P (S′) and P (S̄′) in (V,Li), and store all edges in the cut (S′, S̄′) to Qi. Once the
recursive partitioning process is finished, denoting the resulting components by Pi, we store
in the sketch all the edges in Qi connecting different connected components of Pi.

This preprocessing step is described in Algorithm 2. Note that each component P ∈ Pi is an
S1-graph.

Estimation. Given a query subset S ⊂ V , we first use the graph sparsifier H to compute c̃, a
1.2-approximation to the desired cut value w(S, S̄), and then use the data structure Dc to answer
the query, where c ∈ C̃ is an approximation to c̃/(1.4)2, such that c ∈ [c̃/(1.4)3, c̃/1.4]. This implies
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Algorithm 2: Cut-Preprocessing(G, c, ε)

Input: A graph G = (V,E,w) such that for any e ∈ E, w(e) ∈ [1, n5]; a parameter c > 0; a
quality control parameter ε ∈ [1/n, 1/30]

Output: A set P of edge disjoint components of G such that for each P ∈ P, ΓP > 1/ε;
and a graph Q induced by the rest of the edges in G.

1 P ← ∅, Q← ∅;
2 ∀e ∈ E,w(e)← w(e)/c;
3 Discard any edge e ∈ E with w(e) > 5;
4 Sample each edge e ∈ E independently with probability pe ← min{w(e)/ε2, 1}, and rescale

its weight to w̃(e)← w(e)/pe if the edge is sampled. Let Ẽ denote the set of sampled edges;

5 Partition Ẽ to L1 ∪ · · · ∪Ll with l = O(log 1
ε ), where Li = {e ∈ Ẽ : w̃(e) ∈ (5 · 2−i, 5 · 2−i+1]};

6 foreach Li do
7 Pi ← {(V,Li)}, Qi ← ∅;
8 while ∃ a connected component P = (VP , EP ) ∈ Pi such that the expansion constant

ΓP < 1/ε do
9 Find an arbitrary cut (S′, S̄′) (where |S′| ≤ |VP |/2) in P such that∣∣∂(S′, S̄′)

∣∣ /|S′| < 1/ε;
10 Replace P with its two subgraphs P (S′) and P (S̄′) in Pi;
11 Add all edges in the cut (S′, S̄′) into Qi;

12 P = P ∪ Pi, Q = Q ∪Qi;
13 return (P, Q);

that w(S, S̄) ∈ [c, 4c]. Thus, by rescaling c to 1, we only need to estimate the (resclaled) cut weight
w(S, S̄), which is between 1 and 4.

The contribution to the cut (S, S̄) from edges in each class Li consists of two parts: (i) the
total weight of cut edges between S and S̄, i.e.,

∑
e∈Qi∩∂(S,S̄) w̃(e); and (ii) the weight of cut edges

inside each component P ∈ Pi, which can be estimated using the sketches sk(P ) for each P ∈ Pi.
We construct the estimator as follows.

ŵ(S, S̄) =
∑
i∈[l]

( ∑
P∈Pi

IP +
∑

e∈Qi∩∂(S,S̄)

w̃(e)
)
, (10)

where IP , defined in Equation (8), is the estimator of the cut weight in the component P ∈ Pi.
In the rest of this section we show ŵ(S, S̄) is a 1+O(ε)-approximation of the (scaled) cut weight

w(S, S̄) with constant probability. The following lemma guarantees that the importance sampling
step preserves the cut weight.

Lemma 4.4 Let G̃ = (V, Ẽ, w̃) be the graph after the important sampling step (Line 4 of Al-
gorithm 2). Then for any S ⊂ V such that w(S, S̄) ∈ [c, 4c], with probability at least 8/9,
|w̃(S, S̄) − w(S, S̄)| ≤ 3εw(S, S̄), where w(S, S̄) and w̃(S, S̄) are the cut weight of (S, S̄) in G
and G̃, respectively.

Proof: Since w(S, S̄) ∈ [c, 4c], after rescaling (Line 2) c to 1, the cut weight w(S, S̄) becomes a
value in [1, 4]. Also note that the discarded edges (Line 3) will not affect the final cut estimation
since they can not be part of the cut (S, S̄), given that their weights are more than 5.
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We now analyze the effect of the importance sampling step (Line 4) on the weight of the cut.
It is easy to see that E[w̃(S, S̄)] = w(S, S̄), since every edge e that was not discarded satisfies
E[w̃(e)] = w(e) (and more generally, it is a Horvitz-Thompson estimator), and its variance is

Var
[
w̃(S, S̄)

]
=

∑
e∈∂(S,S̄)

Var [w̃e] =
∑

e∈∂(S,S̄)

w(e)2/pe − w(e)2 ≤
∑

e∈∂(S,S̄)

ε2w(e) = ε2w(S, S̄),

where the inequality is verified separately for pe = 1 and for pe = w(e)/ε2. Thus, by a Cheby-
shev’s inequality, with probability at least 8/9, we have

∣∣w̃(S, S̄)− w(S, S̄)
∣∣ ≤ 3ε

√
w(S, S̄) ≤

3ε · w(S, S̄). �

Then, it suffices to show that the constructed estimator ŵ(S, S̄) can approximate w̃(S, S̄) well.

Lemma 4.5 For any S ⊂ V such that w(S, S̄) ∈ [1, 4], with probability at least 8/9, |ŵ(S, S̄) −
w̃(S, S̄)| ≤ 21εw̃(S, S̄).

Proof: First, it is clear that our estimator ŵ(S, S̄) captures exactly the contribution of cut edges
in all Qi’s (i ∈ [l]), since the sketch stores all edges in each Qi. We thus only need to show the
contribution of cut edges in each P ∈ Pi(i ∈ [l]), denoted as w̃i(S∩VP , S̄∩VP ), can be approximated
well by the estimator IP (Equation (8)).

Let γi = 5 ·2−i ≥ ε2 (since w̃(e) ∈ [ε2, 5]), and then all edges e ∈ Li have weight w̃(e) ∈ [γi, 2γi].
Also note that by the stopping condition of the recursive partition (Line 8 of Algorithm 2), each
returned P ∈ Pi satisfies ΓP ≥ 1/ε. Therefore each P ∈ Pi is an S1-graph.

Now observe that

w̃i(S ∩ VP , S̄ ∩ VP ) ≤ w̃(S, S̄) ≤ (1 + 3ε)w(S, S̄) ≤ 5,

together with the fact that P is an S1-graph, we know, according to Lemma 4.2, that IP defined
by Equation (8) is an unbiased estimator of w̃i(S ∩ VP , S̄ ∩ VP ) with the variance Var [IP ] ≤
44ε2(w̃i(S ∩ VP , S̄ ∩ VP ))2. It follows that ŵ(S, S̄) is an unbiased estimator of w̃(S, S̄), since

E[ŵ(S, S̄)] =
∑
i∈[l]

( ∑
P∈Pi

E[IP ] +
∑

e∈Qi∩∂(S,S̄)

w̃(e)
)

=
∑
i∈[l]

( ∑
P∈Pi

w̃i(S ∩ VP , S̄ ∩ VP ) +
∑

e∈Qi∩∂(S,S̄)

w̃(e)
)

= w̃(S, S̄). (11)

And the variance

Var
[
ŵ(S, S̄)

]
=

∑
i∈[l]

∑
P∈Pi

Var [IP ] ≤ 44ε2
∑
i∈[l]

∑
P∈Pi

(w̃i(S ∩ VP , S̄ ∩ VP ))2

≤ 44ε2
(∑
i∈[l]

∑
P∈Pi

w̃i(S ∩ VP , S̄ ∩ VP )
)2

= 44ε2(w̃(S, S̄))2. (12)

Thus by a Chebyshev’s inequality, with probability at least 8/9, we have that
∣∣ŵ(S, S̄)− w̃(S, S̄))

∣∣ ≤
3
√

44ε2(w̃(S, S̄))2 ≤ 21ε w̃(S, S̄). �
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Algorithm 3: Cut-Basic(G, ε)

Input: G = (V,E,w) with all weights in [1, n5]; a quality control parameter ε ∈ [1/n, 1/30]
Output: A (1 + 27ε, 2/9)-cut-sketch sk(G) of G

1 sk(G)← ∅;
2 Build a 1.2-cut sparsifier H of G, and add H into sk(G);

3 Let C̃ = {1.4i | 0 ≤ i ≤ log1.4 n
5};

4 foreach c ∈ C̃ do
5 Dc ← ∅;
6 {P, Q} ←Cut-Preprocessing(G, c), and add Q into Dc;
7 foreach P ∈ P do
8 sk(P )←Cut-S1(P, ε), and add sk(P ) in Dc;

9 Add Dc into sk(G);

10 return sk(G);

After the preprocessing (Algorithm 2), we only need to run Algorithm 1 on each resulting S1-
graph and on special queries (i.e., w(S, S̄) ≤ 5). The overall algorithm for general graph with
polynomial weights is described in Algorithm 3.

The following theorem summarizes the results of this section.

Theorem 4.6 Given a weighted graph G = (V,E,w) on n vertices, where the non-zero weights are
in the range [1,W ] with W = n5, and 1/n ≤ ε ≤ 1/30, there exists a cut sketch of size Õ(n/ε) bits.
Specifically, for every query S ⊂ V , the sketch produces a 1 +O(ε) approximation to w(S, S̄), with
probability at least 7/9.

Proof: Given a query subset S ⊂ V , we use the data structure Dc with c ∈ [c̃/(1.4)3, c̃/1.4], where c̃
is a 1.2-approximation to the cut weight w(S, S̄). Thus we have w(S, S̄) ∈ [c, 4c]. Since we rescale c
to 1, we here show the constructed estimator is 1 +O(ε) approximation of the (sclaled) cut weight
w(S, S̄).

Then, by Lemma 4.4 and 4.5, we have that with probability at least 7/9, the estimator ŵ(S, S̄)
(using the data structure Dc) is a 1 + O(ε) approximation of w̃(S, S̄), which in turn is a 1 + O(ε)
approximation of w(S, S̄). More precisely,∣∣ŵ(S, S̄)− w(S, S̄)

∣∣ ≤ 3εw(S, S̄) + 21ε(1 + 3ε)w(S, S̄) ≤ 27εw(S, S̄).

We next bound the sketch size. The sparsifier H has Õ(n) edges. By construction, we have
O(log n) possible cut values C̃ and for each one, we have l = O(log 1

ε ) ≤ O(log n) edge weight
classes. For each weight class Li, the sketch stores:

• O(1
εn log n) edges in Qi: each step in the recursive partition contributes

∣∣∂(S′, S̄′)
∣∣ /|S′| < 1/ε

edges per vertex in S′, and each vertex appears in the smaller subset S′ at most log n times.

• At most n/ε sampled edges: for each non-isolated vertex we sample s = 1/ε incident edges.

Summing up, we have Õ(n/ε) edges, each requiring O(log n) bits. Therefore the size of our cut
sketch is Õ(n/ε) bits.

�
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Algorithm 4: MST(G)

Input: A graph G = (V,E,w)
Output: A maximum-weight spanning tree T

1 ET ← ∅, T ← (V,ET );
2 π ← an order of edges e ∈ E in decreasing weight (break ties arbitrarily if any);
3 foreach e ∈ E in the ordering π do
4 Add e into ET if this will not introduce a cycle in T , where edges in ET are sorted in the

order of insertion (which is also their ordering according to π);

5 return T ;

4.1.3 Graphs with General Edge Weights

We now build on the results of Section 4.1.2 for polynomial weights to show the upper bound for
general edge weights. That is, assume that there is a sketching algorithm, which we shall call the
“basic sketch”, for the case where all edge weights are in a polynomial range, say for concreteness
[1, n5] (which by scaling is equivalent to the range [b, n5b] for any b > 0), which uses space Õ(n/ε).
We may assume the success probability of this sketch is at least 1−1/n8, e.g., by using the standard
“O(log n) repetitions and then taking the median”, thereby increasing the sketch size by at most
O(log n) factor. As before, we may assume ε > 1/n, as otherwise the theorem is trivial.

Sketching. The sketch has two components: (i) the first component is essentially a maximum-
weight spanning tree T computed using Kruskal’s algorithm; see Algorithm 4; and (ii) the second
component is a set of cut sketches of the graphs reduced according to those tree edges in T , which
are constructed via the sketching algorithm introduced in Section 4.1.2; see Algorithm 5, where
Gj , G

′
j are defined.

Estimation. Given a query subset S ⊂ V , find the smallest j ∈ [n − 1] such that ej is in the
cut ∂(S, S̄); such j exists because {e1, . . . , en−1} forms a spanning tree (we assume the graph is
connected, since otherwise we can sketch each connected component separately). We further show in
Lemma 4.7 below that ej is the heaviest edge in this cut, hence wG(S, S̄)/w(ej) ∈ [1, n2]. Now find
the largest k ≤ j for which we sketched and stored in sk(G); by construction w(ek)/w(ej) ∈ [1, 2).
Lemma 4.8 below proves that the cut values in G and in Gk are almost the same.

Next, compute the connected components of the graph (V, {e1, . . . , ek}), and observe they must
be exactly the same as the connected components of Gk. Obviously, the value of the cut (S, S̄) in Gk
is just the sum, over all connected components P in Gk, of the contribution to the cut from edges
inside that component, namely wGk(S ∩VP , S̄ ∩VP ) with VP as the vertex set of P . Recall that G′k
has essentially the same cuts as Gk and we can thus estimate each such term wGk(S ∩ VP , S̄ ∩ VP )
using the sketch we prepared for G′k (more precisely, using the sketch of the respective component
V ′ of G′k, unless |V ′| = 1 in which case that term is trivially 0). To this end, we need to find out
which vertices of Gk were merged together to form G′k, which can be done using e1, . . . , en−1 as
follows. Find the largest k∗ such that w(ek∗) ≥ n2 ·w(ek), and compute the connected components
of the graph (V, {e1, . . . , ek∗}). Lemma 4.9 below proves that these connected components (or more
precisely the partition of V they induce) are exactly the subsets of vertices that are merged in Gk
to create G′k. Now that knowing the vertex correspondence between Gk and G′k, we estimate the
cut value wGk(S ∩ V ′, S̄ ∩ V ′) by simply using the estimate for the corresponding cut value in G′k,
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Algorithm 5: Cut-Sketch(G, ε)

Input: A graph G = (V,E,w) with general weights; a quality control parameter
ε ∈ [1/n, 1/30]

Output: A (1 + ε, δ)-cut-sketch sk(G) of G
1 sk(G)← ∅;
2 T ←MST(G), denoted as T = {e1, ..., en−1}, and add T into sk(G);
3 for j = 1 to n− 1 do
4 if there is no earlier iteration k < j with w(ek)/w(ej) < 2 that is sketched and stored

then
5 Remove all edges e ∈ E of weight w(e) < w(ej)/n

3;
6 Change all edges e ∈ E of weight w(e) ≥ n2 · w(ej) to have infinite weight, and

denote the resulting graph as Gj ;
7 Contract all edges of infinite weight in Gj (keeping parallel edges and removing

self-loops), and denote the resulting graph as G′j ;

8 foreach connected component P of G′j of size at least 2 do

9 sk(P )←Cut-Basic(P, ε), and add sk(P ) into sk(G);
/* (Note that ∀e in P, w(e) ∈ [n−3 · w(ej), n

2 · w(ej)].) */

10 return sk(G);

where the latter is obtained using the basic sketch prepared for G′k. Thus, the estimator is

ŵ(S, S̄) =
∑
P∈G′k

ŵ(S ∩ VP , S̄ ∩ VP ), (13)

where ŵ(S ∩ VP , S̄ ∩ VP ) is defined in Equation (10) and can be computed via using the sketch
sk(P ).

To show the performance of the estimator ŵ(S, S̄), we first present three lemmas.

Lemma 4.7 Fix S ⊂ V and let e′ ∈ E be the first edge, according to the ordering π, that in the
cut ∂(S, S̄). Then this e′ is the first edge in the sequence e1, . . . , en−1 that in the cut ∂(S, S̄).

Proof: Let e′ ∈ E be the first edge, according to the ordering π, that in the cut ∂(S, S̄). Clearly,
e′ is the heaviest edge in this cut. Now observe that in the construction of T (i.e., e1, . . . , en−1),
when e′ is considered, T has no edge between S and S̄, hence the endpoints of e′ lie in different
connected components, and e′ must be added to T . �

Lemma 4.8 Consider a query S ⊂ V and let k ∈ [n− 1] be the value computed in the estimation
algorithm. Then the ratio between the value of w(S, S̄) in the graph Gk and that in the graph G is
in the range [1− 1

n , 1] ⊂ [1− ε, 1], formally

1− 1
n ≤

wGk(S, S̄)

wG(S, S̄)
≤ 1.

Proof: The edges in Gk are obtained from the edges of G, by either (1) removing edges e whose
weight is w(e) < w(ek)/n

3; or (2) changing edges e with w(e) ≥ n2 · w(ek) to have infinite weight.
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The first case can only decrease any cut value, while the second case can only increase any cut
value.

Recall that the estimation process finds j such that wG(S, S̄)/w(ej) ∈ [1, n2], and then finds
k ≤ j, which we said always satisfies w(ek)/w(ej) ∈ [1, 2). Thus, wG(S, S̄)/w(ek) ∈ (1

2 , n
2]. So one

direction of the desired inequality follows by observing that edges in G that fall into case (1) have
the total weight at most (

n

2

)
w(ek)/n

3 ≤ 2

n
w(ek) ≤

1

n
wG(S, S̄).

The other direction follows by observing that edges e that fall into case (2) have (in G) weight
w(e) > n2 · w(ek) ≥ wG(S, S̄), and therefore do not belong to the cut (S, S̄). �

Lemma 4.9 Fix w∗ > 0, let E∗ = {e ∈ E : w(E) ≥ w∗}, and find the largest i∗ ∈ [n − 1] such
that w(ei∗) > w∗. Then the graphs (V,E∗) and (V, {e1, . . . , ei∗}) have exactly the same connected
components (in terms of the partition they induce of V ).

Proof: It is easy to see that executing our construction of T above on the set E∗ gives the exact
same result as executing it for E but stopping once we reach edges of weight smaller than w∗.
The latter results with the edges e1, . . . , ei∗ , while the former is clearly an execution of Kruskal’s
algorithm, i.e. computes a maximum weight forest in E∗. �

The next two lemmas show the performance of Algorithm 5.

Lemma 4.10 (Accuracy Guarantee) With high probability, ŵ(S, S̄) defined in Equation (13) is
1 +O(ε) approximation of wG(S, S̄).

Proof: Lemma 4.7 and 4.8 show that (1 − ε)wG(S, S̄) ≤ wGk(S, S̄) ≤ wG(S, S̄). Lemma 4.9 show
that wGk(S, S̄) is the same as the cut weight of (S, S̄) in G′k. Since we build the sketch of each
connected component of size at least 2 in G′k, we can obtain a 1 + O(ε) approximation, with high
probability (say 1 − 1/n8), of the contribution to cut weight of each component in G′k, i.e., the
estimator ŵ(S ∩ VP , S̄ ∩ VP ) defined in Equation (10). Since the number of component is O(n)
(because they correspond to disjoint subsets of V ), applying the union bound over the events of
an error in any of the basic estimates used along the way, we know that the constructed estimator
ŵ(S, S̄) defined in Equation (13) is 1 + O(ε) approximation of wG(S, S̄), with high probability.
(The union bound is applicable because these basic sketch are queried in a non-adaptive manner,
or alternatively, because we make at most one query to every basic sketch that is constructed
independently of the others.) �

Lemma 4.11 (Size Analysis) The total size of the sketch is at most Õ(n/ε · log logW ), where
we assume all non-zero edge weights are in the range [1,W ].

Proof: The first component of the sketch is just a list of n− 1 edges with their edge weights, hence
its size is O(n log(logW/ε)) (we can store a 1 + ε/2 approximation to each weight using space
log(logW/ε)).

The second component of the sketch has n − 1 parts, one for each G′j where j ∈ [n − 1]. For
some of these j values, we compute and store the basic sketch for every connected components of
G′j that is of size at least 2. Denoting by nj the number of vertices in G′j , and by mj the number
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of connected components in G′j , the storage requirement for each G′j is at most Õ(
nj−mj

ε ), because

each connected component of size s ≥ 2 requires storage Õ( sε) ≤ Õ( s−1
ε ), and these sizes (the

different s values) add up to at most n.
Denote the values of j for which we do store a basic sketch for G′j by j1 < j2 < · · · < jp, where

by construction w(eji)/w(eji+1) ≥ 2. Summing over these values of j, the second component’s
storage requirement is at most

Õ(1
ε

∑
i∈[p]

(nji −mji)). (14)

To ease notation, let M = 5 log2 n, and consider the graphs G′ji and G′ji+M for some i ∈ [p−M −1].

Observe that every edge in G′ji has weight at least w(eji)/n
3 ≥ 2M · w(eji+M )/n3 = n2 · w(eji+M )

(because edges of smaller weight are removed); thus, in Gji+M , these same edges have infinite
weight, and then to create the reduced form Gji+M , these edges are contracted. It follows from
this observation that every connected component in G′ji becomes in Gji+M a single vertex, hence
nji+M ≤ mji (we do not obtain equality since additional contractions may occur). Using this last
inequality, for every i∗ ∈ [M ], we can bound the following by a telescopic sum∑

i=i∗,i∗+M,i∗+2M,...

(nji −mji) ≤
∑

i=i∗,i∗+M,i∗+2M,...

(nji − nji+M ) ≤ nji∗ ≤ n,

and therefore ∑
i∈[p]

(nji −mji)) ≤
∑
i∗∈[M ]

∑
i=i∗,i∗+M,i∗+2M,...

(nji −mji) ≤M · n.

Plugging this last inequality into (14), we obtain that the second component’s storage requirement
is at most M · Õ(n/ε), which is still bounded by Õ(n/ε). �

Based on Lemma 4.10 and 4.11, we conclude the following theorem.

Theorem 4.12 Fix an integer n and ε ∈ (1/n, 1/30). Then every n-vertex graph G = (V,E,w)
with edge weights in the range [1,W ] admits a cut sketch of size Õ(nε−1 · log logW ) bits with the
“for each” guarantee. Specifically, for every query S ⊂ V (equivalently, x ∈ {0, 1}n), the sketch
can produce with high probability a 1 +O(ε) approximation to w(S, S̄).

4.1.4 A Tight Lower Bound

The following theorem shows that our sketch from Theorem 4.12 achieves optimal space up to a
poly-logarithmic factor, even for unweighted graphs.

Theorem 4.13 Fix an integer n and ε ∈ [2/n, 1/2]. Suppose sk(·) is a sketching algorithm that
outputs at most s = s(n, ε) bits, and est is an estimation algorithm, such that together for every
n-vertex graph G,

∀S ⊂ V, Pr
[
est(S, sk(G)) ∈ (1± ε) · |∂(S, S̄)|

]
≥ 9/10,

where ∂(S, S̄) = {(u, v) ∈ E |u ∈ S, v ∈ S̄}. Then s ≥ Ω(n/ε).
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Proof: We will show how to encode a bit-string of length l = n/(8ε) into a graph, so that, given
its sketch sk(G), one can reconstruct any bit of the string with constant probability. Standard
information-theoretical argument would then imply that s ≥ Ω(l) = Ω(n/ε).

Given a string x ∈ {0, 1}l, we embed it into a bipartite graph G on with n/2 vertices on each
side, and vertex degrees bounded by D = 1/(4ε) as follows. Partition the vertices on each side into
disjoint blocks of D, and let the i-th block on the left side and on the right side form a (bipartite)
graph which we call Gi, for i = 1, . . . , n/(2D). Then partition the string x in n/(2D) blocks, each
block is of length D2 and describes the adjacency matrix of some bipartite Gi.

We now show that evaluating a bit from the string x corresponds to testing the existence of
some edge (u, v) from some graph Gi, which we can do using the 1 + ε approximating sketch only.
Formally, let δ(S) be the cut value of the set S, i.e., |∂(S, S̄)|, and observe that

δ({u}) + δ({v})− δ({u, v}) =

{
2 if (u, v) is an edge in G;

0 otherwise.

Since the considered values of δ(·) are bounded by D, the sketch estimates each such value with
additive error at most εD = 1/4, which is enough to distinguish between the two cases. Further-
more, since we query the sketch only 3 times, the probability of correct reconstruction of the bit is
at least 7/10. The lower bound follows. �

4.2 Laplacian Matrices with Spectral Queries

In this section, we construct sketches for a Laplacian matrix with spectral queries. We first design
sketches of size Õ(n/ε5/3), in Section 4.2.1, and then improve it to size Õ(n/ε8/5) in Section 4.2.2.
In each of these, we will start with an algorithm for a class of special graphs, and then extend it to
general graphs.

4.2.1 A Basic Sketching Algorithm

In this section, we described a sketch of size Õ(n/ε
5
3 ) for a Laplacian matrix with spectral queries.

Let α = cαε
− 5

3 be a parameter we will use in this section, where cα > 0 is a large enough constant.
We will start with an algorithm for a class of special graphs, and then extend it to general graphs.

4.2.1.1 Special Graphs

In this section we consider a class of special graphs, defined as follows.

Definition 4.14 (S2-graph) We say an undirected weighted graph G = (V,E,w) is an S2-graph
(reads “simple type-2 graph”) if it satisfies the followings.

1. All weights {w(e) | e ∈ E} are within a factor of 2, i.e. for any e ∈ E, w(e) ∈ [γ, 2γ) for
some γ > 0.

2. The Cheeger’s constant hG > αε2 = cαε
1
3 .

Let S(G) = {v ∈ V | δv ≤ γα}, L(G) = {v ∈ V | δv > γα}. For u ∈ L(G), let δLu (G) =∑
v∈L(G)w(u, v). We will omit “(G)” when there is no confusion. The algorithm for sketching
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Algorithm 6: Spectral-S2(G, ε)

Input: An S2-Graph G = (V,E,w); a quality control parameter ε
Output: a (1 + ε, 0.001)-spectral-sketch sk(G) of G

1 sk(G)← ∅;
2 Add {δu | u ∈ V } to sk(G);
3 for u ∈ S do
4 Add all of u’s adjacent edges to sk(G);

5 for u ∈ L do
6 Add δLu to sk(G);
7 Eu ← {(u, v) | v ∈ L};
8 Sample (with replacement) α edges from Eu, where each time the probability of

sampling e = (u, v) ∈ Eu is pe = w(e)/δLu ;
9 Add the sampled α edges to sk(G);

10 return sk(G);

S2-graph is described in Algorithm 6. When we say “add an edge to the sketch” we always mean
“add the edge together with its weight”.

Let Y v
u be the random variable denoting the number of times edge (u, v) is sampled at Line 8

in Algorithm 6. It is easy to see that

E[Y v
u ] =

αw(u, v)

δLu
and Var [Y v

u ] = α

(
1− w(u, v)

δLu

)
w(u, v)

δLu
≤ αw(u, v)

δLu
. (15)

Given a vector x ∈ Rn, we use the following expression as an estimator of xTLx:

IG =
∑
u∈V

δux
2
u −

∑
u∈S

∑
v∈V

xuxvw(u, v)−
∑
u∈L

∑
v∈S

xuxvw(u, v)−
∑
u∈L

δLu
α

∑
v∈L

xuxvY
v
u . (16)

Lemma 4.15 Let G = (V,E,w) be an S2-Graph and L = L(G) be the (unnormalized) Laplacian
of G, then IG (defined in Equation (16)) is an unbiased estimator of xTLx. Furthermore, it gives
a (1 + ε, 0.001)-approximation to xTLx.

Proof: Since E[Y v
u ] = αw(u,v)

δLu
(by (15)), it is straightforward to show that

E[IG] =
∑
u∈V

δux
2
u −

∑
u∈S

∑
v∈V

xuxvw(u, v)−
∑
u∈L

∑
v∈V

xuxvw(u, v) =
∑

(u,v)∈E

(xu − xv)2w(u, v) = xTLx.

Now let us compute the variance of IG. Note that if Var [IG] = O
(
ε2(xTLx)2

)
, then by taking

constant cα in α = cαε
− 5

3 large enough, a Chebyshev’s inequality immediately yields the lemma.

31



The variance of IG

Var [IG] = Var

[∑
u∈L

δLu
α

∑
v∈L

xuxvY
v
u

]

=
∑
u∈L

(δLu )2

α2

∑
v∈L

x2
ux

2
vVar [Y v

u ]

≤
∑
u∈L

(δLu )2

α2
x2
u

∑
v∈L

x2
v

αw(u, v)

δLu
(by (15))

=
1

α

∑
u∈L

δLux
2
u

∑
v∈L

x2
vw(u, v)

≤ 1

α

∑
u∈L

δLux
2
u

∑
v∈L

x2
v

2δv
α

(w(u, v) ≤ 2γ ≤ 2δv
α

by def. of S2-graph and def. of L)

≤ 2

α2

∑
u∈V

δux
2
u

∑
v∈V

δvx
2
v (δLu ≤ δu by definitions)

=
2

α2

∥∥∥D1/2x
∥∥∥4

2
, (17)

where D = diag(δ1, δ2, . . . , δn). The normalized Laplacian of G can be written as L̃ = D−
1
2LD−

1
2 .

Define x̂ = D1/2x, we have

‖x̂‖22 = x̂T x̂ ≤ 1

λ1(L̃)
x̂T L̃x̂

by (1)

≤ 2

h2
G

(xTLx)
property of S2-graph

<
2

α2ε4
(xTLx),

which together with (17) gives Var [IG] < 8
α6ε8

(xTLx)2 = O
(
ε2(xTLx)2

)
. �

We summarize our result for the S2-Graph G in the following theorem.

Theorem 4.16 There is a sketching algorithm which given an S2-graph, outputs a (1 + ε, 0.001)-

spectral-sketch of size Õ(n/ε
5
3 ).

4.2.1.2 General Graphs

Now let us extend our result to general positively weighted simple graphs G = (V,E,w). We now
require wmax/wmin = poly(n).

The following lemma will be used in the analysis of our sketching algorithms.

Lemma 4.17 Given an undirected positively weighted graph G = (V,E,w) with wmax/wmin =
poly(n), there is an algorithm that takes G as the input, and output a graph G̃ = (V, Ẽ, w̃) such
that

1. G̃ is a (1 + ε, 0.001)-spectral-sketch of G of size Õ(n/ε2) bits.

2. w̃max/w̃min is bounded by poly(n).
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Algorithm 7: Spectral-Preprocessing(G, h)

Input: A graph G = (V,E,w) such that for any e ∈ E, w(e) ∈ [γ, 2γ); a parameter h > 0
Output: A set P of edge disjoint components of G such that for each P ∈ P, hP > h; and

a graph Q induced by the rest of the edges in G.
1 P ← {G}, Q← ∅;
2 while ∃ P ∈ P such that Cheeger’s constant hP ≤ h do

3 Find an arbitrary cut (S, S) in P , such that Φ(S) ≤ h;

4 Replace P with its two subgraphs P (S) and P (S) in P;

5 Add all edges in the cut (S, S) into Q;

6 return (P, Q);

Proof: We first run the spectral sparsification algorithm by Batson, Spielman and Srivastava
[BSS14], which produces (1+ε)-spectral sparsifier H of G with size of Õ(n/ε2) bits with probability
0.999.

Assume (by rescaling) that the edge weights in G are between 1 and nC for a constant C > 0.
Since H is also a cut sparsifier, all weights in H must be at most 2nC , as otherwise H would not
preserve a specific cut up to a factor of 2. Let G̃ be formed from H by removing all edge weights
smaller than 1/nD for a sufficiently large constant D > 0. Let x be a unit vector orthogonal
to 1n, and assume the underlying graph with Laplacian L(G̃) is connected (otherwise we could
have first split it into connected components). Then xTL(G̃)x ≥ xTL(H)x − O(n2/nD). Since
xTL(H)x ≥ (1 − ε)xTL(G)x ≥ (1 − ε)λ1(L(G)), and λ1(L(G)) ≥ 1/n2 by [GY03], it follows
that xTL(G̃)x ≥ (1 − ε)xTL(H)x, assuming D > 0 is a sufficiently large constant. Since also
xTL(G̃)x ≤ xTL(H)x, it follows that G̃ is a (1 + O(ε))-spectral sparsifier of G with edge weights
that are between 1/nD and 2nC . �

The following observation is due to the linearity of Laplacian.

Observation 4.18 Given any simple graph G = (V,E,w), let L be its Laplacian. Let E1, E2, . . . , Ek
be a disjoint partition of E, and let Gi = (V,Ei, w). Let Li be the Laplacian of Gi. We have
xTLx =

∑k
i=1 x

TLix for any x ∈ Rn.

Our high-level idea is to reduce general graphs to S2-graphs. Based on Observation 4.18, we
can first partition the edge set E into E1, . . . , Ek (k = Θ(log n)) such that for any e ∈ Ei we have
w(e) ∈ [2i−1wmin, 2

iwmin), and then sketch each subgraph Gi separately. Finally, at the time of
a query, we simply add all estimators IGi together. Thus it suffices to focus on a graph with all
weight w(e) ∈ [γ, 2γ) for some γ > 0.

We next partition each subgraph Gi further so that each component P satisfies hP ≥ cαε
1
3 .

Once this property is established, we can use Algorithm 6 to sketch each P separately. We describe
this preprocessing step in Algorithm 7.

The Q returned by Algorithm 7 is a set of cut edges we will literally keep. The following lemma
bounds the size of Q. The proof is folklore, and we include it for completeness.

Lemma 4.19 For any positively weighted graph G = (V,E,w) such that for any e ∈ E, w(e) ∈
[γ, 2γ) for some γ > 0, the number of edges of Q returned by Algorithm 7 Spectral-Preprocessing(G, h)
is bounded by O(hm logm).
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Algorithm 8: Spectral-Basic(G, ε)

Input: G = (V,E,w) with all weights in [wmin, wmax]; a quality control parameter ε
Output: A (1 + ε, 0.001)-spectral-sketch sk(G) of G

1 Edge-disjointly partition G into H = {H1, . . . ,Hk} s.t. all edges in Hi have weights in
[2i−1wmin, 2

iwmin);
2 sk(G)← ∅;
3 foreach H ∈ H do
4 (P, Q)← Spectral-Preprocessing(H,αε2);
5 Add Q into sk(G);
6 for P ∈ P do
7 Add Spectral-S2(P, ε) into sk(G);

8 return sk(G);

Proof: In Algorithm 7, we recursively split the graph G = (V,E,w) into connected components until
for every component P = (VP , EP ), its Cheeger’s constant hP = infS⊂VP ΦC(S) > h. Consider a

single splitting step: We find a cut (S, S̄) with volP (S) ≤ volP (S̄) in P such that ΦP (S) = wP (S,S̄)
volP (S) ≤

h. We can think in this step each edge in volP (S) contributes at most h edges to Q on average,
while edges in volP (S̄) contribute nothing to Q. We call S the Smaller-Subset.

By the definition of volume, we have volP (VP ) = volP (S ∪ S) = volP (S) + volP (S) ≥ 2volP (S),
and volG(V ) = 2m. Thus in the whole recursion process, each edge will appear at most O(logm)
times in Smaller-Subsets, hence will contribute at most O(h logm) edges to Q. Therefore the
number of edges of Q is bounded by O(hm logm) words. �

Now we show the main algorithm for general graphs and analyze its performance. The algorithm
is described in Algorithm 8.

The following lemma summarize the functionality of Algorithm 8.

Lemma 4.20 Given a graph G = (V,E,w), let sk(G) ← Spectral-Basic(G, ε), then for any given
x ∈ Rn, sk(G) can be used to construct an unbiased estimator IG which gives a (1 + ε, 0.001)-

approximation to xTL(G)x. The sketch sk(G) uses Õ(ε
1
3m+ n/ε

5
3 ) bits.

Proof: In Algorithm 8, G is partitioned into a set of edge disjoint components P = {P1, . . . , Pt},
and we build a sketch sk(Pi) for each Pi ∈ P from which we can construct an unbiased estimator
IPi for xTL(Pi)x with variance bounded by O(ε2(xTL(Pi)x)2) according to Lemma 4.15. Moreover,
we have stored all edges between these components; let Q be the induced subgraph of these edges.
Our estimator to xTL(G)x is

IG =
t∑
i=1

IPi + xTL(Q)x, (18)

where IPi defined in Equation (16) is an unbiased estimator of xTL(Pi)x. By the linearity of
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Laplacian (Observation 4.18), IG is an unbiased estimator of xTL(G)x. Now consider its variance:

Var [IG] = Var

 ∑
1≤i≤t

IPi + xTL(Q)x


≤ O(ε2)

∑
1≤i≤t

(
xTL(Pi)x

)2
(due to the independence of Pi’s)

≤ O(ε2)

 ∑
1≤i≤t

xTL(Pi)x+ xTL(Q)x

2

(L(Pi) and L(Q) are positive semidefinite)

= O(ε2)
(
xTL(G)x

)2
.

The correctness follows from a Chebyshev’s inequality.
Now we bound the size of the sketch sk(G). Consider a particular H at Line 3 of Algorithm 8.

For each P = (VP , EP ) ∈ P, the size of sk(P ) by running Spectral-S2(P, ε) at Line 7 is bounded by

Õ(|VP | /ε
5
3 ) bits (Theorem 4.16); and for the remaining subgraph Q = (VQ, EQ), sk(Q) is bounded

by Õ(ε
1
3 |EQ|) bits (Lemma 4.19). Thus

size(sk(Pi)) = size(sk(Q)) +
∑
P∈P

size(sk(P ))

≤ Õ

(
ε

1
3 |EQ|+

∑
P∈P
|VP | /ε

5
3

)
≤ Õ

(
ε

1
3m+ n/ε

5
3

)
bits. ({P ∈ P} are vertex-disjoint)

Since there are k = Θ(log n) of Hi’s in H, the size of sk(G) is bounded by Õ
(
n/ε

5
3 + ε

1
3m
)
· log n =

Õ
(
n/ε

5
3 + ε

1
3m
)

bits. �

We conclude this section with the following theorem.

Theorem 4.21 There is a sketching algorithm which given an undirected positively weighted graph
G = (V,E,w) with wmax/wmin = poly(n), outputs a (1 + ε, 0.01)-spectral-sketch of size Õ(n/ε

5
3 ).

Proof: The algorithm is as follows: we first run the spectral sparsification algorithm in [BSS14],
obtaining a graph G̃ = (V, Ẽ, w̃). By Lemma 4.17 we have |Ẽ| = Õ(n/ε2) and w̃max/w̃min =

poly(n). We then run Algorithm 8, getting a (1+ε, 0.01)-spectral-sketch of size Õ
(
n/ε

5
3 + ε

1
3 |Ẽ|

)
=

Õ(n/ε
5
3 ). �

4.2.2 An Improved Sketching Algorithm

In this section, we further reduce the space complexity of the sketch to Õ(n/ε
8
5 ). At a high level,

such an improvement is achieved by partitioning the graph into more subgroups (compared with a
hierarchical partition on weights, and S(G) and L(G) for each weight class in the basic approach),
in each of which vertices have similar unweighted degrees and weighted degrees. An estimator
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based on a set of sampled edges from such groups will have smaller variance. This finer partition,
however, will introduce a number of technical subtleties, as we will describe below.

We set the constant β = cβε
− 8

5 throughout this section where cβ is a constant.

4.2.2.1 Special Graphs

We first consider a class of simple graphs.

Definition 4.22 (S3-graph) We say an undirected weighted graph G = (V,E,w) is an S3-graph
(reads “simple type-3 graph”) if we can assign directions to its edges in a certain way, getting a
directed graph ~G = (V, ~E,w) satisfying the following.

1. All weights {w(e) | e ∈ ~E} are within a factor of 2, i.e., for any e ∈ ~E, w(e) ∈ [γ, 2γ) for
some constant γ > 0.

2. For each u ∈ V , doutu (~G) ∈ [2κβ, 2κ+1β), where 2κβ ≤ 1/ε2.

We call ~G the buddy of G. Note that ~G is not necessarily unique, and we just need to consider
an arbitrary but fixed one. In this section we will assume that we can obtain such a buddy directed
graph ~G “for free”, and will not specify the concrete algorithm. Later when we deal with general
graphs we will discuss how to find such a direction scheme.

We still make use of Algorithm 7 to partition the graph G into components such that the
Cheeger’s constant of each component is larger than h = βε2. One issue here is that, after storing
and removing those cut edges (denoted by Q in Algorithm 7), the second property of S3-graph may
not hold, since the out-degree of some vertices in G’s buddy graph ~G will be reduced. Fortunately,
the following lemma shows that the number of vertices whose degree will be reduced more than half
is small, and we can thus afford to store all their out-going edges. The out-degree of the remaining
vertices is within a factor of 4, thus we can still effectively bound the variance of our estimator.

Lemma 4.23 If we run Algorithm 7 on an S3-graph G = (V,E,w) with h = 2−κ, then

1. At most Õ(βn) cut edges (i.e., Q) will be removed from G.

2. There are at most Õ(21−κn) vertices in G’s buddy graph ~G which will reduce their out-degrees
by more than a half after the removal of Q.

Proof: Since m = O(2κβn), h = 2−κ and 2κβ = Õ( 1
ε2

), Lemma 4.19 directly gives the first part.

For the second part, note that for each vertex u we have δoutu (~G) ≥ 2κβ, thus we need to remove
at least 2κ−1β edges to reduce δoutu (~G) to 2κ−1β. Therefore the number of such vertices is at most
Õ(βn/2κ−1β) = Õ(21−κn). �

For each component P = (VP , EP ) after running Algorithm 7, let ~P = (VP , ~EP ) be its buddy
directed graph. Slightly abusing the notation, define S(~P ) = {(u, v) ∈ ~EP | doutu (~P ) < 2κ−1β}, and
L(~P ) = {(u, v) ∈ ~EP | doutu (~P ) ≥ 2κ−1β}. We will again omit “(~P )” or “(P )” when there is no
confusion.

The sketch for an S3-graph G is constructed using Algorithm 9.
It is easy to see that the size of sk(G) is bounded Õ(21−κ |VP |)·2κ−1β+Õ(βn)+Õ(βn) = Õ(βn),

where the first term in LHS is due to the definition of S(~P ) and the second property of Lemma 4.23.
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Algorithm 9: Spectral-S3(G, ε)

Input: An S3-graph G and a parameter ε
Output: A (1 + ε, 0.01)-spectral-sketch of G

1 {P, Q} ← Spectral-Preprocessing(G, βε2);
2 foreach P = (VP , EP , w) ∈ P do

3 Let ~P = (VP , ~EP , w) be its buddy directed graph;
4 foreach u ∈ VP do

5 Add δinu (~P ) and δu(P ) to sk(G);

6 Add S(~P ) to sk(G);
7 foreach u ∈ VP do

8 Sample β = cβε
− 8

5 edges with replacement from {(v, u) ∈ L}, where the probability

that (v, u) is sampled is w(v, u)/δinu (~P ). Add sampled edges to sk(G);

9 Add Q to sk(G);

10 return sk(G)

Let Y v
u be the random variable denoting the number of times (directed) edge (v, u) is sampled

when we process the vertex u. Clearly, E[Y v
u ] = βw(v,u)

δinu (~P )
and Var [Y v

u ] ≤ βw(v,u)

δinu (~P )
. For a given

x ∈ R|VP |, we construct the following estimator for each component P using sk(G).

IP =
∑
u∈VP

x2
uδu(P )− 2

∑
(u,v)∈S

xuxvw(u, v)− 2
∑
u∈VP

δinu (~P )

β

∑
(v,u)∈L

xuxvY
v
u (19)

Similar to the analysis in Section 4.2.1.1, it is easy to show that IP is an unbiased estimator of
xTL(P )x by noticing

xTL(P )x =
∑

(u,v)∈ ~EP

(xu − xv)2w(u, v)

=
∑
u∈VP

x2
uδu(P )− 2

∑
(u,v)∈S

xuxvw(u, v)− 2
∑

(u,v)∈L

xuxvw(u, v).
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We next bound the variance

Var [IP ] = Var

2
∑
u∈VP

δinu (~P )

β

∑
(v,u)∈L

xuxvY
v
u


= 4

∑
u∈VP

(
δinu (~P )

)2

β2

∑
(v,u)∈L

x2
ux

2
vVar [Y v

u ]

≤ 4
∑
u∈VP

(
δinu (~P )

)2

β2

∑
(v,u)∈L

x2
ux

2
v

βw(v, u)

δinu (~P )

(
Var [Y v

u ] ≤ βw(v, u)

δinu (~P )

)

= 4
∑
u∈VP

x2
u

δinu (~P )

β

∑
(v,u)∈L

x2
vw(v, u)

≤ 4
∑
u∈VP

x2
u

δinu (~P )

β

∑
(v,u)∈L

x2
v · 2γ (w(v, u) ∈ [γ, 2γ))

≤ 4

β

∑
u∈VP

x2
uδ

in
u (~P )

∑
(v,u)∈L

x2
v

2δoutv (~P )

2κ−1β

(
doutv (~P ) ≥ 2κ−1β and δoutv (~P ) ≥ γ · doutv (~P )

)
≤ 16

2κβ2

∑
u∈VP

δu(P )x2
u

∑
v∈VP

δv(P )x2
v

(
δinu (~P ) ≤ δu(P ) and δoutv (~P ) ≤ δv(P )

)
=

16

2κβ2
‖x̂‖42,

where ‖x̂‖42 = ‖D1/2x‖42 =
∑

u∈VP δu(P )x2
u

∑
v∈VP δv(P )x2

v.
Similar to before we have

‖x̂‖22 = x̂T x̂ ≤ 1

λ1(L̃)
x̂T L̃x̂

by (1)

≤ 2

h2
G

(xTLx)
hG>2−κ by Algorithm 7

< 2 · 22κ · (xTLx),

Recall that in an S3-graph, 2κ ≤ 1/(βε2), hence

Var [IP ]

(xTL(P )x)2 = O

(
23κ

β2

)
= O

(
1/(β5ε6)

)
= O(ε2).

Setting constant cβ large enough in β = cβε
2, by a Chebyshev’s inequality, IP is a (1 + ε, 0.01)-

approximation to xTL(P )x.

Theorem 4.24 There is a sketching algorithm which given an S3-graph, outputs a (1 + ε, 0.01)-

spectral-sketch of size Õ(n/ε
8
5 ).

4.2.2.2 General Graphs

To deal with general graphs G = (V,E,w) for which the only requirement is wmax/wmin ≤ poly(n),
we try to “partition” it to polylogn subgraphs, each of which is an S3-graph. We note that the
partition we used here is not a simple vertex-partition or edge-partition, as will be evident shortly.
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Algorithm 10: Assign-Direction(G, t)

Input: A graph G = (V,E) and a parameter t
Output: ~G = (V, ~E), a directed graph by assigning each edge in G a direction

1 Arbitrarily assign a direction to each edge in E, getting ~E;

2 while ∃(u, v) ∈ ~E s.t. doutu (~G) ≥ t and doutv (~G) < t− 1 do
3 Change the direction of (u, v);

4 return ~G = (V, ~E);

Our first step is to assign each edge in E a direction so that in the later partition step we can
partition G to S3-graphs and simultaneously get their buddy directed graphs. The algorithm is
described in Algorithm 10.

Lemma 4.25 Given G = (V,E) and s > 1 as input, Assign-Direction(G, s) (Algorithm 10) will
finally stop and return ~G = (V, ~E) with the property that for each (u, v) ∈ ~E, doutu (~G) < s or
doutv (~G) ≥ s− 1.

Proof: The second part is trivial according to Algorithm 10. Now we show that Assign-Direction(G, s)
will finally stop. Let S = {(u, v) ∈ ~E | doutu (~G) ≥ s and doutv (~G) < s − 1}, and ∆(S) =∑

(u,v)∈S(doutu (~G) − doutv (~G)). The algorithm stops if and only if ∆(S) = 0. It is easy to see

that ∆(S) is finite for arbitrary ~G, thus the algorithm will stop if we can show that ∆(S) will
decrease by at least 2 each time we execute Line 3. To this end, we only need to show that each
execution of Line 3 will not add any new edge to S.

Consider executing Line 3 on edge (u, v). For (u,w) 6∈ S, since (u, v) ∈ S, we have doutw (~G) ≥
s − 1. Clearly, after executing Line 3, (u,w) will not be added to S because doutw (~G) ≥ s − 1 still
holds. For (w, v) 6∈ S, since (u, v) ∈ S, we have δoutw (~G) < s. After executing Line 3, doutw (~G) < s
still holds, hence (w, v) will not be added into S. �

For a set of directed edges ~E, let doutu ( ~E)← |{v | (u, v) ∈ ~E}|. Our partition step is described in
Algorithm 11. We first run the spectral sparsification algorithm [BSS14], and then assign directions
to each edge. Next, we partition the edges based on their weights, and then partition the directed
graph based on the unweighted out-degree of each vertex. Finally, we recursively perform all the
above steps on a subgraph induced by a set of edges which have large weights. Notice that the
purpose of introducing directions on edges is to assist the edge partition.

For the analysis, we first show that after each recursion in Algorithm 11, the number of vertices
of the graph induced by the remaining edges will decrease by at least a constant fraction. In this
way we can bound the number of recursion steps by O(log n).

Lemma 4.26 Given a graph G = (V,E) with m ≤ sn (s > 1), let ~G ← Assign-Direction(G, 2s).
If we remove all (u, v) with doutu ( ~E) < 2s from ~E and get a subset ~Er ⊂ ~E, then we have |Vr( ~Er)| ≤
n/(2− 1/s)

Before proving this lemma, note that in Algorithm 11, m ≤ sn is guaranteed by Line 3, and
“remove all (u, v) with doutu ( ~E) < 2s” is done by Line 12.
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Algorithm 11: Partition(G)

Input: A graph G = (V,E,w) and a parameter ε
Output: A set of graph components P

1 if n < 3 then
2 return {G};
3 Run [BSS14] on G with parameter ε, get a spectral sparsifier G′ = (V,E′, w′) with

|E′| = η · n
ε2

where η = Õ(1);
4 ε̃ = ε/

√
η, s← 1/ε̃2;

5 ~G′ = (V, ~E′, w′)← Assign-Direction(G′, 2s) ;

6 Partition ~E′ into ~E′j ’s such that for each ~E′j , all e ∈ ~E′j have w(e) ∈ [2j , 2j+1);

7 P ← ∅;
8 foreach ~E′j do

/* Recall β = cβε
− 8

5 for a large enough constant cβ */

9 Let ~E−∞ ←
{

(u, v) ∈ ~E′j | doutu ( ~E′j) < β
}

;

10 Let ~Ei ←
{

(u, v) ∈ ~E′j | doutu ( ~E′j) ∈ [2iβ, 2i+1β)
}

for all i ≥ 0 s.t. 2iβ ≤ s = 1/ε̃2;

11 Add G( ~E−∞) and G( ~Ei) for all 0 ≤ i ≤ log(1/(ε̃2β)) into P;

12 Remove ~E−∞, ~Ei from ~E′;

/* Recursively apply on the remaining edges E′ (remove directions on edges)

*/

13 return P ∪Partition (G(E′));

Proof: By Lemma 4.25, for each (u, v) ∈ ~E, we have doutu ( ~E) < 2s or doutv ( ~E) ≥ 2s−1. If we remove
all (u, v) with doutu ( ~E) < 2s, then for each (u, v) ∈ ~Er, we have doutu ( ~Er) ≥ 2s and doutv ( ~Er) ≥ 2s−1.
Consequently, |Vr( ~Er)|(2s− 1) ≤ m ≤ sn. Therefore we have |Vr( ~Er)| ≤ n/(2− 1/s). �

The following lemma summarizes the properties of P returned by Algorithm 11.

Lemma 4.27 Given G = (V,E,w) with wmax/wmin = poly(n), let P ← Partition(G) be a set of
graphs after the partition, then (1) |P| = poly(log n); and (2) for each ~P = (VP , ~EP , wP ) ∈ P, if
|VP | > 2 then for any e ∈ ~EP , w(e) ∈ [γ, 2γ) for some γ > 0, and one of the following properties
holds:

Property 1: For each u ∈ VP , doutu (~P ) < β.

Property 2: There exists i (0 ≤ i ≤ log(η/(βε2))), for each u ∈ VP , doutu (~P ) ∈ [2iβ, 2i+1β).

Proof: We only need to bound the size of P. The rest directly follows from the algorithm.
First, Line 6 and Line 10 will partition ~E′ to O(log2 n) (assuming n > 1/ε) sets. Second, we

bound the number of recursion steps. Note that if we directly remove Es = {(u, v) ∈ ~E′ | doutu ( ~E′) <
2s} from ~E′, then by Lemma 4.26 we know that there are at most O(log n) recursion steps. The
subtlety is that we first partition ~E′ into ~E′j ’s and then remove all (u, v) ∈ ~E′j with doutu ( ~E′j) < 2s.

However, since doutu ( ~E′j) ≤ doutu ( ~E′), every edge in Es will still be removed by at Line 12. Therefore

|P| = O(log3 n). �
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Algorithm 12: Spectral-Improved(G, ε)

Input: G = (V,E,w); a quality control parameter ε
Output: A (1 + ε, 0.01)-spectral-sketch sk(G) of G

1 Let H ← Partition(G);
2 sk(G)← ∅;
3 foreach H ∈ H do
4 if H satisfies Property 1 in Lemma 4.27 then
5 Add the whole H to sk(G);

6 else if H satisfies Property 2 in Lemma 4.27 then
7 Add Spectral-S3(H, ε) into sk(G) ;

8 return sk(G);

We summarize our main result.

Theorem 4.28 Given an undirected positively weighted G = (V,E,w) with wmax/wmin ≤ poly(n),
there is a sketching algorithm that outputs a (1 + ε, 0.01)-spectral-sketch of size Õ(n/ε8/5).

Proof: Our final algorithm is described in Algorithm 12. For each component H ∈ P, we store the
whole H if Property 1 in Lemma 4.27 holds (let P1 be this set), and we apply Theorem 4.24 on H
(set δ = 1/poly log n) if Property 2 in Lemma 4.27 holds (let P2 be this set), thus the space usage

is bounded by Õ(n/ε̃
8
5 ) = Õ(n/ε

8
5 ). Since by |P1 ∪ P2| = |P| = O(log3 n) by Lemma 4.27, we can

bound the total space by Õ(n/ε
8
5 ).

Our final estimator, given x ∈ Rn, is

IG =
∑
H∈P2

IH +
∑
H∈P1

xTL(H)x,

where IH is defined in Equation (19). Similar to the proof of Lemma 4.20, we can bound Var [IG] by
O(ε2·(xTL(G)x)2). By a Chebyshev’s inequality, IG is a (1+ε, 0.01)-approximation of xTL(G)x. �

5 Positive-Semidefinite Matrices

In this section we consider sketching positive-semidefinite matrices, in the “for all” and “for each”
models, respectively.

5.1 “For All” Model

We first show that in the “for all” case (for general PSD matrices A), there is no better sketching
algorithm (up to a logarithmic factor) than simply storing the whole matrix.

Theorem 5.1 For a general PSD matrix A and relative approximation ε > 0 that is a sufficiently
small constant, every sketch sk(A) that satisfies the “for all” guarantee (with constant probability
of success), even if all of entries of A are promised to be in the range {−1,−1 + 1/nC ,−1 +
2/nC , . . . , 1− 1/nC , 1} for a sufficiently large constant C > 0, must use Ω(n2) bits of space.
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Proof: Consider a net of n× n projection (thus PSD) matrices P onto n/2-dimensional subspaces
U of Rn. It is known (see Corollary 5.1 of [KT13], which uses a result of [AEK06]) that there exists
a family F of r = 2Ω(n2) distinct matrices P1, . . . , Pr so that for all i 6= j, ‖Pi − Pj‖2 ≥ 1

2 . By
rounding each of the entries of each matrix Pi to the nearest additive multiple of 1/nC , obtaining
a symmetric matrix Qi with entries in {−1,−1 + 1/nC , . . . , 1}, we obtain a family F ′ of r = 2Ω(n2)

distinct matrices Qi such that ‖Qi −Qj‖2 ≥ 1
4 for all i 6= j. This implies there is a unit vector x∗

for which ‖Qix∗ −Qjx∗‖2 ≥ 1
4 , or equivalently,

‖Qix∗‖22 + ‖Qjx∗‖22 − 2〈(x∗)TQTi , Qjx∗〉 ≥
1

16
. (20)

In the rest of the proof, for simplicity, we often abuse the notation by directly using a matrix M to
denote the column space of M . Let J be the subspace of Rn which is the intersection of the spaces
spanned by the columns of Qi and Qj , let Ki be the subspace of Qi orthogonal to J , and let Kj be
the subspace of Qj orthogonal to J . We identify J , Ki, and Kj , with their corresponding projection
matrices. To maximize the lefthand side of (20), we can assume the unit vector x∗ is in the span
of the union of columns of J,Ki, and Kj . We can therefore write x∗ = Jx∗ + Kix

∗ + Kjx
∗, and

note that the three summand vectors are orthogonal to each other. Expanding (20), the lefthand
side is equal to

2‖Jx∗‖22 + ‖Kix
∗‖22 + ‖Kjx

∗‖22 − 2‖Jx∗‖22 = ‖Kix
∗‖22 + ‖Kjx

∗‖22.

Hence, by (20), it must be that either ‖Kix
∗‖22 ≥ 1

32 or ‖Kjx
∗‖22 ≥ 1

32 . This implies the vector
z = Kix

∗ satisfies ‖Qiz‖22 ≥ 1
32 , but ‖Qjz‖22 = 0.

Therefore, if there were a sketch sk(A) which had the “for all” guarantee for any matrix A ∈ F ,
one could query sk(A) on the vector z given above for each pair Qi, Qj ∈ F , thereby recovering the
matrix A ∈ F . Hence, sk(A) is an encoding of an arbitrary element A ∈ F which implies that the
size of sk(A) is Ω(log |F|) = Ω(n2) bits, completing the proof. �

5.2 “For Each” Model

In the “for each” case for PSD matrices A, we can use the Johnson-Lindenstrauss lemma to obtain
a sketch sk(A) of size O(n/ε2 · log(1/δ) log n). One instantiation of this lemma works by choosing
a random r × n matrix S with i.i.d. entries in {−1/

√
r,+1/

√
r} for r = Θ(ε−2 log 1/δ). Then for

any n× n matrix B and fixed x, we have Pr[‖SBx‖22 ∈ (1± ε)‖Bx‖22] ≥ 1− δ. The sketch simply
computes a matrix B where B satisfies BTB = A (such a decomposition exists since A is PSD),
hence xTAx = xTBTBx = ‖Bx‖22. Therefore, the sketch sk(A) can be SB, which is an r×n matrix
of size Õ(n/ε2) bits, and the estimate it produces would be ‖SBx‖2.

For general PSD matrices A, this Õ(n/ε2) upper bound turns out to be optimal up to logarithmic
factors.

Theorem 5.2 For a general PSD matrix A and relative approximation ε ∈ (1/
√
n, 1), every sketch

sk(A) that satisfies the “for each” guarantee (with constant probability) must use Ω(n/ε2) bits of
space.

The proof is similar (and inspired from) a result in [GWWZ15] for approximating the number
of non-zero entries of Ax. Before giving the proof, we need some tools. Let ∆(a, b) be the Hamming
distance between two bitstrings a and b.
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Lemma 5.3 (modified from [JKS08]) Let x be a random bitstring of length γ = 1/ε2, and let
i be a random index in [γ]. Choose γ public random bitstrings r1, . . . , rγ, each of length γ. Create
γ-length bitstrings a, b as follows:

• For each j ∈ [γ], aj = majority{rjk | indices k for which xk = 1}.

• For each j ∈ [γ], bj = rji .

There is a procedure which, with probability 1/2 + δ for a constant δ > 0, can determine the value
of xi from any c

√
∆(a, b)-additive approximation to ∆(a, b), provided c > 0 is a sufficiently small

constant.

We introduce the Indexing problem. In Indexing, we have two randomized parties Alice and
Bob. Alice has x ∈ {0, 1}n, and Bob has an index i ∈ [n]. The communication is one-way from
Alice to Bob, and the goal is for Bob to compute xi.

Lemma 5.4 (see, e.g., [KN97]) To solve the Indexing problem with success probability 1/2 + δ
for any constant δ > 0, Alice needs to send Bob Ω(n) bits even with shared randomness.

Proof: (for Theorem 5.2) Let γ = 1/ε2. The proof is by a reduction from the Indexing problem,
where Alice has a random bitstring z of length (n− γ) · γ, and Bob has an index ` ∈ [(n− γ) · γ].

Partition z into n − γ contiguous substrings z1, z2, . . . , zn−γ . Alice constructs a 0/1 matrix B
as follows: she uses shared randomness to sample γ random bitstrings r1, . . . , rγ , each of length γ.
For the leftmost γ× γ submatrix of B, in the i-th column for each i ∈ [γ], Alice uses r1, . . . , rγ and
the value i to create the γ-length bitstring b according to Lemma 5.3 and assigns it to this column.
Next, in the remaining n − γ columns of B, in the j-th column for each j ∈ {γ + 1, . . . , n}, Alice
uses zj−γ and r1, . . . , rγ to create the γ-length bitstring a according to Lemma 5.3 and assigns it
to this column.

Our PSD matrix is set to be A = BTB.
Alice then sends Bob the sketch sk(A), together with {‖Bi‖22 (i ∈ [n])} and {nnz(Bi) (i ∈ [n])}

where nnz(x) is the number of non-zero coordinates of x. Note that both {‖Bi‖22 (i ∈ [n])} and
{nnz(Bi) (i ∈ [n])} can be conveyed using O(n log(1/ε)) = o(n/ε2) bits of communication, which
is negligible.

Bob creates a vector x by putting a 1 in the i-th and j-th coordinates, where i, j (i ∈ [γ], j ∈
{γ + 1, . . . , n}) satisfies ` = i + (j − γ − 1) · γ. Then Bx is simply the sum of the i-th and j-th
columns of B, denoted by Bi + Bj . Note that Bi, Bj correspond to a pair of (a, b) created from
r1, . . . , rγ and zj−γ (and (zj−γ)i = z`). Now, from a (1 + cε)-approximation to xTAx = ‖Bi+Bj‖22
for a sufficiently small constant c, and exact values of ‖Bi‖22 and ‖Bj‖22, Bob can approximate
2〈Bi, Bj〉 = ‖Bi + Bj‖22 − ‖Bi‖22 − ‖Bj‖22 up to an additive error cε · ‖Bi + Bj‖22 ≤ c′/ε for a
sufficiently small constant c′. Then, using a (c′/ε)-additive approximation of 2〈Bi, Bj〉, and exact
values of nnz(Bi) and nnz(Bj), Bob can approximate ∆(Bi, Bj) = nnz(Bi) +nnz(Bj)−2〈Bi, Bj〉
up to a c′/ε = c′′

√
∆(Bi, Bj) additive approximation for a sufficiently small constant c′′, and

consequently compute z` correctly with probability 1/2 + δ for a constant δ > 0 (by Lemma 5.3).
Therefore, any algorithm that produces a (1 + cε)-approximation of xTAx = ‖Bi + Bj‖22 with

probability 1 − δ′ for some sufficiently small constant δ′ < δ can be used to solve the Indexing
problem of size (n − γ)γ = Ω(n/ε2) with probability 1 − δ′ − (1/2 − δ) > 1/2 + δ′′ for a constant
δ′′ > 0. The theorem follows by the reduction and Lemma 5.4. �
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A General Matrices, “For Each” Model

Theorem A.1 Any sketch sk(A) of a general n×n matrix A that satisfies the “for each” guarantee
with probability 0.9, even when all entries of A are promised to be in the set {0, 1}, must use Ω(n2)
bits of space.

Proof: Let A be a symmetric matrix with zero on the diagonal, and a random bit in every other
entry. Set the query vector x = (ei + ej). Then using 1

2x
TAx we can recover the entry Ai,j , with

probability 0.9. Think the sketching problem as a communication problem where Alice holds the
matrix A; she sends a message (the sketch) M to Bob such that Bob can recover each entries of
A with probability 0.9 (except for the diagonal entries, which are fixed to be 0, Bob can recover
exactly). Then,

H(A | M) =
∑
i,j∈[n]

H(Ai,j | M) (Ai,j are independent)

≤ (H2(0.9) + 0.1) · n2 (Fano’s inequality)

< 0.6n2.

Thus H(M) ≥ H(A)−H(A | M) = Ω(n2). �

B Reduction from SDD Matrices to Laplacian Matrices

In this section we show that the quadratic form of an SDD matrix, xTAx, can be reduced to the
quadratic form of a Laplacian, therefore our upper bounds for Laplacian matrices in Section 4.1
and Section 4.2 can be extended to SDD matrices.

An SDD matrix A has the property that Ai,i ≥
∑

j 6=i |Ai,j | for all i. In the case when Ai,i =∑
i 6=j |Ai,j | for all i, we can write A as Ap +An +D where D is the diagonal of A, An is the matrix

consisting of only the negative off-diagonal entries of A, and Ap is the matrix consisting of only the
positive off-diagonal entries of A. It is straightforward to verify that

(
xT −xT

)( D +An −Ap
−Ap D +An

)(
x
−x

)
= 2xTAx.

The matrix

(
D +An −Ap
−Ap D +An

)
is clearly a Laplacian matrix.

For the general case when Ai,i ≥
∑

i 6=j |Ai,j |. We can remove some “weights” from the diagonal
entries of A, so that A can be written as A = D +B where D is a diagonal matrix and B satisfies
the requirement Bi,i =

∑
i 6=j |Bi,j | for all i. We then have xTAx = xTDx+ xTBx. The matrix D

can be stored explicitly, and xTBx can be reduced to the quadratic form of a Laplacian matrix as
discussed above.

Theorem B.1 Given an n×n SDD matrix A, let wmax = maxi,j |Ai,j | and wmin = mini,j with Ai,j 6=0 |Ai,j |,
and assume wmax/wmin = poly(n) We can then construct a sketch of A that gives a (1 + ε, 0.99)-
approximation to xTAx for any fixed x ∈ Rn. The size of this sketch is Õ(n/ε8/5) bits.
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