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Abstract

We initiate the study of trade-offs between sparsity
and the number of measurements in sparse recovery
schemes for generic norms. Specifically, for a norm ‖ ·‖,
sparsity parameter k, approximation factor K > 0, and
probability of failure P > 0, we ask: what is the minimal
value of m so that there is a distribution over m × n
matrices A with the property that for any x, given Ax,
we can recover a k-sparse approximation to x in the
given norm with probability at least 1 − P? We give
a partial answer to this problem, by showing that for
norms that admit efficient linear sketches, the optimal
number of measurements m is closely related to the
doubling dimension of the metric induced by the norm
‖ · ‖ on the set of all k-sparse vectors. By applying our
result to specific norms, we cast known measurement
bounds in our general framework (for the `p norms,
p ∈ [1, 2]) as well as provide new, measurement-
efficient schemes (for the Earth-Mover Distance norm).
The latter result directly implies more succinct linear
sketches for the well-studied planar k-median clustering
problem. Finally, our lower bound for the doubling
dimension of the EMD norm enables us to resolve the
open question of [Frahling-Sohler, STOC’05] about the
space complexity of clustering problems in the dynamic
streaming model.

1 Introduction

The field of sparse recovery studies the following ques-
tion: for a signal x, when is it possible to compute an
approximation x̂ to x that is parameterized by only a
small number coefficients, given only a small number
of linear measurements of x? The answers to this basic
question, i.e., the sparse recovery schemes, have found a
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surprising number of applications in a broad spectrum of
fields, including compressive sensing [CRT06, Don06],
data stream computing [Mut05] (see also the resources
at sublinear.info) and Fourier sampling [GIIS14].

A particularly useful and well-studied formalization
of this question is that of stable sparse recovery. A
general formulation of the problem is as follows. For
a norm ‖ · ‖, sparsity parameter k, probability of
failure P and an approximation factor K > 0, design
a distribution over m × n matrices A which has the
following property:

There is an algorithm A that, for any x, given
Ax, recovers a vector x̂ = A(Ax) such that

(1.1) ‖x− x̂‖ ≤ K · min
k-sparse x′

‖x− x′‖

with probability at least 1− P .

Here we say that x′ is k-sparse if it has at most
k non-zero coordinates1. The typical choices of the
norm ‖ · ‖ are either `1 or `2. However, several
other variants have been studied as well: [BGI+08,
AZGR15] studied sparse recovery under general `p
norms, [GIP10, IP11, MD13] considered the Earth-
Mover-Distance (EMD) norm, while [KW14] considered
rearrangement-invariant block norms.

It is easy to observe that the number of measure-
ments m must depend on the sparsity parameter k: the
more information about the signal we want to acquire,
the more measurements must be taken. For `1 and `2
norms, the tradeoff between m and k is well-understood:
it is known that m = O(k log(n/k)) measurements suf-
fice [CRT06], and this bound is tight [Don06, DIPW10].
For other norms, however, our understanding of the
tradeoffs is much more limited.

1.1 Our results In this paper we initiate the study
of sparsity-measurements trade-offs for generic norms2.

1Further generalizations of the problem can be obtained by

allowing the sparsity in arbitrary basis, or by allowing different
norms on the LHS and RHS of Equation 1.1. Although important,

we will not consider these generalizations in this paper.
2In fact, our results hold even for quasi-norms, e.g., `p norms

for p < 1 (see Preliminaries for more details). However, for the



Our results generalize the previously known tradeoffs,
and provide improved bounds for specific norms, no-
tably EMD and `p for p ∈ (0, 1). Further, our results
for EMD immediately yield new sketching algorithms
and new lower bounds for the low-dimensional k-median
clustering problem.

Our first result shows that, for norms that admit
efficient linear sketches the number of measurements
sufficient for sparse recovery is closely related to the
doubling dimension of k-sparse vectors under that norm.
Formally, we prove the following theorem.

Theorem 1.1. Suppose that X = (Rn, ‖ · ‖) is an n-
dimensional normed space and 1 ≤ k ≤ n be the
sparsity parameter. Assume that, for some (distortion)
parameter D ≥ 1 there is a distribution over s × n
random (sketch) matrices S and an (estimator) function
E : Rs → R such that for any x and a k-sparse y we
have

Pr[‖x− y‖ ≤ E(Sx, Sy) ≤ D‖x− y‖] ≥ 2/3.

Furthermore, let d be the doubling dimension of the set
of k-sparse vectors from Rn with respect to the metric
induced by ‖ · ‖. Then, for every 0 < ε, τ < 1/3 there
exists a distribution over random matrices A ∈ Rm×n
with

m = O
(
s ·
(
d · log(D/ε) + log log(1/τ)

))
such that for every x ∈ Rn given Ax we can recover with
probability at least 2/3 a vector x̂ ∈ Rn such that

(1.2) ‖x− x̂‖ ≤ (1 + ε)D min
k-sparse x∗

‖x− x∗‖+ τ‖x‖.

To explain the theorem, we first observe that the
guarantee given by (1.2) is analogous to the one given
by (1.1), with the exception of the extra additive term
τ‖x‖. The “precision parameter” τ can be made
arbitrarily small, at a price of increasing the number of
measurements by an extra log log(1/τ) term. Similar
tradeoffs between the precision and the number of
measurements are quite common in compressive sensing
schemes3, although we do not know whether this extra
term is necessary in our setting. Apart from the
precision dependence, the number of measurements m is
linear in the doubling dimension d, linear in the sketch
length s and logarithmic in the distortion D.

sake of simplicity, in the rest of the paper we will mostly focus on
norms.

3E.g., in most of the existing sparse Fourier transform algo-
rithms the sample complexity depends logarithmically on the pre-
cision parameter [GIIS14].

Our theorem requires that the normed space of
interest admits efficient linear sketches. We believe
that some variant of this assumption is necessary for
sparse recovery, as such sketches are needed if one wants
to estimate the approximation error, i.e., the RHS of
Equation 1.2. However, this intuition does not lend
itself to a formal argument, as e.g., for the `1 norm
there exist sparse recovery schemes [CRT06, Don06]
that satisfy Equation 1.2 without explicitly estimating
the approximation error. Still, the `1 norm supports
efficient sketches, which suggests that some form of
sketchability of the norm could be a necessary condition.

To illustrate Theorem 1.1, consider the case of the
`p (quasi)-norms for p ∈ [0, 2]. It is known [Ind06]
that these norms allow sketches with distortion D =
1 + ε and dimension s = O(1/ε2) for any ε > 0,
and it is also immediate that the doubling dimension
d is O(k log(n/k)). Therefore, for p ∈ [1, 2] our
theorem reproduces the known optimal O(k log(n/k))
measurement bound, up to the dependence on the
precision parameter τ . The same bound is obtained
for p ∈ (0, 1). The latter result is, to the best of our
knowledge, new.

We note that Theorem 1.1 is not efficient: it does
not provide a polynomial time algorithm for recovering
x̂ from Ax. Given the generality of the setting, in
particular, the fact that it allows a general (sketchable)
norm ‖ · ‖, we believe that a general polynomial time
recovery algorithm is unlikely to exist. However, it
is possible that efficient algorithms exist for specific
norms which have good computational properties. For
example, we show that for the case of the Earth-Mover
Distance norm discussed in more detail below, the
recovery algorithm runs in time polynomial in n and
logk n. In particular, the running time is polynomial
for any constant k.

Lower bound The `p norm example shows that
the bound of Theorem 1.1 is tight for some norms. In
fact, one can show that the linear dependence on the
doubling dimension d is necessary for all norms whose
“aspect ratio” is bounded by a polynomial in n. In
particular, we show the following theorem.

Theorem 1.2. Consider any norm ‖·‖ over Rn for

which 1
nc ≤

‖x‖
‖x‖2 ≤ n

c for some constant c. Let Tk ⊂ Rn

denote the set of k-sparse vectors and d > 1 denote the
doubling dimension of [0,∞)n ∩ Tk with ‖·‖. Then any
sparse recovery scheme for [0,∞)n with approximation
factor K requires m = Ω(d/ logK) measurements.

Note that the theorem holds even for vectors x ≥ 0,
which will be useful in the context of the Earth-Mover
Distance.



Rand./Deterministic Sketch length m Approx.
Deterministic k log n log(n/k) O(1)

Deterministic k log(n/k)
√

log(n/k)
Randomized k log(n/k) O(1)

Figure 1: Performance of sparse recovery schemes for
the EMD from [IP11]. The schemes assume that the
input vector x is non-negative. Each result implies a
sketching scheme for the k-median problem with the
same parameters.

Earth-Mover Distance Our results have direct
implications for sparse recovery over the Earth-Mover
Distance (EMD) norm. This norm is defined over n-
dimensional vectors with n = ∆2, where such vectors
can be interpreted as functions [∆]2 → R. Informally,
for vectors x, y : [∆]2 → R+ which have the same
`1 norm, the EMD is defined as the cost of the min-
cost flow that transforms x into y, where the cost of
transporting a “unit” of mass from a point p ∈ [∆]2

of x to a point q ∈ [∆]2 of y is equal to the `1
distance4 between p and q. See Preliminaries for a
formal definition.

Earth-Mover Distance and its variants are popular
metrics for estimating similarity between images and
feature sets [RTG00, GD05]. Furthermore, the k-sparse
approximation of non-negative vectors under the EMD
norm has the following natural interpretation. Let x̂
be the k-sparse vector closest to x under this norm.
Then one can observe that the non-zero entries of x̂
correspond to the cluster centers in the best k-median5

clustering of x. Thus, sparse recovery schemes for the
EMD norm provide methods for recovering near-optimal
solutions to the planar k-median problem from few
linear measurements of the input point-sets, a problem
that has attracted a considerable attention in streaming
and sketching literature [Ind04, FS05, IP11].

The state of the art schemes for this problem are
listed in Figure 1. In particular, the best known bound
for the number of measurements is O(k log(n/k)), which
mimics the best possible bound achievable for sparse
recovery in the `1 norm.

We show that Theorem 1.1 provides new results for
this problem. Specifically, we show that the doubling
dimension of the EMD norm over k-sparse vectors is

4One can also use the `2 distance. Note that the two distances

differ by at most a factor of
√

2 for two-dimensional images.
5For completeness, in our context the k-median clustering

problem is defined as follows. First, each pixel p ∈ [∆]2 is
interpreted as a point with weight xp. Then the goal is to find a

set C ⊂ [∆]2 of k “medians” that minimizes the objective function∑
p∈[∆]2 xp ·minc∈C ‖p− c‖2.

only O(k log log n). Combined with the known fact that
the EMD norm can be embedded into `1 with distor-
tion O(log n) [Cha02, IT03] (and therefore its sketch-
ing complexity s is constant), this implies that there
exist a sparse recovery scheme for EMD with approx-
imation factor O(log n) that uses only O(k(log logn)2)
measurements (ignoring the dependence on the preci-
sion). The running time of recovery procedure is poly-
nomial in ∆ and logk ∆ (again ignoring the dependence
on the precision), which is polynomial in ∆ for any k
up to log ∆/ log log ∆. We further show that the result
can be strengthened in three ways:

• By performing a more careful analysis of the em-
bedding procedure of [IT03], we show that it in
fact incurs a distortion of O(log k + log log n) with
constant probability, which is sufficient for our pur-
poses.

• By using a variant of the embedding (given
in [Ind07]) and combining it with a sketch
of [VZ12], we show the distortion can be reduced
further to O(log k) while increasing the sketch
length by a factor of O(logδ n) for any constant
δ > 0. Note that in the case of constant k, the
approximation we obtain is constant as well.

• Finally, we consider vectors x with the property
that, for some integer N , all entries xp are multiples
of 1/N (in this case we say that x has granularity
1/N). Such vectors correspond to characteristic
vectors of multisets of size N , and naturally occur
in the unweighted k-median problem over point
sets of size N . In this case we show that, in the
bounds for the doubling dimension and distortion,
we can replace log log n by log logN . Notably, the
bounds we obtain in this case are independent of
the ambient dimension n.

By combining these bounds with Theorem 1.1 we
obtain sparse recovery schemes for EMD with the
guarantees as in Figure 2 (see also Section 7 for the
formal statement of the results).

The aforementioned bounds are quite surprising, as
they are provably impossible to achieve for the `1 or `2
norms. In particular—for `1 and `2—one needs Ω(log n)
measurements to achieve constant approximation factor
even for k = 1, and Ω(log n/ log log n) measurements to
achieve O(log n) distortion [DIPW10]. This means that
the EMD norm is actually easier than `p norms from
the sparse recovery perspective, at least in a range of
parameters.

We also show that at least one log log n factor in
the measurement bound is necessary as long as k ≥ 2,
by proving a lower bound for the doubling dimension of



Randomized/Deterministic Sketch length m Approximation factor
Randomized k(log log n)(log(log k + log log n)) + log log(1/τ) O(log k + log log n)

Randomized k logδ n+ log log(1/τ) O(log k)
Randomized, lower bound Ω(k(log log(n/k))/ logK) K ≥ 2

Figure 2: Performance of our sparse recovery schemes for the EMD. The schemes assume that the input vector x is
non-negative. The first two results imply a sketching scheme for the k-median problem with the same parameters.

k-sparse vectors under EMD and using Theorem 1.2.
In fact, our lower bound argument applies almost
verbatim to the space complexity of the following data
stream problem: design a data structure that maintains
a vector x under increments and decrements of its
coordinates which, when queried, reports a k-sparse
approximation to x with approximation factor K with a
constant probability. As discussed earlier, in the context
of the EMD norm this task corresponds to the problem
of maintaining a k-median clustering of a dynamic point
set where points can be inserted and deleted (i.e., the
coordinates of x can be incremented and decremented).
As we show in Theorem 4.1, the space bit complexity of
this problem is Ω( d

logK log n) for general norms, thus,

in particular, Ω( k
logK log(log(∆2

k )) · log ∆) for the EMD
norm. The last bound answers the open question
of [FS05, Soh] (Section 7) who asked whether it is
possible to maintain a constant size (for fixed k and
K) “core-set”6 for the k-median and k-means problem
in dynamic data streams using a constant number
of memory words. In this paper we show that any
algorithm that solves k-median and k-means 7 in the
dynamic data stream model must use a super-constant
number of words of size log ∆, even for constant k and
K.

Finally, we show that for the case of k = 1, a
sparse recovery scheme exists with O(1) measurements
for constant d and ε, independent of n. This is again
in sharp contrast to `1 or `2 norms, as well as the
aforementioned case of k ≥ 2.

1.2 Our techniques and related work Our up-
per bound for the number of measurements relies on the
connection between sparse recovery and the approxi-
mate nearest neighbor search. Specifically, our goal can
be phrased as finding the nearest neighbor of x in a
set of bounded doubling dimension. The latter prob-

6Informally, a core-set for the k-median problem over a set of

points P is a weighted subset C ⊂ P such that a solution to C

provides an approximate solution to P . Core-sets provide a tool
for solving streaming problem for k-means and k-median problems

in data streams. See [FS05] for more details.
7The lower bound for the k-means problem is presented in

Section 9.

lem can be solved using the navigating nets data struc-
ture [KL04], and indeed we are using a similar top-down
search approach in our algorithm. However, we need to
deal with complications that arise due to the fact that
in our setting we can only estimate distances approxi-
mately and with a certain probability. Specifically, to
obtain the desired bound, we need to ensure that the
total number of distances that our sketch needs to pre-
serve is only linear in the depth of the tree. This allows
us to bound the probability of failure of the algorithm by
taking the union bound over a small number of events.
It is easy to observe, however, that the path in the tree
taken by the search algorithm is adaptive, i.e., the ap-
proximation errors incurred by the sketch at one level
affect the points considered by the algorithm at the next
level. Nevertheless we show that the path cannot be too
adaptive, and that one can identify a set of points of
size linear in the tree depth so that preserving all the
distances from those points to x ensures the correctness
of the algorithm. The details are in Section 3

Our lower bound builds on the argument
from [DIPW10], where the number of measurements was
lower bounded by encoding long bit sequences into the
signal x, such that those bits could be unambiguously
decoded by the sparse recovery algorithm. The encod-
ing proceeded on several distance scales. At each scale,
the encoding used a large set of almost equidistant k-
sparse vectors as the “dictionary”. Since the maximum
size of such sets is directly related to the doubling di-
mension of the space, the lower bound argument goes
through in the setting of a general norm. The details
are in Section 4.

The doubling dimension of the set of k-sparse
vectors under EMD was previously studied by [GKK10],
who showed that it is at most O(k log k) for the special
case of measures induced by k-sets, i.e., measures of
granularity 1/k. For this case it is in fact not difficult
to improve the bound to O(k) and we give an outline of
the improved argument in Section 5.1.1. However, for
our applications we need a bound that holds for general
measures. This makes the argument more complex,
since we need to deal with general flows. In both
cases the idea of the proof is to explicitly construct a
covering of a ball of radius R using a small number



of balls of radius R/2, by using the geometric and
combinatorial properties of planar flows. The details
are in Section 5.1.1 (for general non-negative vectors)
and Section 5.1.2 (for vectors of bounded granularity).

Our improved analysis of the embedding of [IT03],
as well as the analysis of the embedding from [Ind07],
utilize the fact that our application allows us to relax
the standard embedding definition in two ways. First,
we only need to preserve the distance between a k-sparse
vector and a general vector, as opposed to between any
pair of vectors (see the statement of Theorem 1.1 for the
precise guarantee that we are after). Second, we only
need to ensure that the distances are preserved with
constant probability, not in expectation, which means
that we can tolerate events that incur high distortion
as long as they occur with low enough probability.
Combining the two relaxations8 with a more careful
analysis allows us to achieve the improved bound,
surprisingly almost without any modifications to the
embeddings themselves. The details are in Section 6.

We note that if one wants to preserve EMD between
two vectors that are both k-sparse, then one can embed
those vectors into `1−ε with distortion O(log k) [BI14],
which yields a sketch with the same distortion and
constant size [Ind06]. Also, for the case when one of
the vectors is k-sparse, a recent work [YO14] shows
a sketch with distortion O(min(k3, log n)) and size
roughly O(log4 n). The sketch in this paper substan-
tially improves over the latter bound.

For the 1-median problem we solve an `1-regression
problem. We give oblivious sketches that provide sub-
space embeddings for the `1-norm for d-dimensional
subspaces with a “disjoint basis” property that arises
in this setting. Our embedding works when the basis
is expressible as the union of a small number of sets
of vectors, where in each set the vectors have disjoint
support. Unlike existing oblivious embeddings for `1
[CDM+13, MM13, SW11, WZ13], we obtain (1 + ε) in-
stead of poly(d) distortion, and low δ instead of con-
stant probability of failure (to simultaneously preserve
norms of all vectors in the space). Our embedding
maps n-dimensional vectors to O(d/ε2 log(d/(δε))) di-
mensions. We overcome non-embeddability results for
`1 [BC05, CS02] by using a non-convex estimator. This
is reminiscent of estimators for data streams [Ind06],
but complicated here by the fact that we require the
stronger notion of a subspace embedding. It is known
(see, e.g., [ABS10]) that for constant d and ε one can

8It can be seen that both relaxations are needed in order to
achieve the better bound. In particular, the expected distortion
of the embedding is Θ(logn), even for a pair of 1-sparse vectors.

Similarly, if k = n, the distortion of the embedding is Ω(logn)
with probability 1− o(1).

solve the 1-median by taking O(1) samples and solv-
ing the problem on the samples, but this cannot be
expressed as a linear sketch with fewer than Ω(log n)
measurements (the sampling lower bound follows from
Theorem 8 of [JST11]), whereas we achieve O(1) mea-
surements. The details are in Section 8.

2 Preliminaries

EMD. We start by defining EMD. Consider any
two non-negative vectors x, y : [∆]d → R+ such that
‖x‖1 = ‖y‖1. Let Γ(x, y) be a set of functions γ :
[∆]d× [∆]d → R+, such that for any i, j ∈ [∆]d we have∑
l γ(i, l) = xi and

∑
l γ(l, j) = yj . Then we define

EMD∗(x, y) = inf
γ

∑
i,j∈[∆]d

γ(i, j)‖i− j‖1

Note that if x and y are characteristic vectors of some
sets A,B ⊂ [∆]d, then EMD∗(x, y) is equal to the value
of the minimum cost matching between A and B.

For the case of general vectors x, y, we define

EMD(x, y) = inf
x′≤x,y′≤y
‖x′‖1=‖y′‖1

EMD∗(x′, y′)+D[‖x−x′‖1+‖y−y′‖1]

where D = d∆ is the diameter of the set [∆]d.
Metric spaces. For a metric space (X, dX), we

define BX(u, r) or, equivalently, BallX(u, r) to be the
ball centered at u or radius r containing all points from
X within r from u: BX(u, r) := {x ∈ X : dX(u, x) ≤
r}. Further, for a metric space (X, dX), the doubling
dimension is the smallest number d such that, for every
r > 0 and any x ∈ X, we can choose x1, x2, ..., x2d ∈ X
with

BX(x, r) ⊆ BX(x1, r/2)∪BX(x2, r/2)∪...∪BX(x2d , r/2).

Finally, for K ≥ 1 we define a K-quasi-metric
space as a variant of a metric space, where we have
the following relaxed triangle inequality: d(x, y) ≤
K ·

(
d(x, z) + d(z, y)

)
. Thus, every metric space is a

1-quasi-metric space. We define K-quasi-norms in an
analogous way.

3 General upper Bound on Measurement
Complexity

Suppose we have a K-quasi-metric space M = (X, ρ)
and a closed subset Y ⊆ X with doubling dimension d.
Let us assume we can sketch distances between points
from X and Y with distortion D, sketch size s and
success probability at least 2/3 (see Theorem 1.1 for
the formal definition).

The following Lemma builds on a result from [KL04]
on approximate nearest neighbor search in doubling
spaces.



Search Procedure:
y0 ← the only element of N0

for i← 1 . . . L do
Si ← Ni ∩BX(yi−1, βri)
yi ← argminy∈Si q(y)
if q(yi) > γri then

return yi−1

return yL

Lemma 3.1. For every 0 < ε < 1/2, 0 < λ < Λ and
y0 ∈ Y one can sketch points of X with sketch size

O
(
s ·
(
d log(DK/ε) + log log(Λ/λ)

))
so that from this sketch for x ∈ X with ρ(x, y0) ≤ Λ we
can recover with probability at least 2/3 a point ŷ ∈ Y
such that

(3.3) ρ(x, ŷ) ≤ max((1 + ε)DK · ρ(x, Y ), λ).

Proof. First, we describe the recovery procedure and
then show how to sketch points. For now, we assume
that for the point of interest x ∈ X and for every y ∈ Y
we know a number q(y) such that

(3.4) ρ(x, y) ≤ q(y) ≤ D · ρ(x, y).

The recovery procedure we describe has several
parameters: a positive integer L, a real 0 < α < 1
and real β, γ > D. For the reasons that will be clear
later we require that

(3.5) K2 · (α+ 2γ) ≤ αβ.

The recovery procedure is as follows. First, for
every 0 ≤ i ≤ L we build a ri-net Ni of Y ∩BX(y0,Λ),
where ri = 2αiΛ such that all pairs of points from Ni
have pairwise distances larger than ri. In particular,
|N0| = 1, and for every i the size of Ni is finite since
the doubling dimension d of Y is finite. Such a net
can be found using a straightforward greedy algorithm.
Second, given a point x ∈ X with ρ(x, y0) ≤ Λ we
recover an approximate nearest neighbor from Y as
follows:

Now let us analyze this procedure. Denote y∗ =
argminy∈Y ρ(x, y) one of the nearest neighbors for x
from Y (note that y∗ exists, since Y is assumed to
be closed). The proof follows from the following three
claims (the proofs are in Section 3.1).

Claim 3.1. If (3.5) holds and for some 1 ≤ i ≤ L one
has q(yi−1) ≤ γri−1, then ρ(y∗, Si) ≤ ri.

Now let us analyze the case when the algorithm
returns yi−1 for some 1 ≤ i ≤ L.

Claim 3.2. If (3.5) holds and the algorithm returns
yi−1 for some 1 ≤ i ≤ L, then

ρ(x, yi−1)

ρ(x, y∗)
<

DKγ

α(γ −DK)
.

Next, suppose that our algorithm returns yL.

Claim 3.3. If (3.5) holds and the algorithm returns yL,
then ρ(x, yL) ≤ 2γαLΛ.

Let us now show how to set L, α, β and γ.
Claims 3.2 and 3.3 imply that in order to satisfy (3.3)
we need to satisfy together with (3.5) the following
conditions:

DKγ

α(γ −DK)
≤ (1 + ε)DK,(3.6)

2γαLΛ ≤ λ.(3.7)

It is immediate to see that we can satisfy (3.5), (3.6)
and (3.7) simultaneously by setting α = 1 − Θ(ε), β =

Θ(DK3/ε), γ = Θ(DK/ε) and L = Θ
(

1
ε · log DKΛ

ελ

)
.

So far we assumed that we have access to a function
q(·) that satisfies (3.4). In reality we build such a
function from sketches of distances between points from
X and Y . Suppose we can build a subset9 Q ⊆ Y
with |Q| ≤ N such that for a given x ∈ X the recovery
procedure can query q(y) only for y ∈ Q. Then, we
can use the standard amplification argument for the
median estimator, and sketch x in size O(s logN) to get
a randomized function q′(·) such that for every y ∈ Q
one has Pr [ρ(x, y) ≤ q′(y) ≤ D · ρ(x, y)] ≥ 1− 1

3N . Now
we use q′(·) for the recovery and by the union bound
the recovery algorithm succeeds with probability at
least 2/3. It is only left to upper bound N for an
appropriately chosen set Q.

It is clear that we query q(·) for points only from⋃
i∈[L]

q(x,yi−1)≤γ·ri−1

Si ⊆
⋃
i∈[L]

ρ(x,yi−1)≤γ·ri−1

Si

(the inclusion is by (3.4)). By Claim 3.1 the right-hand
side is included in

Q =
⋃

1≤i≤L

(
Ni ∩BX(y∗,K2 · (1 + 2β) · ri)

)
.

Since Y has doubling dimension d and points from Ni

are ri-separated, we get N = |Q| ≤ L·
(
K2·(1+2β)

)O(d)
.

9Note that Q is more than just a single path from the
“root” to the solution, as the behavior of the algorithm is not

deterministic and depends on the random bits chosen by the
sketching procedure.



Now using the values of L, α, β and γ, we get that the
final sketch size is O(s logN) ≤ O(s ·(d log(K ·(1+β))+

logL)) ≤ O
(
s ·
(
d log(DK/ε) + log log(Λ/λ)

))
.

Corollary 3.1. Suppose that X is induced by a norm
of dimension n, and that there is an algorithm that
computes the sets Si defined by the search procedure in
time |Si|O(1). Then the search procedure runs in time

polynomial in N = L ·
(
K2 · (1 + 2β)

)O(d)
and n.

3.1 Proofs

Proof. [Proof of Claim 3.1] Let y′ ∈ Ni be a point such
that ρ(y∗, y′) ≤ ri (recall that Ni is an ri-net of Y ).
Clearly, it is sufficient to prove that y′ ∈ Si. This is
equivalent to the condition ρ(y′, yi−1) ≤ βri. Let us
verify the latter:

ρ(y′, yi−1) ≤ K ·
(
ρ(y∗, y′) + ρ(y∗, yi−1)

)
≤ K·

(
ri+ρ(y∗, yi−1)

)
≤ K2·

(
ri+ρ(x, y∗)+ρ(x, yi−1)

)
≤

≤ K2 ·
(
ri + 2ρ(x, yi−1)

)
≤ K2 ·

(
ri + 2q(yi−1)

)
≤ K2·(ri+2γri−1) = K2·(α+2γ)·ri−1 ≤ αβri−1 = βri,

where the third inequality follows from the definition
of y′, the fourth inequality follows from the definition
of y∗, the fifth inequality follows from (3.4), the sixth
step follows from the statement of the Claim, and the
penultimate step follows from (3.5).

Proof. [Proof of Claim 3.2] First, observe that by (3.4)
and the fact that the algorithm returns yi−1 we have
ρ(x, yi−1) ≤ q(yi−1) ≤ γri−1. Second, by (3.4) and
Claim 3.1,

γri
D

<
q(yi)

D
≤ ρ(x, yi) = ρ(x, Si)

≤ K ·
(
ρ(x, y∗) + ρ(y∗, Si)

)
≤ K ·

(
ρ(x, y∗) + ri

)
.

Thus,

ρ(x, y∗) >
( γ

DK
− 1
)
· ri.

Overall,

ρ(x, yi−1)

ρ(x, y∗)
<

γri−1(
γ
DK − 1

)
· ri

=
DKγ

α(γ −DK)
.

4 General lower Bound on Measurement
Complexity

We use a . b to denote that there exists a universal
constant C such that a ≤ Cb. We use a & b to denote
b . a and a h b to denote a . b . a.

We work with the linear sparse recovery scheme
as in the Introduction (Equation (1.1)). We set the
probability of error to be P = 1

4 .

The following lemma generalizes the result
in [DIPW10] to general norms and nonnegative inputs.

Lemma 4.1. Consider any norm ‖·‖ over Rn for which
1
nc ≤

‖x‖
‖x‖2 ≤ nc for some constant c. Further suppose

that there exists a set X ⊂ [0,∞)n of k-sparse vectors
such that ‖x‖ h 1 for all x ∈ X and ‖x − x′‖ & 1
for all x 6= x′ ∈ X. Then any linear sparse recovery
scheme with approximation factor K over [0,∞)n must

use m & log|X|
logK linear measurements.

Proof. We first show a set of assumptions we can make
without loss of generality, then give an algorithm to
solve augmented indexing using sparse recovery, then
analyze the algorithm.

WLOG assumptions and setup. First, we
show that we can assume that x ∈ X have coordinates
that are multiples of 1/nc+1. Let x′ be x rounded to
the nearest multiple of 1/nc+1 in each coordinate, so
‖x − x′‖∞ ≤ 1/nc+1. Therefore ‖x − x′‖2 ≤

√
n/nc+1

or ‖x−x′‖ ≤ 1/
√
n. This means that replacing x with x′

would also satisfy the conditions with negligibly worse
constants and have coordinates that are multiples of
1/nc+1.

We would like to give a lower bound for all ran-
domized sparse recovery schemes that work for each in-
put with 3/4 probability. By Yao’s minimax principle,
it suffices to give an explicit distribution on inputs for
which no deterministic sparse recovery scheme (A,A)
can work with 3/4 probability. Furthermore, we may
assume that A ∈ Rm×n has orthonormal rows (other-
wise, if A = UΣV T is its singular value decomposition,
Σ+UTA has this property and the transformation can
be inverted before applying the algorithm).

We use the following lemma from [DIPW10]:

Lemma 4.2. Consider any m × n matrix A with or-
thonormal rows. Let A′ be the result of rounding A to
b bits per entry. Then for any v ∈ Rn there exists an
s ∈ Rn with A′v = A(v − s) and ‖s‖1 < n22−b‖v‖1.

Proof. Let A′′ = A − A′ be the roundoff error, so each
entry of A′′ is less than 2−b. Then for any v and
s = ATA′′v, we have As = A′′v and

‖s‖1 = ‖ATA′′v‖1 ≤
√
n‖A′′v‖1 ≤ m

√
n2−b‖v‖1
≤ n22−b‖v‖1.

Now, let A′ be A rounded to c′ log n bits per entry
for c′ to be chosen later. By Lemma 4.2, for any
v we have A′v = A(v − s) for some s with ‖s‖1 ≤
n22−c

′ logn‖v‖1, so

‖s‖ ≤ n2c+2−c′‖v‖.



We are now ready to construct the lower bound
of m via a reduction from the one-way augmented
indexing problem in communication complexity. In this
problem, Alice has a bit string b of length r log |X|
for r = log n, and Bob has an index i∗ ∈ [r log |X|]
as well as b1, . . . , bi∗−1. Alice must send a message to
Bob, who must output bi∗ with 2/3 probability. It is
known that the message must contain Ω(r log |X|) =
Ω(log n log |X|) bits. We will show a way to use the
sparse recovery algorithm to solve augmented indexing
with O(m · log n · logK) bits, giving the lower bound of

m & log|X|
logK .

Algorithm to solve augmented indexing.
Alice turns her r log |X| bits into a list x1, . . . , xr ∈ X.
She then defines

z =
r∑
i=1

xi/(KC)i

for a sufficiently large constant integer C to be specified
later, and

y = A′z.

Since ‖z‖ ≤
∑r
i=1‖xi‖/(KC)i . 1, we have that

y = A(z − s) for some s with ‖s‖ ≤ n2c+2−c′ . Alice
then sends y to Bob.

Transmitting y takes O(m · log n · logK) bits. To
see this, note that each coordinate of z is a multiple
of 1

nc+1(KC)r that is at most nc, and each coordinate

of A′ is a multiple of 1/nc
′

that is at most 1. Hence
each coordinate of y = A′z is a multiple of 1

nc′+c+1(KC)r

that is at most nc+1, which can be represented in
log(nc

′+2c+2(KC)r) . log n · (c′ + logK) bits. There
are m coordinates, so transmitting y takes O(m · log n ·
(c′ + logK)) bits.

Now, based on his inputs b1, . . . , bi∗−1 and i∗, Bob
can figure out x1, . . . , xi′−1 and wants to figure out xi′

for i′ = 1 + bi∗/ log |X|c. Once he learns y = A′z =
A(z − s), Bob chooses u ∈ [0, 1

KCnc+1 ]n uniformly at
random, and computes

y′ = (KC)i
′
(y −A

i′−1∑
i=1

xi/(KC)i) +Au.

Bob then performs sparse recovery using A on y′ getting
a result x̂. He rounds x̂ to the x ∈ X minimizing ‖x−x̂‖.
We will show that x = xi′ with at least 2/3 probability;
if this happens, Bob can recover bi∗ from the associated
vector xi′ .

Analysis of algorithm. We have that y′ =
A(z′ − s+ u) for z′, s with ‖s‖ . n2c+2−c′ and

z′ = xi′ +

r−i′∑
j=1

xi′+j/(KC)j =: xi′ + w

for w =
∑r−i′
j=1 xi′+j/(KC)j having ‖w‖ . 1/(KC).

Then y′ = A(xi′ + w + u− s).
For now, pretend that Bob performed sparse recov-

ery on A(xi′ + w + u) instead of A(xi′ + w + u − s).
The distribution of xi′ +w+u depends on the distribu-
tion of inputs to the augmented indexing problem, but
it is independent of the choice of A and is over [0,∞)n.
Therefore we can choose our A to be a matrix that lets
us perform sparse recovery with 3/4 probability over
this distribution. Then the result x̂ of sparse recovery
satisfies

(4.8)
‖x̂− (xi′ + w + u)‖ . K min

k-sparse x
‖xi′ + w + u− x‖

≤ K‖w + u‖

with 3/4 probability, or

(4.9) ‖x̂− xi′‖ . K(‖w‖+ ‖u‖) . 1/C

If C is a sufficiently large constant, this is less than

(4.10) min
x6=x′∈X

‖x− x′‖/2 & 1.

Therefore, when Bob rounds x̂ to X, he gets xi′

whenever sparse recovery succeeds, as happens with 3/4
probability.

In fact, Bob performs sparse recovery on A(xi′ +
w + u − s) not A(xi′ + w + u). However, the latter is
statistically close to the former. In particular, ‖s‖∞ .
n3c+2−c′ so that the total variation distance

TV(u, u− s) . n · n3c+2−c′

1/(Knc+1)
≤ Kn4c+4−c′

Setting c′ = 4c+ 5 + logK
logn , we get that

TV(A(xi′+w+u), A(xi′+w+u−s)) ≤ TV(u, u−s) . 1/n.

Therefore Bob’s rounding of x̂ to X will equal xi′ with
probability at least 3/4 − O(1/n) > 2/3. This solves
the augmented indexing problem with only O(m log n ·
(c′ + logK)) = O(m log n · logK) bits of communica-
tion. Since augmented indexing requires Ω(r log |X|) =
Ω(log n log |X|) bits of communication in this setting,

we have m & log|X|
logK .

Proof. [Proof of Theorem 1.2.] Define S = [0,∞)n ∩
Tk ∩ {x ∈ Rn : ‖x‖ ≤ 1}.

Because the space and the norm are homogeneous,
we have by the definition of doubling dimension that
covering S requires 2d balls of radius 1/2. Therefore
we can find a packing X ⊂ S of 2d points such that
minx 6=x′∈X‖x−x′‖ ≥ 1/2. This also means at most one
x ∈ X has ‖x‖ < 1/4. Throwing this possible element
out, we get a set of size 2d− 1 satisfying the constraints

of Lemma 4.1, giving that m & log(2d−1)
logK & d

logK .



4.1 Lower bound for streaming algorithms In
this section we show a lower bound on the space bit
complexity of any streaming algorithm that maintains
an approximately best k-sparse approximation of a
vector with respect to any norm ‖ · ‖ on Rn such that

(4.11) n−O(1) ≤ ‖x‖
‖x‖2

≤ nO(1)

for every x ∈ Rn.

Theorem 4.1. Suppose that there is an algorithm that
can maintain a vector x ∈ Rn under updates of the form
xi := xi+ δi, where δi ∈ Z, and, moreover, suppose that
we are promised that all entries of x at any moment of
time are integers between 0 and nO(1). In the end, the
algorithm is required to output a vector y such that

‖x− y‖ ≤ K · min
k-sparse x∗

‖x− x∗‖,

where K > 2 is some approximation factor. Then, the
space bit complexity of the algorithm must be at least

Ω

(
d · log n

logK

)
,

where d is the doubling dimension of the non-negative
k-sparse vectors under ‖ · ‖.

The rest of this section is devoted to proving this
Theorem. We roughly follow the above argument for
proving the lower bound for sparse recovery. However,
in this case, the argument is even simpler since we do not
need to handle issues related to the sketching matrix.

First, we take r = 2Ω(d) non-negative k-sparse
vectors v1, . . . , vr whose ‖ · ‖-norm is Θ(1) and that
are Ω(1)-pairwise separated wrt ‖ · ‖. We will show
how Alice and Bob can solve Augmented Indexing on

b = Ω
(
d logn

logK

)
-bit strings using the assumed algorithm.

Alice partitions her b-bit sequence into blocks of length
log r = Ω(d), encodes each block in one of the vi’s
(denote it by uj for 1 ≤ j ≤ b/ log r), and then feeds
the (properly rescaled and discretized) vector

U =

b/ log r∑
j=1

uj
(CK)j

,

where C > 0 is a sufficiently large constant, to the
algorithm. Bob takes over, starting from this moment,
subtracts the part of U that corresponds to his prefix
and then uses the algorithm to recover the next uj .

Overall, we have that the required space is at least

Ω(b) = Ω
(
d · logn

logK

)
. The only remaining fact we need

to argue about is why the accuracy [0, nO(1)] per entry
is sufficient. First, we use (4.11) to claim that the
polynomial in n accuracy is enough to represent vi’s
with the required conditions. Second, since b/ log r ≈
log n/ logK, we get that U can be represented with
accuracy polynomial in n.

5 Doubling dimension of EMD

5.1 Upper bounds

5.1.1 General measures We will prove that the
doubling dimension of k-sparse probability measures
over [∆]2 equipped with EMD is O(k log log ∆). For
a weaker and simple bound O(k log k) on the doubling
dimension in the case of k-sparse subsets, see [GKK10].
In fact, it is not hard to prove upper bound O(k) on the
doubling dimension for k-sparse subsets. Notice that in
this case the upper bound on the doubling dimension
does not depend on the size of the grid. We will now
provide an intuition why the upper bound O(k) holds.

We have an EMD ball BallEMD(µ,R) or radius R
centered at k-sparse measure µ such that µ(x, y) = 1 for
all (x, y) ∈ supp(µ). (We can think of µ as a k-sparse
set.) And we would like to cover all k-sparse subsets
within BallEMD(µ,R) with 2O(k) EMD balls of radius
R/2 centered at k-sparse subsets.

First, let’s show how to cover all subsets o ∈
BallEMD(µ,R) with o satisfying ‖oi − µi‖1 = Θ(R/k)
for all i ∈ [k]. oi and µi denote points in supp(o)
and supp(µi) and they get matched togefther in the
optimal transportation between o and µ. For this,
we take R/(100k)-net of Ball`1(µi, 10R/k) for every
i ∈ [k]. Every such net is of size O(1). To cover all
the o ∈ BallEMD(µ,R), we need to take a representative
from a net from Ball`1(µi, 10R/k) for all i ∈ [k] and
combine representatives in k-sparse subsets. There
are 2O(k) possible ways to construct subsets by taking
representatives.

In the case when we do not have the mentioned
guarantee at the beginning of the previous paragraph,
we can guess values ‖oi − µi‖1 up to a constant factor
and construct covers for all guesses. We need to show
that it is enough to take at most 2O(k) guesses. And it
can indeed be shown by noticing that we do not need
to cover `1 balls of very small radius (when ‖oi − µi‖1
is small).

We proceed by showing upper bound on the dou-
bling dimension when we consider arbitrary measures
with support of size at most k living in a square of side
length ∆.

Lemma 5.1. The doubling dimension of the set of k-
sparse probability measures over [∆]2 under EMD met-



ric is O(k log log ∆).

Proof. Let µ be a k-sparse probability measure over [∆]2

and let R > 0 be some real number. Our goal is to cover
BEMD(µ,R) with logO(k) ∆ EMD-balls centered in k-
sparse measures and of radius R/2. In order to achieve

this it is sufficient to cover BEMD(µ,R) with logO(k) ∆
EMD-balls centered in arbitrary measures and of radius
R/4.

The pseudocode in Figure 3 builds a set of measures
M that serve as centers of balls with radius R/4 that
together cover BEMD(µ,R). Roughly speaking, we
first guess the topology of the optimal flow. Then we
guess the lengths of the corresponding edges. Then we
guess the support. And finally we guess the masses
transported over the edges.

We assume that BuildNet(p, r) returns an
(r/100)-net of B`21(p, r) ∩ [∆]2. It is immediate that

|M| ≤ logO(k) ∆, and that the running time of the above

procedure is also logO(k) ∆. It is left to show that for ev-
ery k-sparse µ′ such that EMD(µ, µ′) ≤ R, there exists
µ′′ ∈M with EMD(µ′′, µ′) ≤ R/4.

Claim 5.1. There exists an optimal flow between µ and
µ′ that is supported on at most 2k pairs of points.

Proof. Consider an optimal flow from µ to µ′. Consider
an undirected graph G = (V,E) with V = supp(µ) ∪
supp(µ′). We connect two vertices (x, y) ∈ supp(µ)
and (x′, y′) ∈ supp(µ′) iff there non-zero amount flowing
from (x, y) to (x′, y′) in the flow.

If |E| ≥ 2k+1, then there is a cycle e1, e2, ..., e2m ∈
E of even length 2m in the graph G. W.l.o.g. assume
that the total length of ei with even i is at most the total
length of ei with odd i. Let us increase all flows over
ei with even i and decrease all flows over ei with odd i
by the same amount such that at least one edge carries
zero flow. Clearly, the total cost can only decrease.

Repeating the above process several times, we arrive
at a flow supported on at most 2k edges.

Thus, in our enumeration algorithm at least one
c(x, y) corresponds to the number of outgoing flow edges
from (x, y) ∈ suppµ (Line 6). When we enumerate l
there is at least one choice that guesses all the lengths
of the corresponding edges within a multiplicative factor
of 1.01 (Line 8). Thus, there exists a measure µ̃ (not
necessarily k-sparse) such that

• supp µ̃ ⊆ suppµ ∪ {p(x, y, i)}(x,y,i)∈I ;

• EMD(µ′, µ̃) ≤ R/50;

• there exists a flow between µ and µ̃ of cost at
most 1.02 · R that transports mass from a point

(x, y) to {(x, y)} ∪ {p(x, y, i)}i:(x,y,i)∈I for every

(x, y) ∈ suppµ.

We have that µ̃ covers µ′, i.e, that EMD(µ′, µ̃) ≤
R/100, and that the procedure in the pseudocode will
guess supp(µ̃) but not necessarily µ̃. After guessing
the support (Line 9), the pseudocode proceeds by
trying to guess the measure at the support (Line 10).
We will show that there will be guess µ′′ made by
the pseudocode with supp(µ′′) ⊆ supp(µ̃) that satisfy
EMD(µ̃, µ′′) ≤ 2R/50.

Fix (x, y) ∈ suppµ. We show to deal with
the multi-set {(x, y)} ∪ {p(x, y, i) : (x, y, i) ∈
I}. We round down the mass in µ̃ at the
coordinates {p(x, y, i)} to the closest element of{

0,m0, 1.01 ·m0, 1.012 ·m2
0, . . . ,min(1, R)

}
(Line 11).

Let µ′′ be the resulting measure. We also set
µ′′((x, y)) :=

∑
i:(x,y,i)∈I(µ̃(p(x, y, i)) − µ′′(p(x, y, i)))

(Line 19). One can observe that µ′′ is included in the
set measures enumerated by our algorithm.

We now show that EMD(µ′′, µ̃) ≤ 2R/50. The cost
of EMD(µ′′, µ̃) comes from two sources:

1. Contribution from (x, y, i) ∈ I for which
µ̃(p(x, y, i)) < m0. Then µ′′(p(x, y, i)) = 0.
There are at most 2k such (x, y, i) ∈ I. But we
can reroute these small masses with cost at most
2∆km0 ≤ 0.02R.

2. Contribution from (x, y, i) ∈ I for which
µ̃(p(x, y, i)) ≥ m0. This implies that the value of
µ̃(p(x, y, i)) is within 1% of µ′′(p(x, y, i)). There-
fore, the total contribution of such coordinates
(x, y, i) ∈ I is at most 0.01 · EMD(µ, µ̃) ≤ 0.02R.

Thus, overall we have ‖µ′ − µ′′‖EMD ≤ ‖µ′ −
µ̃‖EMD +‖µ̃−µ′′‖EMD ≤ (0.02 + 0.02 + 0.02) ·R < R/4.

5.1.2 Measures with bounded granularity

Lemma 5.2. Consider set S of all k-sparse measures
µ such that, for all coordinates (x, y), µ(x, y) is equal
to i/N for some non-negative integer i and the total
measure of µ is 1. The set S, under EMD, has doubling
dimension O(k log logN).

Proof. Let BallEMD(p, r) be EMD ball of radius r con-
taining k-sparse probability measures of granularity
1/N over plane. p ∈ S is the center of the ball. Further
down we will denote BallEMD(p, 1) by B.

Case 1. | supp(p)| = 1. WLOG, the entire
probability mass of p is at point (0, 0). We can verify
that µ ∈ B implies supp(µ) ⊆ [−100N, 100N ]2.

Let B′ be the set of all probability measures µ
with properties that µ has granularity 1/n, supp(µ) ⊆



1: m0 ← R/(100∆k)
2: M← ∅
3: for c : suppµ→ Z>0 such that

∑
(x,y)∈suppµ c(x, y) ≤ 2k do

4: I ← {(x, y, i) | (x, y) ∈ suppµ, 1 ≤ i ≤ c(x, y)}
5: for l : I →

{
1, 1.01, 1.012, . . . , 2∆

}
do

6: for (x, y, i) ∈ I and for all p(x, y, i) ∈ BuildNet((x, y), l(x, y, i)) do
7: for m : I →

{
0,m0, 1.01 ·m0, 1.012 ·m0, . . . ,min(1, R)

}
do

8: if for every (x, y) ∈ suppµ we have
∑
i : (x,y,i)∈Im(x, y, i) ≤ µ(x, y) then

9: let µ′ be a measure over [∆]2 that is identically zero
10: for (x, y) ∈ suppµ do
11: s← 0
12: for i : (x, y, i) ∈ I do
13: s← s+m(x, y, i)
14: µ′(p(x, y, i))← µ′(p(x, y, i)) +m(x, y, i)

15: µ′(x, y)← µ′(x, y) + µ(x, y)− s
16: M←M∪ {µ′}

Figure 3: Pseudocode for the net construction

[−100N, 100N ]2, all coordinates of points from supp(µ)
are of the form i

1000k for an integer i. We can verify
that, for every µ ∈ B, there exists µ′ ∈ B′ with

‖µ− µ′‖ ≤ | supp(µ)|
1000k ≤ 1/1000.

Therefore, if we construct 1
60 -cover X of B′ as per

Lemma 5.1 of size |X| = (logN)O(k), X is also 1
100 -cover

of B and we get the required upper bound.
There is one issue, though. It might be that the

measures from cover X does not have granularity 1/N .
To deal with this, we first build 1

200 -cover X of B′

according to Lemma 5.1. Then, for every measure
µ from the cover, if µ is not of granularity 1/N and
EMD ball of radius 1

200 around µ does not contain any
measure of granularity 1/N , we discard this measure
because it does not cover any measure of interest. If,
on the other hand, the EMD ball of radius 1/200 does
contain measure µ′ of granularity 1/N , we replace µ
with µ′ in the cover. Clearly, increasing the radius by
a factor of 2, still covers all the previous points, i.e.,
BallEMD(µ, 1/200) ⊆ BallEMD(µ′, 1/100).

Case 2. | supp(p)| > 1. We denote elements of
supp(p) by (x, y). Because of granularity of measures,
if µ ∈ B, then supp(µ) ⊆

⋃
(x,y)∈supp(p) S(x,y), where

S(x,y) = [x− 100N, x+ 100N ]× [y − 100N, y + 100N ]

denotes a square in plane with side length 200N .
We construct a graph with vertices S(x,y), (x, y) ∈

supp(p). We connect two vertices if the corresponding
squares have non-empty intersection. We consider
connected components of the resulting graph. We want
to move the connected components so that, in the end,
all of them live inside a square of side length 109N2

and distance between any two connected components is
≥ 105N . We can verify that we can do that.

Let p′ denote the resulting measure and (x′, y′) ∈
supp(p′) be the resulting elements of the support. We
round the coordinates of the elements of supp(p′) so
that all x′ and y′ are of the form i

1000k for some integer
i. Let p′′ be the measure after the rounding.

We can check that EMD(p′, p′′) ≤ supp(p′)
1000k ≤

1/1000. Therefore, if we construct 1
100 -cover of

BallEMD(p′′, 1.1), we get 1
100 -cover of BallEMD(p′, 1).

Consider all probability measures from
BallEMD(p′′, 1.2) with the property that all coor-
dinates of elements of supports of measures have
form i

1000k for some integer i. We denote this set by
Ball′EMD(p′′, 1.2). 1

200 -cover for Ball′EMD(p′′, 1.2) gives
1

200 + 1
1000 <

1
100 -cover for BallEMD(p′′, 1.1).

To construct 1
200 -cover for Ball′EMD(p′′, 1.2), we

start by constructing 1
400 -cover of Ball′EMD(p′′, 1.2) by

measures not necessarily having granularity 1
N . To get

measures with granularity 1
N , we proceed in the same

way as in Case 1, i.e., we consider 2 cases. If a measure
in the 1

400 -cover does not have a measure of granularity
1
N within EMD distance 1

400 , then discard this measure
from the cover. Otherwise, replace the measure with
the measure that has granularity 1

N . We can see that
the set of measures that these operations produce, is
2 · 1

400 = 1
200 -cover Ball′EMD(p′′, 1.2) and has granularity

1
N . From Lemma 5.1, the size of the cover is (logN)O(k).
As a result, we have 1

100 -cover of BallEMD(p′, 1). All
measures in the cover have granularity 1

N .
Given 1

100 -cover of BallEMD(p′, 1), we would like to
construct 1

100 -cover of B. Given that p and all measures



from the cover have granularity 1
N , we can make the

following assumption. The optimal transportation of
probability measure from p to every measure from the
cover has probability mass on every edge of amount
i
N for some non-negative integer i. As a result, if
µ is a measure from 1

100 -cover of BallEMD(p′, 1), in
the optimal transportation of p′ into µ (that achieves
cost EMD(p′, µ)), µ has non-zero amount on edges
to elements of supp(p′) that corresponds to at most
one component of the graph. (This follows because
the connected components are highly separated in p′.)
This gives that we can move components independently.
We move the components to their original positions
(according in p) and accordingly transform measures in
the cover. This gives 1

100 -cover for B.

5.2 Lower bounds

Lemma 5.3. Weighted point-sets over [∆] of cardi-
nality k under EMD has doubling dimension Ω(k) ·
log
(
Ω(log ∆

k )
)

for k > 1.

Proof. WLOG, we assume that ∆ is an integer power
of 2. By (x,w) we denote a point with coordinate x and
weight w. Let set A be a weighted point-set of size k.
For i = 1, 2, 3, ..., k/2, we set the i-th point of A to be
Ai = (2i∆/k, 2). The remaining k/2 points has weight
0 and arbitrary coordinates on the line.

Let I = i1, i2, ..., ik/2 for 0 ≤ ij ≤ logU (we will
later set U = ∆/k), and let BI be a point-set defined as

BI = ∪k/2j=1

{
(2j∆/k, 2− 2−ij ), (2j∆/k + 2ij , 2−ij )

}
,

We constructed BI such that EMD(A,BI) = k/2
for all I.

Consider an EMD ball of radius k/2 around A,
i.e., BallEMD(A, k/2). We will show that the number
of EMD balls of radius k/200 needed to cover it is(
log ∆

k

) k
2 ·

9
10 /2k, which yields the result.

Consider a k
200 -cover of BallEMD(A, k/2). We will

show that the size of the cover must be large. Consider a
weighted pointset BI for some I = i1, i2, ..., ik/2. Given
that BI is covered by an element from the cover, there
must be an element C from the cover with the property
that at least 9/10 fraction of intervals

[2j∆/k + 2ij − 2ij/10 , 2j∆/k + 2ij + 2ij/10]

(for j = 1 . . . k/2) contains an element from supp(C).
We call that C hits BI and the set of elements of
supp(C) that is contained in some interval we call the
hitting set of BI . Otherwise, for any C that does not
satisfy this property, we have

EMD(BI , C) >

(
1− 9

10

)
· | supp(BI)| ·

1

10
=

k

200
.

There are∣∣{BI |I = i1, i2, ..., ik/2 and 0 ≤ ij ≤ logU for j ∈ [k/2]
}∣∣

=

(
log

∆

k

) k
2

pointsets BI that are covered.
Consider an element C from the cover. We will

show that C can hit at most 2k ·
(
log ∆

k

) k
2 ·(1− 9

10 )
sets

BI . This will finish the proof.
There are at most 2k subsets D of supp(C) that

can be a hitting set for some BI . Every D can be a

hitting set for at most
(
log ∆

k

) k
2 ·(1− 9

10 )
sets BI because

|D| ≥ 9
10 ·

k
2 . This finishes the proof.

Corollary 5.1. Weighted point-sets over [∆]2 of car-
dinality k under EMD has doubling dimension Ω(k) ·
log
(

Ω(log ∆2

k )
)

for k > 1.

Proof. We want to choose a point-set A and a lot of
“highly separated” point-sets BI similarly as in 5.3 with
EMD(A,BI) = k/4.

For that, we place k/4 points with non-zero weight

on a line of length ∆ ·
√
k

2 to construct A and BIs
analogously as in Lemma 5.3. The difference is that,
instead of placing k/2 points, we place k/4 points and
that, instead of having an interval of length ∆, we have

interval of length ∆ ·
√
k

2 . Then we split points of A

with their counterparts of BI into
√
k/2 consecutive

sequences of points each containing
√
k/2 points. We

put i-th sequence in i · 2∆√
k

-row of the grid.

We can verify that the resulting point-sets satisfy
the necessary properties.

6 Better Sketches for EMD

6.1 Refined analysis of the grid embedding In
this section we recall the embedding of EMD[∆]2 into
`1 from [IT03] (building on [Cha02]) and provide the
refined analysis of a variant of it, under the assumption
that we are embedding a measure that can be repre-
sented as a difference of two non-negative measures that
both sum to one such that one of them is k-sparse.

We state the following simple lemma without a
proof.

Lemma 6.1. For any vector y : [∆] → R+, define
CDF(y) : [∆]→ R+ by

CDF(y)i =
∑
j≤i

yj .



Then for any y, y′ : [∆] → R+ with ‖y‖ = ‖y′‖ = 1 we
have

EMD(y, y′) = ‖CDF(y)− CDF(y′)‖1.

The Cauchy distribution is continuous probabil-
ity distribution with the probability density function

1

π
(
γ+ x2

γ

) , where γ is the scale parameter. If not other-

wise specified, we will refer to a Cauchy variable as one
which is drawn from distribution with γ = 1.

First, we need the following folklore claim that will
be useful for us later.

Claim 6.1. Let X1, X2, . . . , Xn are (not necessarily
independent) non-negative random variables such that
for every i and t > 0 we have

Pr [Xi ≥ t] ≤
C

t
,

where C > 0 is some constant. Suppose that S =∑
i αiXi, where αi ≥ 0,

∑
i αi = 1. Then, for every

δ > 0 we have

Pr [S ≤ OC,δ(H(α))] ≥ 1− δ,

where H(α) is the entropy of the distribution over [n]
defined by α. In particular, H(α) ≤ log2 n.

Proof. Let T1, T2, . . . , Tn be non-negative parameters
to be chosen later. Denote E the event “for every i one
has Xi ≤ Ti”. Then, by the union bound,

Pr [¬E ] ≤
n∑
i=1

C

Ti
,

and for every i one has E [Xi | E ] ≤ OC(log Ti). Thus,
by Markov inequality,

Pr
[
S ≤ OC,δ

(∑
i

αi log Ti

) ∣∣∣ E] ≥ 1− δ/2.

Thus, we are looking for Ti’s such that
∑n
i=1

C
Ti
≤ δ/2

and
∑
i αi log Ti is minimized. Via simple calculus, we

obtain the desired inequality.

Let us remind, how the embedding from [IT03] of
EMD[∆]2 into `1 works. For the sake of exposition, let

us assume that ∆ = 2l for a non-negative integer l.
For s = (s1, s2) ∈ Z2 and 0 ≤ t ≤ l we define a

linear map Gs,t : R[∆]2 → `1 as follows. We first impose
a grid Gs,t over Z2 with side length 2t so that one of the
corners is located in s = (s1, s2). Then, for a measure

µ ∈ R[∆]2 we define Gs,tµ ∈ `1 as follows: for every
square of the grid we count the total mass of µ that

is located there. Then, we define the following (linear)

embedding Gs of R[∆]2 into `1 parametrized by a shift
s = (s1, s2) ∈ Z2: Gsµ :=

⊕l
t=0 2t ·Gs,tµ.

In [IT03] the following properties of Gs have been
proved.

Theorem 6.1. ([IT03]) For every µ ∈ EMD[∆]2 :

• for every s = (s1, s2) ∈ Z2, one has ‖µ‖EMD ≤
O(1) · ‖Gsµ‖1;

• Es∈[∆]2 [‖Gsµ‖1] ≤ O(log ∆) · ‖µ‖EMD.

Then, concatenating Gs for all s ∈ [∆]2 one obtains
a deterministic embedding of EMD[∆]2 into `1 with
distortion O(log ∆).

Now we turn to the refined analysis of the above
embedding.

Definition 6.1. For x ∈ R2 and 0 < R ≤ 2∆ consider
an `1-ball in the plane B`21(x,R). Suppose that we

sample a shift s = (s1, s2) ∈ [∆]2 uniformly at random.
Consider the following random variable Ax,R(s):

Ax,R(s) :=
min

({
2t : Gs,t doesn’t cut B`21(x,R)

})
R

.

In words, we are looking for the side length of the finest
out of l + 1 grids that does not cut the ball of interest,
or 2l+1, if it does not exist.

Implicit in [IT03] are the following two Lemmas.

Lemma 6.2. ([IT03]) There exists C > 0 such that for
every x ∈ R2, 0 < R ≤ 2∆ and t > 0 one has

Prs∈[∆]2 [Ax,R(s) ≥ t] ≤ C

t
.

Proof. One has Ax,R(s) ≥ t iff the coarsest grid with
side length less than R ·t (which is Θ(R ·t)) cuts the ball
B`1(x,R). It can be easily verified that this probability
is O(1/t).

Lemma 6.3. ([IT03]) For every two points x, y ∈ [∆]2

and uniformly random s = (s1, s2) ∈ [∆]2 the quantity
‖Gs(ex − ey)‖1, where ex and ey are basis vectors that
correspond to points x and y, respectively, is upper
bounded by O(1) · R · Au,R(s) for every u ∈ R2 and
0 < R ≤ 2∆ such that the ball B`1(u,R) contains both
x and y.

Proof. All grids that are of side length at least R ·
Au,R(s) do not contribute to ‖Gs(ex − ey)‖1 by the
definition of Au,R. All finer grids contribute towards
‖Gs(ex − ey)‖1 the geometric series, whose total sum
can be upper bounded by O(1) ·R · Au,R(s).



Combining Lemma 6.2, Lemma 6.3 and the triangle
inequality, we obtain the following Claim, which later
will be very useful for our refined analysis of the
embedding from [IT03]. Basically, we show that we can
upper bound ‖Gsµ‖1 for µ ∈ EMD[∆]2 using Claim 6.1.

Claim 6.2. Suppose that µ and ν are two non-negative
measures over [∆]2 that both sum to one. Assume that
the optimal transportation of µ to ν consists of moving
mass wi from the point xi ∈ [∆]2 to the point yi ∈ [∆]2

for 1 ≤ i ≤ p. Let {Bj = B`1(uj , Rj)}qj=1 be a collection
of `1-balls in the plane such that for every 1 ≤ i ≤ p
there exists 1 ≤ j∗(i) ≤ q such that both xi and yi belong
to Bj∗ . For every 1 ≤ j ≤ q define

w̃j =
∑

i : j∗(i)=j

wi.

Suppose we sample a shift s = (s1, s2) ∈ [∆]2 uniformly
at random. Then, the random variable

‖Gs(µ− ν)‖1 ≤
p∑
i=1

wi‖Gs(exi − eyi)‖1

is dominated by S =
∑q
j=1 w̃jRj · Xi for some non-

negative (not necessarily independent) random variables
X1, X2, . . . , Xq such that for every i and t > 0 one has

Pr [Xi ≥ t] ≤
C

t

for some absolute constant C > 0.

Now applying Claim 6.1 we conclude the following.

Claim 6.3. Assuming the notation and conditions from
Claim 6.2, we have

Prs [‖Gs(µ− ν)‖1 ≤ O(1) ·H(α) · T ] ≥ 0.99,

where T =
∑q
j=1 w̃jRj =

∑p
i=1 wiRj∗(i) and α is the

following distribution over [q]:

αj =
w̃jRj
T

.

Now we state two applications of this claim that are
our main goal.

Lemma 6.4. Suppose that µ and ν are two non-negative
measures over [∆]2 that both sum to one and, in addi-
tion, µ has support of size at most k for some 1 ≤ k ≤
∆2. Then,

Prs [‖Gs(µ− ν)‖1 ≤ O(log k + log log ∆) · ‖µ− ν‖EMD]

≥ 0.99.

Proof. Suppose that {x1, x2, . . . , xk} ⊆ [∆]2 is the sup-
port of µ. Consider the following family of O(k log ∆)
balls:

{
B(xi, 2

j)
}

1≤i≤k,0≤j≤log ∆+1
. Next, consider the

optimal transportation of µ to ν. Every edge of length
l participating in this transportation can be enclosed
in one of the balls of radius O(l). Thus, we can ap-
ply Claim 6.3 with T ≤ O(1) · ‖µ − ν‖EMD. It is
left to upper bound H(α). In this Lemma we use a
crude bound: namely, that H(α) ≤ logO(k log ∆) ≤
O(log k + log log ∆), since the support of α is of size at
most O(k log ∆).

Lemma 6.5. Suppose that µ and ν are two non-negative
measures over [∆]2 that both sum to one, and all the
weights of µ and ν are multiples of 1/N , where N ≥ 1
is some integer. Moreover, assume that µ is k-sparse
for some 1 ≤ k ≤ N . Then,

Prs [‖Gs(µ− ν)‖1 ≤ O(log k + log logN) · ‖µ− ν‖EMD]

≥ 0.99.

Proof. The proof is the same as in Lemma 6.4, but we
need to upper bound H(α) in a slightly fancier way. Let
us recall the definition of α. For each of the O(k log ∆)
balls we compute the total mass transported over edges
that are allocated to this ball and multiply it by the
radius of the ball. Since all the masses are multiples
of 1/N and for every j ≤ log ∆ we have k balls of
radius 2j , we can reformulate the question of upper
bounding H(α) as follows. Suppose that we have a
bin for every i ∈ [k] and j ≥ 0. Then, we put N
balls into these bins (adversarially). Then, for each
bin indexed by (i, j) we multiply the number of balls
there by 2j and then normalize the resulting numbers
so that they sum to 1. What is the upper bound of
the entropy of this distribution? We prove that it is
O(log k + log logN) as follows. Denote j∗ the largest
j such that there is i ∈ [k] such that the bin (i, j) is
non-empty. Then, the bins with j ≤ j∗ − 100 logN
contribute to the entropy negligibly, since we multiply
the number of balls in these bins by 2j ≤ 2j

∗
/N100.

But the entropy for bins with j ≥ j∗ − 100 logN is
logO(k logN) = O(log k + log logN), since the total
number of these “important” bins is O(k logN).

Remark: The terms O(log log ∆) and
O(log logN) in Lemma 6.4 and Lemma 6.5, might
appear to be unfortunate artifacts of our analyses.
However, one can show that in both cases the bounds
for the embedding from [IT03] are in fact tight. Nev-
ertheless, in the next section we show how to achieve
approximation O(log k), if we allow embeddings into
more complex spaces (that still allow reasonably good
sketches).



6.2 Embedding of EMD into the `1-sum of
the small EMD instances In this section we pro-
vide a refined analysis of the embedding of EMD[∆]2

from [Ind07].
Suppose our goal is to sketch EMD[∆]2 , where ∆ =

2l for some integer l ≥ 0. Let 0 ≤ t ≤ l be a parameter
to be chosen later. Let us impose a randomly shifted
hierarchy of nested grids with side lengths ∆/2t, ∆/22t,
. . . , 1 (O

(
log ∆
t

)
grids in total). By “randomly shifted”

we mean that the coarsest grid has a corner in a point
s = (s1, s2) ∈ [∆]2 chosen uniformly at random, and all
the finer grids are imposed by subdividing the cruder
ones. Now let us define the sketching procedure. First,
we sketch EMD[∆/2t]2 instances induced by the crudest
grid recursively (we have O(22t) of these). Second, for
each of these instances we remember the total mass.
Now, to estimate EMD, we estimate EMD for the
smaller instances, add these estimates, then compute
EMD for the instance induced by the total masses we
remembered, multiply it by ∆/2t (the side length of
the crudest grid), and add it to the result. This can
be seen as a randomized embedding fs : EMD[∆]2 →
`1(EMD[O(2t)]2). In [Ind07] the following properties of
fs are shown:

Theorem 6.2. [Ind07] For every µ ∈ EMD[∆]2 :

• for every s, one has ‖µ‖EMD[∆]2
≤ O(1) ·

‖fsµ‖`1(EMD[O(2t)]2 );

• Es

[
‖fsµ‖`1(EMD[O(2t)]2 )

]
≤ O

(
log ∆
t

)
· ‖µ‖EMD[∆]2

.

In what follows we improve upon the second item
in the above theorem under the following additional
assumptions on µ. Namely, suppose we apply fs for
random s to a difference ν − τ , where ν and τ are non-
negative measures over [∆]2 that sum to one and ν is
k-sparse.

Lemma 6.6. If ν and τ as above, then

Prs

[
‖fs(ν − τ)‖`1(EMD[O(2t)]2 )

≤ O

(
1 +

log k + log log ∆

t

)
· ‖ν − τ‖EMD[∆]2

]
≥ 0.99.

Proof. As in the proof of Lemma 6.4, we cover the edges
of optimal transportation of ν to τ with O(k log ∆) balls
{Bj} such that every edge of length r lies within a ball
of radius O(r). Define the event E as follows: “every
ball Bj is not cut by a grid with side length at least
radius of Bj times Ck log ∆”. We can choose C such
that Prs [E ] ≥ 0.999 (we can take the union bound over

the balls Bj and for every fixed ball we proceed as in
Claim 6.2).

Now let us consider a fixed edge of length r from
the optimal transportation. The goal is to argue that,
conditioned on E , the expected contribution of the edge
to ‖fs(ν − τ)‖`1(EMD[O(2t)]2 ) is

O

(
r ·

(
log k + log log ∆

t
+ 1

))
.

Then we will be done by the triangle inequality,
Markov’s inequality and the fact that Prs [E ] ≥ 0.999.

Let us argue about the contribution of the edge for
every grid separately. First, all grids with side length
less than r/10 contribute at most O(r) in total, because
the endpoints end up in different subproblems, and thus
the contribution is proportional to the side length. The
side lengths accumulate as geometric series, so we have
that the sum is O(r) in total.

Grids with side length at least C ′ · r · k log ∆ (with
C ′ being large enough) do not contribute anything,
conditioned on E .

Grids with side lengths between r/10 and C ′ ·
r · k log ∆ contribute in expectation O(r) each (see
Lemma 3.3 in [Ind07]). Conditioning on E can change
the expectation by at most a constant factor, since
Prs [E ] ≥ 0.999. Since we have O((log k + log log ∆)/t)
such grids, the required bound follows.

6.3 Implications for sketching of EMD

Theorem 6.3. One can sketch linearly EMD[∆]2 for
measures that are differences of two non-negative mea-
sures that sum to 1, one of which is k-sparse as follows:

• with sketch size O(1) and approximation O(log k+
log log ∆);

• with sketch size O(logδ ∆) and approximation
O(log k) for every constant 0 < δ < 1.

• Moreover, if both measures have all the weights be-
ing multiples of 1/n, where N is a positive integer,
then the first of the results can be improved to hav-
ing approximation O(log k + log logN).

Proof. The first result follows from composing the first
item of Theorem 6.1 and Lemma 6.4 with a sketch for
`1 from [Ind06]. The third result is similar, except we
use Lemma 6.5.

As for the second result, the starting point is the
first item of Theorem 6.2 together with our Lemma 6.6.
Let us set t = δ log log ∆. This way, we get a randomized
embedding of EMD[∆]2 into `1(EMD[O(logδ ∆)]2) with
distortion O(log k). Then, we apply the result of Verbin



and Zhang [VZ12] to perform dimension reduction.
Namely, we need to apply their randomized map twice
to reduce the dimension to O(log log ∆). As a result, we

get a sketch of size O(logO(δ) ∆) and distortion O(log k),
if δ is a (small) positive constant.

Theorem 6.4. One can sketch linearly EMD[∆] over
interval [∆] of measures that are differences of two
non-negative measures that sum to 1, one of which
is k-sparse. We can achieve sketch size O(1/ε2) and
approximation 1 + ε.

Proof. Using Lemma 6.1, we can isometrically embed
EMD over the interval [∆] into `1. Now we can sketch
`1 using the sketch from [Ind06]. This give sketch size
O(1/ε2) and approximation 1 + ε.

7 Sparse recovery for EMD: putting it all
together

The following three theorems follow from Lemma 3.1
and Theorem 6.3.

Theorem 7.1. There is a linear sketching scheme of
probability distributions over [∆]2 with the following
guarantees. The size of the sketch is

O(k(log log ∆) log(log k + log log ∆) + log log(∆/λ))

and, given a sketch of x, we can recover x∗ such that

EMD(x, x∗) ≤ max(O(log k + log log ∆) min
k - sparse x′

EMD(x, x′), λ).

in time polynomial in ∆ and logO(k) ∆.

Proof. Lemma 5.1 gives that the doubling dimen-
sion of k-sparse probability measures over [∆]2 is
O(k log log ∆). Combining this with Lemma 3.1 and
the first result from Theorem 6.3, we get the stated
guarantees.

Theorem 7.2. There is a linear sketching scheme of
probability distributions over [∆]2 with the following
guarantees. The size of the sketch is

O(1)(logδ ∆)(k(log log ∆) log log k + log log(∆/λ))

for some constant δ > 0. Given a sketch of x, we can
recover x∗ such that

EMD(x, x∗) ≤ max(O(log k) min
k - sparse x′

EMD(x, x′), λ).

in time polynomial in ∆ and logO(k) ∆.

Proof. Lemma 5.1 gives that the doubling dimen-
sion of k-sparse probability measures over [∆]2 is
O(k log log ∆). Combining this with Lemma 3.1 and
the second result from Theorem 6.3, we get the stated
guarantees.

Theorem 7.3. Let N be a positive integer. There is
a linear sketching scheme of probability measures that
have granularity 1/N . The size of the sketch is

O(k(log logN) log(log k + log logN) + log log(Λ/λ))

and, given a sketch of x, we can recover x∗ such that

EMD(x, x∗) ≤ max(O(log k + log logN) min
k - sparse x′

EMD(x, x′), λ).

in time polynomial in ∆ and logO(k) ∆. Λ is the
upper bound on EMD(x, y) for the starting k-sparse
approximation y of x.

Proof. Lemma 5.2 gives that the doubling dimension of
k-sparse probability measures with granularity 1/n is
O(k log logN). Combining this with Lemma 3.1 and
the third result from Theorem 6.3, we get the stated
guarantees.

Theorem 7.4. There is a linear sketching scheme of
probability distributions over interval [∆] with the fol-
lowing guarantees. The size of the sketch is

O(1/ε2)(k(log log ∆) log
1

ε
+ log log(∆/λ))

and, given a sketch of x, we can recover x∗ such that

EMD(x, x∗) ≤ max((1 + ε) min
k - sparse x′

EMD(x, x′), λ).

in time polynomial in ∆ and logO(k) ∆.

Proof. Lemma 5.1 also gives that the doubling dimen-
sion of k-sparse probability measures over interval [∆]
is O(k log log ∆). Combining this with Lemma 3.1 and
Theorem 6.4, we get the stated guarantees.

7.1 Lower Bounds Lemma 5.3 and Lemma 4.1
gives the following two theorems 7.5 and 7.6.

Theorem 7.5. Any linear sparse recovery scheme with
approximation factor K with respect to EMD over
interval [∆] requires

m ≥
Ω(k) log

(
Ω(log ∆

k )
)

logK

measurements for sparsity k > 1.



We want to compare guarantees of Theorem 7.4
with the lower bound that we achieve in Theorem 7.5.

Theorem 7.4 and assumptions that ε is a constant

and λ ≥ 2−(log ∆)O(k)

gives approximation guarantee

(7.12) EMD(x, x∗) ≤ max(O(1) min
k - sparse x′

EMD(x, x′), λ)

with O(k log log ∆) number of measurements.
Theorem 7.5 and assumption that k < ∆1−c for

some constant c > 0 give lower bound Ω(k log log ∆) on
the number of measurements for constant approxima-
tion factor. However, this lower bound holds for the
case when λ is equal to 0 in guarantee 7.12.

From the proof of Lemma 4.1 (equations (4.8), (4.9)
and (4.10)) and Lemma 5.3 (we construct k

200 -cover for
EMD ball of radius k/2) we see that we are actually
good as long as λ is sufficiently small. As long as λ ≤ k

C
for some large constant C. Therefore, our lower bound

holds if k
C ≥ λ ≥ 2−(log ∆)O(k)

.
We see that the upper bound and the lower bound

match for the described range of parameters.

Theorem 7.6. Any linear sparse recovery scheme with
approximation factor K with respect to EMD over
square [∆]2 requires

m ≥
Ω(k) log

(
Ω(log ∆2

k )
)

logK

measurements for sparsity k > 1.

We want to compare guarantees of Theorem 7.1
with the lower bound that we achieve in Theorem 7.6.

Theorem 7.1 and assumptions that ε is a constant

and λ ≥ 2−(log ∆)O(k)

gives approximation guarantee

(7.13)
EMD(x, x∗) ≤ max(O(log k + log log ∆) min

k - sparse x′

EMD(x, x′), λ)

with O(k(log log ∆) log(log k + log log ∆)) number of
measurements.

Theorem 7.6 and assumption that k < ∆2−c

for some constant c > 0 give lower bound
Ω(1) k log log ∆

log(log k+log log ∆) on the number of measurements

for approximation factor O(log k+ log log ∆). However,
this lower bound holds for the case when λ is equal to
0 in guarantee 7.13.

From the proof of Lemma 4.1 (equations (4.8), (4.9)
and (4.10)) and Corollary 5.1 (we construct k

200 -cover
for EMD ball of radius k/2) we see that we are actually

good as long as λ is sufficiently small. As long as λ ≤ k
C

for some large constant C. Therefore, our lower bound

holds if k
C ≥ λ ≥ 2−(log ∆)O(k)

.
We see that the upper bound and the lower bound

match up to a factor of log2(log k + log log ∆) for the
described range of parameters.

8 Sketching of 1-Median

For a vector x ∈ Rn, we use ‖x‖med to denote the
median over i ∈ [n] of |xi|.

8.1 Subspace embeddings

Lemma 8.1. Let L be a d-dimensional subspace of Rn.
Let A ∈ Rm×n be a matrix with m = O( 1

ε2 d log d
εδ ) and

i.i.d. Cauchy entries with scale parameter γ = 1. With
1− δ probability, for all x ∈ L we have

(1− ε)‖x‖1 ≤ ‖Ax‖med ≤ (1 + ε)‖x‖1.

Proof. In an abuse of notation, let L be an orthonormal
basis for the subspace L. For any threshold τ =
poly( dεδ ), the probability that any entry of AL has

absolute value larger than τ is O(
√
d/τ), using that

the `1 norms of the columns of L is
√
d. Setting

τ = O(d2.5/δ), we have that every entry of AL is at
most τ with probability 1− δ/2. Suppose this happens.

Then for all x ∈ Rd, we have that ‖Lx‖1 ≥ ‖Lx‖2 =
‖x‖2 ≥ ‖x‖1/

√
d and ‖ALx‖∞ ≤ τ‖x‖1 ≤ τ

√
d‖Lx‖1.

Thus for all y ∈ L we have

‖Ay‖∞ ≤ (d3/δ)‖y‖1.

Let τ ′ = d3/δ.
We construct an ε

τ ′ -net T in the `1 norm for the unit
`1 ball intersect L, which has size at most (1 + τ ′/ε)d =

eO(d log d
εδ ) by the standard volume argument.

For any x ∈ Rn, we say Ax is “good” if only a
1
2−C2ε fraction of coordinates are too large or too small,
i.e.

|{i : |(Ax)i| < (1− ε)‖x‖1}| ≤ (
1

2
− C2ε)m

|{i : |(Ax)i| > (1 + ε)‖x‖1}| ≤ (
1

2
− C2ε)m

for some small constant C2. If Ax is “good”, then for
any y with at most C2εm coordinates larger than ε‖x‖1,
we have

(1− 2ε)‖x‖1 ≤ ‖Ax+ y‖med ≤ (1 + 2ε)‖x‖1.(8.14)

Because (Ax)i is a Cauchy variable with scale ‖x‖1,
we have that

Pr[|(Ax)i| < (1− ε)‖x‖1] < 1/2− Ω(ε)

Pr[|(Ax)i| > (1 + ε)‖x‖1] < 1/2− Ω(ε).



By a Chernoff bound, for sufficiently small C2 we have
that Ax is “good” with all but e−Ω(ε2m) probability. For
our choice of m, we can union bound to have that Ax
is “good” for all x ∈ T with all but e−Ω(ε2m) ≤ δΩ(d)

probability.
Every y ∈ L with ‖y‖1 = 1 can be expressed as x+z

for x ∈ T and ‖z‖1 ≤ ε/τ ′. We have that Ax is “good”
and that ‖∞‖Az ≤ τ ′‖z‖1 ≤ ε. Hence by (8.14),

(1− 2ε)‖x‖1 ≤ ‖Ay‖med ≤ (1 + 2ε)‖x‖1.

which implies

(1− 3ε)‖y‖1 ≤ ‖Ay‖med ≤ (1 + 3ε)‖y‖1.

Since A is linear, the restriction to ‖y‖1 = 1 is
unnecessary; rescaling ε then gives the result.

Corollary 8.1. Let A have O(d log(d/(εδ))/ε2) rows
and Cauchy entries with scale γ = 1. For any subspace
L of dimension d and subset S ⊂ L, with 1−δ probability
we have that

x̂ := argminx∈S‖Ax‖med
satisfies

‖x̂‖1 ≤ (1 + ε) min
x∈S
‖x‖1.

8.2 1-median in d dimensions

8.2.1 1-median in 1 dimension

Theorem 8.1. We can find a 1 + ε-approximation to
the 1-median in 1 dimensions using O(log(1/ε)/ε2)
linear measurements and exp(poly(1/ε)) time.

Proof. Define B ∈ Rn×2 by Bi,1 = i and Bi,2 = 1 for
all i ∈ [n]. For any x ∈ Rn, define Dx ∈ Rn×n to be the
diagonal matrix with Di,i = xi. Then for any j ∈ [n]
and z = (j,−1), we have that

‖DxBz‖1 =
∑
i

|xi| |i− j|

is the cost of using j as the median for x.
Let A ∈ Rm×n for m = O(log(1/ε)/ε2) have i.i.d.

Cauchy entries. Then ADxB ∈ Rm×2 consists of 2m
linear measurements of x.

Furthermore, the set of S = {DxBz | z2 = −1}
is a subset of a 2-dimensional subspace. Hence, by
Corollary 8.1,

ẑ = argmin z∈R2

z2=−1

‖ADxBz‖med

satisfies

‖DxBẑ‖1 ≤ (1 + ε) min
z∈R2

z2=−1

‖DxBz‖1 = (1 + ε)cost(x).

Given ADxB we can compute ẑ, from which we recover
z1 as a (1 + ε) approximation to the 1-median.

8.2.2 1-median in d dimensions

Claim 8.1. (Dvoretsky’s Theorem [Dvo60]) Let
G ∈ Rm×d have suitably scaled i.i.d. Gaussian entries,
for m = O(d/ε2). Then with all but e−Ω(d) probability,
for all x ∈ Rd we have

‖Gx‖1 ≤ ‖x‖2 ≤ (1 + ε)‖Gx‖1.

Theorem 8.2. We can find a 1 + ε-approximation
to the Euclidean 1-median in d dimensions us-
ing O(d2 log(d/ε)/ε2) linear measurements and
exp(poly(d/ε)) time.

Proof. Let G ∈ Rt×d for t = O(d/ε2) satisfy Claim 8.1,
so

‖Gp‖1 ≤ ‖p‖2 ≤ (1 + ε)‖Gp‖1
for all p ∈ [n]d. For each point p ∈ [n]d, define the
matrix B(p) ∈ Rt×(t+1) by the first t columns being the
identity matrix and column t+ 1 being Gp.

Define G′ ∈ R(t+1)×(d+1) to equal G over the first
t× d submatrix, Gt+1,d+1 = 1, and zero elsewhere. For
any point p ∈ [n]d define z(p) ∈ Rd+1 by zi = pi for
i ≤ d and zd+1 = −1. For any p, q ∈ [n]d, we have

B(q)G′zp =
(
I Gq

)( G 0
0 1

)(
p
−1

)
= Gq −Gp

Hence

‖B(q)G′zp‖1 = ‖Gq−Gp‖1 ≤ ‖p−q‖2 ≤ (1+ε)‖B(q)G′zp‖1.

For x ∈ Rnd , define Cx ∈ Rtnd×(t+1) to be the
concatenation of the matrices xpB

(p) for all p ∈ [n]d.

Then for all x ∈ Rnd and p ∈ [n]d, therefore,

‖CxG′z(p)‖1 ≤ cost(x, p) ≤ (1 + ε)‖CxG′z(p)‖1.(8.15)

Let A ∈ Rm×tnd for m = O(d log(d/ε)/ε2) have i.i.d.
Cauchy entries. Our method observes

ACxG
′ ∈ Rm×(d+1)

which is a set of m(d + 1) = O(d2 log(d/ε)/ε2) linear
measurements of x.

By Corollary 8.1, with good probability we have
that

ẑ = argmin z∈Rd+1

zd+1=−1

‖ACxG′z‖med

satisfies

‖CxG′ẑ‖1 ≤ (1 + ε) min
z∈Rd+1

zd+1=−1

‖CxG′z‖1 = (1 + ε)cost(x).

Hence by (8.15), for p̂ = (ẑ1, . . . , ẑd),

cost(x, p̂) ≤ (1 + ε)2cost(x).

Given ACxG
′ we can compute ẑ, from which we get

p̂ as a (1 + ε) approximation to the 1-median.



9 Lower bounds for k-means

In this section we prove lower bounds for sketching and
streaming k-means.

First, one can extend the definition of EMD to the
sum of squares of distances. Let us denote the corre-
sponding “distance” EMD2. It is immediate to see that
R[∆]2 equipped with EMD2 is a 2-quasi-metric space.
Sparse recovery with respect to EMD2 is equivalent to
the k-means clustering.

Second, observe that the construction from Sec-
tion 5.2 can be translated verbatim to EMD2 to show
that the doubling dimension of the latter is Ω(k ·
log log ∆2

k ) as well.
Finally, observe that the results of Section 4 can

be applied to EMD2 as well. Indeed, EMD2 enjoys the
polynomial aspect ratio and relaxed triangle inequality,
and these two happen to be enough for the argument to
go through.

As a result, we get the lower bound Ω(k ·
log log ∆2

k / logK) on the number of measurements nec-
essary for the linear sketching of k-means with approx-
imation K.

Alternatively, we can consider the streaming model
and reuse the proof from Section 4 to show that stream-
ing k-means with approximation K requires

Ω

(
k

logK
· log log

∆2

k
· log ∆

)
bits.
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