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Abstract. Type-preserving (or typed) compilation uses typing deriva-
tions to certify correctness properties of compilation. We have designed
and implemented a typed compiler for an idealized logic programming
language we call T-Prolog. The crux of our approach is a new certifying
abstract machine which we call the Typed Warren Abstract Machine
(TWAM). The TWAM has a dependent type system strong enough
to show programs obey a semantics based on provability in first-order
logic (FOL). We present a soundness metatheorem which (going beyond
the guarantees provided by most typed compilers) constitutes a partial
behavior correctness guarantee: well-typed TWAM programs are sound
proof search procedures with respect to a FOL signature. We argue why
this guarantee is a natural choice for significant classes of logic programs.
This metatheorem justifies our design and implementation of a certifying
compiler from T-Prolog to TWAM.

1 Introduction

Compiler verification is important because compilers are essential and because
compiler bugs are easy to introduce, yet often difficult to catch. Most work on
compiler verification has been done in the setting of imperative or functional
programming; little has been done for logic programming. The most success-
ful compilers [16,17] use an approach we will call direct verification, showing
that compilation of any valid program results in a refinement thereof. Multiple
approaches have been tried for logic programming, but none have resulted in a
executable verified compiler for logic programs.

Compiler verification is an equally interesting problem in the case of logic
programming. Logic programs are often easier to write correctly than programs
in other paradigms, because a logic program is very close to being its own spec-
ification. However, the correctness advantages of logic programming cannot be
fully realized without compiler verification. Beyond the intellectual interest in
compiler correctness, there is a practical concern for correctness of logic program
compilation: practical implementations can be large. For example, SWI-Prolog is
estimated at over 600,000 lines of code [36]. While our certifying compiler is much
smaller, it provides a natural first step toward production-scale verification.
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Certifying compilation [23] is an approach to verification wherein the com-
piler outputs a formal certificate (in our case, type annotations) that the com-
piled program satisfies some desired property. Certifying compilation, unlike
direct verification, has the advantage that the certificates can be distributed
with the compiled code and checked independently by third parties, which is
useful, e.g., for ascertaining trust in code downloaded from the Web. Additional
engineering advantages include the ability to write multiple independent checkers
for improved confidence, to share a certificate language between multiple com-
pilers for the same language, or even to share the certificate language between
compilers for different languages so long as the target language and specification
language are suitable for both (e.g. they have similar dynamic semantics but dif-
ferent static semantics). The flip side is that compiler bugs are not found until
the compiler sees a program that elicits the bug. In the worst case, bugs might
be found by the compiler’s users, rather than its developers.

Traditionally, the other cost of certifying compilation [23] is that only type
and memory safety are certified, not dynamic correctness. In contrast, we cer-
tify search soundness, which is a non-trivial dynamic correctness property. This
leap has only been made recently in the context imperative and functional lan-
guages [6,14]. We provide their logic programming counterpart. The sense in
which we do so is made precise in Theorem 1.

Theorem 1 (Search Soundness): Let P be a logic program and Q a query
formula. If query ?- Q. succeeds on program P , then P � σ(Q) is derivable in
first-order (minimal) logic for some substitution σ.

We choose not to certify completeness with respect to, e.g., Prolog’s depth-
first semantics. For important classes of programs (typecheckers, proofcheckers,
expert systems), soundness is fundamental: Checkers should accept only valid
programs and valid proofs, while expert systems should provide only justified
advice. Otherwise, a user might run an unsafe program, believe an untrue state-
ment, or take unreasonable actions. Theorem 1 says that all such guarantees
which hold of the source transfer to the compiled code. While completeness is
desirable, soundness is our priority because preventing undesired behavior is
often more impactful than ensuring desired behavior.

Ignoring completeness is valuable because it allows us to use provability as
the semantics of logic programs, abstracting over operational details like proof
search order. This imprecision is sometimes a feature, e.g. when we wish to let
the compiler reorder clauses for performance.

In Theorem 1, the logic programs are programs in our T-Prolog language. In
order to keep the correspondence with first-order logic close, T-Prolog enforces
the occurs check and removes cut and negation-as-failure1. T-Prolog also sup-
ports (simple) inductive data types. Since untyped Prolog is most familiar, our
examples are untyped Prolog, or equivalently all terms have the same type term.

The heart of this work is the development of our compilation target, the
Typed Warren Abstract Machine (TWAM), a dependently-typed certifying
1 See Sect. 6 for how these features might be supported.
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abstract machine for logic programs, inspired by the Warren Abstract Machine
(WAM) [35]. TWAM diverges from WAM in several ways to simplify our formal
development: (1) we use continuation-passing style (CPS) for success continu-
ations instead of a stack and (2) we sometimes replace compound instructions
(such as those for managing backtracking) with a smaller set of simpler, more
orthogonal instructions. As formalized and proved in Sect. 3, soundness of the
TWAM type system says that well-typed programs are sound proof search proce-
dures for their first-order logic (FOL) signature. We have implemented a compiler
from T-Prolog to TWAM and an interpreter for TWAM code, which we have
tested on a small library of 468 lines. The result is a certifying compiler with a
special-purpose proof checker as its trusted core: the TWAM typechecker.

Background: Dependent Types and Proof Terms. Our type system integrates
first-order (minimal) logic (FOL) to specify the semantics of logic programs. We
use the variable M to range over FOL terms, D to range over FOL proofs, a to
range over (simple) types, and A to range over propositions. The type-theoretic
analog of the quantifier ∀x:a. φ is the dependent function type Πx:a.τ . When
the name x is not referenced in τ , this is equivalent to the simple function type
a ⇒ τ . We borrow some notations from the logical framework LF [13], a type
system corresponding to first-order minimal logic. Our proof language is mini-
malistic, consisting of constants, modus ponens, instantiation, abstraction, and
variables. More information about proof terms for first-order logic is available
in Sørensen [32, Chap. 8]. We refer to proof terms D as just “proofs” to avoid
confusion with simply-typed FOL terms M . We use juxtaposition D D to indi-
cate modus ponens and D M for universal quantifier instantiation. Abstraction
λx. D can range over either proofs x:A or term x:a. We write λx:α. D wherever
both abstraction over proofs and abstraction over individuals are permissible.
Similarly, we write θ where both terms M and proofs D may appear.

FOL propositions A ::= c | ∀x : a. A | A ⇒ A | A M
FOL terms M ::= x | c | M M
FOL proofs D ::= x | c | D θ | λx : α. D

In Sect. 2 we will extract a constant c for each type, constructor, and clause of
a program. This collection of constant declarations is called a FOL signature,
written Σ. The compiler generates a FOL signature from an arbitrary T-Prolog
program. This signature provides a precise formal specification of what it means
for proof search to find a valid proof.

While we attempt to introduce key WAM concepts as we go, unfamiliar
readers will benefit from reading Aı̈t-Kaci [1]. A gentler version of this paper with
extended proofs, definitions, and a simply-typed variant of WAM is available [4].

2 Certifying Compilation in Proof-Passing Style

We briefly demonstrate (Fig. 1) the T-Prolog source syntax and the extraction of
a FOL signature Σ from a T-Prolog program. We consider addition on the Peano
naturals as a running example, i.e., a predicate plus(N 1,N 2,N 3) that holds
when N1 +N2 = N3. We write 0 and 1+ for the Peano natural constructors. We
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also write, e.g., 1 as shorthand for 1+ 0. A T-Prolog program consists of standard
Prolog syntax plus optional type annotations. Throughout the paper, we write
vectors in bold, e.g.; a below. Throughout, a ranges over simple (inductive) types
while A is ranges over propositions in FOL. All terms in the untyped fragment
of T-Prolog have a distinguished simple type, term.

– A type a in T-Prolog translates to a FOL type a.
– A term constructor c : a → a translates to a FOL term constructor of the

same type. For untyped c, the result and all arguments translate to term.
– A predicate p : a → type translates to a FOL constant P : a → B where B is

the type of booleans.
– A clause C of form G :- SG1, . . . ,SGn. translates to a FOL proof constructor

c : ∀FV(C). SG → G where FV(C) is the set of free variables of clause C and
SG consists of one argument for each subgoal. This is the universal closure
of the Horn clause SG → G.

– The query ?- Q is translated to a distinguished predicate named Query with
one proof constructor QueryI : ∀FV(Q). Q → Query2.

0: term
(no type declarations) 1+ : term ⇒ term

Plus : term ⇒ term ⇒ term ⇒ B

plus(0,N,N). Plus-Z : (∀N : term. Plus 0 N N)
plus(1+(N_1),N_2,1+(N_3)) :- Plus-S : ∀N1 : term. ∀N2 : term. ∀N3 : term.

plus(N_1,N_2,N_3). Plus N1 N2 N3 →
Plus (1+ N1) N2 (1+ N3)

)

?- plus(N_1, 0, 1+(0)). QueryI :(∀N1 : term. Plus N1 0 1 → Query)

Fig. 1. Example T-Prolog program and FOL signature

The TWAM certification approach can be summed up in a slogan:

Typed Compilation + Programming As Proof Search = Proof-Passing Style

Typed compilation uses the type system of the target language to ensure that
the program satisfies some property. Previous work [34] has used typed compi-
lation to ensure intermediate languages are safe (do not segfault). One of our
insights is that by combining this technique with the programming-as-proof-
search paradigm that underlies logic programming, our compiler can certify a
much stronger property: search soundness (Theorem 1).

A TWAM program must contain enough information that the TWAM type-
checker can ensure that a proof of the query exists for each terminating runs of
the program. We achieve this by statically ensuring that whenever each proof

2 Note that Query has no free variables. This simplifies the proof of Theorem 1 because
it depends heavily on substitution reasoning.
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search procedure p returns, the corresponding predicate P will have a proof in
FOL. This amounts to (1) annotating each return point with the correspond-
ing FOL proof and (2) reasoning statically about constraints on T-Prolog terms
with dependent singleton types S(M : a) containing exactly the values that
represent some FOL term M of simple type a3. Singleton typing information is
needed to typecheck almost any FOL proof term. For example, an application of
Plus-Z only checks whether we statically know that the first argument is 0 and
that the second and third arguments are equal, all of which are learned during
unification.

This proof-passing style of programming is a defining feature of the TWAM
type system. It is worth noting that these proofs never need to be inspected
at runtime and thus can be (and in our implementation, are) erased before
execution. In the following syntax, we annotate all erasable type annotations
and subterms with square brackets. The Simply-Typed WAM [4] shows how
TWAM works after erasure. Because proofs are only performed during type-
checking, they have no (direct) runtime overhead, compared to runtime proof
computations, which are expensive. At the same time, we do simplify WAM (e.g.
with heap-allocated environments) in order to make developing a type system
more feasible. For this reason, we do not expect our current implementation to
be competitive with production compilers.

3 The Typed WAM (TWAM)

In this section, we develop the main theoretical contributions of the paper: the
design and metatheory of the TWAM. We begin by introducing the syntax and
operational semantics of TWAM by example. We then develop a type system for
TWAM which realizes proof-passing style. We give an outline of the metatheory,
culminating in a proof (Sect. 3.5) of Theorem 1.

3.1 Syntax

We begin by presenting the syntaxes for TWAM program texts, machine states
(as used in the operational semantics), and typing constructs, which are given
in Fig. 2. We call the formal representation of a TWAM program text a code
section C. Each basic block in the program has its own identifier 
C ; the code
section maps identifiers to code values, which we range over with variable vC .
Code values are always of the form [λx : α.]code[Γ ](I) where I is a basic block
(instruction sequence), λx : α (possibly empty) specifies any FOL (term and/or
proof) parameters of the basic block, and Γ is a register file type specifying the
expected register types at the beginning of the basic block. Recall that the square
brackets above indicate that λ-abstractions and type annotations are needed only
for certification and that because they do not influence the operational semantics,

3 Our running example is untyped (a = term throughout) because untyped Prolog is
well-known, but we will still present the typing rules in their full generality.
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basic block I ::= succeed[D : Query] | jmp op | mov rd, op; I
| put str c, r; I | unify var r, [x : a.] I | unify val r, [x : a]. I
| get val r1, r2; I | get str c, r; I | put var r, [x : a.] I
| close rd, re, (�C [θ]); I | push bt re, (�C [θ]); I
| put tuple rd, n; I | set val r; I | proj rd, rs, i; I

operands op ::= � | r | op [θ] | [λx : α.] op

trails T :: 〈〉 | (tf :: T )
trail frames tf ::= (wcode, wenv, tr)
traces tr ::= 〈〉 | (x:a@�H) :: tr
code section,heap C ::= {�C1 �→ vC

1 , . . . , �Cn �→ vC
n } H ::= {�H1 �→ vH

1 , . . . , �Hn �→ vH
n }

heap values vH ::= FREE[x : a] | BOUND �H | c〈�H1 , . . . , �Hn 〉
| close(wcode, wenv) | (w)

code values vC ::= [λx : α.]code[Γ ](I)
word values w ::= �C | �H | w [M ] | w [D] | [λx : a.] w | [λx : A.] w
register files R ::= {r0 �→ w0, . . . , rn �→ wn}
machines m ::= (Δ, T, C, H, R, I) | write(Δ, T, C, H, R, I, c, �, �)

| read(Δ, T, C, H, R, I, �) | twrite(Δ, T, C, H, R, I, r, n, w)

value types τ ::= S(M : a) | Πx : α.¬Γ | x[τ ]
register file types Γ ::= {r0 : τ0, . . . , rn : τn}
heap, code types Ψ ::= {�H1 : τ1, . . . , �

H
n : τn} Ξ ::= {�C1 : τ1, . . . , �

C
n : τn}

spine types J ::= Γ | Πx : a. J Jt ::= a ⇒ {rd : τ}
signatures Σ ::= · | Σ, c : ∀x : a. A → A | Σ, c : a1 ⇒ · · · ⇒ an ⇒ a

Fig. 2. TWAM instructions, machine states, typing constructs

they can be type-erased before execution. Note that when the λ-abstractions are
type erased, their matching (FOL) function applications will be as well. Brackets
also appear in the syntax of machine states (e.g., FREE[x : a]): these too are
erased because they are used only in the metatheory and are not required at
runtime. Recall also that Π is a dependent function type, which is analogous to
the quantifier ∀x. φ.

3.2 Example: Code Section for Plus

We continue the running example: we present a code section which contains
the implementation of the plus proof search procedure, consisting of two code
values named plus-zero/3 and plus-succ/3. Like all TWAM code, it is writ-
ten in continuation-passing style (CPS): code values never return, but rather
return control to the caller by invoking a success continuation passed in to the
callee through a register. The code section also includes an implementation of an
example query, plus(N, 0, 1+(0)), consisting of a code value named query/0.
When the query succeeds, it invokes the top-level success continuation, which is
a code value named init-cont/0.

As is typical in continuation-passing-style, code values have no return type
because they never return. The type of a code value is written Πx:α. ¬Γ , where
x:α records any FOL terms and proofs passed as static arguments, while Γ
records any heap values passed at runtime through the register file.
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Example 1 (Implementing plus)

# Entry point to plus, implements

# case plus(0,N,N) and tries

# plus-succ/3 on failure

plus-zero/3 �→ [λN1N2N3 : term.]code[
{A1 : S(N1), A2 : S(N2), A3 : S(N3),

ret : ((Plus N1 N2 N3) ⇒ ¬{})}](
put tuple X1, 4;

set val A1;
set val A2;
set val A3;
set val ret;

push bt X1, (plus-succ/3 [N1 N2 N3]);
get str A1, 0;
get val A2, A3;
jmp (ret [(Plus − Z N2 )]))

# plus(1+(N_1), N_2, 1+(N_3))

# :- plus(N_1,N_2,N_3).

plus-succ/3 �→ [λN1N2N3 : term.]code[
{env : x[S(N1),S(N2),S(N3),

((Plus N1 N2 N3 ) ⇒ ¬{})]}](
proj A1, env, 1;
proj A2, env, 2;
proj A3, env, 3;
proj ret, env, 4;
get str A1, 1+;
#Set arg 1 of rec. call to N_1-1

unify var A1, [NN1 : term.]
get str A3, 1+;
#Set arg 3 of rec. call to N_3-1

unify var A3, [NN3 : term.]
#tail-call optimization: add

#Plus-S constructor when called

mov ret, [(λD : Plus NN1 N2 NN3 .]
ret [(Plus-S NN1 N2 NN3 D)]);

jmp (plus-zero/3 [NN1 N2 NN3 ]))

Example 2 (Calling plus)

init-cont/0 �→
[λN : term. λD : (Plus N 0 (1+ 0)).]
code[{}](succeed[(QueryI N D):Query ])

# plus(N, 0, 1+(0))

query/0 �→ code[{}](
put var A1, [N : term].
put tuple X1, 0;
close ret, X1, (init-cont/0 [N ]);
put str A2, 0;
put str A3, 1+;

unify val A2, [ : term.]
jmp (plus-zero/3 [N 0 (1+ 0)]))

The query entry point is query/0. The plus entry point is plus-zero/3,
which is responsible for implementing the base case A1 = 0. Its type annotation
states that the argument terms N1 through N3 are passed in arguments A1

through A3. The success continuation (return address) is passed in through ret,
but may only be invoked once Plus N1 N2 N3 is proved.

The instructions themselves are similar to the standard WAM instructions.
plus-zero/3 is implemented by attempting to unify A1 with 0 and A2 with A3. If
the plus-zero/3 case succeeds, we return to the location stored in ret, proving
Plus N1 N2 N3 in FOL with the Plus-Z rule. If the case fails, we backtrack to
plus-succ/3 to try the Plus-S case. plus succ/3 in turn makes a recursive call
to plus-zero/3 to prove the subgoal NN1 +N2 = NN3 , where NN1 and NN3 are
the predecessors of N1 and N3. The mov instruction implements proof-passing
for tail-calls. Dynamically speaking, we should not need to define a new success
continuation because we are making a tail call. However, while Plus NN1 N2 NN3

implies Plus N1 N2 N3, deriving the latter also requires applying Plus-S after
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proving the former. This mov instruction simply says to apply Plus-S (statically)
before invoking ret. Because only the proof changes, the mov can be erased
before executing the program.

Machines. As shown in Fig. 2, the state of a TWAM program is formalized as
a tuple m = (Δ,T,C,H,R, I) (or a special machine read or write: see, e.g.,
Sect. 3.3). Here T is the trail, the data structure that implements backtracking.
The trail consists of a list of trail frames (tf), each of which contains a failure
continuation (location and environment) and a trace (tr), which lists any bound
variables which would have to be made free to recover the state in which the
failure continuation should be run. In WAM terminology, each frame implements
one choice point. The heap H and code section C have types notated Ψ and
Ξ, R : Γ is the register file, and I represents the program counter as the list
of instructions left in the current basic block. Typical register names are Ai

for arguments, Xi for temporaries, ret for success continuations, and env for
environments. Δ contains the free term variables of H; it is used primarily in
Sect. 3.5. The heap H contains the T-Prolog terms. Heap value FREE[x : a]
is a free variable x of type a and c〈
1, . . . , 
n〉 is a structure, i.e., a functor (cf.
constructor in FOL) c applied to arguments 〈
1, . . . , 
n〉. As in WAM, the heap
is in disjoint-set style, i.e. all free variables are distinct and pointers BOUND 

can be introduced when unifying variables; BOUND 
 and 
 represent the same
FOL term. TWAM heaps are acyclic, as ensured by an occurs check. The heap
also contains success continuation closures close(wcode, wenv) and n-ary tuples
(w) (used for closure environments), which do not correspond to T-Prolog terms.

3.3 Operational Semantics

We give the operational semantics by example. Due to space constraints, see
the extended paper [4] for formal small-step semantics (judgements m �−→∗ m′

and m done). Those judgments which will appear in the metatheory are named
in this section. We give an evaluation trace of the query ?- plus(N,0,1+(0)).
For each line we describe any changes to the machine state, i.e. the heap, trail,
register file, and instruction pointer. As with the WAM, the TWAM uses special
execution modes read and write to destruct or construct sequences of arguments
to a functor (we dub this sequence a spine). When the program enters read mode,
we annotate that line with the list 
s of arguments being read, and when the
program enters write mode we annotate it with the constructor c being applied,
the destination location 
 and the argument locations 
s. If we wish, we can view
the final instruction of a write-mode spine as two evaluation steps (delimited by
a semicolon), one of which constructs the last argument of the constructor and
one of which combines the arguments into a structure. We write H{{
H �→vH}}
for heap H extended with new location 
H containing vH , or H{
H �→ vH} for
updating an existing location. R{r �→ w} is analogous. Updates H{
H �→ vH}
are only guaranteed to be acyclic when the occurs check passes (should the
occurs check fail, we backtrack instead). Below, all occurs checks pass, and are
omitted for brevity. Spines, backtracking, and no-ops are marked in monospace.
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query/0 �→ code[{}]( Outcome:
1 put var A1, [N :term]. H←H{{�1 �→FREE[N :term]}}, R←R{A1 �→�1}
2 put tuple X1, 0; H←H{{�2 �→()}}, R←R{X1 �→�2};
3 close ret, X1, (init-cont/0 [N ]); H←H{{�3 �→close(init-cont/0 [N ], �2)}},

R←R{ret �→�3};
4 put str A2, 0; H←H{{�4 �→0}}, R←R{A2 �→�4}
5 put str A3, 1+; H←H{{�5 �→FREE[ : term]}},

R←R{A3 �→�5}, c = 1+; � = �5, �s = 〈〉
6 unify val A2, [ : term.] �s←〈�4〉;H←H{�5 �→1 + 〈�4〉}
7 jmp plus-zero/3[· · · ] I←(C(plus-zero/3) [N 0 (1+ 0)])

plus-zero/3 : ([λN1N2N3 : term.]
code[{A1 : S(N1), A2 : S(N2), A3 : S(N3), ret : ((Plus N1 N2 N3) ⇒ ¬{})}](

8 put tuple X1, 4; �s = 〈〉, n = 4
9 set val A1; �s = 〈�1〉
10 set val A2; �s = 〈�1, �4〉
11 set val A3; �s = 〈�1, �4, �5〉
12 set val ret; �s = 〈�1, �4, �5, �3〉;

H←H{{�6 �→(�1, �4, �5, �3)}}, R←R{X1 �→�6}
13 push bt X1, (plus-succ/3[· · · ]); T←(plus-succ/3[N1 N2 N3], �6, 〈〉) :: 〈〉
14 get str A1, 0; WRITE:H←H{�1 �→0},

T←(plus-succ/3[N1N2N3], �6, 〈�1〉) :: 〈〉
15 get val A2, A3; BT:T←〈〉, I←plus-succ/3 . . . ,

H←H{�1 �→FREE[N : term]}
plus-succ/3 �→ [λN1N2N3 : term.]
code[{env : x[S(N1),S(N2),S(N3), (Plus N1 N2 N3) ⇒ ¬{}]](

16 proj A1, env 1; R←R{A1 �→�1}
17 proj A2, env 2; R←R{A2 �→�4}
18 proj A3, env 3; R←R{A3 �→�5}
19 proj ret, env, 4; R←R{ret �→�3}
20 get str A1, 1+; WRITE:c = 1+, � = �1, �s = 〈〉
21 unify var A1, [NN1 : term.] H←H{{�7 �→FREE[NN1 : term]}}

R←R{A1 �→�7}, �s = 〈�7〉;
H←H{�1 �→1+ 〈�7〉}

22 get str A3, 1+; READ:�s = 〈�4〉
23 unify var A3, [NN3 : term.] R←R{A3 �→�4}
24 mov ret, [(λD : (Plus NN 1 N2 NN 3).]ret[(Plus − S NN1 N2 NN3 D)]);

NOP:R←R{{ret �→[(λD:(Plus NN 1 N2 NN 3).]
�3[(Plus − S NN1 N2 NN3 D)])}}

25 jmp (plus-zero/3 [· · · ])); I←C(plus-zero/3) [NN1 N2 NN3 ]

plus-zero/3 �→ [λN1N2N3 : term.]
code[{A1 : S(N1), A2 : S(N2), A3 : S(N3), ret : ((Plus N1 N2 N3) ⇒ ¬{})}](

26 put tuple X1, 4; �s = 〈〉, n = 4
27 set val A1; �s = 〈�7〉
28 set val A2; �s = 〈�7, �4〉
29 set val A3; �s = 〈�7, �4, �4〉
30 set val ret; �s = 〈�7, �4, �4, λ . . . �3〉;

H←H{{�8 �→(�7, �4, �4, λ . . . �3)}}
R←R{X1 �→�8}

31 push bt X1, (plus-succ/3 [· · · ]); T←(plus-succ/3 [N1 N2 N3], �8, 〈〉) :: 〈〉
32 get str A1, 0; READ: �s = 〈〉, � = �7;H←H{�7 �→0}
33 get val A2, A3; NOP:R(A2) = R(A3)
34 jmp (ret(Plus − Z N2)); I←C(R(ret)) (Plus − Z N2)

= C(init-cont/0) [0 N2 N3

(Plus − S 0 N2 NN 3 (Plus − Z N2))])

35 init-cont/0:[λN :term D:(Plus N 0 1).]code[{}](succeed[(QueryI N D):Query])
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All top-level queries follow the same pattern of constructing arguments, set-
ting a success continuation, then invoking a search procedure. Line 1 constructs
a free variable. Line 2 creates an empty environment tuple which is used to cre-
ate a success continuation on Line 3. This means that if proof search succeeds,
we will return to init-cont/0, which immediately ends the program in success.
Line 4 allocates the number 0 at 
4. Lines 5–6 are a write spine that constructs
1+ 0. Because A2 already contains 0, we can eliminate a common subexpression,
reusing it for 1+ 0. This is an example of an optimization that is possible in the
TWAM. Line 7 invokes the main Plus proof search.

Lines 8–12 pack the environment in a tuple. Line 13 creates a trail frame
which executes plus-succ/3 if plus-zero/3 fails. Its trace is initially empty:
from this point on, the trace will be updated any time we bind a free variable.
Line 14 dynamically checks A1, observes that it is free and thus enters write
mode. On line 14, we also bind A1 to 0 and add it to the trace. Note that this
is the first time we add a variable to the trace because we only do so when
trail contains at least one frame. The trace logic is formalized in a judgement
update trail. When the trail is empty, backtracking would fail anyway, so there
is no need to track variable binding.

Line 15 tries and fails to unify (judgement unify) the contents of A2 and A3,
so it backtracks to plus-succ/3 (judgement backtrack).

Backtracking consists of updating the instruction pointer, setting all trailed
locations to free variables, and loading an environment. The plus-succ/3 case
proceeds successfully: the first get str enters write mode because A1 is free, but
the second enters read mode because A3 is not free. On Line 26 we enter the 0
case of plus with arguments A1 = A2 = A3 = 0. All instructions succeed, so we
reach Line 34 which jumps to line 35 and reports success.

3.4 Statics

This section presents the TWAM type system. The main typing judgement
Δ;Γ � IΣ;Ξ ok says that instruction sequence I is well-typed. We omit the sig-
nature Σ and code section type Ξ when they are not used. A code section is
well-typed if every block is well-typed. The system contains a number of aux-
iliary judgments, which will be introduced as needed. Note that the judgement
Δ;Γ � IΣ;Ξ ok is not parameterized by the query directly; instead, the query
is stored as Σ(Query). The typing rule for succeed then looks up the query in
Σ to confirm that proof search proved the correct proposition. Below, the nota-
tion Ψ{
 : τ} denotes the heap type Ψ with the type of 
 replaced by τ whereas
Ψ{{
 : τ}} denotes Ψ extended with a fresh location 
 of type τ .

Success. We wish to prove that a program only succeeds if a proof D of the
Query exists in FOL. We require exactly that in the typing rule:

Δ � D : Query
Δ;Γ � succeed[D : Query ]; I ok

Succeed
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The succeed rule is simple, but deceptively so: the challenge of certifying com-
pilation for TWAM is how to satisfy the premiss of this rule. The proof-passing
approach says we satisfy this premiss by threading FOL proofs statically through
every predicate: by the time we reach the succeed instruction, the proof of the
query will have already been constructed.

Proof-Passing. The jmp instruction is used to invoke and return from basic
blocks. When returning from a basic block, it (statically) passes a FOL proof
to the success continuation. These FOL proofs are part of the jmp instruction’s
operand op:

Δ;Γ � op : ¬Γ ′ Δ � Γ ′ ≤ Γ

Δ;Γ � jmp op, I ok
Jmp

Here Δ � Γ ′ ≤ Γ means that every register of Γ ′ appears in Γ with the same
type.

The operands consist of locations, registers, FOL applications, and FOL
abstractions:

operands op ::= 
 | r | op [θ] | [λx : α.] op
Operand typechecking is written Δ;Γ � op : τ and employs standard rules for

checking FOL terms. Brackets indicate that argument-passing and λ-abstraction
are type-erased. The mov instruction is nearly standard. It supports arbitrary
operands, which are used in our implementation to support tail-call optimization,
as seen in Line 24 of the execution trace.

Δ;Γ � op : τ Δ;Γ{rd : τ} � I ok

Δ;Γ � mov rd, op; I ok
Mov

Continuation-Passing. Closures are created explicitly with the close instruc-
tion: close rd, re, 


C [θ] constructs a closure in rd which, when invoked, executes
the instructions at 
C using FOL arguments θ and environment re. The envi-
ronment is an arbitrary value which is passed to 
C [θ] in the register env. The
argument (
C [θ]) is an operand, syntactically restricted to be a location applied
to arguments.

Γ (re) = τ Δ;Γ{rd : Πx : α. ¬Γ ′} � I ok

Δ;Γ � (
C [θ]) : (Πx : α. ¬Γ ′{env : τ})

Δ;Γ � close rd, re, (
C [θ]); I ok
Close

Trail frames are similar, but they are stored in the trail instead of a register:

Δ;Γ � I ok Γ (re) = τ Δ;Γ � (
C [θ]) : ¬{env : τ}
Δ;Γ � push bt re, (
C [θ]); I ok

BT

Singleton Types. The Putvar rule introduces a FOL variable x of simple type
a, corresponding to a T-Prolog unification variable. Statically, the FOL variable
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is added to Δ. Dynamically, the TWAM variable is stored in r, so statically we
have r : S(x : a), i.e., r contains a representation of variable x.

Δ,x : a;Γ{r : S(x : a)} � I ok

Δ;Γ � put var r, [x : a.] I ok
Putvar

Singleton typing knowledge is then exploited in proof-checking FOL proofs.

Unification. However, put var alone does not provide nearly enough constraints
to check most proofs. Almost every FOL proof needs to exploit equality con-
straints learned through unification. To this end, we introduce a static notion
of unification M1 
 M2, allowing us to integrate unification reasoning into our
type system and thus into FOL proofs. We separate unification into a judgement
Δ � M1 
 M2 = σ which computes a most-general unifier of M1 and M2 (or ⊥
if no unifier exists) and capture-avoiding substitution [σ]Δ. We also introduce
notation [[σ]]Δ standing for [σ]Δ with variable substituted by σ removed, since
unification often removes free variables which might located arbitrarily within
Δ. All unification in T-Prolog is first-order, for which algorithms are well-known
[18,29]. One such algorithm is given in the extended paper [4].

The get val instruction unifies its arguments. If no unifier exists, get val
vacuously typechecks: we know statically that unification will fail at runtime
and, e.g., backtrack instead of executing I. This is one of the major subtleties of
the TWAM type system: all unification performed in the type system is hypo-
thetical. At type-checking time we cannot know what arguments a function will
ultimately receive, so we treat all arguments as free variables. The trick (and key
to the soundness proofs) is that this does not disturb the typical preservation of
typing under substitution. For example, after substituting concrete arguments
at runtime, the result will still typecheck even if unification fails, because failing
unifications typecheck vacuously.

Δ � M1 
 M2 = ⊥
Γ (r1) = S(M1 : a) Γ (r2) = S(M2 : a)

Δ;Γ � get val r1, r2; I ok
Getval-⊥

Γ (r1) = S(M1 : a) Γ (r2) = S(M2 : a)
Δ � M1 
 M2 = σ [[σ]]Δ; [σ]Γ � [σ]I ok

Δ;Γ � get val r1, r2; I ok
Getval

Tuples and Simple Spines. Tuples are similar to structures, except that they
cannot be unified, may contain closures, and do not have read spines. The proj
instruction accesses arbitrary tuple elements i:

Γ (rs) = x[τ ]Γ{rd : τi} � I ok (where 1 ≤ i ≤ |τ |)
Δ;Γ � proj rd, rs, i; I ok

Proj

New tuple creation is started by put tuple. Elements are populated by a tuple
spine containing set val instructions. We check the spine using an auxilliary
typing judgement Δ;Γ �Σ;Ξ I:Jt where Jt is a tuple spine type with form
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τ2 ⇒ {rd:x[τ1τ2]}. A tuple spine type encodes both the expected types of all
remaining arguments τ2 and a postcondition: when the spine completes, register
rd will have type x[τ1τ2]. The typing rules check each set val in sequence, then
return to the standard typing mode Δ;Γ � I ok when the spine completes.

Δ;Γ � I : (τ → {rd : x[τ ]})(where n = |τ |)
Δ;Γ � put tuple rd, n; I ok

PutTuple

Γ (r) = τΓ � I:Jt

(Δ;Γ � set val r; I) : (τ → Jt)
TSpine-SetVal

Δ;Γ{rd : τ} � I ok

Δ;Γ � I : {rd : τ} TSpine-End

Dependent Spines. While the get val instruction demonstrates the essence of
unification, much unification in TWAM (as in WAM) happens in special-purpose
spines that create or destruct sequences of functor arguments. Because spinal
instructions are already subtle, the resulting typing rules are as well.

We introduce an auxiliary judgement Γ � IΣ;Ξ : J and dependent functor
spine types J . As above, they encode arguments and a postcondition, but here the
postcondition is the unification of two terms, and the arguments are dependent.

The base case is J ≡ (M1 
 M2), meaning that FOL terms M1 and M2 will
be unified if the spine succeeds. When J has form Πx:a. J ′, the first instruction
of I must be a spinal instruction that handles a functor argument of type a
(recall that the same instructions are used for both read and write mode, as we
often do not know statically which mode will be used). The type J ′ describes
the type of the remaining instructions in the spine, and may mention x. The
spinal instruction unify var unifies the argument with a fresh variable, while
unify val unifies the argument with an existing variable.

Γ (r) = S(M : a) Δ;Γ � [M/x]I : [M/x]J
Δ;Γ � unify val r, [x : a.]I : (Πx : a. J) Unifyval

Δ,x : a;Γ{r : S(x : a)} � I : J

Δ;Γ � unify var r, [x : a.]I : (Πx : a. J) Unifyvar

The instruction get str unifies its argument with a term c M1 · · · Mn by
executing a spine as described above. The put str instruction starts a spine
that (always) constructs a new structure.

Σ(c) = a → a Γ (r) = S(M : a)
Δ;Γ � I : (Πx : a.(M 
 c x))

Δ;Γ � get str c, r; I ok
Getstr

Σ(c) = a → a
Δ, x : a;Γ{r : S(x : a)} � I : (Πx : a.(x 
 c x))

Δ;Γ � put str c, r; I ok
Putstr

This completes the typechecking of TWAM instructions.
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Machine Invariants. Having completed instruction checking, we prepare for the
metatheory by considering the invariants on validity of machine states, which
are quite non-trivial. Consider first the invariant for non-spinal machines:

Δ � C:Ξ Δ;Γ � I ok Δ � H:Ψ Δ;Ψ � R : Γ Δ;C;H � T ok

· � (Δ,T,C,H,R, I) ok
Mach

Recall that machines include a context Δ containing the free variables of the
heap H. We can4 identify variables of Δ with heap locations, trivially ensuring
that each variable appears exactly once in the heap. Premisses Δ � C:Ξ and
Δ;Γ � I ok and Γ ;Ψ � R : Γ simply say the code section, current basic block,
and register file typecheck.

Premiss Δ � H:Ψ says that all heap values obey their types and that the
heap is acyclic. The encoding of acyclic heaps is subtle: while both the heap H
and its type Ψ are unordered, the typing derivation is ordered. The rule for non-
empty heaps H{{
H �→vH}} says that the new value v may refer only to values
that appear earlier in the ordering:

Δ � H : ΨΔ;Ψ � vH : τ
H /∈ Dom(H)

Δ � H{{
H �→vH}} : Ψ{{
H : τ}}
Thus, the derivation exhibits a topological ordering of the heap, proving that it is
acyclic. Section 3.5 shows this invariant is maintained because we only bind vari-
ables when the occurs check passes. The code section has no ordering constraint,
in order to support mutual recursion.

Heap values for T-Prolog terms have singleton types:

Δ(x) = a

Δ;Ψ � FREE[x : a] : S(x : a)

Δ;Ψ � 
H : S(M : a)

Δ;Ψ � BOUND 
H : S(M : a)
Σ(c) = a → aΔ;Ψ � 
H

i : S(Mi : ai)( for all i)

Δ;Ψ �Σ;Ξ c〈
H
1 , . . . , 
H

n 〉 : S(c M : a)

Premiss Δ;C;H � T ok says the trail is well-typed. The empty trail 〈〉 checks
trivially. A non-empty trail is well-typed if the result of unwinding the trace tr
(i.e. making the traced variables free again), is well-typed.

unwind(Δ,H, tr) = (Δ′,H ′) Δ; (C,H ′) � T ok

Δ � H ′ : Ψ ′ Ψ ′ � wenv : τ Δ;Ψ ′ � 
C θ : ¬{env : τ}
Δ;C;H � (
C [θ], wenv, tr) :: T ok

Trail-Cons

This completes the invariants for non-spinal machines.
Each of the typing invariant rules for spinal machines has an additional pre-

miss, either Δ;Ψ � � reads Πx : a.(c M M ′ 
 c M x) (for a read spine) or
Δ;Ψ � (�H , 
H , c) writes Πx : a2. x′ 
 c M x (for a write spine). These are
4 While this approach is preferable for the proofs, it is quite unreadable, so we used

readable names in our presentation of the example instead.
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some of the most complex rules in the TWAM. Nonetheless, their purpose can
be explained naturally at a high level. For a read spine, the types a expected by
the spine type must agree with the types of remaining arguments �. For a write
spine, the types of all values written so far must agree with the functor arguments
and the destination must agree with functor result. Naturally, the yet-unwritten
arguments must also agree with the functor type, but that is already ensured by
the typing judgement Δ;Γ � I:J .

Δ; Ψ � � : S(M ′ : a)

Δ; Ψ � � reads Πx : a. (c M M ′ � c M x)
Δ � C : Ξ Δ � H : Ψ Δ; Γ � I : J

Δ; Ψ � � reads J Δ � T ok Δ; Ψ � R : Γ

· �Σ;Ξ read(Δ, T, C, H, R, I, �) ok

Ψ(�H) = S(x′ : a) Σ(c) = a1 → a2 → a Δ; Ψ � �H : S(M : a1)

Δ; Ψ � (�H , �H , c) writes Πx : a2. x′ � c M x
Δ � C : Ξ Δ � H : Ψ Δ; Γ � I : J

Δ; Ψ � (�H , �, c) writes J Δ � T ok Δ; Ψ � R : Γ

· �Σ;Ξ write(Δ, T, C, H, R, I, c, �H , �) ok

The case for tuple spines is similar to the write case.

3.5 Metatheory

Proofs of metatheorems are in the extended paper [4]. Here, we state the major
theorems and lemmas. As expected, TWAM satisfies progress and preservation:

Theorem (Progress). If Δ � m ok then either m done or m fails or m �−→ m′.

Theorem (Preservation). If Δ � m ok and m �−→ m′ then · � m′ ok.

Here m fails means that a query failed in the sense that all proof rules have been
exhausted—it does not mean the program has become stuck. m done means a
program has succeeded. Search Soundness (Theorem1) is a corollary:

Theorem 1 (Search Soundness). If · �Σ;Ξ m ok and m �−→∗ m′ and m′ done
then there exists a context of term variables Δ and substitution σ such that
Δ � σ(Q) in FOL where Σ(QueryI ) = ∀FV(Q)(Q → Query).

Proof (Sketch). By progress and preservation, m′ ok. By inversion on m done,
have Δ � Query for Δ = FV(H) where H is the heap from m′. By inversion on
QueryI , have some σ such that Δ � σ(Q). 
�

We overview major lemmas, including all those discussed so far:

– Static unification computes most-general unifiers.
– Language constructs obey their appropriate substitution lemmas, even in the

presence of unification.
– Dynamic unification is sound with respect to static unification.
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– When the occurs check passes, binding a variable does not introduce cycles.
– Updating the trail maintains trail invariants and backtracking maintains

machine state invariants.

Our notion of correctness for static unification follows the standard correct-
ness property for first-order unification: we compute the most general unifier,
i.e., a substitution which unifies M1 with M2 and which is a prefix of all unifiers.

Lemma (Unify Correctness). If Δ � M : a and Δ � M ′ : a and Δ � M
M ′ = σ,
then:

– [σ]M = [σ]M ′

– For all substitutions σ′, if [σ′]M = [σ′]M ′ then there exists some σ∗ such that
σ′ = σ∗, σ up to alpha-equivalence.

While this lemma is standard, it is essential to substitution. While we
have numerous substitution lemmas (e.g. for heaps), we mention the lemma
for instruction sequences here because it is surprisingly subtle.

Lemma (I-Substitution). If Δ1, x:α,Δ2;Γ � I ok and Δ1 � θ:α then we can
derive Δ1, [θ/x]Δ2; [θ/x]Γ � [θ/x]I ok.

The most challenging cases are those involving unification. Unification is not
always preserved under substitution; in this case, [θ/x]I is vacuously well-typed
as discussed in Sect. 3.4. In the case where unification is preserved, we exploit
the fact that the derivation for I computed the most general unifier, which is
thus a prefix of the unifier from [θ/x]I. At a high level, this suffices to show all
necessary constraints were preserved by substitution.

The progress and preservation cases for unification instructions need to know
that dynamic unification unify is in harmony with static unification.

Lemma (Soundness of unify). If Δ � M1 : a and Δ � M2 : a and Δ � H : Ψ and
Δ;C;H � T ok and Δ;Ψ � 
1 : S(M1 : a) and Δ;Ψ � 
2 : S(M2 : a) then

– If Δ � M1 
 M2 = ⊥ then have unify(Δ,H, T, 
1, 
2) = ⊥
– If Δ � M1 
 M2 = σ then have unify(Δ,H, T, 
1, 
2) = (Δ′,H ′, T ′) where

Δ′ = [σ]Δ and [σ]Δ � H ′ : [σ]Ψ and Δ′, (C,H ′) � T ′ ok.

The Heap Update lemma says that when the occurs check passes, the result
of binding a free variable is well-typed (with the new binding reflected by a
substitution into the heap type Ψ). Because the typing invariant implies acyclic
heaps, this lemma means cycles are not introduced.

Lemma (Heap Update). If Δ � H : Ψ and Ψ(
1) = S(x : a) then

(a) If Ψ(
2) = S(M : a) and 
1 /∈H 
2, (the occurs check passes) then Δ �
H{
1 �→ BOUND 
2} : [M/x]Ψ.

(b) If for all i, Ψ(
′
i) = S(Mi : ai) and 
1 /∈H 
′

i and Σ(c) = a → a, then
Δ � H{
1 �→ c〈
′

1, . . . , 

′
n〉} : [c M ]Ψ.
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This lemma is more subtle than its statement suggests, and demonstrates the
subtle relationship between heaps, heap types, and heap typing derivations.
Recall that heaps and heap types are unordered: the typing derivation itself
exhibits a topological ordering as a witness that there are no cycles. The proof
of Heap Update is constructive and proceeds by induction on the derivation: an
algorithm can be given which computes a new topological ordering for the result-
ing heap. Introducing free variables and binding free variables both preserve the
validity of the trail:

Lemma (Trail Update). If Δ;C;H � T ok then

(a)If H(
H) = FREE[x : a] then

Δ;H{
H �→ w} � udate trail(x : a@
H , T ) ok.

(b)If 
H fresh and x fresh then Δ;H{{
H �→FREE}}[x : a] � T ok.

Claim (a) says that if we bind a free variable x to a term and add x to the
trail (notated x : a@
H to indicate a variable x of type a was located at 
H),
the resulting trail is well-typed. The trail update trail(x : a@
H , T ) is well-typed
under the heap H{
H �→ w} iff unwinding it results in a well-typed heap. Thus
proving (a) amounts to showing that unwinding update trail(x : a@
H , T ) gives
us the original heap, which we already know to be well-typed.

Claim (b) is a weakening principle for trails, which comes directly from the
weakening principle for heaps (a heap H : Ψ is allowed to contain extra unreach-
able locations 
 which do not appear in Ψ). This claim shows that the trail does
not need to be modified when a fresh variable is allocated, only when it is bound
to a term. It relies on the following subclaim, which holds by induction on the
trace tr contained in tf.

Claim. unwind((Δ,x:a),H{{
H �→FREE[x:a]}}, tr)=(Δ,H ′{{
H �→FREE[x:a]}})
for some heap H ′.

Recall that the typing rule for trails simply says whatever heap results from
unwinding must be well-typed. This simplifies the proofs significantly: showing
that an update preserves validity consists simply of showing that it does not
change the result of backtracking (modulo perhaps introducing unused values).

Soundness of the backtracking operation simply says the resulting machine
is well-typed. The proof is direct from the premisses of the trail typing invariant.

Lemma (Backtracking Totality). For all trails T, if Δ � C : Ξ, Δ � H : Ψ,
and Δ;C;H �Σ;Ξ T ok then either backtrack(Δ,C,H, T ) = m′ and · � m′ ok or
backtrack(Δ,C,H, T ) = ⊥.

While the full proof contains several dozen other lemmas, those discussed
above demonstrate the major insights into why the TWAM type system is sound
and why it enables certification for TWAM programs.
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4 Implementation

Implementing a compiler from T-Prolog to TWAM, a TWAM runtime, and
a TWAM typechecker allows us not only to execute T-Prolog programs, but
crucially to validate the TWAM design. For example, implementation increased
our confidence that the static and dynamic semantics are exhaustive. Testing
the compiler and checker provides informal evidence that they are sufficiently
complete in practice. Testing the checker also tests its soundness, validating
simultaneously that it is faithful to the dynamics and that Theorem 1 holds of
the implementation.

The proof-of-concept implementation, which consists of 5,000 lines of Stan-
dard ML, is at http://www.cs.cmu.edu/∼bbohrer/pub/twam.zip. The TWAM
typechecker, which constitutes the trusted core, is about 400 lines. The large
majority of the core is implemented by straightforward (manual) translation of
the TWAM typing rules into ML code. This is a small fraction of the code (less
than 10%) and compares favorably with the trusted cores of general-purpose
proof checkers. Our test suite has 23 test files totaling 468 lines, the largest of
which is a library for unary and decimal arithmetic. Other files stress-test edge
cases of T-Prolog and TWAM execution.

The tests showed that the TWAM checker often catches compiler bugs in
practice. Many of these bugs centered around placing a value into the wrong
register or wrong position of a tuple. Singleton types are effective at catching
these bugs because distinct terms always have different singleton types. Prior
typed intermediate languages are less certain to catch these bugs because they
permit distinct terms to have the same type.

Not only did our implementation greatly increase confidence in the theory,
but we believe that it demonstrates TWAM’s potential for catching real bugs.

5 Related Work

We are the first to build a full certifying (or verified, in general) compiler for
a Prolog-like language. In contrast, full compilers for imperative (C [17]) and
functional (ML [16]) languages have been verified directly in proof assistants.
The latter project also yielded a compiler from higher-order logic [21] to ML.

Compiler verification for Prolog has been explored, but past attempts did
not yield a full compiler. Paper proofs were written for both concrete [30] and
abstract [3,5] compiler algorithms. Some (but not all) passes of Prolog compilers
were verified in Isabelle [28] and KIV [31]. Prolog source semantics have also
been formalized, e.g., in Coq [15]. Compiling all the way from Prolog to WAM
with proof has been noted explicitly [31] as a challenge. Previous formalized
proofs reported 6 person-month development times, the same time that it took
to develop our theory, proofs, and implementation. While the comparison is not
direct because many details of the projects differ, we find it promising.

Certifying compilation includes type-preserving compilation [34] and proof-
carrying code (PCC) [23]. In type-preserving compilation, the certificates are

http://www.cs.cmu.edu/~bbohrer/pub/twam.zip
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type annotations, while in PCC they are proofs in logic. Type-preserving compi-
lation is typically more concise while PCC is typically more flexible. Certifying
compilation has recently been applied to the Calculus of Constructions [6] and
LLVM passes [14]. A significant fragment of the proof checker for LLVM is ver-
ified in Coq for reliability. Applying this approach to TWAM is non-trivial, but
possible in theory. Their experience supporting optimizations suggest we could
do the same for TWAM, with proportional verification effort.

Translation validation [27] is a related approach, with post-hoc, black-box
(but still automatic) construction of certificates. Its black-box nature means it
might support multiple compilers, but is also often brittle.

The first-order logic we used can be embedded in the logical framework
LF [13]; We have chosen FOL over LF for the simple reason that it is much
better known. LF is also the foundation of the programming language Elf [25]
and proof checker Twelf [26]. A comparison of our approach with Elf is fruitful:
Elf instruments execution to produce LF proofs, whereas we instrument compi-
lation to produce a proof that obviates the need for execution to produce proofs,
which is amenable to higher performance. Singleton types, which are featured
prominently in TWAM, are not new [38], but we are the first to support unifi-
cation on singletons.

TWAM is also a descendant of typed assembly language (TAL) [7–9,19,20].
Dependent types and TAL have been combined in DTAL [37], but DTAL employs
a lightweight, restrictive class of dependent types in order to, e.g., eliminate array
bounds checks when compiling DML [38]. Our class of dependent types is more
expressive. DTAL typechecking also requires complex non-syntactic constraint
generation and solving. While TWAM’s unification constraints are non-trivial,
they are syntactic and thus more likely to scale.

Abstraction interpretation for Prolog [33] provides another view on our work.
The abstraction interpretation literature distinguishes between goal-dependent
analyses which must be performed again for every query and goal-independent
ones which are reusable across queries. Our type system is compositional, so
most of the work is reusable across queries. When a new query is provided, on
the query itself (and success continuation) must be checked again. This is true
in large part because procedure typechecking is static and need not know what
arguments will be supplied at runtime.

6 Future Work

Our proof-of-concept implementation has shown that the certifying compilation
approach is viable for logic programs. What remains is to exploit this potential
by building a production-quality optimizing compiler for a widely-used language.
Full Prolog is a natural target: a first step can be achieved easily by reintroduc-
ing cuts and negations as failure into the language but leaving them out of
the certification spec. That is, it is straightforward to support compilation of
cut and negation while only providing a formal correctness guarantee for the
“pure” subgoals. It is less obvious how to certify full Prolog precisely. The deep-
est challenge is that provability semantics are insufficient to certify non-logical
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Prolog features, so a more complex approach using operational semantics may
be needed.

Logic languages other than Prolog may benefit from certifying compilation,
especially certification of search soundness. Lambda-Prolog [22] and Elf [24,25]
can both be easily interpreted with a provability semantics and have both been
used in theorem-proving [11,26] where soundness of proof checking is essential.
It is expected that these languages could be supported by using a stronger logic
for specifications. Certifying compilation for Datalog might be especially fruitful
given Datalog’s commercial successes [2,12] and given that it is a subset of
Prolog, one which typically omits cut and negation. The main challenge there
would not be extending the specification language, but replacing our WAM-like
design with a relational algebra-based forward-chaining interpreter as is typically
used for Datalog.

The challenge of runtime performance should also not be ignored. TWAM’s
proximity to WAM and purely compile-time approach show promise for runtime
efficiency. However, the WAM supports a well-known set of optimizations that
have a significant impact in practice [1] and many of which we did not implement.
Some of the most important optimizations, such as careful register allocation
and common subexpression elimination, are already possible in TWAM. Many
of the other important optimizations, such as jump-tables, are implemented with
custom instructions, which we believe could be added to TWAM with modest
effort. In short, the future work is to use the lessons learned from a proof-of-
concept implementation for a simplified language to build a production-quality
implementation for a production-quality language.
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26. Pfenning, F., Schürmann, C.: System description: Twelf—a meta-logical frame-
work for deductive systems. CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 14

27. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

28. Pusch, C.: Verification of compiler correctness for the WAM. In: Goos, G., Hart-
manis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 347–361. Springer, Heidelberg (1996). https://doi.org/
10.1007/BFb0105415

29. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253

30. Russinoff, D.M.: A verified prolog compiler for the warren abstract machine. J. Log.
Program. 13(4), 367–412 (1992). https://doi.org/10.1016/0743-1066(92)90054-7

31. Schellhorn, G., Ahrendt, W.: Reasoning about abstract state machines: the WAM
case study. J. UCS 3(4), 377–413 (1997). https://doi.org/10.3217/jucs-003-04-0377

32. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, vol.
149. Elsevier, Amsterdam (2006)

33. Spoto, F., Levi, G.: Abstract interpretation of prolog programs. In: Haeberer, A.M.
(ed.) AMAST 1999. LNCS, vol. 1548, pp. 455–470. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-49253-4 32

34. Tarditi, D., Morrisett, J.G., Cheng, P., Stone, C.A., Harper, R., Lee, P.: TIL: a
type-directed optimizing compiler for ML. In: PLDI, pp. 181–192. ACM (1996)

35. Warren, D.H.: An Abstract Prolog Instruction Set, vol. 309. Artificial Intelligence
Center, SRI International Menlo Park, California (1983)

36. Wielemaker, J.: SWI-Prolog OpenHub Project Page (2018). https://www.
openhub.net/p/swi-prolog. Accessed 28 Apr 2018

https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/319301.319345
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1145/277650.277752
https://doi.org/10.1145/277650.277752
https://doi.org/10.1109/LICS.1989.39186
http://dl.acm.org/citation.cfm?id=120477.120483
http://dl.acm.org/citation.cfm?id=120477.120483
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0105415
https://doi.org/10.1007/BFb0105415
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/0743-1066(92)90054-7
https://doi.org/10.3217/jucs-003-04-0377
https://doi.org/10.1007/3-540-49253-4_32
https://www.openhub.net/p/swi-prolog
https://www.openhub.net/p/swi-prolog


134 B. Bohrer and K. Crary

37. Xi, H., Harper, R.: A dependently typed assembly language. In: Pierce, B.C. (ed.)
Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP 2001), Florence, Italy, 3–5 September 2001, pp. 169–180.
ACM (2001). https://doi.org/10.1145/507635.507657

38. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Appel, A.W.,
Aiken, A. (eds.) POPL 1999, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX, USA,
20–22 January 1999, pp. 214–227. ACM (1999). https://doi.org/10.1145/292540.
292560

https://doi.org/10.1145/507635.507657
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/292540.292560

	TWAM: A Certifying Abstract Machine for Logic Programs
	1 Introduction
	2 Certifying Compilation in Proof-Passing Style
	3 The Typed WAM (TWAM)
	3.1 Syntax
	3.2 Example: Code Section for Plus
	3.3 Operational Semantics
	3.4 Statics
	3.5 Metatheory

	4 Implementation
	5 Related Work
	6 Future Work
	References




