
�

Stack�Based Typed Assembly Language

GREG MORRISETT �

Cornell University

KARL CRARY

Carnegie Mellon University

NEAL GLEW

STAR Lab� Intertrust Technologies

DAVID WALKER

Carnegie Mellon University

Abstract

This paper presents STAL� a variant of Typed Assembly Language with constructs and
types to support a limited form of stack allocation� As with other statically�typed low�
level languages� the type system of STAL ensures that a wide class of errors cannot occur
at run time� and therefore the language can be adapted for use in certifying compilers
where security is a concern� Like the Java Virtual Machine Language �JVML�� STAL
supports stack allocation of local variables and procedure activation records� but unlike
the JVML� STAL does not pre�suppose �xed notions of procedures� exceptions� or calling
conventions� Rather� compiler writers can choose encodings for these high�level constructs
using the more primitive RISC�like mechanisms of STAL� Consequently� some important
optimizations that are impossible to perform within the JVML� such as tail call elimination
or callee�saves registers� can be easily expressed within STAL�

� Introduction and Motivation

A certifying compiler takes high�level source code and produces low�level target

code� but� in addition� produces explicit evidence that the target code will not per�

form some �bad� action when executed� By checking the evidence before executing

the code� an untrusting system can verify that the target code will be well�behaved

independent of the source code or compiler� Thus� to the degree that we trust the

veri�er� we need not trust either the code producer or the compiler�

As an example� Sun Microsystem�s javac compiler takes Java source code

	Gosling et al�� �

�� and produces Java Virtual Machine Language 	JVML� byte�

codes 	Lindholm
 Yellin� �

��� which contain explicit typing annotations as ev�

� This material is based on work supported in part by the AFOSR grant F���������	���	
�
ARPA�RADC grant F
��������	��
	�� ARPA�AF grant F
������
�	������ AASERT grant
N���	���
�	����
� ARPA grant F	������
�C���
�� and NSF grants CCR��
	�
�� and CCR�
�����	
� Any opinions� �ndings� and conclusions or recommendations expressed in this publi�
cation are those of the authors and do not re�ect the views of these agencies�

� G� Morrisett et al�

idence� An untrusting system� such as a Web browser� can verify the typing an�

notations against the bytecodes using a form of data�ow analysis to ensure that�

when executed� the bytecodes will not violate type safety� In turn� the type safety

guarantees can be used to ensure a wide class of important security properties� such

as memory safety� control safety� or� more generally� fault isolation�

Though a portable and successful target language for certifying compilers� the

JVML type system is not without its shortcomings� In particular� the bytecodes

consist of relatively high�level instructions� As such� the code must either be inter�

preted� which can yield poor performance� or else compiled to native code� In either

case� we must introduce a software component 	interpreter or compiler� into our

trusted computing base� thereby increasing the probability of error� In addition�

both the bytecodes and the type system are tailored for Java and thus form a poor

target for many other source languages� For example� method call and return are

high�level instructions with no provision for tail calls� Consequently� with JVML it

is di�cult to compile functional languages� such as Scheme 	Scheme� �

��� that

depend upon tail calls for proper space overheads� As another example� the type

system has no direct support for parametric polymorphism� making it di�cult to

compile languages such as SML 	Milner et al�� �

��� Finally� the JVML type system

and semantics were not designed with a formal model in mind� and thus it has been

di�cult to state or prove properties about the language such as type soundness�

though much recent progress has been made 	Freund
 Mitchell� �

� Coglio et al��

�

�� Goldberg� �

�� Qian� �

�� Freund
 Mitchell� �

�� O�Callahan� �

��

These observations motivated our exploration of type systems for very low�level�

explicitly typed target languages with a more low�level philosophy� Our goal was

to discover generic target�level type structure that could be applied for any source

language and any certifying compiler� As a step towards this goal� in earlier work we

presented a core typed assembly language 	TAL� 	Morrisett et al�� �

�a� Morrisett

et al�� �

a�� where almost all of the instructions had a one�to�one correspondence

with a conventional MIPS�like assembly language� Thus� the language had no built�

in notion of high�level features such as methods� functions� or objects� The primary

challenge in designing TAL was to come up with a simple but expressive type system

that would allow compiler writers to e�ciently encode these features�

We based the type system of TAL on a variant of the Girard�Reynolds poly�

morphic lambda calculus� also known as System F� Doing so had a number of

bene�ts� First� it was easy to adapt the relatively simple rewriting model and proof

techniques developed for System F to the assembly language arena� In turn� this

allowed us to state and prove a type soundness theorem easily� Second� a number

of researchers have studied how to encode high�level language features� such as ab�

stract data types� continuations� closures� and objects� using the typing facilities of

System F or extensions thereof� By basing the TAL type system on System F� we

could immediately transfer these results�

We demonstrated the expressiveness of TAL and its type structure by formally

de�ning a type�preserving� certifying compiler from an ML�like language to TAL�

The compiler ensured that well�typed source programs were always mapped to well�

typed assembly language programs� Furthermore� we claimed that the type system

Stack�Based Typed Assembly Language �

of TAL did not interfere with a class of desirable compiler optimizations including

inlining� loop unrolling� register allocation� common sub�expression elimination�

and instruction scheduling� Our preliminary implementation experience seems to

substantiate these claims�

However� the compiler we presented was critically based on a continuation�passing

style 	CPS� transform� which eliminated the need for a control stack� In particular�

activation records were represented by heap�allocated closures as in the Rabbit and

SML of New Jersey compilers 	Steele Jr�� �
��� Appel
 MacQueen� �

��� and

we relied upon a garbage collector to reclaim these closures� There are some good

reasons for implementing procedure activations in this fashion 	see for example Ap�

pel�s book 	Appel� �

���� but the approach is fairly non�standard� Indeed� almost

all compilers allocate activation records on a stack and explicitly deallocate them

upon procedure return 	or tail call�� Unfortunately� the simple typing model of TAL

was unable to support this approach�

In this paper� we explore additions to the type structure of TAL that support

limited forms of stack�based memory management� The resulting target language�

which we call STAL� is remarkably simple� but powerful enough to compile the

control aspects of languages such as Pascal� Java� or ML� More speci�cally� the

STAL typing discipline supports stack allocation of temporary variables and values

that do not escape upwards� stack allocation of procedure activation frames� ex�

ception handlers� and displays� and optimizations such as tail call elimination and

callee�saves registers� Unlike JVML� STAL is �exible enough that we need not add

high�level procedure call�return primitives� Rather� by providing a general form of

stack polymorphism and polymorphic recursion� these high�level operations can be

synthesized from standard primitives such as loads� stores� and jumps�

Nevertheless� the typing discipline of STAL is not powerful enough to support

all desirable optimizations� For example� the approach does not support �zero�

overhead�try� exception handlers� nor does it support general stack allocation of

data 	e�g�� alloca�� But in general� our approach seems to strike a good bal�

ance between simplicity and expressiveness� Indeed� O�Callahan suggested that the

most appropriate way to model and understand important aspects of the JVML

type system� such as sub�routines� was to map it to a restricted version of STAL

	O�Callahan� �

��

The basic ideas behind our stack typing discipline were presented in an earlier

workshop paper 	Morrisett et al�� �

�b�� Here we extend that work by giving a

more thorough and formal treatment� including a proof of type soundness� To keep

the development self�contained� we begin in Section � by giving an overview of the

original core typed assembly language� and by describing how a certifying compiler

for a functional language can use it as a target language� In Sections � and �� we

motivate our extensions to support stack allocation through a series of examples

involving temporary values� activation records� and exception contexts� In Section �

we formally de�ne the static and dynamic semantics of STAL� deferring the proof

of type soundness to Appendix A� We close in Section � with a brief description

� G� Morrisett et al�

of our implementation of STAL for the IA�� instruction set architecture 	i �e�� the

Intel x���� and a discussion of related and future work�

� Overview of TAL and CPS�Based Compilation

In this section� we give a brief overview of core Typed Assembly Language 	TAL�

and how it may be used as the target of a certifying compiler� This presentation is

based on our earlier work 	Morrisett et al�� �

a�� but simpli�es the treatment of

allocation and initialization 	as noted below��

Like a conventional assembly language� the code in a TAL program consists of a

set of labelled instruction sequences� where the labels are used as symbolic addresses

for control transfers� However� TAL programs are explicitly typed� meaning that

instructions and operands are decorated with enough typing information that type

checking the language can be done in a syntax�directed manner�

The syntax of instructions and instruction sequences is given below and except

for two of the instructions 	malloc and unpack�� corresponds directly to RISC�style

instructions�

instruction sequences I ��� jmp v j halt�� � j �� I

instructions � ��� aop rd� rs� v j mov rd� v j ld rd� rs	i� j

st rd	i�� rs j bop r� v j

malloc r� hv�� � � � � vni j unpack ��� rd�� v

arithmetic ops aop ��� add j sub j mul

branch ops bop ��� beq j bneq j bgt j blt j bgte j blte

An instruction sequence is a list of instructions terminated by an unconditional

control transfer 	either jmp or halt�� In the syntax� we use r to represent a register

operand and v to represent an operand that is either a register or an immediate

word�sized value 	e�g�� an integer� code label� or data label�� We use the meta�

variable w to range over word�sized values�

The arithmetic instructions take a source register as one operand 	rs�� and either

another source register or immediate value as another operand 	v�� perform the

appropriate arithmetic on the values� and store the result in the destination register

	rd�� The mov instruction simply moves the value of v into the destination register

rd� The instruction ld rd� rs	i� loads a word of memory at an o�set of i words from

the base address indicated by the source operand rs into the destination register

rd� Dually� the st rd	i�� rs instruction stores the contents of rs into memory at the

word o�set i from the base address rd�

The branch instructions branch to their second operand if the �rst operand is

appropriately related to �� For example� the instruction bneq r�� foo branches

to the label foo when register r� is not �� The jmp instruction unconditionally

transfers control to the address indicated by its operand and the halt instruction

terminates the operation of the program�

The malloc and unpack instructions do not correspond to conventional ma�

chine instructions� Rather� they are higher�level primitives that make it easier to

prove code is type safe and would typically be implemented by a small sequence

Stack�Based Typed Assembly Language �

of machine�speci�c instructions� The malloc instruction is used to dynamically al�

locate and initialize memory� and returns a pointer to the memory object in the

speci�ed register� In the original formulation of TAL� we had more primitive mecha�

nisms that separated allocation and initialization� but to simplify the presentation�

we use a combined mechanism here� As in the original TAL model� we assume that

heap�allocated memory is reclaimed by a garbage collector�

The unpack is a technical device that is used to �open� a value that has an

existential type 	Mitchell
 Plotkin� �
���� and is discussed more thoroughly in

Section ����

��� The TAL Abstract Machine

The dynamic semantics of TAL is speci�ed as an abstract rewriting machine simi�

lar to the SECD 	Landin� �
��� or CESK 	Felleisen� �
��� machines used to model

higher�level functional languages� This level of abstraction hides some machine�

speci�c details� but makes it easier to relate the semantics to existing formalisms�

The abstract machine maintains� but does not use the typing information during

evaluation� This facilitates the proof of type soundness but also admits an imple�

mentation where type information is erased prior to execution�

A TAL abstract machine state M consists of three components� a heap 	H��

a register �le 	R�� and a current instruction sequence 	I�� The heap provides a

symbolic store for both code and data� the register �le provides values for the

registers� and the instruction sequence simulates a program counter� Evaluation is

modelled by a deterministic rewriting system that maps machine states to machine

states� written M ���M ��

Most of the rewriting rules are straightforward and directly encode the informal

semantics discussed earlier� For example� there is one rule for addition using an

immediate value that looks like this�

	H�R� add rd� rs� i� I� ��� 	H�Rfrd �� R	rs� � ig� I�

Here� we look up the value of rs in the register �le� add it to the immediate value i

	where i ranges over integer literals�� and step to a new state where the register

�le is updated to map rd to the sum� and where the �program counter� has been

advanced by taking the tail of the instruction sequence�

We model register �les as functions from register names 	r� to word�sized val�

ues 	w�� and we model heaps as partial functions from labels 	�� to heap values

	discussed below�� This level of abstraction hides many details� such as the relative

order of heap values� which is convenient for high�level reasoning� For example�

an implementation that uses a copying garbage collector is free to rearrange heap

values without observably a�ecting the machine state�

Heap values consist of tuples of word sized values 	hw�� � � � � wni� n � �� or typed

instruction sequences 	code��� �I�� It is possible to add other forms of data� in�

cluding tagged unions 	sums�� arrays� objects� etc�� but in this formal treatment�

we have kept data forms to a minimum to simplify the presentation�

A typed instruction sequence consists of a typing pre�condition 	��� � and an

� G� Morrisett et al�

instruction sequence 	I�� Informally� � is a list of bound type variables that can

be used as abstract types within the code� and describes the types that registers

must have before control can be transferred to the associated code sequence� The

formal role of the typing pre�condition should become clear when we discuss the

static semantics in the next section�

The syntax for machine states� register �les� heap values� word values� and typed

instruction sequences is summarized below�

machine states M ��� 	H�R� I�

register �les R ��� fr� �� w�� � � � � rn �� wng

heaps H ��� f�� �� h�� � � � � �n �� hng

heap values h ��� hw�� � � � � wni j code��� �I

word values w ��� � j i j w�� � j pack ��� w� as � �

operands v ��� r j w j v�� � j pack ��� v� as � �

As mentioned earlier� word values include labels 	i �e�� pointers� and immediate

integers� but in addition� they include a number of other syntactic forms� The value

w�� � is a polymorphic type instantiation when w is a polymorphic value 	i �e�� a

label for a polymorphic instruction sequence�� A value pack ��� w� as � � is used to

introduce existential types�

Like typing pre�conditions� these annotations on values are not used during eval�

uation but rather keep the process of type checking syntax�directed�

We can now describe the semantics of the rest of the instructions� In the seman�

tics� we use !R to convert an operand to a word value as follows�

!R	r� � R	r�
!R	w� � w
!R	v�� �� � 	 !R	v���� �
!R	pack ��� v� as � �� � pack ��� !R	v�� as � �

The mov instruction simply moves the word value of the operand into the appro�

priate register�

	H�R� mov rd� v� I� ��� 	H�Rfrd �� !R	v�g� I�

The ld instruction expects that its operand contains a label bound in the heap to

a tuple� The ith component of the tuple is returned as the result�

	H�R� ld rd� rs	i�� I� ���

	H�Rfrd �� wig� I� when H	 !R	rs�� � hw�� � � � � wi� � � � � wni

The st instruction is the dual�

	Hf� �� hw�� � � � � wi� � � � � wnig� R� st rd	i�� rs� I� ���

	Hf� �� hw�� � � � � !R	rs�� � � � � wnig� R� I� when !R	rd� � �

The malloc instruction allocates and initializes a new tuple in the heap�

	H�R� malloc rd� hv�� � � � � vni� I� ���

	Hf� �� h !R	v��� � � � � !R	vn�ig� Rfrd �� �g� I� where � �� Dom	H�

For the branch instructions� if the condition is not true� then we simply move on

Stack�Based Typed Assembly Language �

to the tail of the current instruction sequence� Otherwise� we �jump� to the code

speci�ed by the operand by installing its associated code� For example�

	H�R� beq r� �� I� ���

	H�R� I �� when R	r� � � and H	�� � code�� �I �

Other control transfers� such as jmp behave in a similar fashion�

In general� instruction sequences can be polymorphic with respect to types� That

is� they can abstract a sequence of type variables � � ��� � � � � �n and these type

variables may occur free within the code sequence� Before control can be trans�

ferred to a polymorphic instruction sequence� the type variables must be explicitly

instantiated� Thus� the general rule for a control transfer� such as a jmp� requires

that we supply type parameters ���� � � � � �n� as in�

	H�R� jmp ����� � � � � �n�� ���

	H�R� I ���i��i�� when H	�� � code���� � � � � �n� �I
�

	We write the capture�avoiding substitution of � for � in an expressionE asE�������

Notice that when the control transfer is performed� we substitute the type param�

eter �i for the appropriate type variable �i within the code sequence that abstracts

the type variables� Again� the type instantiation and substitution are not neces�

sary for evaluation� but rather make it easier to prove type soundness� In a real

implementation� type information may be erased prior to execution�

The abstract machine�s terminal states are of the form 	H�R�r� �� v�� halt�� ���

where v is a value of type � � We say that a non�terminal machine state is stuck

if there is no valid transition to a new machine state� For example� the machine

becomes stuck if it attempts to perform a load or store on an integer operand� or

attempts to jump to an operand that is not a code label� The goal of the type

system� discussed in the next section� is to ensure that well�formed programs never

become stuck�

��� Overview of the TAL Type System

The abstract syntax for the types of the TAL abstract machine is given below�

types � ��� � j int j h��� � � � � �ni j ����� j 	���

type assignments � ���
 j �� �

register assignments ��� fr����� � � � � rn��ng

label assignments " ��� f������ � � � �n��ng

Types include type variables� int � tuple types� polymorphic code types� and existen�

tial types� Code types 	����� �� similar to polymorphic function types� are used to

classify pointers to heap�allocated instruction sequences� As discussed above� con�

trol can only be transferred to a value with a code type when we supply types for the

type parameters� and ensure that our current register state has a typing that satis�

�es the pre�condition of the instruction sequence� Code types have no post�condition

or return type because control is either terminated via halt or transferred to an�

other code block� When the set of abstracted type variables is empty� we often omit

the �������

� G� Morrisett et al�

The type variables that are abstracted in a code block provide a means to write

polymorphic code sequences� For example� the polymorphic code block

code���fr���� r���� ��fr��h�� �igg�

malloc r�� hr�� r�i

mov r�� r�

jmp r�

roughly corresponds to a CPS version of the ML function fn 	x��� �� 	x� x�� The

block expects upon entry that register r� contains a value of the abstract type ��

and r� contains a return address 	or continuation label� of type �� ��fr��h�� �ig� In

other words� the return address requires register r� to contain a pointer to a pair of

values of type � before control can be returned to this address� The instructions of

the code block allocate and initialize a tuple using the value in r�� move the pointer

to the tuple into r� and then jump to the return address in order to �return� the

tuple to the caller� If the code block is bound to a label �� then it may be invoked

by simultaneously instantiating the type variable and jumping to the label 	e�g��

jmp ��int ���

Existential types are used to represent a form of �rst�class abstract data types�

When a value v has type �������� we can abstract the type �� by packing the value

into the type 	����� For example� if v has type hint � fr��hint � intigi� then we can ab�

stract some of the occurrences of int by writing pack �int � v� as 	��h�� fr��h�� intigi�

The instruction unpack �	� rd�� v opens a value v of existential type� placing a

copy of the underlying packed value in rd� In addition� it introduces a local type

variable 		� to name the abstracted type� The scope of the type variable extends

to the end of the enclosing instruction sequence� As usual� the type variable must

be di�erent from any other variable in the context in order to avoid unsoundness�

but this can always be accomplished by alpha�converting the code sequence� The

following code block gives a simple example of using an existential�

code��fr��	��h�� fr���gig�

unpack �	� r��� r� � r��h	� fr��	gi

ld r�� r�	�� � r��	

ld r�� r�	�� � r��fr��	g

jmp r�

Here� the code expects a tuple value in register r�� where the type of the �rst

component is abstract 	��� and the second component is a code label expecting a

value of type � to be passed in register r�� The sequence begins by unpacking the

value into register r�� introducing a unique� local name 	 for the abstract type�

Register r� is thus assigned the type h	� fr��	gi� We then load the abstract value

and the code label into registers r� and r� respectively� and jump to the code

label� In the next section� we give a similar but more realistic example showing how

existential types can be used to implement closures�

Finally� label assignments 	"� are used to give types to heaps during evaluation�

A heap H � f�� �� h�� � � � � �n �� hng has type " � f������ � � � � �n��ng when� under

the assumption that H �"� we can show that hi��i for � � i � n� Thus� the typing

Stack�Based Typed Assembly Language

rule for heaps is similar to a �letrec� construct in a conventional functional language

as it allows heap values to indirectly refer to one another via their labels�

The major typing judgment for the abstract machine requires that we be able to

assign a type " to the heap H � assign a type to the register �le R� and check

that the current instruction sequence I is well�formed under the assumptions of "

and �
� H � " " � R � "�
� � I

� 	H�R� I�

We determine that an instruction sequence is well�formed by checking that it uses

registers and labels in a type�consistent manner� For instance� the add instruction

requires that both of its operands have type int � whereas the jmp instruction re�

quires that its operand have a code type� After checking that an instruction uses

operands in a type�consistent manner� we produce a typing post�condition which is

used as the pre�condition of the next instruction in the sequence� For example� the

typing rule for the add instruction looks similar to this�

 	rs� � int "��� � v � int

"��� � add rd� rs� v
 �� frd � intg

In this particular case� the post condition is the same as the pre�condition� except

that register rd is assigned the type int �

In general� we need to keep track of the types of labels and registers� and the set

of type variables that are in scope� Thus� the judgment for instructions is parame�

terized by a label assignment "� a type assignment �� and a register assignment �

With respect to typing� most instructions only a�ect the register �le� However� the

unpack instruction introduces new type variables that can be used in subsequent

instructions in a sequence�

"��� � v � 	��� � �� �

"��� � unpack ��� rd�� v
 	�� ��� frd��g

Consequently� the post�condition for an instruction includes a new type assignment

as well as an updated register assignment�

Notice that the post�condition does not a�ect the label assignment� This is be�

cause� unlike registers� we do not allow labels to change types under evaluation�

The issue here is that� unlike registers� labels are �rst�class values� Because each

copy is checked independently� it is di�cult to ensure that the di�erent occurrences

are treated consistently without explicitly tracking which values are 	potentially�

aliases to a given label� Therefore� we require that the type of a label remain con�

stant through evaluation� similar to the treatment of state used in other typing

disciplines 	for instance Harper 	�

����

Though the type of a given label cannot change� the heap 	and thus its type�

can be extended via malloc� At type�checking time� we do not know what label

will be used when the malloc is executed so we cannot calculate a precise type for

the heap� Rather� we rely upon the fact that the heap grows monotonically and

consequently� the compile time type of the heap will always be a super�type of the

heap at any point during evaluation� Thus� the typing rule for malloc uses only

�� G� Morrisett et al�

the information available at type�checking time�

"��� � vi � �i 	� � i � n�

"��� � malloc rd� hv�� � � � � vni
 �� �rd �� h��� � � � � �ni�

We string sequences of instructions together by using the post�condition of one

instruction as the pre�condition of the next in the style of Hoare�logic�

"��� � �
 ��� � "���� � � I

"��� � �� I

A control transfer� such as a jmp� requires that the operand have a code type

and that the current register typing is a sub�type of the destination�s typing pre�

condition�
"��� � v � �� �� � � �

"��� � jmp v

We choose to treat subtyping on register �le types similar to �width� sub�typing

on records�

fr����� � � � � rn��n� rn����n��g � fr����� � � � � rn��ng

There are of course alternatives� For instance� we could add a more complete notion

of subtyping� and the rule to include both depth and width subtyping� However�

this would add a substantial number of rules to the type system and therefore

complicate the proof of soundness� Alternatively� we could eliminate subtyping all

together and instead use polymorphism to abstract the types of registers we would

otherwise forget� However� in practice� we have found that the width sub�typing

approach yields smaller and thus more readable typing annotations�

Obviously� there are additional judgments that are needed for the other instruc�

tions� operands� heap values� etc�� but these are fairly straightforward and are pre�

sented in detail in Section �� As mentioned in the previous section� the principal

goal of the type system is to ensure that well�formed machine states do not be�

come stuck� Indeed� this fact can be proven by establishing subject reduction and

progress lemmas as we do in the Appendix�

��� Compiling to TAL

Although TAL is a fairly simple programming language and has a fairly simple type

system� we can still compile high�level polymorphic functional languages� such as

core ML� to type�correct TAL code� In our previous work� we described a proto�

typical compiler that was composed of four stages� The �rst stage converted code

to continuation passing style 	CPS� in order to make the control context explicit

using higher�order functions� The second stage closure converted the resulting CPS

code by representing functions as pairs of a closed piece of code abstracting the free

variables of the function� and an environment which provided values for the free

variables� The third stage lifted closed functions to the top�level and made allo�

cation of tuples explicit 	the latter function is made unnecessary by the simpli�ed

version of malloc in this paper� and resulted in code that was very C�like in nature�

Stack�Based Typed Assembly Language ��

The �nal stage� code generation� simply translated the resulting code into TAL in

a straightforward fashion�

At the TAL level� we represent closures as a pair consisting of a code block label

and a pointer to an environment data structure� The type of the environment must

be held abstract in order to avoid typing di�culties 	Minamide et al�� �

���� and

thus we pack the type of the environment and the pair to form an existential type�

All functions� including continuation functions introduced during CPS conver�

sion� are thus represented as existentials� For example� once CPS converted� a source

function of type int � hi has type 	int � 	hi � void ��� void�� Then� after closures

are introduced� the code has type�

	���h	��� int � 	���h	��� hi�� void � ��i�� void � ��i

Finally� at the TAL level the function will be represented by a value with the type�

	���h�� ��fr����� r��int � r��	���h�� ��fr����� r��hig� ��ig� ��i

Here� �� is the abstracted type of the closure�s environment� The code for the closure

requires that the environment be passed in register r�� the integer argument in r��

and the continuation in r�� The continuation is itself a closure where �� is the

abstracted type of its environment� The code for the continuation closure requires

that the environment be passed in r� and the unit result of the computation in r��

To apply a closure at the TAL level� we �rst use the unpack operation to open

the existential package� Then the code and the environment of the closure pair are

loaded into appropriate registers� along with the argument to the function� Finally�

we use a jump instruction to transfer control to the closure�s code�

As an example� consider the following ML code which computes � factorial�

let fun fact �n	int
	int �

if n � � then � else n � fact �n
�

in

fact �

end

Figure � gives equivalent TAL code that would result from our simple compiler�

� Adding a Stack to TAL

In this section� we describe how to extend TAL to obtain a Stack�Based Typed As�

sembly Language 	STAL�� focusing on the key issues� Here� we informally discuss

the dynamic and static semantics for the modi�ed language� leaving formal treat�

ment to Section �� We also discuss how these features may be used in a type�directed

compiler�

� The issue is that� two source level functions with the same source type� might have di�erent
environment types at the target level �e�g�� because they have di�erent free variables�� Existen�
tially quantifying the type of the environment ensures that the target�level types remain the
same�

� The void return types are intended to suggest the non�returning aspect of CPS functions�

�� G� Morrisett et al�

�H� fg� I� where
H � l fact ��

code� 	fr��hi�r��int�r���kg�
bneq r��l nonzero

unpack ���r�	�r� � zero branch
 call k �in r�� with �
ld r	�r�
�� � project k code
ld r��r�
�� � project k environment
mov r���

jmp r	 � jump to k
l nonzero ��

code� 	fr�
hi�r�
int�r�
�kg�
sub r	�r��� � n� �
malloc r
�hr��r�i � create environment for cont in r

malloc r��hl cont�r
i � create cont closure in r�

mov r��r	 � arg
� n� �
mov r��pack �hint � �ki�r�	 as �k � abstract the type of the environment
jmp l fact � recursive call

l cont ��
code� 	fr�
hint � �ki�r�
intg� � r� contains �n� ��

ld r��r�
�� � retrieve n
ld r	�r�
�� � retrieve k
mul r��r��r� � n� �n� ��

unpack ���r		�r	 � unpack k
ld r��r	
�� � project k code
ld r��r	
�� � project k environment
jmp r� � jump to k

l halt ��
code� 	fr�
hi�r�
intg�

mov r��r�

halt�int 	 � halt with result in r�

and I � malloc r��h i � create empty environment
mov r��r� � create another empty environment
malloc r��hl halt�r�i � create halt closure in r�

mov r��� � load argument ���
mov r��pack �hi�r�	 as �k � abstract the type of the environment
jmp l fact � begin fact with

� fr� � hi� r� � �� r� � haltcontg
and �k � ���h�� 	�fr�
��r�
intg� �i

Fig� �� Typed Assembly Code for Factorial �Unoptimized�

��� Basic Developments

Figure � de�nes the new syntactic constructs for adding stacks to the TAL abstract

machine� Operationally we model stacks 	S� as lists of word�sized values� We aug�

ment the machine state by adding a new distinguished register sp to the register

�le component to hold the current value of the stack� Thus� machine states are of

the form 	H�R�sp �� S�� I� and consist of a heap� register �le 	including the stack��

and instruction sequence�

There are four new instructions that manipulate the stack� The salloc n instruc�

Stack�Based Typed Assembly Language ��

types �

� � � � j 	
stack types �

� � j nil j �

�
type assignments �

� � � � j ���
register assignments �

� fr�
��� � � � � rn
�n� sp
�g
word values w

� � � � j w��	 j ns
small values v

� � � � j v��	
register �les R

� fr� �� w�� � � � � rn �� wn� sp �� Sg
stacks S

� nil j w

S
instructions �

� � � � j salloc n j sfree n j sld rd� sp�i� j sst sp�i�� rs

Fig� �� Additions to TAL for Simple Stacks

tion enlarges the stack by n words� On a conventional machine� assuming stacks

grow toward lower addresses� an salloc operation would correspond to subtracting

n from the stack pointer 	or� more realistically� �n�� The new stack slots are unini�

tialized� which we formalize by �lling them with �nonsense� words denoted by ns�

Nonsense values are assigned the type �� suggesting that there are no useful oper�

ations on values of this type� In the presence of a primitive notion of sub�typing�

we could also treat � as the greatest type 	top��

The sfree n instruction removes the top n words from the stack� and corresponds

to adding n to the stack pointer� The sld r� sp	i� instruction loads the ith word

	from zero� of the stack into register r� whereas the sst sp	i�� r stores register r

into the ith word�

Stacks are classi�ed by stack types 	
�� which include nil and � ��
� The former

describes the empty stack and the latter describes a stack of the form w��S where

w has type � and S has type
� Stack types also include stack type variables 	���

which may be used to abstract the tail of a stack type� The ability to abstract stack

types is critical for supporting procedure calls and is discussed in detail later�

As before� the register �le for the abstract machine is typed by a register as�

signment 	 � mapping registers to types� However� also maps the distinguished

register sp to a stack type
� Finally� code blocks and code types support polymor�

phic abstraction over both types and stack types� In the interest of clarity� from

time to time we will give registers symbolic names 	such as ra for return address��

In addition to the possibilities for stuck states arising from TAL� our new abstract

machine can become stuck if we attempt to execute�

� sfree n and the stack does not contain at least n words� or

� sld r� sp	i� or sst sp	i�� r and the stack does not contain at least i�� words�

As usual� a type safety theorem 	Theorem ���� dictates that no well�formed program

can become stuck�

��� Using the Stack for Temporaries

One of the uses of the stack is to save temporary values during a computation� The

general problem is to save on the stack n registers� say r� through rn� of types ��
through �n� perform some computation e� and then restore the temporary values to

�� G� Morrisett et al�

their respective registers� This would be accomplished by the following instruction

sequence where the comments 	delimited by �� show the stack�s type at the end of

each step of the computation�

�

salloc n � ������

 �����

sst sp	��� r� � �������

 �����

���

sst sp	n� ��� rn � ��������

 ���n��

code for e � ��������

 ���n��

sld r�� sp	�� � ��������

 ���n��

���

sld rn� sp	n� �� � ��������

 ���n��

sfree n �

If� upon entry� ri has type �i and the stack is described by
� and if the code for

e leaves the state of the stack unchanged� then this code sequence is well�typed�

Furthermore� the typing discipline does not place constraints on the order in which

the stores or loads are performed�

It is straightforward to model higher�level primitives� such as push and pop� A

push can be seen as simply salloc� followed by a store to sp	��� whereas a pop is a

load from sp	�� followed by sfree �� Also� a �jump�and�link� or �call� instruction

that automatically moves the return address into a register or onto the stack can be

synthesized from our primitives� To simplify the presentation� we did not include

these instructions in STAL� a practical implementation� however� would need a full

set of instructions appropriate to the architecture� There are other practical issues�

including allocation for sizes di�erent than a word� or alignment constraints that

we also do not treat here� However� we expect that it is not too di�cult to extend

the formalism to deal with such details�

��� Stack Polymorphism and Recursive Functions

The stack is commonly used to save the current return address� and temporary

values across procedure calls� Which registers to save and in what order is usually

speci�ed by a compiler�speci�c calling convention� Here we consider a simple calling

convention where it is assumed that there is one integer argument and one unit

result� both of which are passed in register r�� and that the return address is passed

in the register ra� When invoked� a procedure may choose to place temporaries on

the stack as shown above� but when it jumps to the return address� the stack should

be in the same state as it was upon entry� Naively� we might expect the code for a

function obeying this calling convention to have the following STAL type�

fr��int � sp�
� ra�fr��hi� sp�
gg

Stack�Based Typed Assembly Language ��

Notice that the type of the return address is constrained so that the stack must

have the same shape upon return as it had upon entry� Hence� if the procedure

pushes any arguments onto the stack� it must pop them o��

However� this typing is unsatisfactory for two important reasons�

� Nothing prevents the function from popping o� values from the stack and

then pushing new values 	of the appropriate type� onto the stack� In other

words� the caller�s stack frame is not protected from the function�s code�

� Such a function can only be invoked from states where the entire stack is

described exactly by
� This e�ectively limits invocation of the procedure to

a single� pre�determined point in the execution of the program� For example�

there is no way for a procedure to push its return address onto the stack and

to jump to itself 	i�e�� to recurse��

The solution to both problems is to abstract the type of the stack using a stack

type variable�

�����fr��int � sp��� ra�fr��int � sp��gg

To invoke a function having this type� the caller must instantiate the bound stack

type variable � with the current type of the stack� As before� the function can only

jump to the return address when the stack is in the same state as it was upon entry�

This mechanism addresses the �rst problem because the type checker treats � as

an abstract stack type while checking the body of the code� Hence� the code cannot

perform an sfree� sld� or sst on the stack it receives� It must �rst allocate its own

space on the stack� only this space may be accessed by the function� and the space

must be freed before returning to the caller� 	A formal proof of this fact appears in

Crary 	�

���

The second problem is also solved because the stack type variable may be in�

stantiated in multiple di�erent ways� Hence multiple call sites with di�erent stack

states� including recursive calls� may now invoke the function� In fact� a recursive

call will usually instantiate the stack variable with a di�erent type than the original

call because� unless it is a tail call� it will need to store its own return address on

the stack�

Figure � gives stack�based code for the factorial program� The function is invoked

by moving its environment 	an empty tuple� since factorial has no free variables�

into r�� the argument into r�� and the return address label into ra and jumping

to the label l fact� Notice that the nonzero branch must save the argument and

current return address on the stack before jumping to the fact label in a recursive

call� In so doing� the code must use stack polymorphism to account for its additions

to the stack�

��� Calling Conventions

It is interesting to note that the stack�based code is quite similar to the heap�

based code of Figure �� In a sense� the stack�based code remains in continuation

passing style� but instead of passing the continuation as a heap�allocated tuple�

�� G� Morrisett et al�

�H� fsp �� nilg� I� where

H � l fact�

code��	fr�
 hi� r�
 int � sp
 �� ra
 ��g�
bneq r��l nonzero��	 � if n � � continue
mov r��� � result is �
jmp ra � return

l nonzero�

code��	fr�
 hi� r�
 int � sp
 �� ra
 ��g�
sub r��r��� � n� �
salloc � � allocate stack space for n and the return address
sst sp
���r� � save n
sst sp
���ra � save return address
mov r��r�

mov ra�l cont��	
jmp l fact�int

��

�	 � recursive call to fact with n � ��

� abstracting saved data atop the stack
l cont�

code��	fr�
 int � sp
 int

��

�g�
sld r��sp
�� � restore n
sld ra�sp
�� � restore return address
sfree �

mul r��r��r� � n� �n� ��

jmp ra � return

l halt�

code� 	fr�
 int � sp
 nilg�
halt�int 	

and I � malloc r��h i � create empty environment
mov r��� � argument
mov ra�l halt � return address for initial call
jmp l fact�nil 	

and �� � �� 	�fr�
 int � sp
 �g

Fig� �� STAL Factorial Example

the environment of the continuation is passed in the stack pointer and the code of

the continuation is passed in the return address register� To fully appreciate the

correspondence� consider the type of the TAL version of l fact from Figure ��

fr��hi� r��int � ra�	��hfr���� r��intg� �ig

We could have used an alternative approach where the continuation closure is passed

unboxed in separate registers� To do so� the function�s type must perform the duty

of abstracting �� since the continuation�s code and environment must each still refer

to the same ��

�����fr��hi� r��int � ra�fr���� r��intg� ra���g

Now recall the type of the corresponding STAL code�

�����fr��hi� r��int � ra�fsp��� r��intg� sp��g

Stack�Based Typed Assembly Language ��

l loop�

code��	fr�
 int � r�
 int � sp
 �� ra
 fr�
 int � sp
 �gg�
bneq r��l nonzero��	 � if n � � continue
jmp ra � return

l nonzero�

code��	fr�
 int � r�
 int � sp
 �� ra
 fr�
 int � sp
 �gg�
mul r��r��r� � a � a
 n
sub r��r��� � n � n� �
jmp l loop��	 � loop�a�n�

l tail fact�

code��	fr�
 hi� r�
 int � sp
 �� ra
 fr�
 int � sp
 �gg�
mov r���

jmp l loop��	 � loop���n�

Fig� �� Tail�Recursive Factorial Example

These types are essentially the same# Indeed� the only di�erence between stack�

based execution and continuation�passing execution is that in stack�based execu�

tion continuations are unboxed and their environments are allocated on the stack�

This connection is among the folklore of continuation�passing compilers� but the

similarity of the two types in STAL summarizes the connection particularly suc�

cinctly�

The STAL types discussed above each serve the purpose of formally specifying

a procedure calling convention� specifying the usage of the registers and stack on

entry to and return from a procedure� In each of the above calling conventions� the

environment� argument� and result are passed in registers� We also can specify that

the environment� argument� return address� and the result are all passed on the

stack� In this calling convention� the factorial function has type 	remember that

the convention for the result is given by the type of the return address��

�����fsp � fsp�int ���g��int ��hi���g

These types do not constrain optimizations that respect the given calling conven�

tions� For instance� tail calls can be eliminated in CPS 	the �rst two conventions�

simply by forwarding the continuation to the next function� In a stack�based system

	the second two�� the type system similarly allows us 	if necessary� to pop the cur�

rent activation frame o� the stack and to push arguments before performing the tail

call� As a simple example� Figure � gives STAL code for the following tail�recursive

factorial code�

fun tail�fact n �

let fun loop�a�n
 �

if n � � then a else loop�a�n�n
�

in

loop���n

end

Types may express more complex conventions as well� For example� callee�saves

�� G� Morrisett et al�

registers 	registers whose values must be preserved across function calls� can be

handled in the same fashion as the stack pointer� A function�s type abstracts the

type of the callee�saves register and provides that the register have the same type

upon return� For instance� if we wish to preserve register r� across a call to factorial�

we would use the type�

���� ���fr��hi� r��int � r���� ra�fsp��� r��int � r���g� sp��g

Alternatively� with boxed� heap�allocated closures� we would use the type�

�����fr��hi� r��int � r���� ra�		�hfr��	� r��int � r���g� 	ig

This is the type that corresponds to the callee�saves protocol of Appel and Shao 	Ap�

pel
 Shao� �

��� Again the close correspondence holds between the stack� and

heap�oriented types� Indeed� either one can be obtained mechanically from the

other�

� Compound Stacks

The simple stack mechanisms described in the previous section support encodings

for simple forms of procedures� However� as we will argue� the mechanisms are not

su�cient for compiling more sophisticated control mechanisms� such as exceptions�

or procedures with static links� The problem is that the typing discipline treats the

stack in a linear fashion in that it only allows access to the stack contents through

the stack pointer register� That is� there is no general facility for obtaining pointers

into the middle of the stack� This restriction allows us to easily re�use space on the

stack for values of di�erent types and to grow or shrink the stack� but prevents a

number of useful encodings�

Unfortunately� we see no simple way to extend the type system to support ar�

bitrary pointers into the stack soundly� However� in this section� we consider an

extension to the typing discipline that supports a limited form of pointer into the

stack without unduly complicating the type system� We motivate the mechanism

by showing how it may be used to encode 	one treatment of� exceptions and static

links�

��� Exception Calling Conventions

We now consider one way to implement exceptions in STAL� In languages such

as ML or Java� the exception mechanisms consist of a control aspect 	raising and

handling the exception� and a data aspect 	the exception value or object� and

matching or testing for a particular exception constructor�� We only consider the

control aspects here to avoid the need to introduce extensible sums or objects�

In a heap�based CPS framework� exceptions are implemented by passing two

continuations� the usual continuation and an exception continuation� Code raises

an exception by jumping to the latter� For an integer to unit function� this calling

convention is expressed as the following TAL type 	ignoring the outer closure and

Stack�Based Typed Assembly Language �

environment and treating rex as the register to hold the exception continuation��

fr��int � ra�	���hfr����� r��hig� ��i� rex�	���hfr����� r��exng� ��ig

As before� the caller could unbox the continuations�

����� ����fr��int � ra�fr����� r��hig� ra
����� rex�fr����� r��exng� rex

����g

Then the caller might 	erroneously� attempt to place the continuation environments

on stacks� as before�

����� ����fr��int � ra�fsp���� r��hig� sp���� rex�fsp���� r��exng� sp
����g

Unfortunately� this calling convention uses two stack pointers� and there is only

one stack� Observe� though� that the exception continuation�s stack is necessarily

a tail of the ordinary continuation�s stack� though this fact is not captured by the

types� This observation leads to the following calling convention for exceptions with

stacks�

����� ����fsp��� $ ��� r��int � ra�fsp��� $ ��� r��hig�

rex�fsp���� r��exng� res�ptr	���g

This type uses the notion of a compound stack� When
� and
� are stack types�

the compound stack type
�$
� is the result of appending the two types� Thus� in

the above type� the function is presented with a stack with type ��$��� all of which

is expected by the regular continuation� but only a tail of which 	��� is expected by

the exception continuation� Since �� and �� are quanti�ed� the function may still

be used for any stack so long as the exception continuation accepts some tail of

that stack�

To raise an exception� the exception is placed in r� and control is transferred

to the exception continuation� This requires cutting the actual stack down to just

that expected by the exception continuation� Since the length of �� is unknown� this

can not be done by sfree� Instead� a pointer to the desired position in the stack

is supplied in res� and is moved into sp� The type ptr	
� is the type of pointers

into the stack at a position where the stack has type
� Such pointers are obtained

simply by moving sp into a register�

��� Compound Stacks

The additional syntax to support compound stacks is summarized in Figure �� The

type constructs
� $
� and ptr	
� were discussed above� The word value ptr	i� is

used by the operational semantics to represent pointers into the stack� the element

pointed to is i words from the bottom of the stack� Of course� on a real machine�

such a value would be implemented by an actual pointer� The instructions movrd� sp

and mov sp� rs save and restore the stack pointer� and the instructions sld rd� rs	i�

and sst rd	i�� rs allow for loading from and storing to pointers�

The introduction of pointers into the stack raises a delicate issue for the type

system� When the stack pointer is copied into a register� changes to the stack are

not re�ected in the type of the copy and can invalidate a pointer� Consider the

�� G� Morrisett et al�

types �

� � � � j ptr ���
stack types �

� � � � j �� � ��
word values w

� � � � j ptr�i�
instructions �

� � � � j mov rd� sp j mov sp� rs j sld rd� rs�i� j sst rd�i�� rs

Fig� �� Additions to TAL for Compound Stacks

following incorrect code�

� begin with sp � � ��
� sp �� w��S 	� �� ��

mov r�� sp � r� � ptr	� ��
�

sfree � � sp �
� sp �� S

salloc � � sp � ���
� sp �� ns��S

sld r�� r�	�� � r� � � but r� �� ns

When execution reaches the �nal line� r� still has type ptr	� ��
�� but this type is no

longer consistent with the state of the stack� the pointer in r� points to ns� which

does not have type � �

To prevent erroneous loads of this sort� the type system requires that the pointer

rs be valid when used in the instructions sld rd� rs	i�� sst rd	i�� rs� and mov sp� rs�

An invariant of the type system is that the type of sp always describes the current

stack� so using a pointer into the stack will be sound if that pointer�s type is

consistent with sp�s type� Suppose sp has type
� and r has type ptr	
��� then r is

valid if
� is a tail of
� 	formally� if there exists some

� such that
� �
�$
��� If

a pointer is invalid� it may be neither loaded from nor moved into the stack pointer�

In the above example the load is rejected because r��s type � ��
 is not a tail of sp�s

type� ���
�

It may not be obvious that this simple approach of �validating� a pointer into

the middle of the stack is actually sound� Therefore� in Section �� we formalize the

type system and prove a soundness result in the Appendix�

��� Using Compound Stacks

Recall the type for integer to unit functions in the presence of exceptions�

����� ����fsp��� $ ��� r��int � ra�fsp��� $ ��� r��hig�

rex�fsp���� r��exng� res�ptr	���g

An exception may be raised within the body of such a function by restoring the

handler�s stack from res and jumping to the handler� A new exception handler may

be installed by copying the stack pointer to res and making subsequent function

calls with the stack type variables instantiated to nil and �� $ ��� Calls that do

not install new exception handlers would attach their frames to �� and pass on ��
unchanged�

Since exceptions are probably raised infrequently� an implementation could save a

register by storing the exception continuation�s code pointer on the stack� instead of

in its own register� If this convention were used� functions would expect stacks with

Stack�Based Typed Assembly Language ��

the type �� $ 	�handler����� and exception pointers with the type ptr	�handler�����

where �handler � �� ��fsp���� r��exng�

This last convention illustrates a use for compound stacks that goes beyond

implementing exceptions� We have a general tool for locating data of type � amidst

the stack by using the calling convention�

����� ����fsp��� $ 	� ������ r��ptr	� ������ � � �g

One application of this tool would be for implementing languages such as Pascal

that require static links to access variables de�ned in outer enclosing lexical scopes�

For example� the code for a procedure at lexical depth n � � would have a stack

type
n where�

� � nil

i � �i�����i����

 ���i�mi
��ptr	
i������i $
i��

For a given segment
i� we would have the local variables 	�i��� �i��� � � � � �i�mi
�� fol�

lowed by a static link to the next segment 	ptr	
i����� followed by a stack type

variable �i which abstracts the dynamic portion of the stack between the frames

i and
i��� By loading the pointer to
i�� into a register� we can access the local

variables for the statically enclosing scope� We can also access the pointer to
i��

to access the next scope� etc� If desired� the chaining overhead can be avoided by

caching the link pointers in a heap�allocated tuple�

The primary limitation of this approach to placing data on the stack is that it

forces us to expose the relative order of data allocated on the stack� though we can

abstract the distance� Furthermore� the type system forces us to distinguish between

stack�allocated values and heap�allocated values� Consequently� it does not support

compilation of languages such as C that allow stack and heap pointers to be freely

mixed� and that allow pointers to stack�allocated values to be passed as arguments

in any order�

Finally� we note that our treatment of exceptions here is somewhat simplistic� In

particular� we have ignored the data aspects and assumed a single exception value

model� However� it is straightforward to generalize to multiple exception values� In

our implementation of STAL for the Intel x��� we use the hierarchically tagged ob�

ject approach of Glew 	Glew� �

� which supports both ML�style extensible sums

and Java�style objects as exception constructors� When an exception is raised� the

exception value is passed to the nearest 	dynamically� enclosing exception handler�

A primitive form of matching is used to determine if the handler can actually handle

the given exception� If not� then the exception is re�raised by throwing the value to

the next exception handler� In this fashion� the stack is dynamically unwound to

the nearest context that can handle the exception�

Another technique� �rst described in the context of Clu 	Liskov
 Snyder� �
�
��

is used in most Java compilers today� When an exception is raised� a runtime routine

unwinds the stack to the nearest enclosing handler that can handle the particular

exception� Doing so requires that the compiler emit tables indexed by return ad�

dresses to describe the layout of stack frames� callee�save register information� and

where to �nd handler code� The advantage of this approach is that it requires no

�� G� Morrisett et al�

types �

� � j int j 	 j h��� � � � � �ni j ���	�� j ���� j ptr ���
stack types �

� � j nil j �

� j �� � ��
label assignments �

� f	�
��� � � � � 	n
�ng
type assignments �

� � j ��� j ���
register assignments �

� fsp
�� r�
��� � � � � rn
�ng

registers r

� r� j r� j � � �
word values w

� 	 j i j ns j w�� 	 j w��	 j pack ��� w	 as � � j ptr�i�
operands v

� r j w j v�� 	 j v��	 j pack ��� v	 as � �

heap values h

� hw�� � � � � wni j code��	��I
heaps H

� f	� �� h�� � � � � 	n �� hng
register �les R

� fsp �� S� r� �� w�� � � � � rn �� wng
stacks S

� nil j w

S

instructions �

� aop rd� rs� v j bop r� v j ld rd� rs�i� j
malloc rd� hv�� � � � � vni j mov rd� v j mov sp� rs j
mov rd� sp j salloc n j sfree n j
sld rd� sp�i� j sld rd� rs�i� j sst sp�i�� rs j
sst rd�i�� rs j st rd�i�� rs j unpack ��� rd	� v

arithmetic ops aop

� add j sub j mul
branch ops bop

� beq j bneq j bgt j blt j bgte j blte
instruction sequences I

� �� I j jmp v j halt�� 	
machine states M

� �H�R� I�

Fig� �� Syntax of STAL

exception register and has no overhead upon entering a try�block� However� to en�

sure that the code is type safe� we would have to modify the type system to ensure

that the tables are properly constructed� and that the runtime unwinding routine

is correct�

� Formal STAL Semantics

This section contains a complete technical description of the STAL abstract ma�

chine� which is very similar to the TAL abstract machine 	described in detail in

Morrisett et al� 	�

a��� We also state a type soundness theorem for the language

and give a proof of that fact in Appendix A�

��� Syntax

The complete abstract syntax for STAL appears in Figure �� As discussed earlier�

the type structure has �ve distinct syntactic classes� Types 	�� are used to classify

word�sized values� operands� and heap values� Stack types 	
� are used to classify

stacks� Label assignments are used to classify heaps and are partial functions from

labels to types� Type assignments track the type variables and stack type variables

that are in scope� Finally� register assignments map registers to types� The distin�

guished register sp is always mapped to a stack type� whereas all other registers

are mapped to conventional types�

Stack�Based Typed Assembly Language ��

�H�R� I� ���M where

if I � then M �

aop rd� rs� v� I � �H�Rfrd �� jjaopjj�R�rs�� �R�v��g� I ��

bop r� v� I � �H�R� I ��
when not jjbopjj�R�r��

bop r� v� I � �H�R� I ���
��	�

when jjbopjj�R�r�� where �R�v� � 	�
	 and H�	� � code��	��I ��

jmp v �H�R� I ��
��	�

where �R�v� � 	�
	 and H�	� � code��	��I �

ld rd� rs�i�� I
� �H�Rfrd �� wig� I

��
where R�rs� � 	� H�	� � hw�� � � � � wn��i� and � � i � n

malloc rd� hv�� � � � � vni �Hf	 �� h �R�v��� � � � � �R�vn�ig� Rfrd �� 	g� I ��
where 	 �
 Dom�H�

mov rd� v� I � �H�Rfrd �� �R�v�g� I ��

st rd�i�� rs� I
� �Hf	 �� hw�� � � � � wi��� R�rs�� wi��� � � � � wn��ig� R� I

��
where R�rd� � 	� H�	� � hw�� � � � � wn��i� and � � i � n

unpack ��� rd	� v� I � �H�Rfrd �� wg� I �����	�

where �R�v� � pack ��� w	 as � �

Fig� �� Operational Semantics of STAL� Part I

In a code type ����� � we consider the type variables in � to be bound within

 � In an existential type 	��� � we consider � to be bound in � � As usual� we

consider types to be equivalent up to alpha�conversion of bound type variables� In

addition� we consider register �les� heaps� register type assignments and label type

assignments to be equivalent up to re�ordering of their components�

Machine states consist of three components� a heap H mapping labels to heap

values� a register �le R mapping registers to word values and the distinguished

register sp to a stack� and a current instruction sequence I � Heap values consist

of typed instruction sequences or tuples of word�size values� In a typed instruction

sequence code��� �I � we require the type variables in � to be distinct and consider

them bound in both and I � and consider such heap values as equivalent up to

alpha�conversion of the bound type variables� In an instruction sequence of the form

unpack ��� rd�� v� I � we consider � bound in the remaining sequence I �

Word values form a proper syntactic subclass of operands� as they exclude regis�

ters and operands built from them� Otherwise� the two classes are the same� They

include labels� integers� a nonsense value 	ns� used when space is allocated on the

stack� polymorphic instantiations 	for both regular types and stack types�� and

packed values� Packed values abstract a type and are used to introduce existential

types�

��� Dynamic Semantics

The formal operational semantics for STAL is given as a deterministic rewriting

system in Figures � and �� A terminal con�guration is a program of the form

�� G� Morrisett et al�

�H�R� I� ���M where

if I � then M �

mov rd� sp� I � �H�Rfrd �� ptr �n�g� I ��
where R�sp� � w�

 � � �

wn��

nil

mov sp� rs� I
� �H�Rfsp �� wn�j

 � � �

wn��

nilg� I ��

where R�sp� � w�

 � � �

wn��

nil � R�rs� � ptr �j�� and � � j � n

salloc n� I � �H�Rfsp �� ns

 � � �

ns� �z �
n

R�sp�g� I ��

sfree n� I � �H�Rfsp �� Sg� I ��
where R�sp� � w�

 � � �

wn��

S

sld rd� sp�i�� I � �H�Rfrd �� wig� I
��

where R�sp� � w�

 � � �

wn��

nil and � � i � n

sld rd� rs�i�� I
� �H�Rfrd �� wn�j�ig� I

��
where R�rs� � ptr �j�� R�sp� � w�

 � � �

wn��

nil � and � � i � j � n

sst sp�i�� rs� I
� �H�Rfsp �� w�

 � � �

wi��

R�rs�

Sg� I

��
where R�sp� � w�

 � � �

wi

S and � � i

sst rd�i�� rs� I
� �H�Rfsp �� w�

 � � �

wn�j�i��

R�rs�

wn�j�i��

 � � �

wn��

nilg� I ��

where R�rd� � ptr�j�� R�sp� � w�

 � � �

wn��

nil � and � � i � j � n

Fig� �� Operational Semantics of STAL� Part II

	H�Rfr� �� wg� halt�� ��� A program is said to be stuck if it is irreducible and not

a terminal con�guration�

For each arithmetic operation aop � we write jjaopjj for the obvious arithmetic

function on integer values� For example� jjaddjj	i�� i�� � i� � i�� For each branch

operation bop� we associate the obvious unary predicate jjbopjj� on integers� For

example� jjbltejj	x� evaluates to the same truth value as the predicate x � �� As

described in Section ���� we write !R to lift the register �le R to map operands to

word values in the obvious manner� replacing registers with their values�

The notation a�b�c� denotes capture avoiding substitution of b for c in a� The

notation afb �� cg� where a is a mapping� represents map update� The notation

fv	a� denotes the free variables of a�

In general� the branching rules must instantiate bound type variables as described

earlier� To make the presentation simpler� some extra notation is used for expressing

sequences of type and stack type instantiations� We use a new syntactic class 	��

of type sequences�

� ���
 j �� � j
� �

The notation w��� stands for the natural iteration of instantiations� and the sub�

stitution notation I ����� is de�ned to mean�

I �
�
� � I

I ��� ������ � I ����������

I �
� ������ � I �
��������

Stack�Based Typed Assembly Language ��

Judgment Meaning Figure

� � � � is a valid type ��
� � � � is a valid stack type
� � � is a valid heap type
� � � � is a valid register �le type
� � �� � �� �� and �� are equivalent stack types
� � �� � �� �� is a register �le sub�type of ��

� H
 � the heap H has type � assuming � ��
� � S
 � the stack S has type �
� � R
 � the register �le R has type �
� � h
 � hval the heap value h has type �
�� �� � � v
 � the operand v has type �

�� �� � � �� ��� �� instruction � requires a context of type �� �� � ��
and produces a context of type �� ��� ��

�� �� � � I I is a valid sequence of instructions ��
�M M is a well�typed machine state

Fig� �� Static Semantics of STAL �judgments�

� � � � � � � � � � �

�type�
� � �

�fv��� � �� �stype�
� � �

�fv��� � ��

�htype�
� � �� � � � � � �n
� f	�
��� � � � � 	n
�ng

�rftype�
� � � � � �� � � � � � �n
� � fsp
�� r�
��� � � � � rn
�ng

� � �� � ��

�seq�re��
� � �

� � � � �
�seq�sym�

� � �� � ��
� � �� � ��

�seq�trans�
� � �� � �� � � �� � ��

� � �� � ��

�seq�cons�
� � � � � �� � ��
� � �

�� � �

��

�seq�append�
� � �� � ��� � � �� � ���

� � �� � �� � ��� � ���

�stk
��
� � �

� � nil � � � �
�stk
��

� � �
� � � � nil � �

�stk
��
� � � � � �� � � ��

� � ��

��� � �� � �

��� � ���

�stk
��
� � �� � � �� � � ��

� � ��� � ��� � �� � �� � ��� � ���

� � �� � ��

�rf�leq�
� � �i �for � � i � m� � � � � ��

� � fsp
�� r�
��� � � � � rm
�mg � fsp
��� r�
��� � � � � rn
�ng
�m � n�

Fig� ��� Static Semantics of STAL� Judgments for Types

�� G� Morrisett et al�

�M � H
 � � � S
 � � � R
 �

�mach�
� H
 � � � R
 � �� �� � � I

� �H�R� I�

�heap�
� � � � hi
 ��	i� hval �for � � i � n�

� f	� �� h�� � � � � 	n �� hng
 �

�nil�
� � nil
 nil

�cons�
�� �� � � w
 � � � S
 �

� � w

S
 �

�
�stkeq�

� � S
 �� � � �� � ��
� � S
 ��

�reg�le�
� � S
 � �� �� � � wi
 �i �for � � i � n�

� � fsp �� S� r� �� w�� � � � � rm �� wmg
 fsp
�� r�
��� � � � � rn
�ng
�m � n�

� � h
 � hval �� �� � � v
 �

�tuple�
�� �� � � wi
 �i

� � hw�� � � � � wni
 h��� � � � � �ni hval
�code�

� � � �� �� � � I

� � code��	��I
 ���	�� hval

�label�
�� �� � � 	
 ��	�

�int�
�� �� � � i
 int

�ns�
�� �� � � ns
 	

�ptr�
� � �

�� �� � � ptr�i�
 ptr���
�j�j � i�

�reg�
�� �� � � r
 ��r�

�tapp�
� � � �� �� � � v
 ������	���

�� �� � � v�� 	
 ����	�������	
�stapp�

� � � �� �� � � v
 ������	���

�� �� � � v��	
 ����	�������	

�pack�
� � � �� �� � � v
 � �����	

�� �� � � pack ��� v	 as ���� �
 ���� �

�� �� � � I

�seq�
�� �� � � �� ��� �� �� ��� �� � I

�� �� � � �� I
�jmp�

� � �� � �� �� �� �� � v
 �� 	���

�� �� �� � jmp v

�halt�
�� �� � � r�
 �

�� �� � � halt�� 	

Fig� ��� STAL Static Semantics� Term Constructs except Instructions

��� Static Semantics

The static semantics of STAL is given by a suite of judgments summarized in

Figure
� The de�nitions of the relations de�ned by the judgments are given in

Figures ��� ��� and ���

The �rst set of judgments are used to provide simple well�formedness constraints

on static objects� The judgments � � � and � �
 are used to ensure that types

and stack types are well�formed in a given context and simply require that the free

type and stack type variables be drawn from �� The judgment � " asserts that a

label type assignment is well formed� The types occurring in " cannot mention free

Stack�Based Typed Assembly Language ��

�aop�
�� �� � � rs
 int �� �� � � v
 int

�� �� � � aop rd� rs� v � �� �frd
intg

�bop�
�� �� �� � r
 int �� �� �� � v
 �� 	��� � � �� � ��

�� �� �� � bop r� v � �� ��

�ld�
�� �� � � rs
 h��� � � � � �n��i

�� �� � � ld rd� rs�i� � �� �frd
�ig
�� � i � n�

�malloc�
�� �� � � vi
 �i

�� �� � � malloc rd� hv�� � � � � vni � �� �frd
h��� � � � � �nig
�� � i � n�

�mov�
�� �� � � v
 �

�� �� � � mov rd� v � �� �frd
�g

�unpack�
�� �� � � v
 ����

�� �� � � unpack ��� rd	� v � ���� �frd
�g
�� �
 ��

�get�sp�
�� �� � � mov rd� sp � �� �frd
ptr ���g

���sp� � ��

�set�sp�
�� �� � � rs
 ptr���� � � �� � �� � ��

�� �� � � mov sp� rs � �� �fsp
��g
���sp� � ���

�salloc�
�� �� � � salloc n� �� �fsp
	

 � � �

	� �z �

n

�g
���sp� � ��

�sfree�
� � �� � ��

 � � �

�n��

��

�� �� � � sfree n� �� �fsp
��g
���sp� � ���

�sld��
� � �� � ��

 � � �

�i

��

�� �� � � sld rd� sp�i� � �� �frd
�ig
���sp� � �� � � � i�

�sld��

�� �� � � rs
 ptr ���� � � �� � �� � ��
� � �� � ��

 � � �

�i

��

�� �� � � sld rd� rs�i� � �� �frd
�ig
���sp� � �� � � � i�

�sst��
� � �� � ��

 � � �

�i

�� �� �� � � rs
 �

�� �� � � sst sp�i�� rs � �� �fsp
��

 � � �

�i��

�

��g
���sp� � �� � � � i�

�sst��

�� �� � � rd
 ptr ���� �� �� � � rs
 �
� � �� � �� � �� � � �� � ��

 � � �

�i

��

� � �� � ��

 � � �

�i��

�

��

�� �� � � sst rd�i�� rs � �� �fsp
�� � ��� rd
ptr ����g
���sp� � �� � � � i�

�st�
�� �� � � rd
 h��� � � � � �n��i �� �� � � rs
 �i

�� �� � � st rd�i�� rs � �� �
�� � i � n�

Fig� ��� STAL Static Semantics� Instructions

type variables� re�ecting the fact that during evaluation� type variables are replaced

with closed types� The judgment � � asserts that the register assignment is

well�formed in that the free type variables occurring within it are drawn from ��

The judgment � �
� �
� gives a standard notion of de�nitional equivalence on

stack types� In particular� 	� ��
��$
� is equivalent to � ��	
�$
��� Furthermore� $

�� G� Morrisett et al�

is associative� with nil treated as both a left and right unit� To determine when the

relation holds� it is possible to calculate a normal form for stack types by orienting

the various 	�rules from left�to�right to generate a reduction relation� apply this

	con�uent� reduction in any order until the types are irreducible� and then compare

the resulting normal forms up to alpha�equivalence�

The judgment � � � � � provides a notion of sub�typing on register �le types

that is used to type check control transfers as described in Section ����

The rest of the judgments are used to check well�formedness of the various term

constructs� The judgment � H � " is used to give a label assignment " to a heap

H � The relation holds when the heap values in H have types given by " under

the assumptions of "� thereby allowing heap values to refer to one another� Note

that we require that the heap of a machine state be closed 	with respect to type

variables�� and thus no context is necessary for checking the heap�

The judgment " � S �
 asserts that the stack S is described by the stack type

� The only interesting rule is 	stkeq�� which allows us to assign a stack any of its

equivalent types� The judgments " � R � and " � h � � hval are used to type

register �les and heap values respectively� As with heaps� stacks� and register �les�

heap values must be closed with respect to type variables and thus the judgments

for these terms are not parameterized by a type assignment �� The most interesting

rule among those that de�ne these judgments is the one for code�

	code�
� � "��� � I

" � code��� �I � ����� hval

Here� we require that the typing pre�condition 	 � be well�formed� and that the

instruction sequence I be well�formed under the assumptions of "� �� and � Thus�

the instructions are type checked assuming that the type variables in � are abstract�

The most involved judgment for values is the one for operands� Notice that� since

word values are a sub�class of operands� the rules supply typing for both syntactic

classes� Most of the rules are straightforward but a few deserve special mention� In

particular� the 	ptr� rule�

	ptr� � �

"���
 � ptr	i� � ptr	
�

	j
j � i�

allows a pointer into the stack ptr	i� to be given the type ptr	
� for any stack type

 as long as
 is well�formed and has a length of i� where we de�ne the length of a

stack type as follows�

jnil j � �

j� ��
j � � � j
j

j
� $
�j � j
�j� j
�j

j�j unde�ned

Notice that the length is unde�ned when the stack type
 involves a stack type

variable� At �rst� this may seem to make pointers into the stack useless� as our

compilation strategy involves writing code that abstracts the tail of the current

stack� However� as we evaluate� these stack type variables will be replaced with

ground types� It also seems unusual that we can assign a stack pointer any stack

Stack�Based Typed Assembly Language �

type� However� recall that we validate such a pointer by checking that its type is a

tail of the current �true� type of the stack before allowing the pointer to be used�

The judgment "��� � I asserts that a sequence of instructions is well�formed

under the assumptions that the heap is described by "� that the type variables in

scope are in �� and that the registers have types described by � A sequence of

the form �� I is veri�ed by checking that � is well�formed under these assumptions

and has a post�condition ��� � which we use as the pre�condition on the rest of the

sequence I �

For the degenerate sequence jmp v� we must �rst check that v has a code type of

the form ���� �� Typically� v will be of the form v���� where v� has a polymorphic

type ����� � and � is an appropriate instantiation for the bound variables in ��

We then must verify that the typing pre�condition � for the target of the jump

is a super�type of the current register type �� From a Hoare logic perspective� we

are ensuring that the typing predicate describing the current state of the machine

implies the pre�condition for the destination code�

The degenerate sequence halt�� � is used to terminate the machine� The intention

is that the �result� of the computation will have type � and will be placed in a

particular register� In this case� the typing rule requires that register r� contain the

result�

The de�nition for the remaining judgment� "���� � � �
 ��� � is given in

Figure ��� The judgment asserts that the instruction � is well�formed and has a post�

condition ��� �� Most of the rules are straightforward so we restrict attention to

the unusual rules involving the stack�

An salloc n instruction results in a state where n nonsense values are pushed

on the stack� so the post�condition for this instruction simply adds n copies of the

type � to the current type of the stack pointer� Dually� the sfree n instruction

removes n words from the stack� Thus� we require that the stack type have at least

n words described by types ��� ��� � � � � �n�� as the pre�condition� and remove those

types in the post�condition� Notice that it is impossible to �pop� the stack when it

is described by nil or a stack type variable�

An instruction mov rd� sp moves a stack pointer value into register rd� and thus

its post�condition gives rd the type ptr	
� where
 is the current type of the stack�

Dually� the instruction mov sp� rd is used to restore a previously saved stack pointer�

However� here we must validate that rd is still valid� and thus we check that rd has

type ptr	
�� where
� is a tail of the current stack type�

Loading values from or storing values to the stack is straightforward to verify

when the stack pointer is used� we simply need to check that if the instruction uses

a stack o�set i� then the stack has at least i word values on it� Like sfree� these

instructions cannot �read past� a stack described by nil or a stack type variable�

In the case that we store a value� we must update the type of the stack pointer

appropriately�

Loading or storing is not quite as straightforward when we use another register

r which has a pointer back into the stack� First� we must validate r by checking

that its current type is a tail of the current stack pointer�s type� Second� in the

case of a store� we must modify both the type of the true stack pointer as well

�� G� Morrisett et al�

as the type of r� Modifying the type of the stack pointer is necessary to ensure

that subsequent stack operations are sound� Modifying the type of r is not strictly

speaking necessary� but not doing so could result in invalidating the pointer for

subsequent operations�

The principal theorem regarding the semantics is type safety�

Theorem ��� 	Type Safety�

If �M then M cannot become stuck during evaluation�

That is� either M steps to a well�formed terminal con�guration or else M diverges�

but at no point during evaluation will we reach a con�guration in which we are stuck

due to a type error� The theorem is proved using the usual Subject Reduction and

Progress lemmas� each of which are proved by induction on typing derivations�

Lemma ��	 	Subject Reduction�

If � P and P ��� P � then � P ��

Lemma ��
 	Progress�

If � P then either P is a terminal con�guration or there exists P � such that P ���

P ��

Proofs for both lemmas appear in Appendix A�

� Related and Future Work

Our work is partially inspired by Reynolds 	�

��� who uses functor categories

to �replace continuations by instruction sequences and store shapes by descrip�

tions of the structure of the run�time stack�� However� Reynolds was primarily

concerned with using functors to express an intermediate language of a semantics�

based compiler for Algol� whereas we are primarily concerned with type structure

for general�purpose target languages�

Stata and Abadi 	�

� formalize the Java bytecode veri�er�s treatment of sub�

routines by giving a type system for a subset of the JVML 	Lindholm
 Yellin�

�

��� In particular� their type system ensures that within a procedure activation�

given any program control point� the stack is of the same size each time that control

point is reached during execution� Consequently� procedure call must be a primitive

construct 	which it is in JVML�� In contrast� our treatment supports polymorphic

stack recursion� and hence procedure calls can be encoded using existing assembly

language primitives�

More recently� O�Callahan 	�

� has used the mechanisms in this paper to de�

vise an alternative� simpler type system for JVML bytecodes that di�ers from the

o�cial speci�cation 	Lindholm
 Yellin� �

��� By permitting polymorphic typing

of subroutines� O�Callahan�s type system accepts strictly more programs while pre�

serving safety� This type system sheds light on which of the veri�er�s restrictions

are essential and which are not�

Necula and Lee introduced the idea of proof�carrying code 	PCC� as a general

framework for certifying compilers 	Necula
 Lee� �

�� Necula� �

��� In the PCC

Stack�Based Typed Assembly Language ��

approach� the compiler produces an explicit proof that the target code respects a

given security policy� instead of using typing annotations and an implicit proof� The

general framework is quite attractive because in theory� it supports enforcement of

any security policy� not just type safety� and because there are no a priori restric�

tions placed upon the code that might hamper optimizations� They demonstrated

these ideas by constructing a certifying compiler called Touchstone that mapped a

safe subset of C to an instance of PCC and showed that the resulting code could

be as fast as the best C compilers 	Necula
 Lee� �

��� However� the veri�ca�

tion condition generator and safety conditions used in the Touchstone PCC system

pre�supposed a fairly restrictive calling convention and stack model� In particular�

there was no provision for pointers back into the stack� and thus no support for

stack allocation of exception contexts� displays� or other data� Fortunately� it seems

relatively easy to adapt the ideas behind STAL to the PCC setting to achieve the

advantages of each�

Tofte and others 	Birkedal et al�� �

�� Tofte
 Talpin� �

�� have developed

an allocation strategy using a region�based model and e�ects�based type system�

Regions are lexically scoped containers that have a LIFO ordering on their lifetimes�

much like the values on a stack� As in our approach� polymorphic recursion on

abstracted region variables plays a critical role� However� unlike the objects in

our stacks� regions are variable�sized� and objects need not be allocated into the

region which was most recently created� Furthermore� there is only one allocation

mechanism in Tofte�s system 	the stack of regions� and no need for a garbage

collector� In contrast� STAL only allows allocation at the top of the stack and

assumes a garbage collector for heap�allocated values� However� the type system

for STAL is considerably simpler than the type system of Tofte et al�� as it requires

no e�ect information in types� Rather� we leverage a combination of linearity and

validation to ensure that stack references are sound�

Bailey and Davidson 	�

�� also describe a speci�cation language for modeling

procedure calling conventions and checking that implementations respect these con�

ventions� They are able to specify features such as a variable number of arguments

that our formalism does not address� However� their model is explicitly tied to

a stack�based calling convention and does not address features such as exception

handlers� Furthermore� their approach does not integrate the speci�cation of calling

conventions with a general�purpose type system�

Although our type system is su�ciently expressive for compilation of a number

of source languages� it has several limitations� First� it cannot support general

pointers into the stack because of the ordering requirements 	see Section ����� nor

can stack and heap pointers be uni�ed so that a function taking a tuple argument

can be passed either a heap�allocated or a stack�allocated tuple� Second� threads

and advanced mechanisms for implementing �rst�class continuations such as the

work by Hieb et al� 	�

�� cannot be modeled in this system without adding new

primitives� Third� and perhaps most importantly� the type system does not protect

against stack over�ow� One way to support this is to read� and write�protect the

last page of the stack� and enforce the constraints that 	a� the stack is never grown

by more than a page amount� and 	b� when the stack is grown� the last word is

�� G� Morrisett et al�

immediately written� A type�theoretic solution should also be feasible with only

moderate additional complexity�

Nevertheless� we claim that the framework presented here is a practical approach

to compilation� To substantiate this claim� we have constructed a certifying com�

piler called Popcorn that maps a type safe subset of C to a variant of STAL� suitably

adapted for the ���bit Intel architecture 	Morrisett et al�� �

b�� We have found

it straightforward to enrich the target language type system to include support for

other type constructors� such as references� higher�order constructors� datatypes�

and recursive types� The compiler uses an unboxed stack allocation style of contin�

uation passing� as discussed in this paper�

Although we have discussed mechanisms for typing stacks at the assembly lan�

guage level� our techniques generalize to other languages� The same mechanisms�

including polymorphic recursion to abstract the tail of a stack� can be used to intro�

duce explicit stacks in higher level calculi� An intermediate language with explicit

stacks would allow control over allocation at a point where more information is

available to guide allocation decisions�

	 Summary

We have given a type system for assembly language that supports both a heap

and a stack� We ensure soundness for stack �de�allocation and stack slot re�use by

treating the stack in a quasi�linear fashion and by conservatively validating pointers

into the middle of the stack� This discipline forces us to maintain a distinction

between stack and heap pointers and to keep track of the relative ordering of stack

pointers� Though this prevents us from generally allocating values on the stack�

our language is �exible enough to support many common uses of a control stack

in that it allows� CPS using either heap or stack allocation� a variety of procedure

calling conventions� static links and displays� exceptions� tail�call elimination� and

callee�saves registers�

A key contribution of the type system is that it makes procedure calling conven�

tions explicit and provides a means of specifying and checking calling conventions

that is grounded in language theory� The type system also makes clear the re�

lationship between heap allocation and stack allocation of continuation closures�

capturing both allocation strategies in a single calculus�

A Proof of Type Soundess for STAL

Lemma A�� 	Derived Judgements�

�� If � H � " then � "�
�� If � " and " � R � then
 � �
�� If � � then fv	 � � ��

Proof

By straightforward induction on the derivation�

Stack�Based Typed Assembly Language ��

Lemma A�	 	Context Strengthening�

If �� �
� �
� and �� � �� then �� �
� �
��

Proof

By straightforward induction on the derivation�

A closed stack type is always equivalent to a list of ordinary types� Thus� the idea

of the i�th element of a stack type is useful in proving certain lemmas� We denote

this
�i� and de�ne it as follows�

��i� unde�ned

nil �i� unde�ned

	� ��
��i� �

�
� i � �

�i� �� i
 �

	
� $
���i� �

�

��i� i � j
�j

��i� j
�j� i
 j
�j

Lemma A�

If
 �
 then
 �
 �
�����

 ��
�j
j���nil �

Proof

By rule 	stype�� fv	
� � � so
 is composed of nil � ��� $� and types� The proof is

by induction on the structure of
�

 � nil
 Immediate�

 � � ��
�
 By the induction hypothesis�
 �
� �
������

 ��
��j
�j���nil � By de�ni�

tion� the latter equals
�����

 ��
�j
j���nil � The result follows by rule 	seq�cons��

 �
� $
�
 By the induction hypothesis�
 �
� �
������

 ��
��j
�j���nil and

 �
� �
������

 ��
��j
�j���nil � Thus�
 �
 � 	
�����

 ��
�j
�j���nil� $ 	
�j
�j�

����

 ��
�j
j���nil�� Then by an inner induction on the length of
�� using the

	stk	��� 	stk	��� and 	seq�trans� rules� the result follows�

Lemma A�� 	Stack Equality�

��
 �
� �
� if and only if j
�j � j
�j and �� � i � j
�j �
��i� �
��i��

�� If
 �
� �
� then j
�j � j
�j�

�� If
 � ����

 ���n��
 � � ����

 ���
�
n��

� then �i � � �i for � � i � n and
 �
 �
��

�� If
 � �n��

 ������nil �
� $
� then
 � �n��

 ���n�j��j����nil �
� and

 � �j��j��

 ������nil �
��

Proof

Items �%� are corollaries of part �� The left to right part of item � is by a straight�

forward induction on the derivation� The right to left part of item � follows by rules

	seq�sym�� 	seq�trans�� 	seq�cons�� and 	seq�re�� from Lemma A���

Lemma A�� 	Type Substitution � �

If �� � �i then�

�� G� Morrisett et al�

�� If ��� ����� � � � � then ����� � �������� � ��������

�� If ��� ����� �
� �
� then ����� �
�������� �
��������

�� If ��� ����� � � then ����� � � �������

�� If ��� ����� �
 then ����� �
�������

�� If ��� ����� � then ����� � �������

Proof

By induction on the derivation using Context Strengthening�

Lemma A�� 	Heap Extension�

If � H � "�
 � � � "f���g � h � � hval� and � �� H then�

�� � "f���g

�� � Hf� �� hg � "f���g

�� If " � R � then "f���g � R �

�� If " � S �
 then "f���g � S �

�� If "��� � I then "f���g� �� � I

�� If "��� � �
 ��� � then "f���g� �� � �
 ��� �

�� If " � h � � � hval then "f���g � h � � � hval

�� If "��� � v � � � then "f���g� �� � v � � �

Proof

Part � is immediate� Part � follows from parts � and �� Parts �%� are by straight�

forward induction on derivations�

Lemma A�

If " � w���w���

 ��wn��nil �
� then for some ��� � � � � �n�
 �
 � ����

 ���n��nil and

"�
�
 � wi � �i for � � i � n�

Proof

We proceed by induction on the derivation of " � w���w���

 ��wn��nil �
�

	nil�
 Trivial�

	cons�
 We know
 is ����

� for some �� and
� and "�
�
 � w� � �� and " �

w���

 ��wn��nil �

�� Then by the induction hypothesis�
 �
� � ����

 ���n��nil

and "�
�
 � wi � �i for � � i � n�

	stkeq�
 We have
 �
 �
� and " � w���w���

 ��wn��nil �

�� By the induction

hypothesis�
 �
� � ��������

 ���n��nil and "�
�
 � wi � �i for � � i � n� The

result then follows from 	seq�trans��

Lemma A�� 	Canonical Stack Forms�

If " � R � then R	sp� � w���

 ��wn��nil for some w�� � � � � wn�
 � 	sp� �

����

 ���n��nil for some ��� � � � � �n� and "�
�
 � wi � �i for � � i � n� Note also that

jR	sp�j � n � j 	sp�j�

Stack�Based Typed Assembly Language ��

Proof

By the de�nition of the abstract syntax� R	sp� � w���

wn��nil for some

w�� � � � � wn where n � �� By 	reg�le� it must be that " � w���

wn��nil � 	sp�� By

the previous Lemma� there exists ���

 � �n such that
 � 	sp� � ����

 ���n��nil

and "�
�
 � wi � �i�

Lemma A�� 	 !R Typing�

If " � R � and "�
� � v � � then "�
�
 � !R	v� � � �

Proof

The proof is by induction on the derivation of "�
� � v � � � Consider the following

cases for the last rule used in the derivation�

	label�� 	int�� 	ns�� and 	ptr�
 Immediate�

	reg�
 This rule requires � � 	r�� The only rule that can type R is 	reg�le�� and

this rule requires "�
�
 � R	r� � 	r�� The conclusion follows since !R	r� � R	r��

	tapp�
 This rule requires that � � ������ ��� ����� v � v��� ��� and "�
� � v� �

�������� �� By the induction hypothesis� we deduce "�
�
 � !R	v�� � �������� ��

and the rule 	tapp� proves "�
�
 � !R	v���� �� � � � The result follows since !R	v� �
!R	v���� ���

	stapp�
 This case follows by the same argument as for 	tapp��

	pack�
 This rule requires � � 	��� �� v � pack �� ��� v�� as 	��� �� and "�
� � v� �

� ��� ������ By the induction hypothesis� we deduce "�
�
 � !R	v�� � � ��� ������ and

the rule 	pack� proves "�
�
 � pack �� �� !R	v��� as � � � � The result follows since
!R	v� � pack �� �� !R	v��� as � �

Lemma A��� 	Register File Weakening�

If
 � � � � and " � R � � then " � R � ��

Proof

The judgments
 � � � � and " � R � � can only be derived by the rules 	rf�leq�

and 	reg�le� respectively� It follows that R � fsp �� S� r� �� w�� � � � � rm �� wmg�

 � � fsp�
� r����� � � � � rn��ng� � � fsp�
�� r����� � � � � rp��pg� m � n � p� " � S �
�

"�
�
 � wi � �i for � � i � n� and
 �
 �
�� By rule 	stkeq� " � S �
�� The result

follows by rule 	reg�le��

Lemma A��� 	Register File Update�

�� If " � R � and "�
�
 � w � � then " � Rfr �� wg � fr��g�
�� If " � R � and " � S �
 then " � Rfsp �� Sg � fsp�
g�

Proof

For part �� suppose R is fsp �� S� r� �� w�� � � � � rm �� wmg where r may or may

not be in fr�� � � � � rmg and is fsp�
� r����� � � � � rn��ng� Since " � R � � by the

rule 	reg�le� it must be the case that m � n and "�
�
 � wi � �i 	for all � � i � m

and some �n��� � � � � �m�� So certainly for i such that ri �� r� "�
�
 � wi � �i� and by

hypothesis "�
�
 � w � � so by rule 	reg�le� " � Rfr �� wg � fr��g� Part � follows

by a similar argument�

�� G� Morrisett et al�

Lemma A��	 	Canonical Heap Forms�

If " � h � � hval then�

�� If � � ����� then�

	a� h � code��� �I

	b� "��� � I

�� If � � h��� � � � � �ni then�

	a� h � hw�� � � � � wni

	b� "�
�
 � wi � �i

�� There are no other possible forms for � �

Proof

The only applicable rules are 	tuple� and 	code�� The result follows by inspection

of those rules�

Lemma A��
 	Canonical Forms�

If � H � "� " � R � � and "�
� � v � � then�

�� If � � int then !R	v� � i�

�� If � � ������
� then�

	a� !R	v� � ����

	b� for each � � ��
 � �

	c� for each
 � ��
 �

	d� H	�� � code�������
���I

	e� � � ��������

	f� "� 	�������
�� � I

�� If � � h��� � � � � �ni then�

	a� !R	v� � �

	b� H	�� � hw�� � � � � wni

	c� "�
�
 � wi � �i

�� If � � 	��� � then !R	v� � pack �� ��� w�� as � ����
 � � ��� and "�
�
 � w� � � ��� ������

�� If � � ptr	
� then !R	v� � ptr	j
j��

Proof

Let w � !R	v�� By !R Typing� "�
�
 � w � � � The proof proceeds by induction on

this judgment�s derivation� Consider the last rule used in the derivation�

	label�
 This rule requires w � � and "	�� � � � Since � H � "� it follows that

" � H	�� � � hval� Then the result follows by Canonical Heap Forms�

	int�� 	ns�� and 	ptr�
 Immediate�

	reg�
 This case is not possible since the register assignment is empty�

	tapp�
 This rule requires that � � ����� ��� ����� w � w��� ��� and "�
�
 � w� �

������� �� By the induction hypothesis� w� � ����� H	�� � code���� ���� ���I �

 � � ��������� and "� 	��� ����� �� � I � Clearly ��� ���� � ���������� ���� �

 ���� � ����� ��� The conclusion follows since w � ���� � ���

	stapp�
 This case follows by the same argument as for 	tapp��

Stack�Based Typed Assembly Language ��

	pack�
 Immediate�

Lemma A��� 	Type Substitution 	 �
If
 � �i then�

�� If "� 	�� ���� � I then "��� ������� � I ��������
�� If "� 	�� ���� � �
 	����� ���� � then

"��� ������� � ��������
 	������ ��������
�� If "� 	�� ���� � v � � then "��� ������� � v������� � � �������

Proof

The proof is by induction on derivations� Context Strengthening� and Type Substi�

tution ��

Theorem A��� 	Subject Reduction�
If � P and P ��� P � then � P ��

Proof

P has the form 	H�R� �� I� or 	H�R� jmp v�� Let TD be the derivation of � P �

Consider the following cases for jmp or ��

case aop
 TD has the form�

� H � " " � R �

"�
� � rs � int "�
� � v � int

"�
� � aop rd� rs� v

� frd�intg "�
� frd�intg � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfrd �� ig and i �

jjaopjj	R	rs�� !R	v��� Then�

�� � H � " is in TD�

�� By Canonical Forms it follows that R	rs� and !R	v� are integer literals� and

therefore "�
�
 � i � int � Hence " � R� � frd�intg by Register File Update�

�� "�
� frd�intg � I is in TD�

case bop
 TD has the form�

� H � " " � R �

"�
� � r � int "�
� � v � �� �� �
 � � �

"�
� � bop r� v

� "�
� � I

"�
� � �� I

� P

If not jjbopjj	R	r�� then P � � 	H�R� I� and � P � follows since "�
� � I is in

TD� Otherwise the reasoning is exactly as in the case for jmp below�
case jmp
 TD has the form�

� H � " " � R �

"�
� � v � �� �� �
 � � �

"�
� � jmp v

� P

By the operational semantics� P � � 	H�R� I ������ where !R	v� � ���� andH	�� �

code��� ���I � Then�

�� G� Morrisett et al�

�� � H � " is in TD�

�� From
 � � � and " � R � it follows by Register File Weakening that

" � R � ��

�� By Canonical Forms it follows from "�
� � v � �� �� � that
 � �� � �

 �������� and "��� �� � I � By Type Substitution � "�
� ������� � I ������

which is the same as "�
� � � I ������

case ld
 TD has the form�

� H � " " � R �

"�
� � rs � h��� � � � � �ni � � i � n

"�
� � ld rd� rs	i�

� frd��ig "�
� frd��ig � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfrd �� wig� R	rs� � ��

H	�� � hw�� � � � � wmi� and � � i � m� Then�

�� � H � " is in TD�

�� By Canonical Forms it follows from "�
� � rs � h��� � � � � �ni that m � n

and "�
�
 � wj � �j for � � j � n� By Register File update we conclude

" � R� � frd��ig�

�� "�
� frd��ig � I is in TD�

case malloc
 TD has the form�

� H � " " � R �

"�
� � vi � �i 	for � � i � n�

"�
� � malloc r� hv�� � � � � vni

� � "�
� � � I

"�
� � �� I

� P

where � � fr��g and � � h��� � � � � �ni� By the operational semantics P � �

	H �� R�� I� where H � � Hf� �� h !R	v��� � � � � !R	vn�ig� R
� � Rfr �� �g� and � �� H �

Let "� � "f���g� then�

�� By !R Typing "�
�
 � !R	vi� � �i for � � i � n� By rule 	tuple� " �

h !R	v��� � � � � !R	vn�i � � hval� By Heap Extension it follows that � H � � "��

�� By rule 	label� "��
�
 � � � � � By Heap Extension "� � R � and it follows by

Register File update that "� � R� � ��

�� By Heap Extension "��
� � � I �

case mov r� v
 TD has the form�

� H � " " � R �

"�
� � v � �

"�
� � mov r� v

� fr��g "�
� fr��g � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfrd �� !R	v�g� Then�

�� � H � " is in TD�

�� By !R Typing it follows from "�
� � v � � that "�
�
 � !R	v� � � � Using

Register File Update we conclude that " � R� � fr��g�

�� "�
� fr��g � I is in TD�

Stack�Based Typed Assembly Language �

case mov rd� sp
 TD has the form�

� H � " " � R �

"�
� � mov rd� sp

� frd�ptr	
�g
	 	sp� �
�

"�
� frd�ptr	
�g � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfrd �� ptr	jR	sp�j�g�

Then�

�� � H � " is in TD�

�� By Canonical Stack Forms it follows from 	sp� �
 that j
j � jR	sp�j� By

Derived Judgments and inversion of rule 	rftype�
 �
� so by 	ptr� "�
�
 �

ptr	jR	sp�j� � ptr	
�� By Register File Update� " � R� � frd�ptr	
�g�

�� "�
� frd�ptr	
�g � I is in TD�

case mov sp� rs
 TD has the form�

� H � "

" � R �

"�
� � rs � ptr	
��
 � 	sp� �
� $
�

"�
� � mov sp� rs

� fsp�
�g "�
� fsp�
�g � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfsp �� Sg� S �

wi��

 ��w���nil � R	sp� � wn��

wi��

 ��w���nil � R	rs� � ptr	i�� and � � i � n�

Let
� � �i��

 ������nil � then�

�� � H � " is in TD�

�� By Canonical Stack Forms�
 � 	sp� � �n��

 ������nil 	�� and "�
�
 � wj � �j
for � � j � n� By repeated use of rules 	nil� and 	cons�� " � S �
�� By !R

Typing� "�
�
 � ptr	i� � ptr	
��� and by inversion on 	ptr�� we have j
�j � i�

By Stack Equality� it follows from
 � 	sp� �
� $
�� 	��� 	seq�sym�� and

	seq�trans� that
 �
� �
�� By rule 	stkeq� " � S �
�� By Register File

Update it follows that " � R� � fsp�
�g�

�� "�
� fsp�
�g � is in TD�

case salloc
 TD has the form�

� H � " " � R �

 	sp� �

"�
� � salloc n

� � "�
� � � I

"�
� � �� I

� P

where � � fsp�
g and
 � ���

 ���� �z �
n

�� 	sp�� By the operational semantics

P � � 	H�R�� I� where R� � Rfsp �� Sg and S � ns��

 ��ns� �z �
n

��R	sp�� Then�

�� � H � " is in TD�

�� By the 	reg�le� rule it must be that "�
�
 � R	sp� � 	sp�� By repeated use

of the 	ns� and 	cons� rules we can conclude that "�
 � S �
� Using Register

File Update we conclude that " � R� � ��

�� G� Morrisett et al�

�� "�
� � � I is in TD�

case sfree
 TD has the form�

� H � " " � R �

 � 	sp� � ����

 ���n��
�

"�
� � sfree n

� fsp�
�g "�
� fsp�
�g � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfsp �� Sg and

R	sp� � w���

 ��wn��S� Then�

�� � H � " is in TD�

�� By Canonical Stack Forms� for some m � n� S � wn����

 ��wm��nil �
 �

 	sp� � � ����

 ���
�
m��nil 	��� and "�
�
 � wi � �

�
i for � � i � m� By repeated

use of the 	nil� and 	cons� rules� " � S � � �n����

 ���
�
m��nil � By Stack Equality

it follows from
 � 	sp� � ����

 ���n��
�� 	��� 	seq�sym�� and 	seq�trans�

that
 � � �n����

 ���
�
m��nil �
�� By rule 	stkeq� " � S �
�� By Register File

Update " � R� � fsp�
�g�

�� "�
� fsp�
�g � I is in TD�

case sld rd� sp	i�
 TD has the form�

� H � " " � R �

 � 	sp� � ����

 ���i��
� � � i

"�
� � sld rd� sp	i�

� frd��ig "�
� frd��ig � I

"�
� � �� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfrd �� wig� R	sp� �

w���

 ��wn��nil � and � � i � n� Then�

�� � H � " is in TD�

�� By Canonical Stack Forms� � 	sp� � � ����

 ���
�
n��nil 	�� and "�
�
 � wi � �

�
i �

By Stack Equality� it follows from
 � 	sp� � ����

 ���i��
�� 	��� 	seq�sym��

and 	seq�trans� that � �i � �i� By Register File Update� we may conclude

" � R� � frd��ig�

�� "�
� frd��ig � I is in TD�

case sld rd� rs	i�
 TD has the form�

� H � "

" � R �

� � i
 � 	sp� �
� $
�
"�
� � rs � ptr	
��
 �
� � ����

 ���i��
�

"�
� � sld rd� rs	i�

� frd��ig "�
� frd��ig � I

"�
� � sld rd� rs	i�� I

� P

By the operational semantics P � � 	H�R�� I� where R� � Rfrd �� wj�ig�R	sp� �

wn��

 ��w���nil � R	rs� � ptr	j�� and � � i � j � n� Then�

�� � H � " is in TD�

�� By Canonical Stack Forms�
 � 	sp� � � �n��

 ���
�
���nil 	�� and "�
�
 � wk � �

�
k�

By Canonical Forms� j � j
�j 	��� By Stack Equality� it follows from
 �

Stack�Based Typed Assembly Language ��

 	sp� �
�$
�� 	��� 	��� 	seq�sym�� and 	seq�trans� that
 � � �j ��

 ���
�
���nil �

�� From the latter�
 �
� � ����

 ���i��
�� and rule 	seq�trans� it follows

that
 � � �j ��

 ���
�
���nil � ����

 ���i��
�� Then by Stack Equality� � �j�i � �i�

By Register File Update� " � R� � frd��ig�

�� "�
� frd��ig � I is in TD�

case sst sp	i�� rs
 TD has the form�

� H � "

" � R �

 � 	sp� � ����

 ���i��
� "�
� � rs � � � � i

"�
� � sst sp	i�� rs

� � "�
� � � I

"�
� � sst sp	i�� rs� I

� P

where � � fsp�
g and
 � ����

 ���i����� ��
�� By the operational semantics

P � � 	H�R�� I� where R� � Rfsp �� w���

 ��wi����R	rs���Sg and R	sp� �

w���

 ��wi��S� Then�

�� � H � " is in TD�

�� By Canonical Stack Forms�
 � 	sp� � � ����

 ���
�
n��nil 	�� and for some

n � i and wi�� through wn� S � wi����

 ��wn��nil and "�
�
 � wj � �
�
j � Let

� � � ����

 ���
�
i����� ���

�
i����

 ���

�
n��nil � By !R Typing� "�
�
 � R	rs� � � � By

repeated use of the 	cons� and 	nil� rules� " � w���

 ��wi����R	rs���S �
�� By

Stack Equality it follows from
 � 	sp� � ����

 ���i��
�� 	��� 	seq�sym�� and

	seq�trans� that � �j � �j and
 � � �i����

 ���
�
n��nil �
�� By repeated use of the

	seq�cons� rule�
 �
� �
� By rule 	stkeq�� " � w���

 ��wi����R	rs���S �
�

By Register File Update it follows that " � R� � ��

�� "�
� � � I is in TD�

case sst rd	i�� rs
 TD has the form�

� H � "

" � R �

� � i
 � 	sp� �
� $
�
"�
� � rd � ptr	
��
 �
� � ����

 ���i��
�

"�
� � rs � �
 �
� � ����

 ���i����� ��
�

"�
� � sst rd	i�� rs

� � "�
� � � I

"�
� � sst rd	i�� rs� I

� P

where � � fsp�
�$
�� rd�ptr	
��g� By the operational semantics P ��	H�R�� I�

where R� � Rfsp �� S�g� S� � wn��

 ��wj�i����R	rs���wj�i����

 ��w���nil �

R	rd� � ptr	j�� R	sp� � wn��

 ��w���nil � and � � i � j � n� Then�

�� � H � " is in TD�

�� By Canonical Forms j � j
�j� and by Stack Equality j
�j � � � i � j
�j and

j
�j � � � i � j
�j� Therefore j � j
�j� and by 	ptr� "�
�
 � ptr	j� �
��

By Register File Update� " � R � frd�ptr	
��g� By Canonical Stack Forms�

 � 	sp� � � �n��

 ���
�
���nil 	�� and "�
�
 � wk � � �k for � � k � n� Let

 � � �n��

 ���
�
j�i����� ���

�
j�i����

 ���

�
���nil � By

!R Typing� "�
�
 � R	rs� � � �

By repeated use of the 	cons� and 	nil� rules� " � S� �
� By Stack Equality

it follows from
 � 	sp� �
� $
�� 	��� 	seq�sym�� and 	seq�trans� that

�� G� Morrisett et al�

 � � �n��

 ���
�
j����nil �
� and
 � � �j ��

 ���

�
���nil �
�� By the latter�
 �
� �

����

 ���i��
�� 	seq�sym�� and 	seq�trans�� by Stack Equality it follows that

�k � � �j�k 	for � � k � i� and
 � � �j�i����

 ���
�
���nil �
�� By repeated use of

rule 	seq�cons�
 � � �j ��

 ���
�
j�i����� ���

�
j�i����

 ���

�
���nil � ����

 ���i����� ��
��

By
 �
� � ����

 ���i����� ��
�� 	seq�sym�� and 	seq�trans�� it follows that

 � � �j ��

 ���
�
j�i����� ���

�
j�i����

 ���

�
���nil �
�� Using rule 	seq�append�� it

follows that
 � 	� �n��

 ���
�
j����nil�$	�

�
j ��

 ���

�
j�i����� ���

�
j�i����

 ���

�
���nil� �

� $
�� By repeated use of rules 	cons�� 	stk	��� and 	stk	�� it follows that

 � 	� �n��

 ���
�
j����nil� $ 	� �j ��

 ���

�
j�i����� ���

�
j�i����

 ���

�
���nil� �
� Then

using rules 	seq�sym� and 	seq�trans�� we may conclude
 �
 �
� $
�� By

	stkeq� " � S� �
� $
�� By Register File Update it follows that " � R� � ��

�� "�
� � � I is in TD�

case st
 TD has the form�

� H � "

" � R �

"�
� � rd � h��� � � � � �ni "�
� � rs � �i � � i � n

"�
� � st rd	i�� rs

� "�
� � I

"�
� � �� I

� P

By the operational semantics� P � � 	H �� R� I� where H � � Hf� �� h�g and

h� � hw�� � � � � wi��� R	rs�� wi��� � � � � wni� R	rd� � �� H	�� � hw�� � � � � wni� and

� � i � n� Then�

�� Inspection of the rule 	heap� reveals that � H � � " if " � h� � "	�� hval� By !R

Typing� "�
�
 � � � h��� � � � � �ni and� by Canonical Forms� "�
�
 � wj � �j for

� � j � n 	��� Since the former can only be concluded by the rule 	label�� it

must be that "	�� � h��� � � � � �ni� By !R Typing "�
�
 � R	rs� � �i� By 	�� and

rule 	tuple� " � h� � "	�� hval as required�

�� " � R � is in TD�

�� "�
� � I is in TD�

case unpack
 TD has the form�

� H � " " � R �

"�
� � v � 	���

"�
� � unpack ��� r�� v
 �� fr��g "��� fr��g � I

"�
� � �� I

� P

By the operational semantics� P � � 	H�Rfr �� wg� I �� ����� where !R	v� �

pack �� �� w� as � ��� Let � ��� � � �� ����� Then�

�� � H � " is in TD�

�� By Canonical Forms it follows from "�
� � v � 	��� that
 � � � and "�
�
 �

w � � ���� By Register File Update it follows that " � Rfr �� wg � fr�� ���g�

�� By Type Substitution � and "��� fr��g � I it follows that "��
� fr�� ���g �

I �� ����� 	Note that �� ���� � follows from Derived Judgments��

Stack�Based Typed Assembly Language ��

Theorem A��� 	Progress�

If � P then either P has the form 	H�Rfr� �� wg� halt�� �� 	and� moreover� "�
�
 �

w � � for some " such that � H � "� or there exists P � such that P ��� P ��

Proof

Suppose P � 	H�R� Ifull�� Let TD be the derivation of � P � The proof is by cases

on the �rst instruction of Ifull�

case aop
 TD has the form�

� H � " " � R �

"�
� � rs � int "�
� � v � int

"�
� � aop rd� rs� v

� frd�intg "�
� frd�intg � I

"�
� � aop rd� rs� v� I

� P

By Canonical Forms� R	rs� and !R	v� each represent integer literals� Hence P ���

	H�Rfrd �� jjaop jj	R	rs�� !R	v��� I��
case bop
 TD has the form�

� H � " " � R �

"�
� � r � int "�
� � v � �� �� �
 � � �

"�
� � bop r� v

� "�
� � I

"�
� � bop r� v� I

� P

By Canonical Forms R	r� is an integer literal and !R	v� � ���� where H	�� �

code��� ���I � and j�j � j�j� If not jjbop jjR	r� then P ��� 	H�R� I�� If jjbopjjR	r�

then P ��� 	H�R� I ��������

case halt
 TD has the form�

� H � " " � R �

"�
� � r� � �

"�
� � halt�� �

� 	H�R� halt�� ��

By !R Typing we may deduce that !R	r�� is de�ned and "�
�
 � !R	r�� � � � In

other words� R � R�fr� �� wg and "�
�
 � w � � �

case jmp
 TD has the form�

� H � " " � R �

"�
� � v � �� �� �
 � � �

"�
� � jmp v

� P

By Canonical Forms� !R	v� � ���� where H	�� � code��� ���I � and j�j � j�j�

Hence P ��� 	H�R� I ��������

case ld
 TD has the form�

� H � " " � R �

"�
� � rs � h��� � � � � �ni � � i � n

"�
� � ld rd� rs	i�

� frd��ig "�
� frd��ig � I

"�
� � ld rd� rs	i�� I

� P

By Canonical Forms� R	rs� � � and H	�� � hw�� � � � � wni� Therefore� by the

operational semantics P ��� 	H�Rfrd �� wig� I��

�� G� Morrisett et al�

case malloc
 TD has the form�

� H � " " � R �

"�
� � vi � �i 	for � � i � n�

"�
� � malloc r� hv�� � � � � vni

� � "�
� � � I

"�
� � �� I

� P

By !R Typing� !R	vi� is well�de�ned 	for � � i � n�� Then P ��� 	Hf� ��

h !R	v��� � � � � !R	vn�ig� Rfr �� �g� I� for some � �� H �

case mov r� v
 TD has the form�

� H � " " � R �

"�
� � v � �

"�
� � mov r� v

� fr��g "�
� fr��g � I

"�
� � mov r� v� I

� P

By !R Typing !R	v� is well�de�ned� Hence P ��� 	H�Rfr �� !R	v�g� I��

case mov rd� sp
 Suppose Ifull has the form mov rd� sp� I then P ��� 	H�Rfrd ��

ptr	jR	sp�j�g� I��

case mov sp� rs
 TD has the form�

� H � " " � R �

 � 	sp� �
� $
� "�
� � rs � ptr	
��

"�
� � mov sp� rs

� fsp�
�g

"�
� � mov sp� rs� I

� P

By Canonical Forms� R	rs� � ptr	j
�j�� By Canonical Stack Forms R	sp� �

wn��

 ��w���nil where n � j 	sp�j� By Stack Equality j 	sp�j � j
�$
�j� and by

de�nition the latter equals j
�j� j
�j� So � � j
�j � n� hence P ��� 	H�Rfsp ��

wj��j��

 ��w���nilg� I��

case salloc
 Suppose Ifull has the form salloc n� I then�

P ��� 	H�Rfsp �� ns ��

 ��ns� �z �
n

��R	sp�g� I�

case sfree
 TD has the form�

� H � " " � R �

 � 	sp� � ����

 ���n��
�

"�
� � sfree n

� fsp�
�g "�
� fsp�
�g � I

"�
� � sfree n� I

� P

By Canonical Stack Forms R	sp� � wm��

 ��w���nil where m � j 	sp�j� By

Stack Equality j 	sp�j � j����

 ���n��
�j� and the latter equals n�j
�j� som � n�

Hence P ��� 	H�Rfsp �� wm�n��

 ��w���nilg� I��

case sld rd� sp	i�
 TD has the form�

� H � " " � R �

 � 	sp� � ����

 ���i��
� � � i

"�
� � sld rd� sp	i�

� frd��ig

"�
� � sld rd� sp	i�� I

� P

Stack�Based Typed Assembly Language ��

By Canonical Stack Forms R	sp� � wn��

 ��w���nil where n � j 	sp�j� By Stack

Equality j 	sp�j � j����

 ���i��
�j� and the latter equals �� i� j
�j� so � � i � n�

Hence P ��� 	H�Rfrd �� wn�ig� I��
case sld rd� rs	i�
 TD has the form�

� H � " " � R �

� � i
 � 	sp� �
� $
�
"�
� � rs � ptr	
��
 �
� � ����

 ���i��
�

"�
� � sld rd� rs	i�

� frd��ig

"�
� � sld rd� rs	i�� I

� P

By Canonical Forms R	rs� � ptr	j
�j�� By Canonical Stack Forms R	sp� �

wn��

 ��w���nil where n � j 	sp�j� By Stack Equality j 	sp�j � j
� $
�j�

and the latter equals j
�j � j
�j� so j
�j � n� Again by Stack Equality j
�j �

j����

 ���i��
�j� and the latter equals � � i � j
�j� so � � i � j
�j� Hence

P ��� 	H�Rfrd �� wj��j�ig� I��
case sst sp	i�� rs
 TD has the form�

� H � " " � R �

 � 	sp� � ����

 ���i��
� "�
� � rs � � � � i

"�
� � sst sp	i�� rs

� �

"�
� � sst sp	i�� rs� I

� P

By Canonical Stack Forms R	sp� � wn��

 ��w���nil where n � j 	sp�j� By

Stack Equality j 	sp�j � j����

 ���i��
�j� and the latter equals � � i � j
�j�

so � � i � n� By !R Typing� R	rs� is de�ned� Hence P ��� 	H�Rfsp ��

wn��

 ��wn�i����R	rs���wn�i����

nilg� I��
case sst rd	i�� rs
 TD has the form�

� H � " " � R �

� � i
 � 	sp� �
� $
�
"�
� � rd � ptr	
��
 �
� � ����

 ���i��
�

"�
� � rs � �

"�
� � sst rd	i�� rs

� �

"�
� � sst rd	i�� rs� I

� P

By Canonical Forms� R	rd� � ptr	j
�j�� By Canonical Stack Forms R	sp� �

wn��

 ��w���nil where n � j 	sp�j� By Stack Equality j 	sp�j � j
� $
�j�

and the latter equals j
�j � j
�j� so j
�j � n� Again by Stack Equality j
�j �

j����

 ���i��
�j� and the latter equals � � i� j
�j� so � � i � j
�j� By !R Typing�

R	rs� is de�ned� Hence P ��� 	H�Rfsp �� wn��

 ��wj��j�i����R	rs���wj��j�i����

 ��nilg� I��
case st
 TD has the form�

� H � " " � R �

"�
� � rd � h��� � � � � �ni "�
� � rs � �i � � i � n

"�
� � st rd	i�� rs

� �

"�
� � st rd	i�� rs� I

� P

�� G� Morrisett et al�

By Canonical Forms� R	rd� � � and H	�� � hw�� � � � � wni� By !R Typing� R	rs� is

de�ned� Hence P ��� 	Hf� �� hw�� � � � � wi��� R	rs�� wi��� � � � � wn�g� R� I��

case unpack
 TD has the form�

� H � " " � R �

"�
� � v � 	���

"�
� � unpack ��� r�� v
 �� fr��g "��� fr��g � I

"�
� � unpack ��� r�� v� I

� P

By Canonical Forms� !R	v� � pack �� �� w� as � ��� Hence P ��� 	H�Rfr ��

wg� I �� ������

References

Appel� Andrew� � Shao� Zhong� ������� Callee�saves registers in continuation�passing
style� Lisp and symbolic computation� �� ��������

Appel� Andrew W� ������� Compiling with continuations� Cambridge University Press�

Appel� Andrew W�� � MacQueen� David B� ������� Standard ML of New Jersey� Pages ��
�� of� Wirsing� Martin �ed�� Third international symposium on programming language
implementation and logic programming� New York
 Springer�Verlag� Volume ��� of
Lecture Notes in Computer Science�

Bailey� Mark� � Davidson� Jack� ���� �Jan��� A formal model of procedure calling conven�
tions� Pages ��	���
 of� Twenty�second ACM symposium on principles of programming
languages�

Birkedal� Lars� Tofte� Mads� � Vejlstrup� Magnus� ���� �Jan��� From region inference to
von Neumann machines via region representation inference� Pages �����	� of� Twenty�
third ACM symposium on principles of programming languages�

Coglio� Alessandro� Goldberg� Allen� � Qian� Zhenyu� ���� �Oct��� Towards a provably�
correct implementation of the JVM bytecode veri�er� Proceedings of the OOPSLA
�	
workshop on the formal underpinnings of Java�

Crary� Karl� ���� �Sept��� A simple proof technique for certain parametricity results�
Pages 	��	� of� ACM SIGPLAN international conference on functional programming�

Felleisen� Matthias� ������� The calculi of lambda�v�cs�conversion� A syntactic theory
of control and state in imperative higher�order programming languages� Ph�D� thesis�
Indiana University�

Freund� S�� � Mitchell� J� ������� A type system for object initialization in the Java
bytecode language� Pages ��
���	 of� Proc� conf� on object�oriented programming�
systems� languages� and applications� ACM Press�

Freund� S�� � Mitchell� J� ������� Speci�cation and veri�cation of Java bytecode subroutines
and exceptions� Tech� rept� Computer Science Department� Stanford University�

Glew� Neal� ���� �Sept��� Type dispatch for named hierarchical types� Pages �����	� of�
ACM SIGPLAN international conference on functional programming�

Goldberg� Allen� ���� �Oct��� A speci�cation of Java loading and bytecode veri�cation�
Proc� �th ACM conf� on computer and communications security�

Gosling� James� Joy� Bill� � Steele� Guy� ������� The Java language speci�cation� Second
edn� Addison�Wesley�

Harper� Robert� ������� A simpli�ed account of polymorphic references� Information

Stack�Based Typed Assembly Language ��

processing letters� ������ �������� Follow�up note in Information Processing Letters�
������ �����

Hieb� Robert� Dybvig� R� Kent� � Bruggeman� Carl� ���� �June�� Representing control
in the presence of �rst�class continuations� Pages ����� of� ACM SIGPLAN conference
on programming language design and implementation� Published as SIGPLAN Notices�
������

Landin� P� J� ������� The mechanical evaluation of expressions� Computer journal� ��
��������

Lindholm� Tim� � Yellin� Frank� ������� The Java virtual machine speci�cation� Addison�
Wesley�

Liskov� Barbara H�� � Snyder� Alan� ������� Exception handling in Clu� IEEE transactions
on software engineering� ����� ��������

Milner� Robin� Tofte� Mads� Harper� Robert� � MacQueen� Dave� ������� The de�nition
of Standard ML �revised�� MIT Press�

Minamide� Y�� Morrisett� G�� � Harper� R� ���� �Jan��� Typed closure conversion� Pages
�����	� of� Twenty�third ACM symposium on principles of programming languages�

Mitchell� John C�� � Plotkin� Gordon D� ������� Abstract types have existential type�
ACM transactions on progamming languages and systems� ������ ��������

Morrisett� Greg� Walker� David� Crary� Karl� � Glew� Neal� ����a �Jan��� From System
F to typed assembly language� Twenty��fth ACM symposium on principles of pro�
gramming languages� Extended version published as Cornell University technical report
TR�������� November �����

Morrisett� Greg� Crary� Karl� Glew� Neal� � Walker� David� ����b �Mar��� Stack�based
typed assembly language� Pages �����	 of� ACM workshop on types in compilation�

Morrisett� Greg� Walker� David� Crary� Karl� � Glew� Neal� �����a�� From System F to
typed assembly language� ACM transactions on programming languages and systems�
������ ��������

Morrisett� Greg� Crary� Karl� Glew� Neal� Grossman� Daniel� Samuels� Richard� Smith�
Frederick� Walker� David� Weirich� Stephanie� � Zdancewic� Steve� ����b �May��
TALx��
 a realistic typed assembly language� Pages ����� of� Proc� of the ACM SIG�
PLAN workshop on compiler support for systems software�

Necula� George� ������� Proof�carrying code� Pages �
����� of� Twenty�fourth ACM
symposium on principles of programming languages�

Necula� George� � Lee� Peter� ���� �Oct��� Safe kernel extensions without run�time check�
ing� Pages ������� of� Proceedings of operating system design and implementation�

Necula� George C�� � Lee� Peter� ���� �June�� Design and implementation of a certifying
compiler� Pages ������� of� ACM SIGPLAN conference on programming language
design and implementation�

O Callahan� Robert� ���� �Jan��� A simple� comprehensive type system for Java bytecode
subroutines� Twenty�sixth ACM symposium on principles of programming languages�

Qian� Zhenyu� ������� A formal speci�cation of Java�tm� virtual machine instructions for
objects� methods� and subroutines� Alves�Foss� J� �ed�� Formal syntax and semantics of
Java�tm�� Springer Verlag LNCS�

Reynolds� John� ���� �Jan��� Using functor categories to generate intermediate code� Pages
����� of� Twenty�second ACM symposium on principles of programming languages�

Scheme� ������� Revised� report on the algorithmic language Scheme� Journal of higher
order and symbolic computation� ������ ������ Also appears as ACM SIGPLAN Notices
������ September� �����

�� G� Morrisett et al�

Stata� Raymie� � Abadi� Mart!"n� ������� A type system for Java bytecode subroutines�
ACM transactions on progamming languages and systems� ������ �������

Steele Jr�� Guy L� ������� Rabbit� A compiler for Scheme� M�Phil� thesis� MIT�

Tofte� Mads� � Talpin� Jean�Pierre� ���� �Jan��� Implementation of the typed call�by�value
��calculus using a stack of regions� Pages �		��
� of� Twenty��rst ACM symposium on
principles of programming languages�

