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Abstract

A hierarchical module system is an e�ective tool for
structuring large programs� Strictly hierarchical mod�
ule systems impose an acyclic ordering on import depen�
dencies among program units� This can impede modu�
lar programming by forcing mutually�dependent compo�
nents to be consolidated into a single module� Recently
there have been several proposals for module systems
that admit cyclic dependencies� but it is not clear how
these proposals relate to one another� nor how one might
integrate them into an expressive module system such
as that of ML�

To address this question we provide a type�theoretic
analysis of the notion of a recursive module in the con�
text of a �phase�distinction� formalism for higher�order
module systems� We extend this calculus with a recur�
sive module mechanism and a new form of signature�
called a recursively dependent signature� to support the
de�nition of recursive modules� These extensions are
justi�ed by an interpretation in terms of more primitive
language constructs� This interpretation may also serve
as a guide for implementation�

� Introduction

Hierarchical decomposition is a fundamental design
principle for controlling the complexity of large pro�
grams� According to this principle a software sys�
tem is to be decomposed into a collection of modules
whose dependency relationships form a directed� acyclic
graph� Most modern programming languages include
module systems that support hierarchical decomposi�
tion� Many� such as Standard ML 	
�� and O
Caml 	
���
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also support parameterized� or generic� modules to bet�
ter support code re�use�

There is no question that hierarchical design is an
important tool for structuring large systems� It has of�
ten been noted� however� that strict adherence to a hi�
erarchical architecture can preclude the decomposition
of a system into �mind�sized� components� In some
situations the natural decomposition of a system into
modules introduces cyclic dependencies� which cannot
be expressed in a purely hierarchical formalism� The
only solution is to consolidate mutually�dependent frag�
ments into a single module� which partially undermines
the very idea of modular organization�

In response several authors have proposed linguis�
tic mechanisms to support non�hierarchical modular
decomposition� Recent examples include� Sirer� et
al��s extension of Modula�� with a �cross�linking�
mechanism 	�
�� Flatt and Felleisen
s extension of
their MzScheme language with cyclically�dependent
�units� 	��� Duggan and Sourelis
s �mixin modules� that
extend the Standard ML module system with a special
�mixlink� construct for integrating mutually�dependent
structures 	�� ��� and Ancona and Zucca
s algebraic for�
malism for mixin modules 	��� Each of these proposals
seeks to address the problem of cyclic dependencies in a
module system� but each does so in a slightly di�erent
way� For example� Flatt and Felleisen
s formalism does
not address the critical issue of controlling propagation
of type information across module boundaries� Duggan
and Sourelis
s framework relies on a syntactic transfor�
mation that� in e�ect� coalesces the code of mutually�
dependent modules into a single module� It is not clear
what are the fundamental ideas� nor is it clear how to
integrate the various aspects of these proposals into a
full�featured module system�

It is natural to ask� what is a recursive module� We
propose to address this question in the framework of
type theory� which has proved to be a powerful tool for
both the design and implementation of module systems�
We conduct our analysis in the context of the �phase
distinction� module formalism introduced by Harper�
Mitchell� and Moggi 	

� �hereafter� HMM�� augmented
to support recursive types and functions� and to support
type de�nitions in signatures 	�� 
��� The phase distinc�
tion calculus provides a rigorous account of higher�order
modules �supporting hierarchy and parameterization� in
a framework that makes explicit the critical distinction
between the static� or compile�time� part of a module



and the dynamic� or run�time� part� This calculus has
proved to be of fundamental importance to the imple�
mentation of higher�order modules� as evidenced by its
use in Shao
s FLINT formalism used in the SML�NJ
compiler 	
�� ��� and in the TIL�ML compiler 	����

Our analysis proceeds in two stages� First we con�
sider a straightforward extension of the phase distinc�
tion calculus with a notion of recursive �self�referential�
module� An interpretation of this new construct is pro�
vided by an interpretation of it into the primitive mod�
ule formalism of the phase distinction calculus� This
interpretation renders the compile�time part as a recur�
sive type and the run�time part as a recursive function�
as might be expected� In essence a recursive module is
just a convenient way of introducing recursive types and
functions�

Unfortunately this simple�minded extension does
not go far enough to be of much practical use� As Dug�
gan and Sourelis have observed 	��� it is of critical impor�
tance for most practical examples that the type equa�
tions that hold of a recursive module be propagated into
the de�nition of the recursive module itself� In essence
the de�nitions of the type components of a recursive
module must be taken to be the types that they will
eventually turn out to be once the recursive declara�
tion has been processed� Accounting for this �forward
reference� is the core contribution of our work� We in�
troduce a new form of signature �interface� for recursive
modules� called a recursively dependent signature� that
allows us to capture the required type identities during
type checking of a recursive module binding� This sig�
ni�cantly increases the expressive power of the recursive
module formalism� and is� we assert� of fundamental im�
portance to the very idea of recursive modules�

In this paper we aim to focus on the core issues lying
at the center of a recursive module system� so we study
recursive modules in the framework of a small internal
language that is su�cient to bring out the main issues
and that could be used by a type�directed compiler to
implement recursive modules� Therefore� we make no
speci�c proposals as to what form an external language
supporting recursive modules should take� although we
do present most of our examples in a hypothetical ex�
ternal language� Indeed� some important questions re�
garding the design of an external language remain open�
such as the practicality of typechecking� In Section � we
make some observations and preliminary proposals re�
garding the design of an external language�

� Type�Theoretic Framework

We begin by presenting the framework in which we con�
duct our analysis� We will conduct our examples us�
ing an informal external language closely modeled af�
ter the syntax of Standard ML� The external language
is then elaborated into the type�theoretic internal lan�
guage that we describe below� We will treat the elab�
oration process informally� illustrating it by examples�
Details of how elaboration may be formalized in a gen�
eral setting appear in Harper and Stone 	
���

Our internal language is an extension of the phase

distinction calculus of Harper� Mitchell� and Moggi 	

��
The language consists of two main components� a core

calculus� a predicative variant of Girard
s F�� and a

structure calculus� extending the core language with
a primitive module construct without explicit mecha�
nisms for hierarchy �e�g�� substructures� or parameter�
ization �e�g�� functors�� Primitive modules consist of a
static� or compile�time� part containing the type con�
structors of the module� together with a dynamic� or
run�time� part containing the executable code of the
module� This separation is known as the phase distinc�

tion� An important property of the formalism is that
the phase distinction is maintained� even in the pres�
ence of higher�order �and� as we shall see� recursive�
module constructs�

The main result of HMM is that higher�order mod�
ule constructs are a de�nitional extension of the prim�
itive structure calculus� In other words higher�order
constructs are already present in the primitive struc�
ture calculus in the sense that they may be de�ned in
terms of existing constructs� �This interpretation may
be thought of as a compilation strategy for higher�order
modules� and indeed this fact has been exploited in the
FLINT 	��� and TIL 	��� compilers�� This means that
we need not explicitly discuss higher�order module con�
structs in this paper� but rather appeal to HMM for a
detailed discussion of their implicit presence�

To support the extension with recursive modules we
enrich the core phase distinction calculus with these ad�
ditional constructs�


� Singleton and dependent kinds to allow expression
of type sharing information in signatures� Related
formalisms for expressing type sharing informa�
tion are given by Harper and Lillibridge 	�� and
Leroy 	
���

�� A �xed point operation for building collections
of mutually�recursive type constructors� These
recursive constructors are de�nitionally equal to
their unrollings� We term such constructors equi�

recursive� to distinguish them from the more con�
ventional iso�recursive constructors� for which con�
versions between the constructors and their un�
rollings must be mediated by the explicit use of
an isomorphism� We discuss the interplay of equi�
and iso�recursive constructors in Section ����

�� A �xed point operation for building collections of
mutually�recursive functions� As will become ap�
parent later on� we cannot �as in SML� limit this
operation to collections of explicit lambda abstrac�
tions� Instead we formalize a notion of valuabil�
ity �indicating terminating expressions� and a cor�
responding notion of total function� essentially as
in Harper and Stone 	
��� but with the additional
idea that recursively de�ned variables are not con�
sidered valuable within the body of their de�ni�
tions� but are considered valuable in their subse�
quent scope�

In subsequent sections of this paper� we will further aug�
ment our structure calculus with various constructs for
recursive modules� and then show how those constructs
can be reduced to the elementary constructs discussed
in this section�

�
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� The Core Calculus
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Figure �� Higher�Order Singletons

��� The Core Calculus

The core phase distinction calculus contains four syn�
tactic classes� kinds� type constructors �or just �con�
structors��� types� and terms� As usual� types classify
terms and kinds classify constructors� The constructors
provide a lambda calculus for constructing types� The
syntax of the core calculus appears in Figure 
� We
shall consider expressions that di�er only in the names
of bound variables to be identical� and write capture�
avoiding substitution of E for X in E� as E�	E�X��

The kinds include the kind T of all monotypes� the
trivial kind 
� containing only the constructor �� de�
pendent products �������� containing constructor func�
tions from �� to �� where � stands for the argument and
may appear free in ��� and dependent sums ���������
containing constructor pairs built from �� and �� �re�
spectively� where � stands for the left�hand member and
may appear free in ��� As usual� if � does not appear
free in ��� we write �� � �� for �������� and �� � ��
for ���������

Finally� for any constructor c having kind T � the sin�
gleton kind s�c� contains monotypes de�nitionally equal
to c� Thus� if c has kind s�c��� the calculus permits
the deduction of the equation c � c� � T � Singleton
kinds provide a mechanism for expressing type sharing
information 	�� 
��� Although singleton kinds exist only
for monotypes� they may be used in conjunction with
dependent kinds to express higher�order sharing infor�
mation� For instance� if c has kind ���T�s�list����� it
follows that c � list � T � T � The de�nition in Figure
� generalizes this idea��

�Note that higher�order singletons are not de�ned for kinds
containing strictly positive singleton or dependent sum kinds�
this would eliminate the useful property that � is a kind when�
ever s�c � �� is� This does not reduce the expressive power of the
construct� any constructor whose kind contains strictly positive
singletons or dependent sums can be given a kind �exactly as
coarse� without them�

The type constructors are largely standard� The
trivial type 
 contains the trivial term �� The types
c� � c� and c� � c� are the types of total and partial
functions from c� to c� and are discussed in more detail
below� The equi�recursive constructor 	����c	�� is is a
�xed point of the equation � � c	��� Thus 	����c	�� is
equal to its unrolling c		����c	���� This is in contrast to
the somewhat more conventional iso�recursive formula�
tion� where conversions between the two must be me�
diated by explicit operations� In Section ��� we discuss
how to simplify the type theory to use only iso�recursive
constructors�

The �nal construct� �x�x�
�e� at the term level� al�
lows the de�nition of recursive values� However� we wish
to prevent the de�nition of cyclic data structures such
as �x�x � int list����x�� which cannot be de�ned in
ML� We do this by imposing a value restriction on
the bodies of recursive de�nitions� The calculus con�
tains judgements ! � e � 
 asserting that e has type 

and terminates without computational e�ects� �In the
present setting� the only computational e�ect is nonter�
mination�� With this so�called value restriction in place�
the formation rule for recursive values is�

!	x � 
� � e � 
 ! � 
 type

! � �x�x�
�e� � 

�x �	 Dom�!��

This rule is read� �x�x�
�e� has type 
 if e terminates
with type 
 under the assumption that x has type 
 but
cannot be taken as valuable� This rules out the cyclic list
proposed above� since ���x is not valuable unless x is
valuable� The value restriction implies that all appear�
ances of x must be guarded by �i�e�� within the body of�
a lambda abstraction� lambda abstractions are always
valuable� regardless of the valuability status of their free
variables� As in Harper and Stone 	
��� the collection of
valuable expressions is enlarged by including a type for
total �pure� functions� such as cons ����� The applica�
tion of a valuable total function to a valuable argument
is considered valuable� Total functions are considered to
be types� but not type constructors� in order to prevent
their erroneous use in conjunction with recursive types�

A similar restriction is made on the formation of
equi�recursive type constructors� In order to show that
	����c is well�formed� one must show that c is contrac�
tive in � 	
�� This is in contrast to iso�recursive types�
which require no such condition� Informally� contrac�
tiveness means that the in�nite tree speci�ed by iterat�
ing the body c is actually in�nite� or� even more infor�
mally� that iterating the body �goes somewhere�� Thus�
	��T�int� � is legal� but 	��T�� is not� Contractive�
ness is formalized in the type theory by a judgement
	� � �� � c � �� which is read� c is contractive in kind
� under the assumption that � has kind � but cannot

be taken as contractive� The rules for contractiveness of
constructors are similar to those for valuability of terms�
they ensure that all occurrences of the recursive variable
are guarded by a type construction operation �such as
int� � in the above example��

��� The Structure Calculus

Atop the core calculus we erect a structure calculus�
exactly as in HMM� To review� we add two syntactic
classes� one for "at signatures and one for "at structures

�
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Figure �� The Structure Calculus

�Figure ��� Structures are pairs 	c� e� of constructors and
terms� The left�hand component is referred to as the
compile�time �or� static� component� and the right�hand
component is referred to as the run�time �or� dynamic�
component� Signatures� which classify structures� have
the form 	���� 
�� where � stands for the compile�time
component and may appear free in 
� The structure�
	c� e� has kind 	���� 
� if c has kind � and e has type

	c���� Often we will write 	� � c� e� as shorthand for
	c� e	c����� We also add constructor and term constructs
Fst s and Snd s for extracting the �rst and second com�
ponents out of structures named by variables� We will
occasionally treat these constructs as variables and al�
low substitution for them�

The structure calculus shows an explicit phase dis�
tinction between compile�time and run�time expres�
sions 	

� ��� Static expressions may be separated from
dynamic ones� and static ones will never depend on dy�
namic ones� This ensures that programs may be type�
checked without the need to execute any run�time code�

HMM show that higher�order modules can be re�
duced to the simple structure calculus given here�
Therefore we will omit explicit discussion of higher�
order modules� without any loss of generality� In this
paper� we show how recursive modules may similarly
be reduced to the structure calculus given here� In so
doing� we will show that despite the apparent intertwin�
ing of static and dynamic expressions in recursive mod�
ules� that the phase distinction can be preserved� just
as HMM showed for higher�order modules�

� Opaque Recursive Modules

We begin our examination by considering what we call
�opaque� recursive modules� These will prove to insuf�
�ciently expressive for most applications� but they will
serve to illustrate the main ideas and motivate the more
complex machinery in the next section�

In the �informal� external language� we write an
opaque recursive module de�nition as�

structure rec S �� SIG � struct ��� end

The structure variable S is� of course� permitted to ap�
pear free within the structure
s body� The signature SIG
then expresses all the information that is known about S
in the body or in the subsequent code� �We borrow the
���� symbol from Standard ML 
��� 	
�� to suggest this
opacity�� In particular� the opaque signature obscures
the fact that the types in S are recursively de�ned�

This declaration construct corresponds to a module
�xed point operation in the internal language� written
�x�s�S�M�� For reasons similar to those in the previ�
ous section� we must impose a value restriction on M �

! � � kind !	� � �� � 
 type
!	� � �� � c � � !	� � ��	x � 
� � e � 


! � �x�s�	����
��	c	Fst s���� e	Fst s�Snd s��� x��� �
	� � 	����c��x�x�
�e�� � 	����
�

���x� s �	 Dom�!��

Figure �� Phase�Splitting Recursive Modules

resulting in the following typing rule�

!	s � S� � M � S ! � S sig

! � �x�s�S�M� � S
�s �	 Dom�!��

Thus� a recursive module is valid if its body �M� is
valuable without assuming the recursive variable �s� to
be valuable� If a module M is 	c� e�� then M will be
valuable exactly when e is valuable �i�e�� constructors
are always valuable��

Following HMM� we wish to reduce recursive mod�
ules to the primitive structure formalism by de�n�
ing �x�s�S�M� in terms of primitive constructs� We
will do this by phase�splitting recursive modules
into run�time and compile�time components� Sup�
pose S is the signature 	����
� and M is the struc�
ture 	c�Fst s�� e�Fst s�Snd s��� Then we can interpret
�x�s�S�M� by wrapping the static and dynamic compo�
nents in �xed point expressions�

�x�s�S�M� � 	� � 	����c�����x�x � 
�e���x���

This de�nition is formalized in the type theory by the
equational rule in Figure �� This rule parallels the non�
standard equational rules from HMM� and illustrates
that recursive modules are already present in the un�
derlying calculus� In particular� the formation rule for
recursive modules given above follows from the de�ni�
tion and need not appear as a primitive rule�

��� Trouble with Opacity

The opaque interpretation of recursive modules is pleas�
antly simple� but unfortunately� it is not su�ciently
expressive to support some desired programming id�
ioms� One common application of recursive modules
is to break up mutually recursive data types� As a par�
ticularly simple �though somewhat contrived� example�
consider an implementation of integer lists as a recursive
module that defers recursively to itself for an implemen�
tation of the tail�

signature LIST �
sig
type t
val nil � t
val null � t �� bool
val cons � int � t �� t
val uncons � t �� int � t

end

structure rec List �� LIST �
struct
datatype t � NIL 	 CONS of int � List�t

�



val nil � NIL

fun null NIL � true
	 null 
CONS �� � false

fun cons 
n � int
 l � t� �
case l of
NIL �� CONS 
n
 List�nil�

	 CONS 
n� � int
 l� � List�t� ��
CONS 
n
 List�cons 
n�
 l���

fun uncons NIL � raise Fail
	 uncons 
CONS 
n � int
 l � List�t�� �

if List�null l then

n
 NIL�

else

n
 CONS 
List�uncons l��

end

This implementation typechecks properly� and it is
observationally equivalent to a conventional implemen�
tation� However� intensionally it is very di�erent� be�
cause each use of cons and uncons must traverse the
entire list� leading to poor behavior in practice� A more
direct implementation is impossible because the opacity
of List�t precludes any knowledge that List�t is the
same as t�

Some other examples cannot be written in the
opaque case at all �but see Section ����� For exam�
ple� consider an implementation of abstract syntax trees
using mutually dependent modules for expressions and
declarations� These modules interact with each other
through the let expression� which contains a declara�
tion� and the val declaration� which contains an expres�
sion� To optimize a common case� the expression code
includes a function for let val expressions that defers
to the declaration code to build a declaration�

signature EXPR �
sig
type exp
type dec
val make�let � dec � exp �� exp


� let DEC in EXP end ��
val make�let�val �

identifier � exp � exp �� exp

� let val ID � EXP in EXP end ��

���
end

signature DECL �
sig
type dec
type exp
val make�val � identifier � exp �� dec


� val ID � EXP ��
���

end

structure rec Expr �� EXPR �
struct
datatype exp � LET of Decl�dec � exp 	 ���
type dec � Decl�dec

fun make�let 
d � dec
 e � exp� �
LET 
d
 e�

fun make�let�val 
id � identifier

e� � exp
 e� � exp� �

let val d � Decl�make�val 
id
 e��

� type error� e� � exp �� Decl�exp ��

in
LET 
d
 e��

end
���

end
and Decl �� DECL �
struct
datatype dec �
VAL of identifier � Expr�exp 	 ���

type exp � Expr�exp
���

end

Unfortunately� this code does not typecheck� The call
to make val within make let val expects an argument
with type Decl�exp� which� because of the opacity of
Decl� is not known to be the same type as exp� the
type of its actual argument e�� The type error occurs
because the type system cannot tell that exp is equal to
Decl�exp� even though an examination of the recursive
de�nition reveals that it is actually true�

� Transparent Recursive Modules

The di�culties described in the previous section can be
traced to the inability to track su�cient type informa�
tion in the context of a recursive structure binding� In
the abstract syntax example the proposed binding fails
to typecheck because within the de�nition of Expr it is
not apparent that the type exp is equivalent to the type
Decl�exp� even though this equation will be valid once
the recursive binding is in force� Similarly� within the
de�nition of Decl it is not apparent that the type dec
is equivalent to the type Expr�dec� which will turn out
to be true once the binding is in force� Were this equa�
tion available while the de�nitions of Expr and Decl are
being typechecked� the entire declaration would be seen
to be valid� and these very equations would hold true
afterwards� Similarly� the ine�ciency of the suggested
implementation of lists may be traced to the failure to
identify the types List�t and t inside the de�nition of
List�

What is needed is a means of propagating the type
equations that will turn out to be true of the recur�
sively de�ned structures into the scope of the recursive
de�nition itself� This makes it possible to exploit the
recursive de�nitions of the types involved during type�
checking of the dynamic part of the recursively de�ned
modules� leading to a much more "exible and useful no�
tion of recursive module� In e�ect we are exploiting the
phase distinction by solving the static recursion equa�
tions prior to checking the dynamic typing conditions
of the module�

How is this additional type sharing information to
be propagated� The obvious solution is to add the ap�

�



propriate equations to the signatures of the modules in�
volved� For example� in the list example we may prop�
agate the required information as follows�

structure rec List ��
sig

datatype t � NIL 	 CONS of int � List�t

���
val cons � int � t �� t
val uncons � t �� int � t

end � ���

The boxed phrase highlights the occurrence of the struc�
ture variable introduced by the recursive structure bind�
ing� Since the signatures of the recursively de�ned
structure variables depend on the structures themselves�
we call these signatures recursively dependent signa�

tures� or rds�s for short� In Section ��� we shall see
how recursively dependent signatures are formalized�

The purpose of a recursively dependent signature is
to express the sorts of recursive type equations that are
required to recover the ill�formed examples of the pre�
ceding section� Let us now revisit those examples to see
how rds
s are used to resolve the di�culties those ex�
amples raise� Using a recursively dependent signature
it is possible to give an implementation of lists with
constant�time primitive operations as follows�

structure rec List ��
sig
datatype t � NIL 	 CONS of int � List�t
���
val cons � int � t �� t
val uncons � t �� int � t

end �
struct
datatype t � NIL 	 CONS of int � List�t
���
fun cons 
n � int
 l � t� � CONS 
n
 l�
fun uncons NIL � raise Fail
	 uncons 
CONS 
n
 l�� � 
n
 l�

end

The e�ect of the recursively dependent signature in this
example is to ensure that the implementation type of
the recursive datatype List�t coincides with the imple�
mentation type of the type t within the body of the
de�nition�

This example also raises a important point about re�
cursive datatypes in the context of a recursive structure
binding� We must impose a structural� or transparent�
interpretation of recursive datatypes within the scope
of a recursive structure binding� rather than the more
familiar nominal� or opaque� interpretation used in Stan�
dard ML� In type�theoretic terms the rds ascribed to
List is tantamount to a signature that transparently de�
�nes the type t to be the underlying iso�recursive type
of the recursive datatype� We note� however� that this
interpretation can be limited to the recursive structure
binding itself� and need not propagated into the subse�
quent scope of the binding� the elaborator may �seal�
the structure with an opaque signature hiding the im�
plementation type of List�t after the binding has been
processed�

The abstract syntax example may be handled sim�
ilarly to the list example� as shown below� The recur�
sively dependent signatures ascribed to Expr and Decl
allow Decl�make�val
s second argument to be given the
type Expr�exp� and under the transparent interpreta�
tion of datatypes� exp � Expr�exp holds within the
scope of exp� Consequently� the call to Decl�make�val
is type correct�

structure rec Expr ��
sig
datatype exp �

LET of Decl�dec � exp 	 ���

val make�let � Decl�dec � exp �� exp
val make�let�val �

identifier � exp � exp �� exp
���

end �
struct
datatype exp � LET of Decl�dec � exp 	 ���

fun make�let 
d � Decl�dec
 e � exp� �
LET 
d
 e�

fun make�let�val 
id
 e� � exp
 e� � exp� �
let val d � Decl�VAL 
id
 e��


� typechecks� since exp � Expr�exp ��
in

LET 
d
 e��
end

���
end

and Decl ��
sig
datatype dec �

VAL of identifier � Expr�exp 	 ���
val make�val �

identifier � Expr�exp �� dec

���
end � struct ��� end

In each of these examples� the recursively dependent
signatures used were fully transparent� in the sense that
every type component was given by an explicit type def�
inition� This was necessary in order to make the given
examples typecheck� More generally� fully transparent
rds
s provide optimal propagation of type information�
thereby maximizing the set of programs that can be
typechecked� Moreover� we will see in Section ��� that
in order to phase�split recursively dependent signatures�
it is necessary to require full transparency of all rds
s�
and to require a contractiveness condition of them as
well� In Section ��
 we illustrate how the elaborator
can ensure that these conditions are satis�ed�

��� Functors and Separate Compilation

In the preceding abstract syntax example� the mutually
recursive modules Expr and Decl were compiled simul�
taneously in a single recursive de�nition� In practice�
however� it is important for it to be possible to compile
each mutually recursive module separately 	��� In the
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absence of separate compilation� the structuring of code
as mutually recursive module de�nitions would often be
a largely cosmetic exercise�

One may separately compile mutually recursive
modules by rewriting them as closed functors and then
gluing those functors together by instantiating them in
a recursive structure binding� Each closed functor may
then be separately compiled� However� it is instructive
to examine the details� as a naive attempt to do so runs
afoul of the opacity problem once again� This problem
is demonstrated by the following functorized version of
the abstract syntax example�

structure rec Expr �� sig ��� end �
ExprFun 
Expr
 Decl�

and Decl �� sig ��� end �
DeclFun 
Expr
 Decl�

functor ExprFun 
structure Expr � EXPR
structure Decl � DECL� �

��� as above ���

functor DeclFun 
structure Expr � EXPR
structure Decl � DECL� �

��� as above ���

When de�ned in this manner� ExprFun does not type�
check because the arguments Expr and Decl are given
opaque signatures� causing exactly the same problem as
in Section ��
� To make this work� we must use recur�
sively dependent signatures for the functor
s parame�
ters�

functor ExprFun

structure rec Expr �

sig
datatype exp �

LET of Decl�Dec � exp 	 ���
���

end
and Decl � sig ��� end� �

��� as above ���

This example now reveals an important limitation
on the degree of separate compilation that is possible�
This version of the functor typechecks and may be com�
piled independently� but in order to make it typecheck�
we have been forced to provide a recursively dependent
signature for both Expr and Decl� thereby specifying all
the type components of the other module Decl� Hence
we observe that the code may be independently com�
piled� but in some sense the types may not� since they
must be kept consistent among both mutually recursive
components�

This is not a frivolous restriction� it is a simple con�
sequence of supplying enough type information to al�
low each module to typecheck� However� the restric�
tion is stronger than necessary in one regard� we re�
quire that rds
s be fully transparent� but it is not al�
ways necessary to know the de�nitions of all the type
components of a mutually recursive module �though it
was in the abstract syntax example�� Therefore we may
gain some additional expressiveness by relaxing the full
transparency requirement of rds
s� We discuss how to
do this in Section ��
�

��� Formalization of Recursively Dependent Signa�
tures

The addition of recursively dependent signatures to the
phase distinction calculus is performed in two stages�
First� we extend the syntax of signatures with the recur�
sively dependent form� which we write 
s�S� and extend
the signature formation and equivalence rules with rules
governing this new form� We also extend the module
formation rules to include introductory and eliminatory
rules for recursively dependent signatures� Second� we
show that this enrichment of the structure calculus may
be interpreted into the original structure calculus �over
the extended core language described in Section �� by
exhibiting an equation between rds
s and ordinary sig�
natures�

Informally� the recursively dependent signature 
s�S
contains those modulesM that belong to S where s may
appear free in S and stands for M � In other words� M
belongs to 
s�S when M belongs to S	M�s�� Formally�
rds
s adhere to the following introductory and elimina�
tory rules�

! � M � S	M�s� ! � 
s�S sig

! � M � 
s�S

! � M � 
s�S

! � M � S	M�s�

As discussed previously� in the rds 
s�S we require that
the static component of S be fully transparent� that
is� that it completely specify the identity of its static
component using singleton kinds� Thus� in order for an
rds 
s�S to be well�formed� S must be fully transparent
and well�formed under the assumption that s has signa�
ture S�� where S� is obtained from S by stripping out
the singleton kinds specifying the identity of the static
component� Formally� rds
s have the following forma�
tion rule��

! � S sig !	s � S� � c � �
!	s � S� � 	��s�c � ��� 
� sig

! � 
s�	��s�c � ��� 
� sig

�
�
s �	 Dom�!� and
S is
	���� 
	��Fst s��

�
A

The third subgoal is the contractiveness condition al�
luded to previously� This may be seen as part of the full
transparency requirement� since if c is noncontractive in
s� then it is just retelling s� and provides no useful infor�
mation� Both the full transparency and contractiveness
conditions are necessary in order to interpret rds
s into
the basic structure calculus� as we will see in a moment�

As with the recursive modules of Section �� we wish
to reduce recursively dependent signatures to primitive
constructs of the structure formalism� We do this by
wrapping the compile�time component of the rds in a
�xed point expression� and by redirecting recursive ref�
erences in the run�time component�


s�	��s�c�Fst s� � ��� 
���Fst s��
�

	��s� 	����c��� � ��� 
��� � ��

In the second highlighted fragment� recursive references
using Fst s are redirected to use �� The interesting
part is the �rst highlighted fragment� Suppose 	c�� e�

�Recall that we consider Fst s to be a variable and allow sub�
stitution for it�

�



! � � kind !	� � �� � s�c � �� kind !	� � �� � c � � !	� � �� � 
	��Fst s� type

! � 
s�	��s�c	Fst s��� � ��� 
� � 	��s�	����c � ��� 
	��Fst s�� sig
����� s �	 Dom�!��

Figure �� Phase�Splitting Recursively Dependent Signatures

is a prospective member of the rds on the left� Since
Fst 	c�� e� �so to speak� is c�� the rds dictates that c� have
kind s�c�c�� � ��� and consequently that c� � c�c�� � ��
Therefore� c� may be taken to be 	����c���� as provided
by the �rst highlighted fragment�

This de�nition makes clear the need for full trans�
parency and contractiveness of rds
s� When translated
into the structure calculus� an rds speci�es its static
component to be 	����c���� as above� To extract the
necessary constructor c� the rds must be fully transpar�
ent� Furthermore� c��� must be contractive in �� or else
the speci�ed static component is ill�formed�

The de�nition is formalized in the type theory by the
equational rule in Figure �� As in Section �� this rule
illustrates that recursively dependent signatures are al�
ready present in the underlying calculus� In particular�
the introductory and eliminatory rules given above fol�
low from the de�nition and need not appear as primitive
rules�

��� Opacity Revisited

The phase�splitting rule for recursively dependent sig�
natures reveals an interesting fact� of the two forms
of recursive dependency� static�on�static �i�e�� types on
types� and dynamic�on�static �i�e�� terms on types��
only static�on�static dependencies are essentially recur�
sive �as shown in the �rst highlighted fragment above��
In contrast� dynamic�on�static dependencies were re�
solved without recursion �in the second fragment�� sim�
ply by redirecting them from the recursive variable
�Fst s� to the variable standing for the signature
s static
component ���� Thus� dynamic�on�static dependencies
are not truly recursive at all� �In fact� such dependencies
would never arise when programming in a fully phase�
split style 	

���

Is it possible to program with only dynamic�on�
static dependencies and thereby largely dispense with
recursively dependent signatures� To some degree�
yes� �This is the expressiveness provided by Flatt and
Felleisen
s �units� 	���� Recall the abstract syntax ex�
ample as corrected using a recursively dependent signa�
ture� That example used static�on�static dependencies
in the speci�cations of exp and dec� and used dynamic�
on�static dependencies in the speci�cations of make let
and make val� The dependency of dec on exp was used
in make let val when constructing a dec �named d�
from an identi�er and an exp� However� the need to
know dec
s speci�cation in terms of exp can be elimi�
nated by instead using the function make val� which is
speci�ed by a dynamic�on�static dependency� The cost
of this is that one must incur a function call whenever
going between exp and dec� and such function calls can�
not be safely inlined without using static�on�static de�
pendency information�

This is an instance of the well�known fact that one

can always program opaquely �i�e�� without any type
sharing information� if one is willing to incur mediat�
ing function calls between types that are actually equal�
Tools for supplying type equality information� such as
sharing 	
��� translucent sums 	�� 
��� and recursively de�
pendent signatures� serve only to improve performance�

� External Language Issues

��� Elaboration of Recursively Dependent Signatures

As discussed previously� the internal language requires
that all recursively dependent signatures be fully trans�
parent and contractive in their static component� In
an external language� however� this requirement can be
burdensome to satisfy� Therefore� we would like to re�
move that requirement from the external language� and
instead have the compiler satisfy the requirement as it
elaborate external code into the internal language�

In the case of a recursive module de�nition� it is
easy for the elaborator to supply any omitted type def�
initions� because it may inspect the actual module to
discover the omitted information� However� as we saw
in Section ��
� it is important to allow rds
s as signa�
tures for functor arguments� In such cases there is no
particular module to inspect for the missing informa�
tion� so if the elaborator is to rewrite such an rds to be
transparent� it must do so without supplying additional
information�

Given a prospective rds that fails to be fully trans�
parent� the elaborator may transform it to an isomor�
phic signature that is permitted by naming any abstract
types within the rds and hoisting them out� �A similar
device is used by the generative stamps in the De�nition
of Standard ML 	
���� For example� the signature

rec S � sig
type t
type u � S�u �� t

end

can be made permissible by introducing a type de�ni�
tion for t setting it equal to an abstract type that is
de�ned outside the rds� The resulting signature is per�
missible because the rds� which now lies within an outer
signature� is fully transparent�

sig
type t�
structure rec S �
sig

type t � t�
type u � S�u �� t

end
end

Recall that we also require that recursively depen�
dent signatures be contractive� In most cases� the elab�
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orator can transform signatures to satisfy this require�
ment in the same manner as to satisfy transparency� For
example� consider the noncontractive signature�

rec S � sig
type t � S�t
type u � S�u �� t

end

Note that the signature does not provide any informa�
tion as to the identity of t �except that it is equal to
itself�� In this case� t is essentially abstract� as it was
in the previous example� so the signature can be trans�
formed to a permissible one exactly as before�

It should be noted that this technique can fail in the
presence of unknown type constructors� Suppose f is
an unknown constructor with kind T � T and consider
the signature�

rec S � sig
type t � S�t f
type u � S�u �� t

end

In this signature it is not clear whether or not t is ab�
stract� If f were the identity� then this signature would
reduce to the previous example� and t could be hoisted�
On the other hand� if f were� say� ���T�int# �� then
t would not be abstract and it would incorrect to hoist
t� and indeed the signature would be properly contrac�
tive� The fact that f is unknown stymies any attempt
to resolve this situation�

��� Typechecking

An important problem in a practical implementation
is typechecking of recursive modules� Suppose a type�
checker is presented with a recursive module de�nition�

structure rec A � ASIG�A� �
struct ��� body ��� end

In terms of the external language� an appealing type�
checking strategy is to check �rst that the rds 
s�ASIG�s�
is well�formed� and second that the body of the struc�
ture de�nition has signature ASIG�A� under the assump�
tion that A does� However� it is not immediately clear
that this strategy is sound or complete� since the type
theory requires �instead of the second condition above�
that the body have signature 
s�ASIG�s� under the as�
sumption that A does�

We wish to show that these two typechecking strate�
gies are equivalent� The conditions on the recursive vari�
able A are certainly equivalent� using the introductory
and eliminatory rules for rds
s� To show the conditions
on the body to be equivalent� we observe that the signa�
tures ASIG�A� and 
s�ASIG�s� are equal whenever A has
signature 
s�ASIG�s��

Suppose 
s�S�s� is a well�formed rds� and suppose
that the variable s is given that signature� Then �for
some c� � and 
��

S�s� � 	��s�c�Fst s� � ��� 
�Fst s��
� 	��s�c�	����c���� � ��� 
�	����c�����
� 	��s�	����c��� � ��� 
�	����c�����
� 	��s�	����c��� � ��� 
����
� 
s�S�s�

! � c � c�	c��� � � !	� � �� � c� � �

! � c � 	����c� � �
�� �	 Dom�!��

Figure �� Bisimilarity

That S�s� has the form given in the �rst line follows
from the well�formedness of 
s�S�s�� the second line
follows since s
s signature and phase�splitting dictate
that Fst s � 	����c���� the third and fourth lines fol�
low by equational reasoning using recursive constructors
and singleton kinds� and the last follows by the phase�
splitting rule�

Constructor equality With or without this external�
level typechecking strategy� one signi�cant problem for
typechecking remains� the typechecker must be able to
determine whether two constructors are equal� This
problem is made di�cult by singleton kinds and by equi�
recursive constructors� At this time neither problem is
known to be decidable� although algorithms exist for
singleton kinds that work well in practice�

For equi�recursive constructors� Amadio and
Cardelli 	
� give an algorithm for checking equality at
kind type� but this algorithm does not extend to higher
kinds� Some recent work suggests that the problem
may be decidable at higher kinds as well� Solomon 	���
showed in 
��� that type equality with a somewhat
similar notion of recursive type could be reduced
to equivalence of deterministic pushdown automata�
which was recently shown decidable by S$enizergues 	
���
though not by a very practical algorithm�

These two problems remain the main outstanding is�
sues confronting a practical implementation of recursive
modules�

��� Equi� versus Iso�recursive Constructors

Given the di�culty of typechecking in the presence
of equi�recursive constructors� a natural question is
whether the reliance on equi�recursive constructors is es�
sential for supporting recursive modules� �For example�
Duggan and Sourelis
s formalism does not rely on this
form of recursive types�� We conjecture that it is not es�
sential� based on the following observations� Under the
standard type�theoretic interpretation of ML �for exam�
ple� Harper and Mitchell 	
���� the implementation of a
recursive datatype is an iso�recursive type� �We will
write iso�recursive types as 	����c�� If we restrict recur�
sive modules to datatypes �as in Duggan and Sourelis

formalism�� and adopt the �transparent� interpretation
outlined in Section �� then equi�recursive types are com�
pletely eliminable by the translation into the underlying
structure calculus� provided that we adopt Shao�s equa�
tion for iso�recursive types�

	����c��� � 	����c�	����c����

This equation was introduced by Shao 	
�� in his FLINT
formalism in order to support the compilation of Stan�
dard ML� It is also discussed by Crary et al� 	��� who
argue that this equation is already essential for e�cient
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Shao
s equation

! � 	����c� � � �� � 	����c� 	����c����� � ��

	�� contractiveness

!	� � T � � 	����c����� �

! � 	����c����� � 	��T�	����c����� � T
�bisimilarity�

Figure �� Elimination of Equi�Recursive Types

compilation of Standard ML
s opaque datatypes� even
in the absence of recursive modules�

The relevance of Shao
s equation to the elimination
of equi�recursive types is based on the following observa�
tion� After translation into the pure structure calculus�
datatypes in the body of a recursive module de�nition
have implementation types of the form

	��	����c�����

for some constructor c� where � results from recur�
sion via recursive modules and � results from ordi�
nary datatype recursion� By invoking a bisimilarity rule
for equi�recursive types �Figure �� and applying Shao
s
equation� as shown in Figure �� we may prove that this
type is equivalent to the type

	����c�����

which is a purely iso�recursive type�
This observation sheds light on the nature of Duggan

and Sourelis
s restriction on the recursively de�ned type
components of a mixin module to datatypes� which are
implicitly iso�recursive� Strictly speaking� this restric�
tion is not necessary� but if it were to be adopted� it
would� by the observation above� allow the elimination
of equi�recursive types from the internal language of a
type�based compiler for ML�

��� Transparent Signature Ascription

Transparent signature ascription raises signi�cant issues
for the design of an external language with recursive
modules� In Standard ML it is common practice to
write structure declarations in the form

structure S � SIG �
struct type t�int ��� end

where SIG speci�es� but does not de�ne� a type compo�
nent t� The elaborator processes the right�hand side�
extracting the binding of t� and implicitly propagating
it to the signature SIG� In e�ect� the binding is made
opaque� but with an augmented signature containing
additional de�ning equations for types� as follows�

structure S �� SIG where type t�int �
struct type t�int ��� end

It is natural to consider whether transparent ascription
may be extended to recursive module bindings� The
di�culty is that the right�hand side of the binding can
involve references to S itself� As we have seen� the code
on the right cannot be type�checked in the absence of
equations for the type components of the module� One
approach to this problem is to adopt a two�pass elabo�
ration process� In the �rst pass the right�hand side is

processed to extract the type information that is to be
added to the ascribed signature� In the second pass� the
augmented� fully�transparent signature can be used to
elaborate the run�time parts of the right�hand to com�
plete elaboration�

A related question is whether an ascribed signature
may be omitted entirely in the recursive case� Here we
face the di�culty that it is not even apparent what are
the type components of the recursively�de�ned struc�
ture� let alone what are their de�nitions� To recover
this information would seem to require the kind of
pre�elaboration used in the SML�NJ Compilation Man�
ager 	��� whereby the de�ned components of a module
are determined before processing begins�

	 Conclusions

Purely hierarchical module systems� such as the Stan�
dard ML module system� may be criticized on the
grounds that they lack adequate support for cyclic de�
pendencies among components� Several authors �in�
cluding Duggan and Sourelis 	�� �� and Flatt and
Felleisen 	��� have proposed module systems that better
support such cyclic dependencies among units� With
at least two di�erent proposals for recursive modules in
hand� it is natural to ask �what is a recursive module��
We provide an answer to this question in the form of
a type�theoretic analysis of recursive modules based on
the �phase distinction� calculus of higher�order mod�
ules 	���

We propose an extension of the phase distinction cal�
culus with a new form of recursive module and a new
form of signature� called a recursively dependent signa�
ture� Following the paradigm of the phase distinction
interpretation of higher�order modules� we demonstrate
the sensibility of this extension by giving an interpreta�
tion of it into a pure calculus of structures �without ex�
plicit recursive module constructs�� This interpretation
demonstrates that in a precise sense� recursive modules
are already present in the pure structure calculus�

To make these ideas practical more work remains to
be done� It is important to demonstrate that typecheck�
ing is decidable in this framework� The central issue is
decidability of type equality in the presence of singleton
kinds and equi�recursive constructors of higher kind� It
is also important to consider a dynamic semantics for
the extended language and to demonstrate the sound�
ness of the type system for this dynamic semantics�
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