Clausal Proofs
 for Pseudo-Boolean Reasoning

Randal E. Bryant
Carnegie Mellon University

Armin Biere
Albert-Ludwigs University

Marijn J. H. Heule

Carnegie Mellon University

TACAS, 2022

Context: Boolean Satisfiability Solvers

SAT Solvers Useful \& Powerful

- Mathematical proofs
- Formal verification
- Optimization

Context: Boolean Satisfiability Solvers


```
SAT Solvers Useful \& Powerful
- Mathematical proofs
- Formal verification
- Optimization
```

Can We Trust Them?

- No!
- Complex software with lots of optimizations
- KISSAT: 35K LOC

Trustworthy SAT Solvers: Satisfiable Formulas

Trustworthy SAT Solvers: Unsatisfiable Formulas

Checkable Proofs

- Step-by-step proof in standard logical framework
- Independently validated by proof checker

Impact of Proof Checking

Adoption

- Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Impact of Proof Checking

Adoption

- Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
- Conflict-Driven Clause Learning (CDCL)
- Search for solution, but learn conflicts
- Other powerful solution methods have languished.

Impact of Proof Checking

Adoption

- Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
- Conflict-Driven Clause Learning (CDCL)
- Search for solution, but learn conflicts
- Other powerful solution methods have languished.

Our Contribution

- Enable proof generation for algorithms based on pseudo-Boolean reasoning

Clausal Proofs

Conjunctive Normal Form (CNF) Input Formula

$$
C_{1}, C_{2}, \ldots, C_{m}
$$

Unsatisfiability Proof

$$
C_{1}, C_{2}, \ldots, C_{m}, C_{m+1}, \ldots, C_{t}
$$

- For all $i>m$:

If C_{1}, \ldots, C_{i-1} has a satisfying assignment, then so does $C_{1}, \ldots, C_{i-1}, C_{i}$.

- $C_{t}=\emptyset$
- Unsatisfiable

Clausal Proof Frameworks

Resolution (Robinson, 1965)

- Proof rule guarantees implication redundancy:

$$
\bigwedge_{1 \leq j<i} C_{j} \rightarrow C_{i}
$$

Clausal Proof Frameworks

Resolution (Robinson, 1965)

- Proof rule guarantees implication redundancy:

$$
\bigwedge_{1 \leq j<i} C_{j} \rightarrow C_{i}
$$

Extended Resolution (Tseitin, 1967)

- Allow extension variables
- Variable e shorthand for some formula F over input and previous extension variables
- Add clauses encoding $e \leftrightarrow F$ to proof
- Can make proofs exponentially more compact

Clausal Proof Frameworks

Resolution (Robinson, 1965)

- Proof rule guarantees implication redundancy:

$$
\bigwedge_{1 \leq j<i} C_{j} \rightarrow C_{i}
$$

Extended Resolution (Tseitin, 1967)

- Allow extension variables
- Variable e shorthand for some formula F over input and previous extension variables
- Add clauses encoding $e \leftrightarrow F$ to proof
- Can make proofs exponentially more compact

Deletion Resolution Asymmetric Tautology (DRAT)

- Superset of extended resolution
- Variety of efficient checkers, including formally verified ones

Proof-Generating Solvers Based on BDDs

Implementations

- EBDDRES: Sinz, Biere, Jussila, 2006
- PGBDD: Bryant, Heule, 2021

Proof-Generating Solvers Based on BDDs

Implementations

- EBDDRES: Sinz, Biere, Jussila, 2006
- PGBDD: Bryant, Heule, 2021

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Generate proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

Proof-Generating Solvers Based on BDDs

Implementations

- EBDDRES: Sinz, Biere, Jussila, 2006
- PGBDD: Bryant, Heule, 2021

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Generate proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

Capabilities

- Can handle some problems that are intractable for CDCL
- Often requires careful guidance from user
- Often very sensitive to variable ordering

Proof-Generating Solvers Based on BDDs

Generate Sequence of Terms

$$
T_{1}, T_{2}, \ldots, T_{m}, T_{m+1}, \ldots, T_{p}
$$

- Each term T_{i} is Boolean function represented by BDD
- For $1 \leq i \leq m, T_{i}$ is BDD representation of clause C_{i}
- For $i>m$, term T_{i} generated as conjunction or existential quantification of earlier terms:

$$
\bigwedge_{1 \leq j<i} T_{j} \rightarrow T_{i}
$$

- Final term $T_{p}=\perp$.

Proof Structure

- Prove that initial terms represent clauses
- Prove that implication holds for each successive term.

Pseudo-Boolean (PB) Formulas

- Integer Equations

$$
\sum_{1 \leq i \leq n} a_{i} x_{i}=b
$$

- a_{i}, b integer constants
- x_{i} 0-1 valued variables
- Ordering Constraints

$$
\sum_{1 \leq i \leq n} a_{i} x_{i} \geq b
$$

- Modular Equations

$$
\sum_{1 \leq i \leq n} a_{i} x_{i} \equiv b \quad(\bmod r)
$$

- r constant modulus
- Parity constraints: $r=2$

Incorporating Pseudo-Boolean Reasoning into SAT Solver

- Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

- Detect CNF encodings of XOR/XNOR
- Apply Gaussian elimination over GF2
- E.g., Lingeling, CryptoMiniSAT
- Useful for both SAT and UNSAT problems

Incorporating Pseudo-Boolean Reasoning into SAT Solver

- Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

- Detect CNF encodings of XOR/XNOR
- Apply Gaussian elimination over GF2
- E.g., Lingeling, CryptoMiniSAT
- Useful for both SAT and UNSAT problems

Constraint Reasoning

- Detect standard encodings of ordering constraints
- Apply Fourier-Motzin elimination over integers
- E.g., Lingeling
- Only useful for UNSAT problems

Incorporating Pseudo-Boolean Reasoning into SAT Solver

- Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

- Detect CNF encodings of XOR/XNOR
- Apply Gaussian elimination over GF2
- E.g., Lingeling, CryptoMiniSAT
- Useful for both SAT and UNSAT problems

Constraint Reasoning

- Detect standard encodings of ordering constraints
- Apply Fourier-Motzin elimination over integers
- E.g., Lingeling
- Only useful for UNSAT problems

Proof Generation

- No previous solver could generate clausal proof
- Revert to CDCL when proof generation required

Representing Pseudo-Boolean Equations with BDDs

- Example equation:

$$
\begin{aligned}
& +x_{1}+x_{3}+x_{5}+x_{7}+x_{9} \\
& -x_{2}-x_{4}-x_{6}-x_{8}-x_{10}
\end{aligned}=0
$$

- BDD size $\leq a_{\max } \cdot n^{2}$

$$
a_{\max }=\max _{1 \leq i \leq n}\left|a_{i}\right|
$$

- Independent of variable ordering

Representing Ordering Constraints with BDDs

- Example constraint:

$$
\begin{aligned}
& +x_{1}+x_{3}+x_{5}+x_{7}+x_{9} \\
& -x_{2}-x_{4}-x_{6}-x_{8}-x_{10}
\end{aligned} \geq 0
$$

- BDD size $\leq a_{\max } \cdot n^{2}$

$$
a_{\max }=\max _{1 \leq i \leq n}\left|a_{i}\right|
$$

- Independent of variable ordering

Representing Modular Equations with BDDs

- Example equation:

$$
\begin{aligned}
& +x_{1}+x_{3}+x_{5}+x_{7}+x_{9} \\
& -x_{2}-x_{4}-x_{6}-x_{8}-x_{10}
\end{aligned} \quad \equiv 0 \quad(\bmod 3)
$$

- BDD size $\leq n \cdot r$
- Independent of variable ordering

Integrating Pseudo-Boolean Reasoning into Proof-Generating SAT Solver

- Overall flow same as SAT solver
- PB solver does all of the reasoning
- BDDs serve only as mechanism for generating clausal proof

PGPBS (Proof-Generating Pseudo-Boolean Solver)

Implementation

- Augmented version of earlier solver PGBDD
- https://github.com/rebryant/pgpbs-artifact

Constraint Extraction

- CNF file input
- Detects PB constraints:
- Equations: XOR/XNOR, Exactly-one
- Ordering constraints: At-most-one, At-least-one
- Including ones using auxilliary variables
- Heuristic methods
- Generates schedule
- How clauses grouped into constraints
- Existentially quantify auxilliary variables

Integer Gaussian Elimination

System of Equations $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$

$$
\mathbf{e}_{i}: \quad \sum_{j=1, n} a_{i, j} x_{j}=b_{i}
$$

Elimination Step

1. Choose pivot equation \mathbf{e}_{s} and variable x_{t} such that $a_{s, t} \neq 0$
2. For each $i \neq s$:

$$
\mathbf{e}_{i} \leftarrow\left\{\begin{array}{lr}
\mathbf{e}_{i} & a_{i, t}=0 \\
-a_{i, t} \cdot \mathbf{e}_{s}+a_{s, t} \cdot \mathbf{e}_{i}, & a_{i, t} \neq 0
\end{array}\right.
$$

- Guarantees $a_{i, t}=0$ for all $i \neq s$
- Only requires addition and multiplication

3. Remove $\mathbf{e}_{\boldsymbol{s}}$ from E and repeat until single equation left

Gaussian Elimination Results

Possible Outcomes

1. If encounter degenerate equation

- Of form $0=b$ for $b \neq 0$.
- Has no solution
- Occurs for problems we consider

2. Otherwise, if modular equation with $r=2$

- Can perform back substitution to find solution

3. Otherwise

- Generated solution may not be 0-1 valued

Gaussian Elimination Results

Possible Outcomes

1. If encounter degenerate equation

- Of form $0=b$ for $b \neq 0$.
- Has no solution
- Occurs for problems we consider

2. Otherwise, if modular equation with $r=2$

- Can perform back substitution to find solution

3. Otherwise

- Generated solution may not be 0-1 valued

Validating Each Step:

- Given BDDs representing term functions $T_{i_{1}}$ and $T_{i_{2}}$
- Validate $T_{i_{1}} \wedge T_{i_{2}} \rightarrow T_{i_{1}}+T_{i_{2}}$
- Use proof-generating BDD operations

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Mutilated Chessboard Problem

Definition

- $N \times N$ chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Solutions

- None
- More white squares than black
- Each tile covers one white and one black square

Proof

- All resolution proofs of exponential size

Encoding as SAT Problem

Boolean variable for each possible domino placement

Constraints

- For each square, exactly one of its covering placements $=1$

Chess Proof Complexity: KISSAT

Mutilated Chessboard Clauses

- Requires 12.6 hours for $N=22$.
- Express complexity as number of clauses in generated proof

Chess Proof Complexity: Column Scanning (TACAS '21)

Mutilated Chessboard Clauses

- Careful ordering of conjunction and quantification operations
- Scan columns, representing partial solutions with $O\left(N^{2}\right)$ nodes

Chess Proof: BDD Variable Ordering Sensitivity

Mutilated Chessboard Clauses

- Column scanning highly dependent on variable ordering
- Also requires careful user guidance

Pseudo-Boolean Solving of Mutilated Chessboard

- For every square i, j :

$$
x_{E(i, j)}+x_{S(i, j)}+x_{W(i, j)}+x_{N(i, j)}=1
$$

Pseudo-Boolean Solving of Mutilated Chessboard

- For every square i, j :

$$
x_{E(i, j)}+x_{S(i, j)}+x_{W(i, j)}+x_{N(i, j)}=1
$$

- Sum equations for white squares:

$$
\sum_{x \in X} x=N^{2} / 2
$$

- Sum equations for black squares:

$$
\sum_{x \in X} x=N^{2} / 2-2
$$

- Difference:

$$
0=2
$$

Chess Proof Complexity: Integer Equations

Mutilated Chessboard Clauses

- Integer equations less efficient than column scanning
- But, insensitive to variable ordering; no user guidance required

Modulus Autodetection

- Apply Gaussian elimination to system of integer equations
- Only requires multiplication and addition
- Encounter equation $0=b$
- Observation:
- If performed arithmetic modulo r, would get equation

$$
0 \equiv b \quad(\bmod r)
$$

Modulus Autodetection

- Apply Gaussian elimination to system of integer equations
- Only requires multiplication and addition
- Encounter equation $0=b$
- Observation:
- If performed arithmetic modulo r, would get equation

$$
0 \equiv b \quad(\bmod r)
$$

- Generate proof when solving as system of modular equations
- Choose least r such that $b \not \equiv 0(\bmod r)$.
- More efficient, since BDDs smaller
- Totally automated

Chess Proof Complexity: Modular Equations

Mutilated Chessboard Clauses

- Modular equations outperform column scanning
- Insensitive to variable ordering; no user guidance required

Urquhart Parity Benchmark (Li's Version)

- Set of XOR constraints defined over graph with $2 m^{2}$ nodes.
- KISSAT cannot solve even minimal instance ($m=3$)
- Trivial with Gaussian elimination

Urquhart Clauses

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Summary

Role of BDDs in SAT

- As primary reasoning method
- Handle problems intractable for CDCL
- Difficult to achieve full automation
- To enable proof generation for other reasoning methods
- BDD algorithms expressed as extended-resolution proofs
- Fully automated
- Insensitive to variable ordering

Summary

Role of BDDs in SAT

- As primary reasoning method
- Handle problems intractable for CDCL
- Difficult to achieve full automation
- To enable proof generation for other reasoning methods
- BDD algorithms expressed as extended-resolution proofs
- Fully automated
- Insensitive to variable ordering

Future Work: Combine Multiple Approaches

- CDCL, BDDs, pseudo-Boolean reasoning, ...
- Build on unique strengths of each
- Must be able to generate clausal proof

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Hard		Can we get here? O
	Math proofs NP-hard probs	
Mathematical Tractability		
Easy		Pigeonhole - Mut. Chess 0 Parity Equations
	Easy CDCL Tr	Hard

