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SAT Solvers Useful & Powerful

I Mathematical proofs

I Formal verification
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Can We Trust Them?

I No!

I Complex software with
lots of optimizations

I KISSAT: 35K LOC
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Trustworthy SAT Solvers: Satisfiable Formulas
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Trustworthy SAT Solvers: Unsatisfiable Formulas
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Checkable Proofs

I Step-by-step proof in standard logical framework

I Independently validated by proof checker
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Impact of Proof Checking

Adoption

I Required for SAT
competition entrants
since 2016

Benefits

I Can clearly judge
competition
submissions

I Developers have
improved quality of
their solvers

I Firm foundation for use
in mathematical proofs
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Unintended Consequences
I Narrowed focus to single

SAT algorithm
I Conflict-Driven Clause

Learning (CDCL)
I Search for solution, but

learn conflicts

I Other powerful solution
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I Firm foundation for use
in mathematical proofs

Unintended Consequences
I Narrowed focus to single

SAT algorithm
I Conflict-Driven Clause

Learning (CDCL)
I Search for solution, but

learn conflicts

I Other powerful solution
methods have languished.

Our Contribution

I Enable proof generation for
algorithms based on
pseudo-Boolean reasoning
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Clausal Proofs

Conjunctive Normal Form (CNF) Input Formula

C1,C2, . . . ,Cm,Cm+1, . . . ,Ct

Unsatisfiability Proof

C1,C2, . . . ,Cm,Cm+1, . . . ,Ct

I For all i > m:

If C1, . . . ,Ci−1 has a satisfying assignment,
then so does C1, . . . ,Ci−1,Ci .

I Ct = ∅
I Unsatisfiable
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Clausal Proof Frameworks

Resolution (Robinson, 1965)

I Proof rule guarantees implication redundancy:∧
1≤j<i

Cj → Ci
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previous extension variables
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Clausal Proof Frameworks

Resolution (Robinson, 1965)

I Proof rule guarantees implication redundancy:∧
1≤j<i

Cj → Ci

Extended Resolution (Tseitin, 1967)

I Allow extension variables
I Variable e shorthand for some formula F over input and

previous extension variables
I Add clauses encoding e ↔ F to proof

I Can make proofs exponentially more compact

Deletion Resolution Asymmetric Tautology (DRAT)

I Superset of extended resolution

I Variety of efficient checkers, including formally verified ones
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Proof-Generating Solvers Based on BDDs

Implementations

I EBDDRES: Sinz, Biere, Jussila, 2006

I PGBDD: Bryant, Heule, 2021
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Extended-Resolution Proof Generation

I Introduce extension variable for each BDD node

I Generate proof steps based on recursive structure of BDD
algorithms
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Proof-Generating Solvers Based on BDDs

Implementations

I EBDDRES: Sinz, Biere, Jussila, 2006

I PGBDD: Bryant, Heule, 2021

Extended-Resolution Proof Generation

I Introduce extension variable for each BDD node

I Generate proof steps based on recursive structure of BDD
algorithms

I Proof is (very) detailed justification of each BDD operation

Capabilities

I Can handle some problems that are intractable for CDCL

I Often requires careful guidance from user

I Often very sensitive to variable ordering
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Proof-Generating Solvers Based on BDDs

Generate Sequence of Terms

T1,T2, . . . ,Tm,Tm+1, . . . ,Tp

I Each term Ti is Boolean function represented by BDD

I For 1 ≤ i ≤ m, Ti is BDD representation of clause Ci

I For i > m, term Ti generated as conjunction or existential
quantification of earlier terms:∧

1≤j<i

Tj → Ti

I Final term Tp = ⊥.

Proof Structure

I Prove that initial terms represent clauses

I Prove that implication holds for each successive term.

http://www.cs.cmu.edu/~bryant 9 / 31

http://www.cs.cmu.edu/~bryant


Pseudo-Boolean (PB) Formulas

I Integer Equations ∑
1≤i≤n

ai xi = b (mod r)

I ai , b integer constants
I xi 0-1 valued variables

I Ordering Constraints∑
1≤i≤n

ai xi ≥ b (mod r)

I Modular Equations∑
1≤i≤n

ai xi ≡ b (mod r)

I r constant modulus
I Parity constraints: r = 2
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Incorporating Pseudo-Boolean Reasoning into SAT Solver

I Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

I Detect CNF encodings of XOR/XNOR

I Apply Gaussian elimination over GF2

I E.g., Lingeling, CryptoMiniSAT

I Useful for both SAT and UNSAT problems
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Incorporating Pseudo-Boolean Reasoning into SAT Solver

I Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning
I Detect CNF encodings of XOR/XNOR
I Apply Gaussian elimination over GF2
I E.g., Lingeling, CryptoMiniSAT
I Useful for both SAT and UNSAT problems

Constraint Reasoning
I Detect standard encodings of ordering constraints
I Apply Fourier-Motzin elimination over integers
I E.g., Lingeling
I Only useful for UNSAT problems

Proof Generation
I No previous solver could generate clausal proof
I Revert to CDCL when proof generation required
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Representing Pseudo-Boolean Equations with BDDs

>

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

I Example equation:

+x1 + x3 + x5 + x7 + x9
−x2 − x4 − x6 − x8 − x10

= 0

I BDD size ≤ amax · n2

amax = max
1≤i≤n

|ai |

I Independent of variable
ordering
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Representing Ordering Constraints with BDDs

>

I Example constraint:

+x1 + x3 + x5 + x7 + x9
−x2 − x4 − x6 − x8 − x10

≥ 0

I BDD size ≤ amax · n2

amax = max
1≤i≤n

|ai |

I Independent of variable
ordering
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Representing Modular Equations with BDDs

>

I Example equation:

+x1 + x3 + x5 + x7 + x9
−x2 − x4 − x6 − x8 − x10

≡ 0 (mod 3)

I BDD size ≤ n · r
I Independent of variable ordering
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Integrating Pseudo-Boolean Reasoning into
Proof-Generating SAT Solver

Boolean
Formula

(CNF)

PB Formula

Steps

UNSAT
Proof
(DRAT)

PB
Extractor

PB
Solver

PB Step

Validation

Boolean-PB
Validation

BDD-Based
Proof Generator

I Overall flow same as SAT solver

I PB solver does all of the reasoning

I BDDs serve only as mechanism for generating clausal proof
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PGPBS (Proof-Generating Pseudo-Boolean Solver)

Implementation

I Augmented version of earlier solver PGBDD

I https://github.com/rebryant/pgpbs-artifact

Constraint Extraction

I CNF file input
I Detects PB constraints:

I Equations: XOR/XNOR, Exactly-one
I Ordering constraints: At-most-one, At-least-one

I Including ones using auxilliary variables

I Heuristic methods
I Generates schedule

I How clauses grouped into constraints
I Existentially quantify auxilliary variables
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Integer Gaussian Elimination

System of Equations E = {e1, e2, . . . , em}

ei :
∑
j=1,n

ai ,j xj = bi

Elimination Step

1. Choose pivot equation es and variable xt such that as,t 6= 0

2. For each i 6= s:

ei ←
{

ei ai ,t = 0
−ai ,t · es + as,t · ei , ai ,t 6= 0

I Guarantees ai,t = 0 for all i 6= s
I Only requires addition and multiplication

3. Remove es from E and repeat until single equation left
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Gaussian Elimination Results

Possible Outcomes

1. If encounter degenerate equation
I Of form 0 = b for b 6= 0.
I Has no solution
I Occurs for problems we consider

2. Otherwise, if modular equation with r = 2
I Can perform back substitution to find solution

3. Otherwise
I Generated solution may not be 0-1 valued
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Gaussian Elimination Results

Possible Outcomes

1. If encounter degenerate equation
I Of form 0 = b for b 6= 0.
I Has no solution
I Occurs for problems we consider

2. Otherwise, if modular equation with r = 2
I Can perform back substitution to find solution

3. Otherwise
I Generated solution may not be 0-1 valued

Validating Each Step:

I Given BDDs representing term functions Ti1 and Ti2

I Validate Ti1 ∧ Ti2 → Ti1 + Ti2

I Use proof-generating BDD operations
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Mutilated Chessboard Problem
Definition

I N × N chessboard with 2
corners removed

I Cover with tiles, each
covering two squares

Solutions

I None

I More white squares than black

I Each tile covers one white
and one black square

Proof

I All resolution proofs of
exponential size
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Encoding as SAT Problem

Boolean variable for each possible domino placement

Constraints

I For each square, exactly one of its covering placements = 1
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Chess Proof Complexity: KISSAT

4 8 16 32 64 128
103

104

105

106

107

108

Mutilated Chessboard Clauses

KISSAT

I Requires 12.6 hours for N = 22.

I Express complexity as number of clauses in generated proof
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Chess Proof Complexity: Column Scanning (TACAS ’21)

4 8 16 32 64 128
103

104

105

106

107

108

Mutilated Chessboard Clauses

KISSAT
PGBDD, Column Scan

I Careful ordering of conjunction and quantification operations

I Scan columns, representing partial solutions with O(N2) nodes
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Chess Proof: BDD Variable Ordering Sensitivity

4 8 16 32 64 128
103

104

105

106

107

108

Mutilated Chessboard Clauses

KISSAT
PGBDD, Column Scan, Input Order
PGBDD, Column Scan, Random Order

I Column scanning highly dependent on variable ordering

I Also requires careful user guidance
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Pseudo-Boolean Solving of Mutilated Chessboard

I For every square i , j :

xE(i ,j) + xS(i ,j) + xW (i ,j) + xN(i ,j) = 1

http://www.cs.cmu.edu/~bryant 24 / 31

http://www.cs.cmu.edu/~bryant


Pseudo-Boolean Solving of Mutilated Chessboard

I For every square i , j :

xE(i ,j) + xS(i ,j) + xW (i ,j) + xN(i ,j) = 1

I Sum equations for white squares:∑
x∈X

x = N2/2−2

I Sum equations for black squares:∑
x∈X

x = N2/2− 2

I Difference:

0 = 2
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Chess Proof Complexity: Integer Equations

4 8 16 32 64 128
103

104

105

106

107

108

Mutilated Chessboard Clauses

KISSAT
PGBDD, Column Scan
PGPBS, Integer Equations

I Integer equations less efficient than column scanning

I But, insensitive to variable ordering; no user guidance required
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Modulus Autodetection

I Apply Gaussian elimination to system of integer equations
I Only requires multiplication and addition

I Encounter equation 0 = b

I Observation:
I If performed arithmetic modulo r , would get equation

0 ≡ b (mod r)
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Modulus Autodetection

I Apply Gaussian elimination to system of integer equations
I Only requires multiplication and addition

I Encounter equation 0 = b

I Observation:
I If performed arithmetic modulo r , would get equation

0 ≡ b (mod r)

I Generate proof when solving as system of modular equations
I Choose least r such that b 6≡ 0 (mod r).
I More efficient, since BDDs smaller
I Totally automated
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Chess Proof Complexity: Modular Equations

4 8 16 32 64 128
103

104

105

106

107

108

Mutilated Chessboard Clauses

KISSAT
PGBDD, Column Scan
PGPBS, Integer Equations
PGPBS, Mod-3 Equations

I Modular equations outperform column scanning

I Insensitive to variable ordering; no user guidance required
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Urquhart Parity Benchmark (Li’s Version)

I Set of XOR constraints defined over graph with 2m2 nodes.
I KISSAT cannot solve even minimal instance (m = 3)
I Trivial with Gaussian elimination

2 4 8 16 32 64
104

105

106

107

108

m

Urquhart Clauses

PGBDD, Bucket Elimination

PGPBS, Mod-2 Equations
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A Perspective on the State of SAT Solving
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Summary

Role of BDDs in SAT
I As primary reasoning method

I Handle problems intractable for CDCL
I Difficult to achieve full automation

I To enable proof generation for other reasoning methods
I BDD algorithms expressed as extended-resolution proofs
I Fully automated
I Insensitive to variable ordering

http://www.cs.cmu.edu/~bryant 30 / 31

http://www.cs.cmu.edu/~bryant


Summary

Role of BDDs in SAT
I As primary reasoning method

I Handle problems intractable for CDCL
I Difficult to achieve full automation

I To enable proof generation for other reasoning methods
I BDD algorithms expressed as extended-resolution proofs
I Fully automated
I Insensitive to variable ordering

Future Work: Combine Multiple Approaches

I CDCL, BDDs, pseudo-Boolean reasoning, . . .

I Build on unique strengths of each

I Must be able to generate clausal proof
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A Perspective on the State of SAT Solving

Hard

Easy
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Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

Pigeonhole
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Can we get here?
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