
Single-Source Shortest Paths Algorithms

Single-Source Shortest Paths Algorithms

John McDonough

Language Technologies Institute,
Machine Learning for Signal Processing Group,

Carnegie Mellon University

March 28, 2012

Single-Source Shortest Paths Algorithms

Introduction

In this lecture, we discuss algorithms for determing the
shortest path through a weighted graph.
We will learn that the algorithms for solving such problems
are somewhat more complex than the BFS and DFS
discussed in prior lectures.
Such problems are still tractable, however, and, for a graph
G = (V ,E), can be solved in O(V + E) time, provided
there are no negative weights.
An important technique for solving such problems is that of
relaxation.
Coverage: Cormen, Leiserson, and Rivest (1990),
Chapter 24.

Single-Source Shortest Paths Algorithms

Definition: Shortest Path

Consider a weighted, directed graph G = (V ,E) with a set of
nodes or vertices V , and a set of edges E .

There is also a weight function w : E → R mapping edges to
real-valued weights.

The weight of a path p = 〈v0, v1, . . . , vk 〉 is the sum of the
weights of the constituent edges:

w(p) =
k∑

i=1

w(vi−1, vi).

The shortest-path weight from u to v is defined as

δ(u, v) ,

{
min{w(p) : u

p
 v}, if there is a path from u to v ,

∞, otherwise.

The shortest-path from vertex u to vertex v is then
defined as any path with weight w(p) = δ(u, v).

Single-Source Shortest Paths Algorithms

Optimal Substructure of a Shortest Path

Algorithms for determining the shortest path through a
graph typically exploit the fact that a given shortest path
must contain other shortest paths within it.
This optimality is characterized more precisely in the
following lemma.

Lemma: (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph G = (V ,E) with weight
function w : E → R, let p = 〈v1, v2, . . . , vk 〉 be a shortest path
from vertex v1 to vertex vk , and for any i and j such that
1 ≤ i ≤ j ≤ k , let pij = 〈vi , vi+1, . . . , vj〉 be the subpath of p from
vertex vi to vertex vj . Then, pij is a shortest path from vi to vj .

Single-Source Shortest Paths Algorithms

Proof of Optimal Substructure of a Shortest Path

Decompose path p as v1
p1i vi

pij
 vj

pjk
 vk , such that

w(p) = w(p1i) + w(pij) + w(pjk).
Now assume that there exists a path p′ij from vi to vj with
weight w(p′ij) < w(pij).

Then v1
p1i vi

p′ij
 vj

pjk
 vk is a path from v1 to vk whose

weight w(p) = w(p1i) + w(p′ij) + w(pjk) is less than w(p).
This contradicts the assumption that p is the shortest path
from v1 to vk .

Single-Source Shortest Paths Algorithms

Cycles

The graphs described in this lecture have real-valued
weights on their edges.
The shortest path between v0 and vk in a graph with only
positive weights cannot contain any cycles.
Let p = 〈v0, v2, . . . , vk 〉 denote the shortest path between
v0 and vk .
Let c = 〈vi , vi+1, . . . , vj〉 denote a cycle with positive
weights such that vi = vj and w(c) > 0.
This implies the path p′ = 〈v0, v2, . . . , vi , vj+1, . . . , vk 〉 has
weight w(p′) = w(p)− w(c) < w(p), which contradicts the
assumption that p is the shortest path from v0 to vk .

Single-Source Shortest Paths Algorithms

Representing Shortest Paths

The representation for shortest paths is similar to that previously
used for BFS trees.

For a graph G = (V ,E), we store for each vertex v ∈ V a
predecessor π[v] which is either another vertex or NULL.

Given a vertex for which π[v] 6= NULL, the procedure
Print-Path(G, s, v) can be used to print the shortest path
from s to v .

Question: Is the path correctly printed?

00 def Print-Path(G, s, v):
01 print(v)
02 pred = π[v]
03 while not pred == NULL:
04 print(pred)
05 pred = π[pred]

Single-Source Shortest Paths Algorithms

Object of a Shortest Path Algorithm

Upon termination, a shortest path algorithm will have set
the predecessor π[v] for each v ∈ V such that it points
towards the prior vertex on the shortest path from s to v .
Note that π[v] will not necessarily point to the predecessor
of v on the shortest path from s to v while the algorithm is
still running.
Let us define the predecessor subgraph Gπ(Vπ,Eπ) as that
graph induced by the back pointers π of each vertex.
Let us define the set Vπ , {v ∈ V : π[v] 6= NULL} ∪ {s}.
The directed edge set Eπ is the set of edges induced by
the π values for vertices in Vπ:

Eπ = {(π[v], v) ∈ E : v ∈ V − {s}}.

Single-Source Shortest Paths Algorithms

Shortest-Paths Tree

A shortest-paths tree rooted at s is a directed subgraph
G′ = (V ′,E ′), where V ′ ⊆ V and E ′ ⊆ E such that

V ′ is the set of vertices reachable from s ∈ G,
G′ forms a rooted tree with root s, and
for all v ∈ V , the unique simple path from s to v in G′ is a
shortest path from s to v in G.

Single-Source Shortest Paths Algorithms

Initialization

During the execution of a shortest-paths algorithm, we
maintain for each v ∈ V an attribute d [v] which is the
current estimate of the shortest path distance.
The attributes π[v] and d [v] are initialized as in the
algorithm shown below.
After initialization, π[v] =NUL for all v ∈ V , d [s] = 0 and
d [v] =∞ for v ∈ V − {s}.

00 def Initialize-Single-Source(G, s):
01 for v ∈ G:
02 d [v] ← ∞
03 π[v] ← NULL
04 d [s] ← 0

Single-Source Shortest Paths Algorithms

Relaxation

The process of relaxing an edge u → v means testing
whether the distance from s to v can be reduced by
traveling over u.
This process is illustrated in the pseudocode given below.
The relaxation procedure may decrease the value of the
shortest path estimate d [v] and update π[v].
The estimate d [v] can never increase during relaxation,
only remain the same or decrease.

00 def Relax(u, v , w):
01 if d [v] > d [u] + w(u, v):
02 d [v] ← d [u] + w(u, v)
03 π[v] ← u

Single-Source Shortest Paths Algorithms

Properties of Shortest Paths and Relaxation

1 Triangle inequality: For any edge u → v ∈ E , we have
δ(s, v) ≤ δ(s,u) + w(u, v).

2 Upper bound property: It holds that d [v] ≥ δ(s, v) for all v ∈ V ,
and once d [v] = δ(s, v), the value of d [v] is never again altered.

3 No-path property: If there is no path from s to v , then we
always have d [v] = δ(s, v) =∞.

4 Convergence property: If s u → v is the shortest path in G
for some u, v ∈ V , and if d [u] = δ(s,u) at any time prior to
relaxing u → v , then d [v] = δ(s, v) at all times afterward.

5 Path relaxation propery: If p = 〈v0, v1, . . . , vk 〉 is the shortest
path from s = v0 to vk , and the edges of p are relaxed in the
order v0 → v1, v1 → v2, . . . , vk−1 → vk 〉, then d [vk] = δ(s, vk).

6 Predecessor-subgraph property: Once d [v] = δ(s, v) for all
v ∈ V , the predecessor subgraph is a shortest-paths
tree rooted at s.

Single-Source Shortest Paths Algorithms

Single-Source Shortest Paths in dags

1 Shortest distances are always well defined in dags
(directed acylic graphs), as no negative weight cycles can
exist even if there are negative weights on some edges.

2 For a dag G = (V ,E), the shortest paths to all nodes can
be found in O(V + E) time.

3 First the vertices must be topologically sorted.
4 Thereafter the edges from each node can be relaxed,

where the vertices are taken in topological order.

00 def DAG-Shortest-Paths(G, w , s):
01 sorted = Topo-Sort(G)
02 Initiliaze-Single-Source(G, s)
03 for u in sorted:
04 for v in Adj[u]:
05 Relax(u, v , w)

Single-Source Shortest Paths Algorithms

Run Time Analysis

The topological sort of G can be performed in O(V + E)
time.
Thereafter, every vertex must be iterated over in the for
loop of Line 03.
The edges in the adjacency list of each vertex v are
examined exactly once.
Hence, the total time spent on the inner for loop of
Lines 04-05 is O(V + E).

Single-Source Shortest Paths Algorithms

Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single-source shortest paths
algorithm on a weighted, directed graph G = (V ,E),
provided that w(u, v) ≥ 0 for each edge u → v ∈ E .
The set S contains vertices whose shortest path distances
have already been determined, and Q is a priority queue.
The algorithm repeatedly selects the vertex u ∈ V − S with
the minimum shortest path estimate, whose edges are
then relaxed.

Single-Source Shortest Paths Algorithms

Pseudocode for Dijkstra’s Algorithm

00 def Dijkstra(G, w , s):
01 Initialize-Single-Source(G, s)
02 S ← ∅
03 Q ← V [G]
04 while Q 6= ∅:
05 u ← Extract-Min(Q)
06 S ← S ∪ {u}
07 for v ∈ Adj[u]:
08 Relax(u, v , w)

Single-Source Shortest Paths Algorithms

Correctness of Dijkstra’s Algorithm

Theorem (correctness of Dijkstra’s algorithm): Dijkstra’s
algorithm, when run on a weighted, directed graph G = (V ,E)
with a non-negative weight function w : e ∈ E → R and source
s, terminates with d [u] = δ(s,u) for all v ∈ V .
Proof: We use the following loop invariant:
At the start of each iteration of the while loop of Lines 04–08,
d [v] = δ(s, v) for each vertex s ∈ S.

Single-Source Shortest Paths Algorithms

Proof of Correctness of Dijkstra’s Algorithm

Assume that u ∈ V is the first vertex added to S such that
d [u] 6= δ(s,u).
Let us examine the situation of the while loop when u is
added to S.
Prior to adding u to S, there is a path p connected a vertex
in S, namely S, to a vertex in V − S, namely u.
Let y be the first vertex on this path such that y ∈ V − S,
and let x be the predecessor of y .
The existence of such a y 6= u implies d [u] ≤ d [y], as
otherwise y would have been chosen for insertion into S
ahead of u.

Single-Source Shortest Paths Algorithms

Proof (cont’d.)

As shown in the figure, the path p can be decomposed as
s

p1 x → y
p2 u.

Either subpath p1 or p2 can have no edges.
Firstly, d [y] = δ(s, y) when u is added to S.
This follows from the fact that d [x] = δ(s, x) when u is
added to S.
As the edge x y was relaxed at the time that x was
added to S, the claim follows from the convergence
property.

Single-Source Shortest Paths Algorithms

Proof (cont’d.)

Because y occurs before u on the shortest path from s to
u, and all edges have nonnegative weights, we have
δ(s, y) ≤ δ(s,u) and hence

d [y] = δ(s, y) ≤ δ(s,u) ≤ d [u]. (1)

But both y and u were in V − S when u was chosen for
insertion in S, hence d [u] ≤ d [y].
Hence, both inequalities in (1) are actually equalities, such
that

d [y] = δ(s, y) = δ(s,u) = d [u]. (2)

Therefore, d [u] = δ(s,u), which contradicts our choice of u.
We conclude, d [u] = δ(s,u) when u is inserted in S,
and this equality was maintained at all later times.

Single-Source Shortest Paths Algorithms

Bellmann-Ford Algorithm

The Bellmann-Ford algorithm determines the shortest path from
the source s to each v ∈ V for a graph G = (V ,E) with
real-valued weights, which may be negative.

The algorithm assigns each vertex v ∈ V its correct shortest
path weight, provided there are no cycles with negative weights.

The algorithm then returns true iff there are no negative weight
cycles.

00 def Bellmann-Ford(G, w , s):
01 for i ← 1 to |V [G]| − 1:
02 for u → v ∈ E [G]:
03 Relax(u, v , w)
04 for u → v ∈ E [G]:
05 if d [v] > d [u] + w(u, v):
06 return False
07 return True

Single-Source Shortest Paths Algorithms

Correctness of the Bellmann-Ford Algorithm

Lemma (correctness of the Bellmann-Ford algorithm): Let
G = (V ,E) be a weighted, directed graph with a source s and
weight function w : E → R, and assume that G contains no
cycles with negative weights that are reachable from s. Then,
after the |V | − 1 iterations of the for loop in Lines 01–03, it
must hold that d [v] = δ(s, v) for all vertices v ∈ V that are
reachable from s.

Single-Source Shortest Paths Algorithms

Proof of Correctness of Bellmann-Ford Algorithm

Consider any vertex v that is reachable from s, and let
p = 〈v0, v1, . . . , vk 〉, where v0 = s, and vk = v , be an
acyclic shortest path from s to v .
Path p has at most |V | − 1 edges.
Each of the iterations of the for loop in Lines 01–03
relaxes all edges e ∈ E .
Among the edges relaxed in the i-th iteration for all
i = 1,2, . . . , k is vi−1 → vi .
Therefore, by the path-relaxation property it follows

d [v] = d [vk] = δ(s, vk) = δ(s, v).

Single-Source Shortest Paths Algorithms

Corollary

Corollary: Let G = (V ,E) be a weighted, directed graph with
source vertex s and weight function w : E → R. Then for each
vertex v ∈ V , there is a path from s to v iff Bellmann-Ford
terminates with d [v] <∞ when it is run on G.

Single-Source Shortest Paths Algorithms

Examples of Semirings: Tropical Semiring

In ASR we typically use one of two semirings, depending
on the operation.
The tropical semiring (R+,min,+,0,1), where R+ denotes
the set of non-negative real numbers, is useful for finding
the shortest path through a search graph.
The set R+ is used in the tropical semiring because the
hypothesis scores represent negative log-likelihoods.
The two operations on weights correspond to the
multiplication of two probabilities, which is equivalent to
addition in the negative log-likelihood domain, and
discarding all but the lowest weight, such as is done by the
Viterbi algorithm.

Single-Source Shortest Paths Algorithms

Examples: Log-Probability Semiring

The log-probability semiring (R+,⊕log,+,0,1) differs from
the tropical semiring only inasmuch as the min operation
has been replaced with the log-add operation ⊕log, which
is defined as

a⊕log b , − log(e−a + e−b).

The log-probability semiring is typically used for the weight
pushing equivalence transformation discussed later.

Single-Source Shortest Paths Algorithms

Examples: String Semiring

In addition to the tropical and log-probability semiring
which clearly operate on real numbers, it is also possible to
define the string semiring wherein the weights are in fact
strings, and the operation ⊕ = ∧ corresponds to taking the
longest common substring, while � = · corresponds to
concatenation of two strings.
Hence, the string semiring can be expressed as
Kstring = (Σ∗ ∪∞,∧, ·,∞, ε).
The string semiring will prove useful for weighted
determinization.

Single-Source Shortest Paths Algorithms

Weighted Finite-State Acceptors

We now define our first automaton, the weighted
finite-state acceptor: A weighted finite-state acceptor
(WFSA) A = (Σ,Q,E , i ,F , λ, ρ) on the semiring
K = (Σ,⊕,⊗, 0̄, 1̄) consists of

an alphabet Σ,
a finite set of states Q,
a finite set of transitions E ⊆ Q × (Σ ∪ {ε})× Σ×Q,
a initial state i ∈ Q with weight λ,
a set of end states F ⊆ Q,
and a function ρ mapping from F to R+.

A transition or edge e = (p[e], l[e],w [e],n[e]) ∈ E consists
of

a previous state p[e],
a next state n[e],
a label l[e] ∈ Σ, and
a weight w [e] ∈ Σ.

A final state n ∈ F may have an associated weight ρ(n).

Single-Source Shortest Paths Algorithms

Diagram of Weighted Finite-State Acceptor

Figure: A simple weighted finite-state acceptor.

A simple WFSA is shown in Figure 1.
This acceptor would assign the input string “red white blue”
a weight of 0.5 + 0.3 + 0.2 + 0.8 = 1.8.

Single-Source Shortest Paths Algorithms

Successful Path

As already explained, speech recognition will be posed as
the problem of finding the shortest path through a WFSA,
where the length of a path will be determined by a
combined AM and LM score.
Hence, we will require a formal definition of a path:
A path π through an acceptor A is a sequence of
transitions e1 · · · eK , such that

n[ek] = p[ek+1] ∀ k = 1, . . . ,K − 1.

A successful path π = e1 · · · eK is a path from the initial
state i to an end state f ∈ F .

Single-Source Shortest Paths Algorithms

Weighted Finite-State Acceptor

A weighted finite-state acceptor is so-named because it accepts
strings from Σ∗, the Kleene closure of the alphabet Σ, and
assigns a weight to each accepted string.

A string s is accepted by A iff there is a successful path π
labeled with s through A.

The label l[π] for an entire path π = e1 · · · eK can be formed
through the concatenation of all labels on the individual
transitions:

l[π] , l[e1] · · · l[eK].

The weight w [π] of a path π can be represented as

w [π] , λ⊗ w [e1]⊗ · · · ⊗ w [eK]⊗ ρ(n[eK]),

where ρ(n[eK]) is the final weight.

Typically, Σ contains ε, which, as stated before, denotes the null
symbol.

Single-Source Shortest Paths Algorithms

Weighted Finite-State Transducers

We now generalize our notion of a WFSA in order to consider
machines that translate one string of symbols into a second
string of symbols from a different alphabet along with a weight.
Weighted finite-state transducer: A WFST
T = (Σ,Ω,Q,E , i ,F , λ, ρ) on the semiring Σ consists

of an input alphabet Σ,
an output alphabet Ω,
a set of states Q,
a set of transitions E ⊆ Q × (Σ ∪ {ε})× (Ω ∪ {ε})× Σ×Q
a initial state i ∈ Q with weight λ,
a set of final states F ⊆ Q,
and a function ρ mapping from F to R+.

Single-Source Shortest Paths Algorithms

Transitions

A transition e = (p[e], li[e], lo[e],w [e],n[e]) ∈ E consists of
a previous state p[e],
a next state n[e],
an input symbol li[e],
an output symbol lo[e], and
a weight w [e].

Single-Source Shortest Paths Algorithms

Weighted Finite-State Transducers (cont’d.)

A WFST, such as that shown in Figure 2 maps an input
string to an output string and a weight.
For example, such a transducer would map the input string
“red white blue” to the output string “yellow blue red” with a
weight of 0.5 + 0.3 + 0.2 + 0.8 = 1.8.
It differs from the WFSA only in that the edges of the WFST
have two labels, an input and an output, rather than one.
A string s is accepted by a WFST T iff there is a
successful path π labeled with li[π] = s.
The weight of this path is w [π], and its output string is

lo[π] , lo[e1] · · · lo[eK].

Any ε–symbols appearing in lo[π] can be ignored.

Single-Source Shortest Paths Algorithms

Diagram of a Weighted Finite-State Transducer

Figure: A simple weighted finite-state transducer.

Single-Source Shortest Paths Algorithms

Weighted Composition

Consider a transducer S which maps an input string u to
an output string v with a weight of w1, and a transducer T
which maps input string v to output string y with weight w2.
The composition

R = S ◦ T

of S and T maps string u directly to y with weight

w = w1 ⊗ w2.

We will adopt the convention that the components of
particular transducer are denoted by subscripts; e.g., QR
denotes the set of states of the transducer R.

Single-Source Shortest Paths Algorithms

Composition without ε-Transitions

In the absence then of ε–transitions, the construction of
such a transducer R is straightforward.
It entails simply pairing the output symbols on the
transitions of a node nS ∈ QS with the input symbols on the
transitions of a node nT ∈ QT , beginning with the initial
nodes iS and iT .
Each nR ∈ QR is uniquely determined by the pair (nS,nT).

Single-Source Shortest Paths Algorithms

Schematic of Weighted Composition

Transducer S Transducer T

Transducer =R S T

Figure: Weighted composition of two simple transducers.

From the figure, it is clear that the transition from State 0 labeled
with a:b/0.5 in S has been paired with the transition from State 0
labeled with b:c/0.2 in T , resulting in the transition labeled
a:c/0.7 in R.

After each successful pairing, the new node nR = (nS,nT) is
placed on a queue to eventually have its adjacency list
expanded.

Single-Source Shortest Paths Algorithms

Composition is not Local

The pairing of the transitions of nS with those of nT is local,
inasmuch as it only entails the consideration of the
adjacency lists of two nodes at a time.
This fact provides for the so-called lazy implementation of
weighted composition.
As R is constructed it can so happen that nodes are
created that do not lie on a successful path; i.e., from such
a node, there is no path to an end state.
Such nodes are typically removed or purged from the
graph as a final step.
It is worth noting, however, that this purge step is not a
local operation.

Single-Source Shortest Paths Algorithms

Composition Filter

When ε–symbols are introduced, composition becomes
more complicated, as it is necessary to specify when an
ε–symbol on the output of a transition in nS can be
combined with an ε–symbol on the input of nT .
In order to avoid the creation of redundant paths through
R, it is necessary to replace the composition S ◦ T with
S ◦ V ◦ T , where V is a filter.
Hence, a node nR ∈ QR is specified by a triple (nS,nT , f),
where f ∈ {0,1,2} is an index indicating the state of V .
In effect, the filter specifies that after a lone ε-transition on
either the input or output side is taken, placing the filter in
State 1 or State 2 respectively, an ε-transition on the other
side may not be taken until a non-ε match between
input and output occurs.

Single-Source Shortest Paths Algorithms

Composition Filter Schematic

Figure: Filter used during composition with ε–symbols.

Single-Source Shortest Paths Algorithms

Weighted Determinization

We now present the first of a series of equivalence
transformations.
We begin with a pair of definitions.
Equivalent: Two WFSAs are equivalent if for any accepted
input sequence, they produce the same weight. Two
WFSTs are equivalent if for any accepted input sequence
they produce the same output sequence and the same
weight.
Deterministic: A WFST is deterministic if at most one
transition from any node is labeled with any given input
symbol.

Single-Source Shortest Paths Algorithms

Advantages of Deterministic Transducers

It is typically advantageous to work with deterministic
WFSTs, because there is at most one path through the
transducer labeled with a given input string.
This implies that the effort required to learn if a given string
is accepted by a transducer, and to calculate the
associated weight and output string, is linear with the
length of the string, and does not depend on the size of the
transducer.
More to the point, it implies that the acoustic likelihood that
must be calculated when taking a transition during
decoding need only be calculated once.
This has a decisive impact on the efficiency of the search
process inherent in ASR.

Single-Source Shortest Paths Algorithms

An Algorithm for Weighted Determinization

Thus we are led to consider our first equivalence operation,
determinization, which produces a deterministic transducer
τ2 that is equivalent to some given transducer τ1.
String-to-weight subsequential transducer: A
string-to-weight subsequential transducer on the semiring
Σ is an 8–tuple τ = (Σ,Q, i ,F , δ, σ, λ, ρ) consisting of

of an input alphabet Σ,
a set of states Q,
an initial state i ∈ Q with weight λ ∈ R∗,
a set of final states F ⊆ Q,
a transition function δ mapping Q × Σ to Q,
a output function σ mapping Q × Σ to R+,
and a final weight function ρ mapping from F to R+.

The determinization algorithm for weighted automata is
similar to the classical powerset construction.

Single-Source Shortest Paths Algorithms

Pseudocode for Power Set Construction

The pseudocode for the power set construction is given below.

00 def powerSetConstruction(τ1, τ2):
01 F2 ← ∅
02 i2 ← i1
03 Q ← {i2}
04 while |Q| > 0:
05 pop q2 from Q
06 if ∃ q ∈ q2 such that q ∈ F1:
07 F2 ← F2 ∪ {q2}
08 for a such that δ(q2, a) 6= ∅:
09 if δ2(q2, a) 6∈ Q2:
10 Q2 ← Q2 ∪ {δ2(q2, a)}
11 push δ2(q2, a) on Q

Single-Source Shortest Paths Algorithms

Details of Weighted Determinization

The states in the determinized transducer correspond to
subsets of states in the original transducer, together with a
residual weight.
The initial state i2 in τ2 corresponds only to the initial state
i1.
The subset of states together with their residual weights
that can be reached from i1 through a transition with the
input label a then form a state in τ2.
As there may be several transitions with input label a
having different weights, the output of the transition from i2
labeled with a can only have the minimum weight of all
transitions from i1 labeled with a.
The residual weight above this minimum must then be
carried along in the definition of the subset to be applied
later.

Single-Source Shortest Paths Algorithms

Details (cont’d.)

Each time a new state in τ2, consisting of a subset of the
states of τ1 together with their residual weights, is defined,
it is added to a queue Q, so that it will eventually have its
adjacency list expanded.
When the adjacency lists of all states in τ2 have been
expanded and Q has been depleted, the algorithm
terminates.

Single-Source Shortest Paths Algorithms

Weighted Determinization: Formal Description

In order to clearly describe such an algorithm, let us define
the following sets:

Γ(q2,a) = {(q, x) ∈ q2 : ∃e = (q,a, σ[e],n1[e]) ∈ E1}
denotes the set of pairs (q, x) which are elements of q2
where q has at least one edge labeled with a;
γ(q2,a) = {(q, x ,e) ∈ q2 × E1 : e = (q,a, σ1[e],n1[e]) ∈ E1}
denotes the set of triples (q, x ,e) where (q, x) is a pair in q2
such that q admits a transition with input label a;
ν(q2,a) = {q′ ∈ Q1 : ∃(q, x) ∈ q2,∃e = (q,a, σ1[e],q′) ∈
E1} is the set of states q′ in Q1 that can be reached by
transitions labeled with a from the states of subset q2.

Single-Source Shortest Paths Algorithms

Pseudocode for Weighted Determinization

Pseudocode for the complete algorithm is provided in the listing
below.
00 def determinize(τ1, τ2):
01 F2 ← ∅
02 i2 ← i1
03 λ2 ← λ1
04 Q ← {i2}
05 while |Q| > 0:
06 pop q2 from Q
07 if ∃ (q, x) ∈ q2 such that q ∈ F1 :
08 F2 ← F2

⋃
{q2}

09 ρ2(q2) ←
⊕

q∈F1,(q,x)∈ q2

x � ρ1(q)

10 for a such that Γ(q2, a) 6= ∅:
11 σ2(q2, a) ←

⊕
(q,x)∈Γ(q2,a) [x �

⊕
e=(q,a,σ1 [e],n1 [e])∈ E1

σ1[e]]

12 δ2(q2, a) ←
⋃

q̂∈ ν(q2,a)

{ (q̂,
⊕

[σ2(q2, a)]−1 � x
(q,x,t) ∈ γ(q2,a),n1 [e]=q̂

� σ1[e]) }

13 if δ2(q2, a) 6∈ Q2:
14 Q2 ← Q2

⋃
{ δ2(q2, a) }

15 push δ2(q2, a) on Q

Single-Source Shortest Paths Algorithms

Pseudocode for Weighted Determinization

The weighted determinization algorithm is perhaps most
easily understood by specializing all operations for the
tropical semiring.
This implies ⊕ is replaced by min and � is replaced by +.
The algorithm begins by initializing the set F2 of final states
of τ2 to ∅ in Line 01, and equating the initial state and
weight i2 and λ2 respectively to their counterparts in τ1 in
Lines 02–03.
The initial state i2 is pushed onto the queue Q (Line 04).
In Line 05, the next subset q2 to have its adjacency list
expanded is popped from Q.
If q2 contains one or more pairs (q, x) comprised of a state
q ∈ Q1 and residual weight x whereby q ∈ F1, then q2 is
added to the set of final states F2 in Line 08 and assigned
a final weight ρ2(q2) equivalent to the minimum of all
x � ρ1(q) where (q, x) ∈ q2 and q ∈ F1 in Line 09.

Single-Source Shortest Paths Algorithms

Pseudocode for Weighted Determinization

The next step is to begin expanding the adjacency list of q2 in
Line 10, which specifies that the input symbols on the edges of
the adjacency list of q2 is obtained from the union of the input
symbols on the adjacency lists of all q such that there exists
(q, x) ∈ q2.

In Line 11, the weight assigned the edge labeled with a on the
adjacency list of q2 is obtained by considering each
(q, x) ∈ Γ(q2,a) and finding the edge with the minimum weight
on the adjacency list of q that is labeled with a and multiplying
this minimum weight with the residual weight x .

Thereafter, the minimum of all the weights x is taken for all pairs
(q, x) in Γ(q2,a).

In Line 12, the identity of the new subset of (q, x) ∈ Q2 is
determined and assigned to δ(q2,a).

If this new subset is previously unseen, it is added to the set Q2
of states of τ2 in Line 14 and pushed onto the queue Q.

Single-Source Shortest Paths Algorithms

Effects of Weighted Determinization

A simple example of weighted determinization is shown in
Figure 5.

The two WFSTs in the figure are equivalent over the tropical
semiring in that they both accept the same input strings, and for
any given input string, produce the same output string and the
same weight.

For example, the original transducer will accept the input string
aba along either of two successful paths, namely, using the state
sequence 0→ 1→ 3→ 3 or the state sequence
0→ 1→ 4→ 3.

Both sequences produce the string ab as output, but the former
yields a weight of 0.1 + 0.4 + 0.6 = 1.1, while the latter assigns a
weight of 0.1 + 0.3 + 0.5 = 0.9.

Hence, given that these WFSTs are defined over the tropical
semiring, the final weight assigned to the input aba is 0.9, the
minimum of the weights along the two successful paths.

Single-Source Shortest Paths Algorithms

Diagram of Weighted Determinization

Before Determinization

After Determinization

Figure: Weighted determinization of a simple transducer.

The second transducer also accepts the input string aba.
There is, however, but a single sequence labeled with this
input, namely, that with the state sequence
0→ 1→ 4→ 5, which produces a weight of
0.1 + 0.3 + 0.5 = 0.9.

Single-Source Shortest Paths Algorithms

Summary

In this lecture, we discussed algorithms for determing the
shortest path through a weighted graph.
Such problems are still tractable, however, and, for a graph
G = (V ,E), can be solved in O(V ,E) time.
An important technique for solving such problems is that of
relaxation, whereby the length of the shortest path is
successively approximated.
We considered two single-source shortest path algorithms:

Dijkstra’s algorithm, which determines the shortest path
from the source s to each v ∈ V for a graph G = (V ,E)
with positive-valued weights.
The Bellmann-Ford algorithm, which determines the
shortest path from the source s to each v ∈ V for a graph
G = (V ,E) with real-valued weights, which may be
negative.

