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Part II. Nonpenetration Constraints

6 Problems of Nonpenetration Constraints

Now that we know how to write and implement the equations of motion for a rigid body, let’s consider
the problem of preventing bodies from inter-penetrating as they move about an environment. For
simplicity, suppose we simulate dropping a point mass (i.e. a single particle) onto a fixed floor. There
are several issues involved here.

Because we are dealing with rigid bodies, that are totally non-flexible, we don’t want to allow any
inter-penetration at all when the particle strikes the floor. (If we considered our floor to be flexible,
we might allow the particle to inter-penetrate some small distance, and view that as the floor actually
deforming near where the particle impacted. But we don’t consider the floor to be flexible, so we
don’t want any inter-penetration at all.) This means that at the instant that the particle actually comes
into contact with the floor, what we would like is to abruptly change the velocity of the particle. This
is quite different from the approach taken for flexible bodies. For a flexible body, say a rubber ball,
we might consider the collision as occurring gradually. That is, over some fairly small, but non-zero
span of time, a force would act between the ball and the floor and change the ball’s velocity. During
this time span, the ball would deform, due to the force. The more rigid we made the ball, the less the
ball would deform, and the faster this collision would occur. In the limiting case, the ball is infinitely
rigid, and can’t deform at all. Unless the ball’s downward velocity is halted instantaneously, the
ball will inter-penetrate the floor somewhat. In rigid body dynamics then, we consider collisions as
occurring instantaneously.

This means we have two types of contact we need to deal with. When two bodies are in contact
at some point p, and they have a velocity towards each other (as in the particle striking the floor), we
call this colliding contact. Colliding contact requires an instantaneous change in velocity. Whenever
a collision occurs, the state of a body, which describes both position, and velocity, undergoes a
discontinuity in the velocity. The numerical routines that solve ODE’s do so under the assumption
that the state Y (t) always varies smoothly. Clearly, requiring Y (t) to change discontinuously when
a collision occurs violates that assumption.

We get around this problem as follows. If a collision occurs at time tc, we tell the ODE solver to
stop. We then take the state at this time, Y (tc), and compute how the velocities of bodies involved
in the collision must change. We’ll call the state reflecting these new velocities Y (tc)

+. Note that
Y (tc) and Y (tc)

+ agree for all spatial variables (position and orientation), but will be different for
the velocity variables of bodies involved in the collision at time tc. We then restart the numerical
solver, with the new state Y (tc), and instruct it to simulate forward from time tc.

Whenever bodies are resting on one another at some point p (e.g. imagine the particle in contact
with the floor with zero velocity), we say that the bodies are in resting contact. In this case, we
compute a force that prevents the particle from accelerating downwards; essentially, this force is the
weight of the particle due to gravity (or whatever other external forces push on the particle). We call
the force between the particle and the floor a contact force. Resting contact clearly doesn’t require
us to stop and restart the ODE solve at every instant; from the ODE solver’s point of view, contact
forces are just a part of the force returned by Compute_Force_and_Torque.
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Figure 13: At time t0 + 1t, the particle is found to lie below the floor. Thus, the actual time of
collision tc lies between the time of the last known legal position, t0, and t0 +1t.

So far then, we have two problems we’ll need to deal with: computing velocity changes for
colliding contact, and computing the contact forces that prevent inter-penetration. But before we can
tackle these problems we have to deal with the geometric issue of actually detecting contact between
bodies. Let’s go back to dropping the particle to the floor. As we run our simulation, we compute
the position of the particle as it drops towards the floor at specific time values (figure 13). Suppose
we consider the particle at times t0, t0 +1t, t0 + 21t etc.5 and suppose the time of collision, tc, at
which the particle actually strikes the floor, lies between t0 and t0+1t. Then at time t0, we find that
the particle lies above the floor, but at the next time step, t0+1t, we find the particle is beneath the
floor, which means that inter-penetration has occurred.

If we’re going to stop and restart the simulator at time tc, we’ll need to compute tc. All we know
so far is that tc lies between t0 and t0 + 1t. In general, solving for tc exactly is difficult, so we
solve for tc numerically, to within a certain tolerance. A simple way of determining tc is to use a
numerical method called bisection[14]. If at time t0+1t we detect inter-penetration, we inform the
ODE solver that we wish to restart back at time t0, and simulate forward to time t0 +1t/2. If the
simulator reaches t0 +1t/2 without encountering inter-penetration, we know the collision time tc

lies between t0+1t/2 and t0+1t. Otherwise, tc is less than t0+1t/2, and we try to simulate from
t0 to t0 +1t/4. Eventually, the time of collision tc is computed to within some suitable numerical
tolerance. The accuracy with which tc is found depends on the collision detection routines. The
collision detection routines have some parameter ε. We decide that our computation of tc is “good
enough” when the particle inter-penetrates the floor by no more than ε, and is less than ε above the
floor. At this point we declare that the particle is in contact with the floor (figure 14).

The method of bisection is a little slow, but its easy to implement and quite robust. A faster
method involves actually predicting the time tc of the collision, based on examining Y(t0) and
Y(t0+1t). Baraff[1, 2] describes how to make such predictions. How to actually implement all of

5The ODE solver doesn’t have to proceed with equal size time steps though.
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Figure 14: When the particle is found to be within some tolerance ε of contacting the floor, then tc

is considered to have been computed to within sufficient accuracy.

this depends on how you interact with your ODE routines. One might use exception handling code
to signal the ODE of various events (collisions, inter-penetration), or pass some sort of messages to
the ODE solver. We’ll just assume that you have some way of getting your ODE solver to progress
just up to the point tc.

Once you actually reach the time of a collision, or whenever you’re in a state Y (t) where no
inter-penetration has occurred, a geometric determination has to be made to find all the points of
contact. (Just because you may be looking for the time of collision between two bodies A and B
doesn’t mean you get to neglect resting contact forces between other bodies C and D. Whenever
you’re trying to move the simulation forward, you’ll need to compute the point of contact between
bodies and the contact forces at those points.) There is a vast amount of literature dealing with the
collision detection problem. For instance, some recent SIGGRAPH papers dealing with the subject
are Von Herzen, Barr and Zatz[17] and Moore and Wilhelms[12]; in robotics, a number of papers of
interest are Canny[4], Gilbert and Hong[6], Meyer[11] and Cundall[5]. Preparata and Shamos[13]
describes many approaches in computational geometry to the problem. In the next section, we’ll
briefly describe a collision detection “philosophy” that leads to very efficient algorithms, for the sorts
of simulation these course notes are concerned with. Actual code for the algorithms is fairly easy to
write, but a little too lengthy to fit in these notes. Following this, we’ll move on to consider colliding
and resting contact.

7 Collision Detection

The collision detection algorithm begins with a preprocessing step, in which a bounding box for each
rigid body is computed (a box with sides parallel to the coordinate axes). Given n such bounding
boxes, we will want to quickly determine all pairs of bounding boxes that overlap. Any pair of rigid
bodies whose bounding boxes do not overlap need not be considered any further. Pairs of rigid
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bodies whose bounding boxes do overlap require further consideration. We’ll first describe how
to efficiently check for inter-penetration or contact points between rigid bodies defined as convex
polyhedra. Then we’ll show how to perform the bounding box check efficiently.

As described in section 1, the simulation process consists of the repeated computation of the
derivative of the state vector, d

dt Y(t), at various times t. The numerical ODE solver is responsible
for choosing the values of t at which the state derivative is to be computed. For any reasonably
complicated simulation, the values of t chosen are such that the state Y does not change greatly be-
tween successive values of t. As a result, there is almost always great geometric coherence between
successive time steps. At a time step t0+1t, the idea is to take advantage of the collision detection
results computed at the previous time step t0.

7.1 Convex Polyhedra

Our primary mechanism for exploiting coherence will be through the use of witnesses. In our context,
given two convex polyhedra A and B, a witness is some piece of information that can be used to
quickly answer the “yes/no” question “are A and B disjoint”? We will utilize coherence by caching
witnesses from one time step to the next; hopefully a witness from the previous time step will be a
witness during the current time step.

Since we are considering convex polyhedra, two polyhedra do not inter-penetrate if and only if a
separating plane between them exists. A separating plane between two polyhedra is a plane such that
each polyhedron lies on a different side of the plane. A given plane can be verified to be a separating
plane by testing to make sure that all of the vertices of A and B lie on opposite sides of the plane.
Thus, a separating plane is a witness to the fact that two convex polyhedra do not inter-penetrate. If
a separating plane does not exist, then the polyhedra must be inter-penetrating.

The cost of initially finding a witness (for the very first time step of the simulation, or the first
time two bodies become close enough to require more than a bounding box test) is unavoidable.
A simple way to find a separating plane initially is as follows. If a pair of convex polyhedra are
disjoint or contacting (but not inter-penetrating), then a separating plane exists with the following
property: either the plane contains a face of one of the polyhedra, or the plane contains an edge from
one of the polyhedra and is parallel to an edge of the other polyhedra. (That is, the separating plane’s
normal is the cross product of the two edge directions, and the plane itself contains one of the edges.)
We will call the face or edges in question the defining face or edges. Initially, we simply check all
possible combinations of faces and edges to see if one such combination forms a separating plane
(figure 15). Although this is inefficient, it’s done so infrequently that the inefficiency is unimportant.
For subsequent time steps, all we need to do is form a separating plane from the defining face or edges
found during the previous time step, and then verify the plane to see that it is still valid (figure 16).

On those (rare) occasions when the cached face or two edges fails to form a valid separating plane
(figure 17), faces or edges adjacent to the previously cached face or edges can be examined to see if
they form a separating plane; however, this happens infrequently enough that it may be simpler to
start from scratch and compute a new separating plane without using any prior knowledge.

Once the separating place has been found, the contact region between the two polyhedra is
determined, assuming the polyhedra are not disjoint. Contact points between the two polyhedra can
only occur on the separating plane. Given the separating plane, the contact points can be quickly and
efficiently determined by comparing only those faces, edges, and vertices of the polyhedra that are
coincident with the separating plane.

However, if no separating plane can be found, then the two polyhedra must be inter-penetrating.
When two polyhedra inter-penetrate, it is almost always the case that either a vertex of one poly-
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Figure 15: Exhaustive search for a separating plane. Only one face of the two polygons forms a
separating plane.

(a) (b)

defining
face

Figure 16: (a) At this time step, the separating plane is defined by a face of one of the polygons. (b) At
the next time step, the polygons have moved, but the same face still defines a separating plane.
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Figure 17: The face that has been defining a separating plane no longer does so, and a new separating
plane must be found.

hedron is inside the other, or an edge of one polyhedron has intersected a face of the other.6 In
this case, the inter-penetrating vertex, or intersecting edge and face are cached as a witness to the
inter-penetration. Since this indicates a collision at some earlier time, the simulator will back up and
attempt to compute d

dt Y(t) at some earlier time. Until the collision time is determined, the first action
taken by the collision/contact determination step will be to check the cached vertex or edge and face
to see if they indicate inter-penetration. Thus, until the collision time is found, states in which the
inter-penetration still exists are identified as such with a minimum of computational overhead.

7.2 Bounding Boxes

To reduce the number of pairwise collision/contact determinations necessary, a bounding box hierar-
chy is imposed on the bodies in the simulation environment. If two bounding boxes are found not to
overlap, no further comparisons involving the contents of the boxes are needed. Given a collection
of n rectangular bounding boxes, aligned with the coordinate axes, we would like to efficiently
determine all pairs of boxes that overlap. A naive pairwise comparison of all pairs requires O(n2)

work and is too inefficient, unless the number of bodies is small. Computational geometry algorithms
exist that can solve this problem in time O(nlogn+ k)where k is the number of pairwise overlaps; a
general result is that the problem can be solved in time O(nlogd−2n+ k) for d-dimensional bounding
boxes[13]. Using coherence, we can achieve substantially better performance.

6An exception is the following. Stack two cubes of equal size atop one another so that their contacting faces exactly
coincide. Lower the top one. This produces an inter-penetration such that no vertex is inside either cube, and no edge
penetrates through any face.
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Figure 18: The sweep/sort algorithm. (a) When b1 is encountered, the active list contains intervals
3 and 6; interval 1 is reported to overlap with these two intervals. Interval 1 is added to the active
list and the algorithm continues. (b) When e3 is encountered, the active list contains intervals 2, 3
and 5. Interval 3 is removed from the active list.

7.2.1 The one-dimensional case

Consider the problem of detecting overlap between one-dimensional bounding boxes, aligned with
the coordinate system. Such a bounding box can be described simply as an interval [b, e] where b
and e are real numbers. Let us consider a list of n such intervals, with the ith interval being [bi, ei].
The problem is then defined to be the determination of all pairs i and j such that the intervals [bi, ei]
and [b j, e j] intersect.

The problem can be solved initially by a sort and sweep algorithm. A sorted list of all the bi

and ei values is created, from lowest to highest. The list is then swept, and a list of active intervals,
initially empty, is maintained. Whenever some value bi is encountered, all intervals on the active list
are output as overlapping with interval i, and interval i is then added to the list (figure 18a). Whenever
some value ei is encountered , interval i is removed from the active list (figure 18b). The cost of this
process is O(n log n) to create the sorted list, O(n) to sweep through the list, and O(k) to output each
overlap. This gives a total cost of O(n log n+ k), and is an optimal algorithm for initially solving
the problem.

Subsequent comparisons can be improved as follows. First, there is no need to use an O(n log n)
algorithm to form the sorted list of bi and ei values. It is considerably more efficient to start with
the order found for bi and ei values from the previous time step; if coherence is high, this ordering
will be nearly correct for the current time step. A sorting method called an insertion sort[15] is used
to permute the “nearly sorted” list into a sorted list. The insertion sort algorithm works by moving
items towards the beginning of the list, until a smaller item is encountered. Thus, the second item
is interchanged with the first if necessary, then the third item is moved towards the beginning of the
list until its proper place is found, and so on; each movement of an item indicates a change in the
ordering of two values. After the last item on the list has been processed, the list is in order. Such
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Figure 19: A coherence-based method of detecting overlaps. The order produced in figure 18 is
nearly correct for this arrangement of intervals. Only b4 and e5 need to be exchanged. When the
exchange occurs, the change in overlap status between interval 4 and 5 is detected.

a sort takes time O(n+ c) where c is the number of exchanges necessary. For example, the only
difference between figures 19 and 18 is that interval 4 has moved to the right. Starting from the
ordered list of bi and ei values of figure 18, only a single exchange is necessary to sort the list for
figure 19. The insertion sort is not recommendeded as a sorting procedure in general, since it may
require O(n2) exchanges; however, it is a good algorithm for sorting a nearly sorted list, which is
what occurs in our highly coherent environment. To complete the algorithm, note that if two intervals
i and j overlap at the previous time step, but not at the current time step, one or more exchanges
involving either a bi or ei value and a b j or e j value must occur. The converse is true as well when
intervals i and j change from not overlapping at the previous time step to overlapping at the current
time step.

Thus, if we maintain a table of overlapping intervals at each time step, the table can be updated
at each time step with a total cost of O(n+ c). Assuming coherence, the number of exchanges c
necessary will be close to the actual number k of changes in overlap status, and the extra O(c− k)
work will be negligible. Thus, for the one-dimensional bounding box problem, the coherence view
yields an efficient algorithm of extreme (if not maximal) simplicity that approaches optimality as
coherence increases.

7.2.2 The three-dimensional case

Efficient computational geometry algorithms for solving the bounding box intersection problem in
IR3 are much more complicated than the sort and sweep method for the one-dimensional case. How-
ever, these algorithms all have in common a step that is essentially a sort along a coordinate axis, as in
the one-dimensional case. Each bounding box is described as three independent intervals [b(x)i , e(x)i ],
[b(y)i , e(y)i ], and [b(z)i , e(z)i ] which represent the intervals spanned on the three coordinate axes by
the ith bounding box. Thus, our first thought towards improving the efficiency of a computational
geometry algorithm for coherent situations would be to sort a list containing the b(x)i and e(x)i values,
and similarly for the y and z axes. Again, such a step will involve O(n+ c)work, where c is now the
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total number of exchanges involved in sorting all three lists. However, if we observe that checking
two bounding boxes for overlap is a constant time operation, it follows that if we simply check
bounding boxes i and j for overlap whenever an exchange is made between values indexed by i and
j (on any coordinate axis), we will detect all changes in overlap status in O(n+ c) time.

Again, we can maintain a table of overlapping bounding boxes, and update it at each time step
in O(n+ c) time. The extra work involved is again O(c− k). For the three-dimensional case, extra
work can occur if the extents of two bounding boxes change on one coordinate axis without an actual
change of their overlap status. In practice, the extra work done has been found to be completely
negligible, and the algorithm runs essentially in time O(n+ k).

8 Colliding Contact

For the remainder of these notes, we’re going to be concerned with examining the bodies in our
simulator at a particular instant of time t0. At this time t0, we assume that no bodies are inter-
penetrating, and that the simulator has already determined which bodies contact, and at which points.
To simplify matters, we’ll imagine that all bodies are polyhedra, and that every contact point between
bodies has been detected. We’ll consider contacts between polyhedra as either vertex/face contacts
or edge/edge contacts. A vertex/face contact occurs when a vertex on one polyhedra is in contact
with a face on another polyhedra. An edge/edge contact occurs when a pair of edges contact; it is
assumed in this case that the two edges are not collinear. (Vertex/vertex and vertex/edge contacts
are degenerate, and are not considered in these notes.) As examples, a cube resting on a plane would
be described as four vertex/face contacts, one contact at each corner of the cube. A cube resting on
a table, but with its bottom face hanging over the edge of the table would still be described as four
contacts; two vertex/face contacts for the vertices on the table, and two edge/edge contacts, one on
each edge of the cube that crosses over an edge of the table.

Each contact is represented by a structure

struct Contact {

RigidBody *a, /* body containing vertex */

*b; /* body containing face */

triple p, /* world-space vertex location */

n, /* outwards pointing normal of face */

ea, /* edge direction for A */

eb; /* edge direction for B */

boolean vf; /* TRUE if vertex/face contact */

};

int Ncontacts;

Contact *Contacts;

If the contact is a vertex/face contact, then the variable a points to the rigid body that the contact
vertex is attached to, while b points to the body the face is attached to. We’ll call these two bodies
A and B respectively. For vertex/face contacts, the variable n is set to the outwards pointing unit
normal of the contact face of body B, and the variables ea and eb are unused.

For edge/edge contacts, ea is a triple of unit length, that points in the direction of the contacting
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Figure 20: (a) The points pa(t) and pb(t) for a vertex/face contact. (b) At time t0, the bodies come
into contact at pa(t0) = pb(t0).

edge of body A (pointed to by a). Similarly, eb is a unit vector giving the direction that the contact
edge on body B points. For edge/edge contacts, n denotes a unit vector in the ea× eb direction.
We’ll adopt the convention that the two contacting bodies are labeled A and B such that the normal
direction ea× eb points outwards from B, towards A, as it does for vertex/face contacts.

For both types of contact, the position of the contact in world space (which is either the contact
vertex, or the point where the two edges intersect) is given by p. The collision detection routines
are responsible for discovering all the contact points, setting Ncontacts to the number of contact
points, and allocating space for and initializing an array of Contact structures.

The first thing we’ll need to do is examine the data in each Contact structure to see if colliding
contact is taking place. For a given contact point, the two bodies A and B contact at the point p. Let
pa(t) denote the particular the point on body A that satisfies pa(t0) = p. (For vertex/face contacts,
this point will be the vertex itself. For edge/edge contacts, it is some particular point on the contact
edge of A.) Similarly, let pb(t) denote the particular point on body B that coincides with pa(t0)= p
at time t0 (figure 20). Although pa(t) and pb(t) are coincident at time t0, the velocity of the two points
at time t0 may be quite different. We will examine this velocity to see if the bodies are colliding or
not.

From section 2.5, we can calculate the velocity of the vertex point, ṗa(t0) by the formula

ṗa(t0) = va(t0)+ ωa(t0)× (pa(t0)− xa(t0)) (8–1)

where va(t) and ωa(t) are the velocities for body A. Similarly, the velocity of the contact point on
the face of B is

ṗb(t0) = vb(t0)+ωb(t0)× (pb(t0)− xb(t0)). (8–2)
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Figure 21: The vector ṗa(t0)− ṗb(t0) points in the same direction as n̂(t0); the bodies are separating.

Let’s examine the quantity

vrel = n̂(t0) · ( ṗa(t0)− ṗb(t0)), (8–3)

which is a scalar. In this equation, n̂(t0) is the unit surface normal, described by the variable n, for
each contact point. The quantity vrel gives the component of the relative velocity ṗa(t0)− ṗb(t0)
in the n̂(t0) direction. Clearly, if vrel is positive, then the relative velocity ṗa(t0)− ṗb(t0) at the
contact point is in the positive n̂(t0) direction. This means that the bodies are moving apart, and that
this contact point will disappear immediately after time t0 (figure 21). We don’t need to worry about
this case. If vrel is zero, then the bodies are neither approaching nor receding at p (figure 22). This
is exactly what we mean by resting contact, and we’ll deal with it in the next section.

In this section, we’re interested in the last possibility, which is vrel < 0. This means that the
relative velocity at p is opposite n̂(t0), and we have colliding contact. If the velocities of the bodies
don’t immediately undergo a change, inter-penetration will result (figure 23).

How do we compute the change in velocity? Any force we might imagine acting at p, no matter
how strong, would require at least a small amount of time to completely halt the relative motion
between the bodies. (No matter how strong your car brakes are, you still need to apply them before
you hit the brick wall. If you wait until you’ve contacted the wall, it’s too late...) Since we want
bodies to change their velocity instantly though, we postulate a new quantity J called an impulse.
An impulse is a vector quantity, just like a force, but it has the units of momentum. Applying an
impulse produces an instantaneous change in the velocity of a body. To determine the effects of a
given impulse J, we imagine a large force F that acts for a small time interval 1t. If we let F go to
infinity and 1t go to zero in such a way that

F1t = J (8–4)

then we can derive the effect of J on a body’s velocity by considering how the velocity would change
if we let the force F act on it for 1t time.
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Figure 22: The vector ṗa(t0)− ṗb(t0) is perpendicular to n̂(t0); the bodies are in resting contact. A
contact force may be necessary to prevent bodies from accelerating towards each other.
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˙ p a( t0) − ˙ p b ( t0)

Figure 23: Colliding contact. The relative velocity ṗa(t0)− ṗb(t0) is directed inwards, opposite
n̂(t0). Unless the relative velocity is abruptly changed, inter-penetration will occur immediately after
time t0.
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For example, if we apply an impulse J to a rigid body with mass M, then the change in linear
velocity 1v is simply

1v = J
M
. (8–5)

Equivalently, the change in linear momentum1P is simply1P= J. If the impulse acts at the point
p, then just as a force produces a torque, J produces an impulsive torque of

τimpulse = (p− x(t))× J. (8–6)

As one would imagine, the impulsive torque τimpulse also gives rise to a change in angular momentum
1L of1L= τimpulse. The change in angular velocity is simply I−1(t0)τimpulse, assuming the impulse
was applied at time t0.

When two bodies collide, we will apply an impulse between them to change their velocity. For
frictionless bodies, the direction of the impulse will be in the normal direction, n̂(t0). Thus, we can
write the impulse J as

J = jn̂(t0) (8–7)

where j is an (as yet) undetermined scalar that gives the magnitude of the impulse. We’ll adopt the
convention that the impulse J acts positively on body A, that is, A is subject to an impulse of+ jn̂(t0),
while body B is subject to an equal but opposite impulse− jn̂(t0) (figure 24). We compute j by using
an empirical law for collisions. Let’s let ṗ−a (t0) denote the velocity of the contact vertex of A prior
to the impulse being applied, and let ṗ+a (t0) denote the velocity after we apply the impulse J. Let
ṗ−b (t0) and ṗ+b (t0) be defined similarly. Using this notation, the initial relative velocity in the normal
direction is

v−rel = n̂(t0) · ( ṗ−a (t0)− ṗ−b (t0)); (8–8)

after the application of the impulse,

v+rel = n̂(t0) · ( ṗ+a (t0)− ṗ+b (t0)). (8–9)

The empirical law for frictionless collisions says simply that

v+rel = −εv−rel. (8–10)

The quantity ε is called the coefficient of restitution and must satisfy 0 ≤ ε ≤ 1. If ε = 1, then
v+rel = −v−rel, and the collision is perfectly “bouncy”; in particular, no kinetic energy is lost. At the
other end of the spectrum, ε = 0 results in v+rel = 0, and a maximum of kinetic energy is lost. After
this sort of collision, the two bodies will be in resting contact at the contact point p (figure 25).

Calculating the magnitude j of the impulse J = jn̂(t0) is fairly simple, although the equations are
a bit tedious to work through. Let’s define the displacements ra and rb as p− xa(t0), and p− xb(t0).
If we let v−a (t0) and ω−a (t0) be the pre-impulse velocities of body A, and v+a (t0) and ω+a (t0) be the
post-impulse velocities, we can write

ṗ+a (t0) = v+a (t0)+ ω+a (t0)× ra (8–11)
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Figure 24: The impulse between two bodies at a contact point. An impulse of jn̂(t0) acts on A, while
an impulse of − jn̂(t0) acts on B.
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+( t0 )− ˙ p b
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Figure 25: (a) The relative velocity before application of the impulse. (b) The component of the
relative velocity in the n̂(t0) direction is reversed for an ε = 1 collision. The relative velocity
perpendicular to n̂(t0) remains the same. (c) A collision with 0 < ε < 1. The bodies bounce away
in the n̂(t0) direction with less speed than they approached. (d) A collision with ε = 0. The bodies
do not bounce away from each other, but the relative velocity perpendicular to n̂(t0) is unaffected by
the collision.
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along with

v+a (t0) = v−a (t0)+
jn̂(t0)
Ma

and ω+a (t0) = ω−a (t0)+ I−1
a (t0)

(
ra × jn̂(t0)

)
(8–12)

where Ma is the mass of body A, and Ia(t0) is its inertia tensor. Combining the two previous equa-
tions yields

ṗ+a (t0) =
(
v−a (t0)+

jn̂(t0)
Ma

)
+ (ω−a (t0)+ I−1

a (t0)
(
ra × jn̂(t0)

)) × ra

= v−a (t0)+ω−a (t0)× ra +
(

jn̂(t0)
Ma

)
+ ( I−1

a (t0)
(
ra × jn̂(t0)

)) × ra

= ṗ−a + j

(
n̂(t0)
Ma
+ I−1

a (t0)
(
ra × n̂(t0)

)) × ra.

(8–13)

It is important to note the form of ṗ+a (t0): it is a simple linear function of j. For body B, an opposite
impulse − jn̂(t0) acts, yielding

ṗ+b (t0) = ṗ−b − j

(
n̂(t0)
Mb
+ I−1

b (t0)
(
rb × n̂(t0)

)) × rb. (8–14)

This yields

ṗ+a (t0)− ṗ+b =
(

ṗ+a (t0)− ṗ+b
) + j

(
n̂(t0)
Ma
+ n̂(t0)

Mb
+

(
I−1
a (t0)

(
ra × n̂(t0)

)) × ra +
(

I−1
b (t0)

(
rb × n̂(t0)

)) × rb

)
.

(8–15)

To calculate v+rel, we dot this expression with n̂(t0). Since n̂(t0) is of unit length, n̂(t0) · n̂(t0)= 1,
and we obtain

v+rel = n̂(t0) · ( ṗ+a (t0)− ṗ+b )

= n̂(t0) · ( ṗ−a (t0)− ṗ−b )+ j

(
1

Ma
+ 1

Mb
+

n̂(t0) · ( I−1
a (t0)

(
ra × n̂(t0)

)) × ra + n̂(t0) · ( I−1
b (t0)

(
rb × n̂(t0)

)) × rb

)
= v−rel + j

(
1

Ma
+ 1

Mb
+

n̂(t0) · ( I−1
a (t0)

(
ra × n̂(t0)

)) × ra + n̂(t0) · ( I−1
b (t0)

(
rb × n̂(t0)

)) × rb

)
.

(8–16)

By expressing v+rel in terms of j and v−rel, we can compute j according to equation (8–10). If we
substitute equation (8–16) into equation (8–10), we get

v−rel + j

(
1

Ma
+ 1

Mb
+ n̂(t0) · ( I−1

a (t0)
(
ra × n̂(t0)

)) × ra+

n̂(t0) · ( I−1
b (t0)

(
rb × n̂(t0)

)) × rb

)
= −εv−rel.

(8–17)
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Finally, solving for j,

j = −(1+ ε)v−rel
1

Ma
+ 1

Mb
+ n̂(t0) · ( I−1

a (t0)
(
ra × n̂(t0)

)) × ra + n̂(t0) · ( I−1
b (t0)

(
rb × n̂(t0)

)) × rb
. (8–18)

Let’s consider some actual code (written for clarity, not speed). First, we determine if two bodies
are in colliding contact.

/*

Operators: if `x' and `y' are triples,

assume that `x � y' is their cross product,

and `x * y' is their dot product.

*/

/* Return the velocity of a point on a rigid body */

triple pt_velocity(Body *body, triple p)

{

return body->v + (body->omega � (p - body->x));

}

/*

Return TRUE if bodies are in colliding contact. The

parameter `THRESHOLD' is a small numerical tolerance

used for deciding if bodies are colliding.

*/

boolean colliding(Contact *c)

{

triple padot = pt_velocity(c->a, p), /* ṗ−a (t0) */

pbdot = pt_velocity(c->b, p); /* ṗ−b (t0) */

double vrel = c->n * (padot - pbdot); /* v−rel */

if(vrel > THRESHOLD) /* moving away */

return FALSE;

if(vrel > -THRESHOLD) /* resting contact */

return FALSE;

else /* vrel < -THRESHOLD */

return TRUE;

}

Next, we’ll loop through all the contact points until all the collisions are resolved, and actually
compute and apply an impulse.

void collision(Contact *c, double epsilon)

{

triple padot = pt_velocity(c->a, p), /* ṗ−a (t0) */

pbdot = pt_velocity(c->b, p), /* ṗ−b (t0) */

n = c->n, /* n̂(t0) */
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ra = p - c->a->x, /* ra */

rb = p - c->b->x; /* rb */

double vrel = n * (padot - pbdot), /* v−rel */

numerator = -(1 + epsilon) * vrel;

/* We'll calculate the denominator in four parts */

double term1 = 1 / c->a->mass,

term2 = 1 / c->b->mass,

term3 = n * ((c->a->Iinv * (ra � n)) � ra),

term4 = n * ((c->b->Iinv * (rb � n)) � rb);

/* Compute the impulse magnitude */

double j = numerator / (term1 + term2 + term3 + term4);

triple force = j * n;

/* Apply the impulse to the bodies */

c->a->P += force;

c->b->P -= force;

c->a->L += ra � force;

c->b->L -= rb � force;

/* recompute auxiliary variables */

c->a->v = c->a->P / c->a->mass;

c->b->v = c->b->P / c->b->mass;

c->a->omega = c->a->Iinv * c->a->L;

c->b->omega = c->b->Iinv * c->b->L;

}

void find_all_collisions(Contact contacts[], int ncontacts)

{

boolean had_collision;

double epsilon = .5;

do {

had_collision = FALSE;

for(int i = 0; i < ncontacts; i++)

if(colliding(&contacts[i]))

{

collision(&contacts[i], epsilon);

had_collision = TRUE;

/* Tell the solver we had a collision */

ode_discontinuous();
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}

} while(had_collision == TRUE);

}

Note several things. First, ε = .5 was chosen arbitrarily. In a real implementation, we’d allow the
user to use different values of ε depending on which two bodies were colliding. Also, every time we
find a collision, we have to rescan the list of contacts, since bodies that were at rest may no longer be
so, and new collisions may develop. If there are initially several collisions to be resolved (such as a
cube dropped flat onto a plane, with all four vertices colliding at once), the order of the contact list
may have an effect on the simulation. There is a way to compute impulses at more than one contact
point at a time, but it more complicated, and is based on the concepts used for resting contact in the
next section. For further information, see Baraff[1].

Incidentally, if you want to have certain bodies that are “fixed”, and cannot be moved (such as
floors, or walls), you can use the following trick: for such bodies, let 1

mass be zero; also let the
inverse inertia tensor also be the 3× 3 zero matrix. You can either special-case the code to check if
a body is supposed to be fixed, or you can recode the definition of RigidBody to have the variable
invmass instead of mass. For ordinary bodies, invmass is the inverse of the mass, while for fixed
bodies, invmass is zero. The same goes for the inertia tensor. (Note that nowhere in any of the
dynamics computations (including the next section) is the mass or inertia tensor ever used; only their
inverses are used, so you won’t have to worry about dividing by zero.) The same trick can be used in
the next section on resting contact to simulate bodies that can support any amount of weight without
moving.

9 Resting Contact

The case of resting contact, when bodies are neither colliding nor separating at a contact point, is the
last (and hardest) dynamics problem we’ll tackle in these notes. To implement what’s in this section,
you’ll have to obtain a fairly sophisticated piece of numerical software, which we’ll describe below.

At this point, let’s assume we have a configuration with n contact points. At each contact point,
bodies are in resting contact, that is, the relative velocity vrel, from section 8, is zero (to within the
numerical tolerance THRESHOLD). We can say that this is so, because colliding contact is eliminated
by the routine find_all_collisions, and any contact points with vrel larger than THRESHOLD can
be safely ignored, since the bodies are separating there.

As was the case for colliding contact, at each contact point, we have a contact force that acts
normal to the contact surface. For the case of colliding contact, we had an impulse jn̂(t0) where j
was an unknown scalar. For resting contact, at each contact point there is some force fin̂i(t0), where
fi is an unknown scalar, and n̂i(t0) is the normal at the ith contact point (figure 26). Our goal is to
determine what each fi is. In computing the fi’s, they must all be determined at the same time, since
the force at the ith contact point may influence one or both of the bodies of the j contact point. In
section 8, we wrote how the velocity of the contact points pa(t0) and pb(t0) changed with respect to
j. We’ll do the same thing here, but now we’ll have to describe how the acceleration of pa(t0) and
pb(t0) depends on each fi.

For colliding contact, we had an empirical law which related the impulse strength j to the relative
velocity and a coefficient of restitution. For resting contact, we compute the fi’s subject to not one,
but three conditions. First, the contact forces must prevent inter-penetration; that is, the contact
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Figure 26: Resting contact. This configuration has five contact points; a contact force acts between
pairs of bodies at each contact point.

forces must be strong enough to prevent two bodies in contact from being pushed “towards” one
another. Second, we want our contact forces to be repulsive; contact forces can push bodies apart, but
can never act like “glue” and hold bodies together. Last, we require that the force at a contact point
become zero if the bodies begin to separate. For example, if a block is resting on a table, some force
may act at each of the contact points to prevent the block from accelerating downwards in response
to the pull of gravity. However, if a very strong wind were to blow the brick upwards, the contact
forces on the brick would have to become zero at the instant that the wind accelerated the brick off
the table.

Let’s deal with the first condition: preventing inter-penetration. For each contact point i, we
construct an expression di(t)which describes the separation distance between the two bodies near the
contact point at time t. Positive distance indicates the bodies have broken contact, and have separated
at the ith contact point, while negative distance indicates inter-penetration. Since the bodies are in
contact at the present time t0, we will have di(t0)= 0 (within numerical tolerances) for each contact
point. Our goal is to make sure that the contact forces maintain di(t) ≥ 0 for each contact point at
future times t > t0.

For vertex/face contacts, we can immediately construct a very simple function for di(t). If pa(t)
and pb(t) are the contact points of the ith contact, between bodies A and B, than the distance between
the vertex and the face at future times t ≥ t0 is given by

di(t) = n̂i(t) · (pa(t)− pb(t)). (9–1)

At time t, the function d(t) measures the separation between A and B near pa(t). If di(t) is zero,
then the bodies are in contact at the ith contact point. If di(t) > 0, then the bodies have lost contact
at the ith contact point. However, if di(t) < 0, then the bodies have inter-penetrated, which is what
we need to avoid (figure 27). The same function can also be used for edge/edge contacts; since n̂i(t)
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Figure 27: (a) The displacement pa(t)− pb(t), indicated by an arrow, points in the same direction
as n̂(t). Thus, the distance function d(t) would be positive. (b) The distance function d(t) is zero.
(c) The displacement pa(t)− pb(t) points in the opposite direction as n̂(t). The distance function
d(t) is negative, indicating inter-penetration.

points outwards from B towards A (by convention), n̂i(t) · (pa(t)− pb(t)) will be positive if the
two contacting edges move so as to separate the bodies.

Since di(t0) = 0, we have to keep di(t0) from decreasing at time t0; that is, we have to have
ḋi(t0) ≥ 0. What is ḋi(t0)? Differentiating,

ḋi(t) = ˙̂ni(t) · (pa(t)− pb(t))+ n̂i(t) · ( ṗa(t)− ṗb(t)). (9–2)

Since di(t) describes the separation distance, ḋi(t) will describe the separation velocity at time t.
However, at time t0, pa(t0) = pb(t0), which means that ḋi(t0) = n̂i(t0) · ( ṗa(t0)− ṗb(t0)). This
should look familiar: its vrel from the previous section! The function ḋi(t0) is a measure of how
the bodies are separating, and for resting contact, we know that ḋ(t0) is zero, because the bodies are
neither moving towards nor away from each other at a contact point.

At this point then, we have di(t0) = ḋi(t0) = 0. Now we’ll look at d̈i(t0). If we differentiate
equation (9–2), we get

d̈i(t) =
( ¨̂ni(t) · (pa(t)− pb(t))+ ˙̂ni(t) · ( ṗa(t)− ṗb(t))

)
+( ˙̂ni(t) · ( ṗa(t)− ṗb(t))+ n̂i(t) · ( p̈a(t)− p̈b(t))

)
= ¨̂ni(t) · (pa(t)− pb(t))+ 2 ˙̂ni(t) · ( ṗa(t)− ṗb(t))+ n̂i(t) · ( p̈a(t)− p̈b(t)).

(9–3)

Since pa(t0) = pb(t0), we can write d̈i(t0) as

d̈(t0) = n̂i(t0) · ( p̈a(t0)− p̈b(t0))+ 2 ˙̂ni(t0) · ( ṗa(t0)− ṗb(t0)). (9–4)
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The quantity d̈i(t0) measures how the two bodies are accelerating towards each other at the contact
point p. If d̈i(t0) > 0, the the bodies have an acceleration away from each other, and contact will
break immediately after t0. If d̈i(t0)= 0, then contact remains. The case d̈i(t0) < 0 must be avoided,
for this indicates the bodies are accelerating towards each other. Note that if n̂i(t0) is a constant (if
body B is fixed), then ˙̂ni(t0) is zero, leading to further simplifications.

Thus, we satisfy our first condition for contact forces by writing the constraint

d̈i(t0) ≥ 0 (9–5)

for each contact point. Since the acceleration d̈i(t0) depends on the contact forces, this is really a
constraint on the contact forces.

Let’s turn our attention to the second and third constraints. Since contact forces must always
be repulsive, each contact force must act outward. This means that each fi must be positive, since
a force of fin̂i(t0) acts on body A, and n̂i(t0) is the outwards pointing normal of B. Thus, we
need

fi ≥ 0 (9–6)

for each contact point. The third constraint is expressed simply in terms of fi and d̈i(t0). Since the
contact force fin̂i(t0)must become zero if contact is breaking at the ith contact, this says that fi must
be zero if contact is breaking. We can express this constraint by writing

fid̈i(t0) = 0; (9–7)

if contact is breaking, d̈i(t0) > 0 and equation (9–7) is satisfied by requiring fi = 0. If contact is not
breaking, then d̈i(t0) = 0, and equation (9–7) is satisfied regardless of fi.

In order to actually find fi’s which satisfy equations (9–5), (9–6), and (9–7), we need to express
each d̈i(t0) as a function of the unknown fi’s. It will turn out that we will be able to write each d̈i(t0)
in the form

d̈i(t0) = ai1 f1 + ai2 f2 + · · · + ain fn + bi. (9–8)

In matrix parlance, this means we will be able to write d̈1(t0)
...

d̈n(t0)

 = A

 f1
...
fn

 +
 bi

...
bn

 (9–9)

where A is the n× n matrix of the aij coefficients of equation (9–8). Although the code needed to
calculate the aij’s and the bi’s is not too complicated, working out the derivations on which the code
is based is somewhat tedious. The derivations are worked out in appendix D, along with code to
compute the matrix of aij’s and bi’s.

Appendix D gives an implementation of the routines

void compute_a_matrix(Contact contacts[], int ncontacts,

bigmatrix &a);
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void compute_b_vector(Contact contacts[], int ncontacts,

vector &b);

where the types bigmatrix and vector represent matrices and vectors of arbitrary size. The first
routine computes the aij’s, while the second routine computes the bi’s.

Once we’ve computed all this, we can think about solving equations (9–5), (9–6), and (9–7).
This system of equations forms what is called a quadratic program (QP); that is, fi’s that satisfy these
three equations are found by an algorithm called quadratic programming. Not all quadratic programs
can be solved efficiently, but because our contact forces are all normal to the contact surfaces (that is,
they do not involve friction), it turns out that our QP can always be solved efficiently. One interesting
thing to note is that QP codes can easily handle the case d̈i(t0) = 0 instead of d̈i(t0) ≥ 0. We use
d̈i(t0)= 0 (and also drop the constraint fi ≥ 0) if we wish to constrain two bodies to never separate
at a contact point. This enables us to implement hinges, and pin-joints, as well as non-penetration
constraints during simulation.

Quadratic programming codes aren’t terribly common though; certainly, they are not nearly as
common as linear equation codes, and are much harder to implement. The quadratic programming
routines used by the author were obtained from the Department of Operations Research at Stanford
University. See Gill et al.[7, 8, 9] for further details. More recently, we have been using code
described by Baraff[3] to solve the quadratic programs. If you are determined to really implement
this, we suggest a thorough study of this paper (excepting for the section on contact with friction).

At any rate, let’s assume that you’ve got a working QP solver at your disposal. We’ll assume
that you pass the matrix A, and the vector of bi’s to the QP solver, and you get back the vector of
fi’s. Let’s pretend the interface is

void qp_solve(bigmatrix &a, vector &b, vector &f);

Let’s see how to compute all the resting contact forces. The following routine is presumably called
from Compute_Force_and_Torque, after find_collisions has been called.

void compute_contact_forces(Contact contacts[], int ncontacts, double t)

{

/* We assume that every element of contacts[]

represents a contact in resting contact.

Also, we'll assume that for each element of Bodies[],

the `force' and `torque' fields have been set to the

net external force and torque acting on the body, due

to gravity, wind, etc., perhaps by a call to

Compute_External_Force_and_Torque_for_all_Bodies(t);

*/

/* Allocate n× n matrix `amat' and n-vectors `fvec',

and `bvec'. */
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bigmatrix amat = new bigmatrix(ncontacts, ncontacts);

vector bvec = new vector(ncontacts),

fvec = new vector(ncontacts);

/* Compute aij and bi coefficients */

compute_a_matrix(contacts, ncontacts, amat);

compute_b_vector(contacts, ncontacts, bvec);

/* Solve for f j's */

qp_solve(amat, bmat, fvec);

/* Now add the resting contact forces we just computed into

the `force' and `torque' field of each rigid body. */

for(int i = 0; i < ncontacts; i++)

{

double f = fvec[i]; /* fi */

triple n = contacts[i]->n; /* n̂i(t0) */

RigidBody *A = contacts[i]->a, /* body A */

*B = contacts[i]->b; /* body B */

/* apply the force `f n' positively to A... */

A->force += f * n;

A->torque += (contacts[i].p - A->x) * (f*n);

/* and negatively to B */

B->force -= f * n;

B->torque -= (contacts[i].p - B->x) * (f*n);

}

}

That’s pretty much it! Now that the resting forces have been computed and combined with the
external forces, we return control to the ODE solver, and each body goes merrily along its way, in a
physically correct manner, without inter-penetration.
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Appendix A Motion Equation Derivations

In this appendix, we’ll fill in some of the missing details from section 2, with regards to the equa-
tions Ṗ(t) = F(t), L̇(t) = τ(t), and L(t) = I(t)ω(t). The derivation method used here is some-
what nonstandard, and was proposed by Andy Witkin. The derivation in this appendix is (we
feel) much shorter and considerably more elegant than the one found in traditional sources such as
Goldstein[10].

We’ve described the external force acting on a rigid body in terms of forces Fi(t), where Fi(t)
is the external force acting on the ith particle. However, for a rigid body to maintain its shape,
there must be some “internal” constraint forces that act between particles in the same body. We will
make the assumption that these constraint forces act passively on the system and do not perform any
net work. Let Fci(t) denote the net internal constraint force acting on the ith particle. The work
performed by Fci on the ith particle from time t0 to t1 is∫ t1

t0

Fci(t) · ṙi(t) dt

where ṙi(t) is the velocity of the ith particle. The net work over all the particles is the sum∑
i

∫ t1

t0

Fci(t) · ṙi(t) dt =
∫ t1

t0

∑
i

Fci(t) · ṙi(t) dt,

which must be zero for any interval t0 to t1. This means that the integrand∑
i

Fci(t) · ṙi(t) (A–1)

is itself always zero for any time t. (Henceforth we’ll just write these expressions as
∑

Fci · ṙi = 0.)
We can use this fact to eliminate any mention of the constraint forces Fci from our derivations.

First, some quick notes about the “∗” operator defined in section 2.3: since a∗b = a × b, and
a× b = −b× a, we get

−a∗b = b× a = b∗a. (A–2)

Since a∗ is an antisymmetric matrix,

(a∗)T = −a∗. (A–3)

Finally, since the “∗” operator is a linear operator,

(ȧ)∗ = ˙(a∗) = d
dt
(a∗) (A–4)

and for a set of vectors ai ∑
a∗i =

(∑
ai

)∗
. (A–5)
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Recall that we can write the velocity ṙi as ṙi = v+ω× (ri− x)where ri is the particle’s location,
x is the position of the center of mass, and v and ω are linear and angular velocity. Letting r′i = ri− x
and using the “∗” notation,

ṙi = v+ω∗r′i = v− r′i
∗
ω. (A–6)

Substituting this into
∑

Fci · ṙi, which is always zero, yields∑
Fci · (v− r′i

∗
ω) = 0. (A–7)

Note that this equation must hold for arbitrary values of v and ω. Since v and ω are completely
independent, if we choose ω to be zero, then

∑
Fci · v = 0 for any choice of v, from which we

conclude that in fact
∑

Fci = 0 is always true. This means that the constraint forces produce no
net force. Similarly, choosing v to be zero we see that

∑−Fci · (r′i∗ω) = 0 for any ω. Rewriting
Fci · (r′i∗ω) as Fci

T (r′i
∗
ω) we get that∑

−Fci
Tr′i
∗
ω =

(∑
−Fci

Tr′i
∗)
ω = 0 (A–8)

for any ω, so
∑−Fci

Tr′i
∗ = 0T . Transposing, we have∑
−(r′i∗)T Fci =

∑
(r′i)
∗Fci =

∑
r′i × Fci = 0 (A–9)

which means that the internal forces produce no net torque.
We can use the above to derive the rigid body equations of motion. The net force on each particle

is the sum of the internal constraint force Fci and the external force Fi. The acceleration r̈i of the ith
particle is

r̈i = d
dt

ṙi = d
dt
(v− r′i

∗
ω) = v̇− ṙ′i

∗
ω− r′i

∗
ω̇. (A–10)

Since each individual particle must obey Newton’s law f = ma, or equivalently ma− f = 0, we
have

mir̈i − Fi − Fci = mi(v̇− ṙ′i
∗
ω− r′i

∗
ω̇)− Fi − Fci = 0 (A–11)

for each particle.
To derive Ṗ = F =∑ Fi, we sum equation (A–11) over all the particles. We obtain∑

mi(v̇− ṙ′i
∗
ω− r′i

∗
ω̇)− Fi − Fci = 0. (A–12)

Breaking the large sum into smaller ones, ∑
mi(v̇− ṙ′i

∗
ω− r′i

∗
ω̇)− Fi − Fci =∑

miv̇−
∑

miṙ
′
i
∗
ω−

∑
mir
′
i
∗
ω̇−

∑
Fi −

∑
Fci =∑

miv̇−
(∑

miṙ
′
i

)∗
ω−

(∑
mir
′
i

)∗
ω̇−

∑
Fi −

∑
Fci =∑

miv̇−
(

d
dt

∑
mir
′
i

)∗
ω−

(∑
mir
′
i

)∗
ω̇−

∑
Fi −

∑
Fci = 0.

(A–13)
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Since we are in a center-of-mass coordinate system, equation (2–20) from section 2.6 tells us that∑
mir′i = 0, which also means that d

dt

∑
mir′i = 0. Removing terms with

∑
mir′i, and the term

∑
Fci

from the above equation yields ∑
miv̇−

∑
Fi = 0 (A–14)

or simply Mv̇ = Ṗ =∑ Fi as advertised.
To obtain L̇ = τ =∑ r′i × Fi, we again start with equation (A–11). Multiplying both sides by

r′i
∗ yields

r′i
∗mi(v̇− ṙ′i

∗
ω− r′i

∗
ω̇)− r′i

∗Fi − r′i
∗Fci = r′i

∗0 = 0. (A–15)

Summing over all the particles, we obtain∑
r′i
∗miv̇−

∑
r′i
∗miṙ

′
i
∗
ω−

∑
r′i
∗mir

′
i
∗
ω̇−

∑
r′i
∗Fi −

∑
r′i
∗Fci = 0. (A–16)

Since
∑

r′i
∗Fci = 0, we can rearrange this to obtain(∑

mir
′
i

)∗
v̇−

(∑
mir
′
i
∗ṙ′i
∗)
ω−

(∑
mir
′
i
∗r′i
∗)
ω̇−

∑
r′i
∗Fi = 0. (A–17)

Using
∑

mir′i = 0, we are left with

−
(∑

mir
′
i
∗ṙ′i
∗)
ω−

(∑
mir
′
i
∗r′i
∗)
ω̇−

∑
r′i
∗Fi− = 0 (A–18)

or, recognizing that
∑

r′i
∗Fi =

∑
r′i × Fi = τ,

−
(∑

mir
′
i
∗ṙ′i
∗)
ω−

(∑
mir
′
i
∗r′i
∗)
ω̇ = τ. (A–19)

We’re almost done now: if we refer back to the matrix defined by the “∗” notation, one can easily
verify the relation that the matrix −a∗a∗ is equivalent to the matrix (aT a)1− aaT where 1 is the
3× 3 identity matrix. (This relation is equivalent to the vector rule a× (b× c) = baT c− caT b.)
Thus ∑

−mir
′
i
∗r′i
∗ =

∑
mi((r

′
i
Tr′i)1− r′ir

′
i
T
) = I(t). (A–20)

Substituting into equation (A–19), this yields(∑
−mir

′
i
∗ṙ′i
∗)
ω+ I(t)ω̇ = τ. (A–21)

The above expression is almost acceptable, as it gives an expression for ω̇ in terms of τ, ex-
cept that it requires us to evaluate the matrix

∑
mir′i

∗ṙ∗i , which is as expensive as computing the
inertia tensor from scratch. We’ll use one last trick here to clean things up. Since ṙ′i = ω× r′i and
r′i
∗
ω = −ω× r′i, we can write∑

miṙ
′
i
∗r′i
∗
ω =

∑
mi(ω× r′i)

∗(−ω× r′i) =
∑
−mi(ω× r′i)× (ω× r′i) = 0. (A–22)
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Thus, we can add −∑miṙ′i
∗r′i
∗
ω = 0 to equation (A–21) to obtain(∑
−mir

′
i
∗ṙ′i
∗ −miṙ

′
i
∗r′i
∗)
ω+ I(t)ω̇ = τ. (A–23)

Finally, since

İ(t) = d
dt

∑
−mir

′
i
∗r′i
∗ =

∑
−mir

′
i
∗ṙ′i
∗ −miṙ

′
i
∗r′i
∗ (A–24)

we have

İ(t)ω+ I(t)ω̇ = d
dt
(I(t)ω)= τ. (A–25)

Since L(t) = I(t)ω(t), this leaves us with the final result that

L̇(t) = τ. (A–26)

Appendix B Quaternion Derivations

A formula for q̇(t) is derived as follows. Recall that the angular velocity ω(t) indicates that the body
is instantaneously rotating about the ω(t) axis with magnitude |ω(t)|. Suppose that a body were to
rotate with a constant angular velocity ω(t). Then the rotation of the body after a period of time 1t
is represented by the quaternion

[cos
|ω(t)|1t

2
, sin
|ω(t)|1t

2
ω(t)
|ω(t)|].

Let us compute q̇(t) at some particular instant of time t0. At times t0 + 1t (for small 1t), the
orientation of the body is (to within first order) the result of first rotating by q(t0) and then further
rotating with velocity ω(t0) for 1t time. Combining the two rotations, we get

q(t0 +1t) = [cos
|ω(t0)|1t

2
, sin
|ω(t0)|1t

2
ω(t0)
|ω(t0)| ] q(t0). (B–1)

Making the substitution t = t0 +1t, we can express this as

q(t) = [cos
|ω(t0)|(t− t0)

2
, sin
|ω(t0)|(t− t0)

2
ω(t0)
|ω(t0)|]q(t0). (B–2)

Let us differentiate q(t) at time t0. First, since q(t0) is a constant, let us differentiate

[cos
|ω(t0)|(t− t0)

2
, sin
|ω(t0)|(t− t0)

2
ω(t0)
|ω(t0)| ].

At time t = t0,

d
dt

cos
|ω(t0)|(t− t0)

2
= −|ω(t0)|

2
sin
|ω(t0)|(t− t0)

2

= −|ω(t0)|
2

sin 0 = 0.
(B–3)
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Similarly,

d
dt

sin
|ω(t0)|(t− t0)

2
= |ω(t0)|

2
cos
|ω(t0)|(t− t0)

2

= |ω(t0)|
2

cos 0 = |ω(t0)|
2

.

(B–4)

Thus, at time t = t0,

q̇(t) = d
dt

(
[cos
|ω(t0)|(t− t0)

2
, sin
|ω(t0)|(t− t0)

2
ω(t0)
|ω(t0)| ] q(t0)

)
= d

dt

(
[cos
|ω(t0)|(t− t0)

2
, sin
|ω(t0)|(t− t0)

2
ω(t0)
|ω(t0)| ]

)
q(t0)

= [0,
|ω(t0)|

2
ω(t0)
|ω(t0)|] q(t0)

= [0, 1
2ω(t0)] q(t0) = 1

2 [0, ω(t0)] q(t0).

(B–5)

The product [0, ω(t0)] q(t0) is abbreviated to the form ω(t0)q(t0); thus, the general expression for
q̇(t) is

q̇(t) = 1
2ω(t)q(t). (B–6)

Appendix C Some Miscellaneous Formulas

C.1 Kinetic Energy

The kinetic energy T of a rigid body is defined as

T =
∑

1
2 miṙ

T
i ṙi. (C–1)

Letting r′i = ri − x, we have ṙi = v(t)+ r′i
∗
ω. Thus

T =
∑

1
2 miṙ

T
i ṙi

=
∑

1
2 mi(v+ r′i

∗
ω)T(v+ r′i

∗
ω)

= 1
2

∑
miv

Tv+
∑

vT mir
′
i
∗
ω+ 1

2

∑
mi(r

′
i
∗
ω)T(r′i

∗
ω)

= 1
2v

T
(∑

mi

)
v+ vT

(∑
mir
′
i

)∗
ω+ 1

2ω
T
(∑

mi(r
′
i
∗
)

T
r′i
∗)
ω.

(C–2)

Using
∑

mir′i = 0 and (r′i
∗
)

T = −r′i
∗, we have

T = 1
2v

T Mv+ 1
2ω

T
(∑
−mir

′
i
∗r′i
∗)
ω = 1

2 (v
T Mv+ ωT Iω) (C–3)

since I = ∑−mir′i
∗r′i
∗ from appendix A. Thus, the kinetic energy can be decomposed into two

terms: a linear term 1
2v

T Mv, and an angular term 1
2ω

T Iω.
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C.2 Angular Acceleration

It is often necessary to compute ω̇(t). Since L(t) = I(t)ω(t), we know ω(t) = I−1(t)L(t). Thus,

ω̇(t) = İ−1(t)L(t)+ I−1(t)L̇(t). (C–4)

Since we know that L̇(t) = τ(t), let us consider İ−1(t). From equation (2–40),

I−1(t) = R(t)I−1
body R(t)T,

so

İ−1(t) = Ṙ(t)I−1
body R(t)T + R(t)I−1

body Ṙ(t)T . (C–5)

Since Ṙ(t) = ω(t)∗R(t),

Ṙ(t)T = (ω(t)∗R(t))T = R(t)T(ω(t)∗)T . (C–6)

Since ω(t)∗ is antisymmetric, (i.e. (ω(t)∗)T = −ω(t)∗),

Ṙ(t)T = −R(t)Tω(t)∗. (C–7)

This yields

İ−1(t) = Ṙ(t)I−1
body R(t)T + R(t)I−1

body(−R(t)Tω(t)∗)

= ω(t)∗R(t)I−1
body R(t)T − I−1(t)ω(t)∗

= ω(t)∗ I−1(t)− I−1(t)ω(t)∗.

(C–8)

Then

ω̇(t) = İ−1(t)L(t)+ I−1(t)L̇(t)

= (ω(t)∗ I−1(t)− I−1(t)ω(t)∗
)

L(t)+ I−1(t)L̇(t)

= ω(t)∗ I−1(t)L(t)− I−1(t)ω(t)∗L(t)+ I−1(t)L̇(t).

(C–9)

But since I−1(t)L(t)= ω(t), the first term, ω(t)∗ I−1(t)L(t) is equivalent toω(t)∗ω(t), orω(t)×ω(t),
which is zero. This leaves the final result of

ω̇(t) = −I−1(t)ω(t)∗L(t)+ I−1(t)L̇(t)

= −I−1(t)ω(t)× L(t)+ I−1(t)L̇(t)

= I−1(t)(L(t)× ω(t))+ I−1(t)L̇(t)

= I−1(t)(L(t)× ω(t)+ L̇(t)).

(C–10)
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We can see from this that even if no forces act, so that L̇(t) is zero, ω̇(t) can still be non-zero. (In fact,
this will happen whenever the angular momentum and angular velocities point in different directions,
which in turn occurs when the body has a rotational velocity axis that is not an axis of symmetry for
the body.)

C.3 Acceleration of a Point

Given a point of a rigid body with world space coordinate p(t), it is often necessary to compute p̈(t).
Let the body space coordinate that transforms at time t to p(t) be p0; then

p(t) = R(t)p0 + x(t)

If we let r(t) = p(t)− x(t), then

ṗ(t) = Ṙ(t)p0 + ẋ(t) = ω(t)∗R(t)p0 + v(t)

= ω(t)× (R(t)p0 + x(t)− x(t))+ v(t)

= ω(t)× (p(t)− x(t))+ v(t)

= ω(t)× r(t)+ v(t).

(C–11)

Then

p̈(t) = ω̇(t)× r(t)+ ω(t)× ṙ(t)+ v̇(t)

= ω̇(t)× r(t)+ ω(t)× (ω(t)× r(t))+ v̇(t).
(C–12)

We can interpret this as follows. The first term, ω̇(t)× r(t) is the tangential acceleration of the point;
that is, ω̇(t)× r(t) is the acceleration perpendicular to the displacement r(t) as a result of the body
being angularly accelerated. The second term, ω(t)× (ω(t)× r(t)) is the centripetal acceleration of
the point; this centripetal acceleration arises because the body is rigid, and points on the body must
rotate in a circular orbit about the center of mass. The last term, v̇(t) is the linear acceleration of the
point due to the linear acceleration of the center of mass of the body.

Appendix D Resting Contact Derivations

If you’re determined to implement resting contact in your simulator, you’ll need the derivations and
the code in this appendix. This is probably not a fun appendix to work through; then again, this
wasn’t a fun appendix to write! The derivations in here are somewhat terse, but the code at the end
of the appendix will hopefully make things clearer.

D.1 Derivations

We need to express d̈i(t0) in terms of all the unknown fi’s. It will turn out that we’ll be able to write
each d̈i(t0) in the form

d̈i(t0) = ai1 f1 + ai2 f2 + · · · + ain fn + bi. (D–1)
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Given i and j, we need to know how d̈i(t0) depends on f j, that is, we need to know aij. Also, we
need to compute the constant term bi.

Let’s start by determining aij and ignoring the constant part bi. We’ll assume the ith contact
involves two bodies A and B. From equation (9–4), we can write d̈i(t0) as

d̈(t0) = n̂i(t0) · ( p̈a(t0)− p̈b(t0))+ 2 ˙̂ni(t0) · ( ṗa(t0)− ṗb(t0)) (D–2)

where pa(t0)= pi = pb(t0) is the contact point for the ith contact at time t0. The term 2 ˙̂ni(t0) · ( ṗa(t0)− ṗb(t0))
is a velocity dependent term (i.e. you can immediately calculate it without knowing the forces
involved), and is part of bi, so we’ll ignore this for now.

So we only need to know how p̈a(t0) and p̈b(t0) depend on f j, the magnitude of the jth contact
force. Consider the jth contact. If body A is not one of the bodies involved in the jth contact, then
p̈a(t0) is independent of f j, because the jth contact force does not act on body A. Similarly, if B is
also not one of the two bodies involved in the jth contact, then p̈b(t0) is also independent of f j. (For
example, in figure 26, the acceleration of the contact points at the first contact is completely unaf-
fected by the contact force acting at the fifth contact. Thus, d̈1(t0)would be completely independent
of f5. Conversely, d̈5(t0) is completely independent of f1.)

Suppose though that in the jth contact, body A is involved. For definiteness, suppose that in the
jth contact, a force of jn̂ j(t0) acts on body A, as opposed to − jn̂ j(t0). Let’s derive how p̈a(t0) is
affected by the force jn̂ j(t0) acting on A.

From equation (C–12), we can write

p̈a(t) = v̇a(t)+ ω̇a(t)× ra(t)+ ωa(t)× (ωa(t)× ra(t)) (D–3)

where ra(t) = pa(t)− xa(t), and xa(t), va(t), and ωa(t) are all the variables associated with body
A. We know that v̇a(t) is the linear acceleration of body A, and is equal to the total force acting on
A divided by the mass. Thus, a force of jn̂ j(t0) contributes

f jn̂ j(t0)
ma

= f j
n̂ j(t0)

ma
(D–4)

to v̇a(t) and thus p̈a(t). Similarly, consider ω̇a(t), from equation (C–10):

ω̇a(t) = I−1
a (t)τa(t)+ I−1

a (t)(La(t)× ωa(t))

where τa(t) is the total torque acting on body A. If the jth contact occurs at the point p j, then the
force jn̂ j(t0) exerts a torque of

(p j − xa(t0))× f jn̂ j(t0).

Thus, the angular contribution to p̈a(t0) is

f j
(

I−1
a (t0)

(
(p j − xa(t0))× n̂ j(t0)

)) × ra. (D–5)

The total dependence of p̈a(t0) on f j is therefore

f j

(
n̂ j(t0)

ma
+ ( I−1

a (t0)
(
(p j − xa(t0))× n̂ j(t0)

)) × ra

)
.
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Now, if a force of− f jn̂(t0) had acted on A instead, we’d get the same dependence, but with a minus
sign in front of f j. Clearly, p̈b(t0) depends on f j in the same sort of manner. Once we compute
how p̈a(t0) and p̈b(t0) depend on f j, we combine the results together and take the dot product with
n̂i(t0), to see how d̈i(t0) depends on f j. This gives us aij. Confused? See the code below.

We still need to compute bi. We know that d̈i(t0) contains the constant term

2 ˙̂ni(t0) · ( ṗa(t0)− ṗb(t0)).

But we also have to take into account the contributions to p̈a(t0) and p̈b(t0) due to known ex-
ternal forces such as gravity, as well as the force-independent terms ωa(t0) × (ωa(t0) × ra) and
(I−1

a (t0)(Ła(t0)× ωa(t0)))× ra. If we let the net external force acting on A be Fa(t0), and the net
external torque be τa(t0), then from equations (D–4) and (D–5), we get that Fa(t0) contributes

Fa(t0)
ma

and that τa(t0) contributes

(
I−1
a (t0)τa(t0)

) × ra.

Thus, the part of p̈a(t0) that is independent from all the f j’s is

Fa(t0)
ma
+ ( I−1

a (t0)τa(t0)
) × ra +ωa(t0)× (ωa(t0)× ra)+

(
I−1
a (t0)(Ła(t0)× ωa(t0))

) × ra

and similarly for p̈b(t0). To compute bi, we combine the constant parts of p̈a(t0), p̈b(t0), dot with
n̂i(t0), and add the term 2 ˙̂ni(t0) · ( ṗa(t0)− ṗb(t0)).
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D.2 Code

Here’s the code to implement the above derivations. Let’s start by computing the constant bi terms.

/* return the derivative of the normal vector */

triple compute_ndot(Contact *c)

{

if(c->vf) /* vertex/face contact */

{

/* The vector `n' is attached to B, so... */

return c->b->omega � c->n;

}

else

{

/* This is a little trickier. The unit normal `n' is

n̂ = ea × eb
‖ea × eb‖.

Differentiating n̂ with respect to time is left

as an exercise... but here's some code */

triple eadot = c->a->omega � ea, /* ėa */

ebdot = c->b->omega � eb; /* ėb */

n1 = ea * eb,

z = eadot * eb + ea * ebdot;

double l = length(n1);

n1 = n1 / length; /* normalize */

return (z - ((z * n) * n)) / l;

}

}

void compute_b_vector(Contact contacts[], int ncontacts, vector &b)

{

for(int i = 0; i < ncontacts; i++)

{

Contact *c = &contacts[i];

Body *A = c->a,

*B = c->b;

triple n = c->n, /* n̂i(t0) */

ra = c->p - A->x, /* p− xa(t0) */

rb = c->p - B->x; /* p− xb(t0) */

/* Get the external forces and torques */

triple f_ext_a = A->force,

f_ext_b = B->force,

t_ext_a = A->torque,
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t_ext_b = B->torque;

triple a_ext_part, a_vel_part,

b_ext_part, b_vel_part;

/* Operators: `�' is for cross product, `*', is for

dot products (between two triples), or matrix-vector

multiplication (between a matrix and a triple). */

/* Compute the part of p̈a(t0) due to the external

force and torque, and similarly for p̈b(t0). */

a_ext_part = f_ext_a / A->mass +

((A->Iinv * t_ext_a) � ra),

b_ext_part = f_ext_b / B->mass +

((B->Iinv * t_ext_b) � rb);

/* Compute the part of p̈a(t0) due to velocity,

and similarly for p̈b(t0). */

a_vel_part = (A->omega � (A->omega � ra)) +

((A->Iinv * (A->L * A->omega)) � ra);

b_vel_part = (B->omega � (B->omega � rb)) +

((B->Iinv * (B->L * B->omega)) � rb);

/* Combine the above results, and dot with n̂i(t0) */

double k1 = n * ((a_ext_part + a_vel_part) -

(b_ext_part + b_vel_part));

triple ndot = compute_ndot(c);

/* See section 8 for `pt_velocity' definition */

double k2 = 2 * ndot * (pt_velocity(A, c->p) -

pt_velocity(B, c->p));

b[i] = k1 + k2;

}

}

Computing the aij terms is a little more tricky, because we have to keep track of how the jth
contact force affects the ith contact point. The following routine is not the most efficient way to do
things, because with a good data structure, you can tell in advance which of the aij’s are going to
be zero. Still unless you’re working with really huge numbers of contacts, not too much extra work
will be done.
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void compute_a_matrix(Contact contacts[], int ncontacts, bigmatrix &a)

{

for(int i = 0; i < ncontacts; i++)

for(int j = 0; j < ncontacts; j++)

a[i,j] = compute_aij(contacts[i], contacts[j]);

}

double compute_aij(Contact ci, Contact cj)

{

/* If the bodies involved in the ith and jth contact are

distinct, then aij is zero. */

if((ci.a != cj.a) && (ci.b != cj.b) &&

(ci.a != cj.b) && (ci.b != cj.a))

return 0.0;

Body *A = ci.a,

*B = ci.b;

triple ni = ci.n, /* n̂i(t0) */

nj = cj.n, /* n̂ j(t0) */

pi = ci.p, /* ith contact point location */

pj = cj.p, /* jth contact point location */

ra = pi - A->x,

rb = pi - B->x;

/* What force and torque does contact j exert on body A? */

triple force_on_a = 0,

torque_on_a = 0;

if(cj.a == ci.a)

{

/* force direction of jth contact force on A */

force_on_a = nj;

/* torque direction */

torque_on_a = (pj - A->x) � nj;

}

else if(cj.b == ci.a)

{

force_on_a = - nj;

torque_on_a = (pj - A->x) � nj;

}

/* What force and torque does contact j exert on body B? */

triple force_on_b = 0,

torque_on_b = 0;
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if(cj.a == ci.b)

{

/* force direction of jth contact force on B */

force_on_b = nj;

/* torque direction */

torque_on_b = (pj - B->x) � nj;

}

else if(cj.b == ci.b)

{

force_on_b = - nj;

torque_on_b = (pj - B->x) � nj;

}

/* Now compute how the jth contact force affects the linear

and angular acceleration of the contact point on body A */

triple a_linear = force_on_a / A->mass,

a_angular = (A->Iinv * torque_on_a) * ra;

/* Same for B */

triple b_linear = force_on_b / B->mass,

b_angular = (B->Iinv * torque_on_b) * rb;

return ni * ((a_linear + a_angular) - (b_linear + b_angular));

}
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