
An Introduction to Physically Based Modeling:
Particle System Dynamics

Andrew Witkin
Robotics Institute
Carnegie Mellon University

Please note: This document is 1997 by Andrew Witkin. This chapter may be
freely duplicated and distributed so long as no consideration is received in return,
and this copyright notice remains intact.

Particle System Dynamics

Andrew Witkin
School of Computer Science
Carnegie Mellon University

1 Introduction

Particles are objects that have mass, position, and velocity, and respond to forces, but that have no
spatial extent. Because they are simple, particles are by far the easiest objects to simulate. Despite
their simplicity, particles can be made to exhibit a wide range of interesting behavior. For example, a
wide variety of nonrigid structures can be built by connecting particles with simple damped springs.
In this portion of the course we cover the basics of particle dynamics, with an emphasis on the
requirements of interactive simulation.

2 Phase Space

The motion of a Newtonian particle is governed by the familiarf = ma, or, as we will write it here,
ẍ = f/m. This equation differs from the canonical ODE developed in the last chapter because it
involves a second time derivative, making it asecond orderequation. To handle a second order
ODE, we convert it to a first-order one by introducing extra variables. Here we create a variablev

to represent velocity, giving us a pair of coupled first-order ODE’sv̇ = f/m, ẋ = v. The position
and velocityx andv can be concatenated to form a 6-vector. This position/velocity product space is
calledphase space.In components, the phase space equation of motion is [ẋ1, ẋ2, ẋ3, v̇1, v̇2, v̇3] =
[v1, v2, v3, f1/m, f2/m, f3/m], which, assuming force is a function ofx andt , matches our canon-
ical form ẋ = f(x, t). A system ofn particles is described byn copies of the equation, concatenated
to form a 6n-long vector. Conceptually, the whole system may be regarded as a point moving
through 6n-space.

We can still visualize the phase-space ODE in terms of a planar vector field, though only for a
1D particle, by letting one axis represent the particle’s position and the other, its velocity. If each
point in the phase plane represents a pair [x, v], then the derivative vector is [v, f/m]. All the ideas
of integral curves, polygonal approximations, and so forth, carry over intact to phase space. Only
the interpretation of the trajectory is changed.

3 Basic Particle Systems

In implementing particle systems, we want to maintain two views of our model: from “outside,”
especially from the point of view of the ODE solver, the model should look like a monolith—a
point in a high-dimensional space, whose time derivative may be evaluated at will. From within,
the model should be a structured—a collection of distinct interacting objects. This duality will be
recurring theme in the course.

C1

A particle simulation involves two main parts—the particles themselves, and the entities that
apply forces to particles. In this section we consider just the former, deferring until the next section
the specifics of force calculation. Our goal here is to describe structures that could represent a
particle and a system of particles, and to show in a concrete way how to implement the generic
operations required by ODE solvers.

Particles have mass, position, and velocity, and are subjected to forces, leading to an obvious
structure definition, which in C might look like:

typedef struct{
float m; /* mass */
float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */

} *Particle;

In practice, there would probably be extra slots describing appearance and other properties. A
system of particles could be represented in an equally obvious way, as

typedef struct{
Particle *p; /* array of pointers to particles */
int n; /* number of particles */
float t; /* simulation clock */

} *ParticleSystem;

Assume that we have a functionCalculateForces() that, called on a particle system, adds
the appropriate forces into each particle’sf slot. Don’t worry for know about what that function
actually does. Then the operations that comprise the ODE solver interface could be written as
follows:

/* length of state derivative, and force vectors */
int ParticleDims(ParticleSystem p){

return(6 * p->n);
};

/* gather state from the particles into dst */
int ParticleGetState(ParticleSystem p, float *dst){

int i;
for(i=0 ; i < p->n; i++){

*(dst++) = p->p[i]->x[0];
*(dst++) = p->p[i]->x[1];
*(dst++) = p->p[i]->x[2];
*(dst++) = p->p[i]->v[0];
*(dst++) = p->p[i]->v[1];
*(dst++) = p->p[i]->v[2];

}
}

An Introduction to Physically-Based Modeling C2 Witkin/Baraff/Kass

/* scatter state from src into the particles */
int ParticleSetState(ParticleSystem p, float *src){

int i;
for(i=0 ; i < p->n; i++){
p->p[i]->x[0] = *(src++);
p->p[i]->x[1] = *(src++);
p->p[i]->x[2] = *(src++);
p->p[i]->v[0] = *(src++);
p->p[i]->v[1] = *(src++);
p->p[i]->v[2] = *(src++);
}

}

/* calculate derivative, place in dst */
int ParticleDerivative(ParticleSystem p, float *dst){

int i;
Clear_Forces(p); /* zero the force accumulators */
Compute_Forces(p); /* magic force function */

for(i=0 ; i < p->n; i++){
(dst++) = p->p[i]->v[0]; / xdo t = v */
*(dst++) = p->p[i]->v[1];
*(dst++) = p->p[i]->v[2];
(dst++) = p->p[i]->f[0]/m; / vdot = f/m */
*(dst++) = p->p[i]->f[1]/m;
*(dst++) = p->p[i]->f[2]/m;

}
}

Having defined these operations, and assuming some utility routines and temporary vectors, an
Euler solver be written as

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp2); /* update state */
p->t += DeltaT; /* update time */

}

The structures representing a particle and a particle system are shown visually in figures 1 and
2. The interface between a particle system and a differential equation solver is illustrated in figure
3.

4 Forces

All particles are essentially alike. In contrast, the objects that give rise to forces are heterogeneous.
As a matter of implementation, we would like to make it easy to extend the set of force-producing

An Introduction to Physically-Based Modeling C3 Witkin/Baraff/Kass

Particle Structure

x
v
f
m

Position

Velocity

Force Accumulator

mass

Position in
Phase Space

Particle Systems

x
v
f
m

x
v
f
m

x
v
f
m

x
v
f
m

x
v
f
m

particles n timeparticles n time

…
x
v
f
m

Figure 1: A particle may be represented by a structure containing its position, velocity, force, and
mass. The six-vector formed by concatenating the position and velocity comprises the point’s posi-
tion in phase space.

Figure 2: A bare particle system is essentially just a list of particles.

An Introduction to Physically-Based Modeling C4 Witkin/Baraff/Kass

Solver Interface

6n
x1 v1 x2 v2 xn vn

v1
f1
m1

v2
f2
m2

vn
fn
mn

particles n timeparticles n time

Deriv Eval

Get/Set State

Dim(State)

Particle System

Diffeq Solver

Figure 3: The relation between a particle system and a differential equation solver.

objects without modifying the basic particle system model. We accomplish this by having the
particle system maintain a list of force objects, each of which has access to any or all particles,
and each of which “knows” how to apply its own forces. TheCalculateforces function, used
above, simply traverses the list of force structures, calling each of theirApplyForce functions,
with the particle system itself as sole argument. This leaves the real work of force calculation to the
individual objects. See figures 4 and 5

Forces can be grouped into three broad categories:

• Unary forces, such as gravity and drag, that act independently on each particle, either exerting
a constant force, or one that depends on one or more of particle position, particle velocity, and
time.

• n-ary forces, such as springs, that apply forces to a fixed set of particles.

• Forces of spatial interaction, such as attraction and repulsion, that may act on any or all pairs
of particles, depending on their positions.

Each of these raises somewhat different implementation issues. We will now consider each in
turn.

4.1 Unary forces

Gravity. Global earth gravity (as opposed to particle-particle attraction) is trivial to implement.
The gravitational force on each particle isf = mg, whereg is a constant vector (presumably pointing
down) whose magnitude is the gravitational constant. If all particles are to feel the same gravity,
which they need not in a simulation, then gravitational force is applied simply by traversing the

An Introduction to Physically-Based Modeling C5 Witkin/Baraff/Kass

Particle Systems, with forces

x
v
f
m

x
v
f
m

…
x
v
f
m

particles n time forces nforces

… FF F F

A list of force
objects to invoke

Deriv Eval Loop

… FF F FF F F
Clear Force
Accumulators Invoke apply_force

functions

x
v
f
m

x
v
f
m

x
v
f
m

x
v
f
m

…
x
v
f
m

x
v
f
m

x
v
f
m

x
v
f
m

x
v
f
m

x
v
f
m

…
x
v
f
m

x
v
f
m

Return [v, f/m,…]
to solver.

1

2

3

Figure 4: A particle system augmented to contain a list offorce objects.Each force object points at
the particles that it influences, and contains a function that knows how to compute the force on each
affected particle.

Figure 5: The derivative evaluation loop for a particle system with force objects.

An Introduction to Physically-Based Modeling C6 Witkin/Baraff/Kass

A Force Object: Viscous Drag

fdrag = -kdragv

x
v
f
m

k

apply_funp
sys

p->f -= F->k * p->v

F

Force Law: Particle system

Figure 6: Schematic view of a force object implementing viscous drag. The object points at the
particle to which drag is being applied, and also points to a function that implements the force law
for drag.

system’s particle list, and adding the appropriate force into each particles force accumulator. Gravity
is basic enough that it could reasonably be wired it into the particle system, rather than maintaining
a distinct “gravity object.”
Viscous Drag. Ideal viscous drag has the formf = −kdv, where the constantkd is called the
coefficient of drag.The effect of drag is to resist motion, making a particle gradually come to rest
in the absence of other influences. It is highly reccommended that at least a small amount of drag
be applied to each particle, if only to enhance numerical stability. Excessive drag, however, makes
it appear that the particles are floating in molasses. Like gravity, drag can be implemented as a
wired-in special case. A force object implementing viscous drag is shown in figure 6.

4.2 n-ary forces

Our canonical example of a binary force is a Hook’s law spring. In a basic mass-and-spring simula-
tion, the springs are the structural elements that hold everything together. The spring forces between
a pair of particles at positionsa andb are

fa = −
[
ks(|l| − r)+ kd

l̇ · l
|l|
]

l
|l| , fb = −fa, (1)

wherefa andfb are the forces ona andb, respectively,l = a− b, r is the rest length,ks is a spring
constant, andkd is a damping constant.̇l, the time derivative ofl, is justva − vb, the difference
between the two particles’ velocities.

In equation 1, the spring force magnitude is proportional to the difference between the actual
length and the rest length, while the damping force magnitude is proportional toa andb’s speed of

An Introduction to Physically-Based Modeling C7 Witkin/Baraff/Kass

Damped Spring

Force Law:

x
v
f
m

F
x
v
f
m

ksp2

p1 kd

apply_fun

sys

Particle system
 f 1 = - ks()∆x - r + kd

∆v⋅∆x
∆x

 ∆x
∆x

 f 2 = -f1

Figure 7: A schematic view of a force object implementing a damped spring that attaches particles
p1 and p2.

approach. Equal and opposite forces act on each particle, along the line that joins them. The spring
damping differs from global drag in that it acts symmetrically on the two particles, having no effect
on the motion of their common center of mass. Later, we will learn a general procedure for deriving
this kind of force expression.

A damped spring can be implemented straightforwardly as a structure that points to the pair of
particles it connects. The code that applies the forces according to equation 1 fetches the positions
and velocities from the two particle structures, performs its calculations, and sums the results into
the particles’ force accumulators. In an object-oriented environment, this operation would be im-
plemented as a generic function. In bare C, the force object would contain a pointer to an ordinary
C function. A force object for a damped spring is shown in figure 7

4.3 Spatial Interaction Forces

A spring applies forces to a fixed pair of particles. In contrast, spatial interaction forces may act
on any pair (or n-tuple) of particles. For local interaction forces, particles begin to interact when
they come close, and stop when they move apart. Spatially interacting particles have been used
as approximate models for fluid behavior, and large-scale particle simulations are widely used in
physics [1]. A complication in large-scale spatial interaction simulations is that the force calculation
is O(n2) in the number of particles. If the interactions are local, efficiency may be improved through
the use of spatial buckets.

An Introduction to Physically-Based Modeling C8 Witkin/Baraff/Kass

5 User Interaction

An interactive mass-and-spring simulation is an ideal first implementation project in physically
based modeling, because such simulations are relatively easy to implement, and because interactive
performance can be acheived even on low-end computers. The main ingredients of a basic mass-
and-spring simulation are model construction and model manipulation. Model construction can be
a simple matter of mouse-clicking to create particles and connect them with springs. Interactive ma-
nipulation requires no more than the ability to grab and drag mass points. Although there is barely
any difference mathematically between 2D and 3D simulations, supporting 3D user interaction is
more challenging.

Most of the implementation issues are standard, and will not be dealt with here. However, we
give a few useful tips:
Controlled particles. Particles whose motion isnot governed by forces provide a number of
interesting possibilities. Fixed particles serve as anchors and pivots. Particles whose motion is
procedurally controlled (e.g. moving on a circle) can provide dynamic elements such as motors. All
that need be done to implement controlled particles is to prevent the ODE solver from updating their
positions. One subtle point, though, is that the velocities as well as positions of controlled particles
must be maintained at their correct values. Otherwise, velocity-dependent forces such as damped
spring forces will behave incorrectly.
Structures. A variety of interesting non-rigid structures—beams, blocks, etc.—can be built out
of masses and springs. By allowing several springs to meet at a single particle, these pieces can
be connected with a variety of joints. With some experimentation and ingenuity it is possible to
construct entire mechanisms, complete with motors, out of masses and springs. The topic of regular
mass-and-spring lattices as an approximation to continuum models will be discussed later.[2]
Mouse springs. The simplest way to manipulate mass-and-spring models is to use the mouse
directly to control the positions of grabbed particles. However, this method is not recommended
because very rapid mouse motions can lead to stability problems. These problems can be avoided
by coupling the grabbed particle to the mouse position using a spring.

6 Energy Functions

Generically, the position-, velocity-, and time-dependent formulae that we use to calculate forces
are known asforce laws.Forces laws are not laws of physics. Rather, they form part of our descrip-
tion of the system we are modeling. Some of the standard ones, like linear springs and dashpots,
represent time-honored idealizations of the behavior of real materials and structures. However, if
we wanted to accurately model the behavior of a pair of particles connected by, say, a strand of
gooey taffy, the resulting equations would probably be even messier than the taffy.

Often, we can regard force laws as things wedesignto hold things in a desired configuration—
for instance a spring with nonzero rest length makes the points it connects “want” to be a fixed
distance apart. In many cases it is possible to specify the desired configuration by giving a function
that reaches zero exactly when things are “happy.” We can call this kind of function abehavior
function.For example, a behavior function that says that two particlesa andb should be in the same
place is justC(a, b) = a− b (which is a vector expression each of whose components is supposed
to vanish.) If instead we wanta andb to be distancer apart, then a suitable behavior function is
C(a, b) = |a− b| − r (which is a scalar expression.)

Later on, when we study constrained dynamics, we will use this kind of function as a way to

An Introduction to Physically-Based Modeling C9 Witkin/Baraff/Kass

specify constraints, and we will consider in detail the problem of maintaining such constraints ac-
curately. For now, we will be content to impose forces that pull the system toward the desired state,
but that compete with other forces. These energy-based forces can be used to impose approximate,
sloppy constraints. However, attempting to make them accurate by increasing the spring constant
leads to numerical instability.[3]

Converting a behavior functionC(x1 . . . , xn) into a force law is a pure cookbook procedure. We
first define a scalar potential energy function

E = ks

2
C · C,

whereks is a generalized stiffness constant. Since the force due to a scalar potential is minus the
energy gradient, the force on particlexi due toC is

f i = −∂E

∂xi
= −ksC

∂C
∂xi .

In generalC is a vector, and this expression denotes its product with the transpose of theJacobian
matrix∂C/∂xi .We will look much more closely at this kind of expression when we study constraint
methods, and in particular Lagrange multipliers. For now, it is sufficent to think of the forcesfi as
generalized spring forces that attract the system to states that satisfyC = 0. When a behavior
function depends on a number of particles’ positions, we get a different force expression for each
by usingC’s derivative with respect to that particle.

The force we just defined isn’t quite the one we want: in the absence of any damping, this
conservative force will cause the system to oscillate aboutC = 0. To add damping, we modify the
force expression to be

f i = (−ksC− kdĊ)
∂C
∂xi

, (2)

wherekd is a generalized damping constant, andĊ is the time derivative ofC. Note that when you
derive expressions foṙC, you will be using the fact thaṫxi = vi . So, in a trivial case, ifC = x1−x2,
it follows thatĊ = v1− v2.

As an extremely simple example, we takeC = x1− x2, which wants the points to coincide. We
have

∂C
∂x1
= I ,

∂C
∂x2
= −I ,

whereI is the identity matrix. The time derivative is

Ċ = v1− v2.

So, substituting into equation 2, we have

f1 = −ks(x1− x2)− kd(v1− v2), f2 = ks(x1− x2)+ kd(v1− v2),

which is just the force law for a damped zero-rest-length spring.
As another example, we use the behavior function

C = |l| − r ,

wherel = x1− x2, which says the two points should be distancer apart. Its derivative w.r.t.l is

∂C

∂ l
= l
|l| ,

An Introduction to Physically-Based Modeling C10 Witkin/Baraff/Kass

a unit vector in the direction ofl. Then, sincel = x1− x2,

∂C

∂x1
= ∂C

∂ l
,

∂C

∂x2
= −∂C

∂ l
.

The time derivative of is

Ċ = l · l̇
|l| =

l · (v1− v2)

|l| .

These expressions are then substituted into the general expression of equation 2 to get the forces.
You should verify that this produces the damped spring force of equation 1.

7 Particle/Plane Collisions and Contact

The general collision and contact problem is difficult, to say the least. Later in the course we will
examine rigid body collision and contact. Here we only consider, in bare bones form, the simplest
case of particles colliding with a plane (e.g. the ground or a wall.) Even these simple collision
models can add significant interest to an interactive simulation.

7.1 Detection

There are two parts to the collision problem: detecting collisions, and responding to them. Although
general collision detection is hard, particle/plane collision detection is trivial. IfP is a point on the
plane, andN is a normal, pointinginside(i.e. on the legal side of the barrier,) then we need only
test the sign of(X −P) ·N to detect a collision of pointX with the plane. A value greater than zero
means it’s inside, less than zero means it’s outside (where it isn’t allowed to be) and zero means it’s
in contact.

If after an ODE step a collision is detected, theright thing to do is to solve (perhaps by linear
interpolation between the old and new positions) for the instant of contact, and roll back the whole
system to that time. A less accurate but easier alternative is just to displace the point that has
collided.

7.2 Response

To describe collision response, we need to partition velocity and force vectors into two orthogonal
components, one normal to the collision surface, and the other parallel to it. IfN is the normal to
the collision plane, then thenormal componentof a vectorx is xn = (N · x)x, and thetangential
componentis xt = x− xn.

The simplest collision to consider is an elastic collision without friction. Here, the normal
component of the particle’s velocity is negated, whereafter the particle goes its merry way. In an
inelastic collision, the normal velocity component is instead multiplied by−r , wherer is a constant
between zero and one, called thecoefficient of restitution.At r = 0, the particle doesn’t bounce at
all, andr = .9 is a superball.

7.3 Contact

If a particle is on the collision surface, with zero normal velocity, then it is incontact.If a particle is
pushedinto the contact plane (N · f < 0) acontact forcefc = −(N · f)f is exerted, exactly canceling

An Introduction to Physically-Based Modeling C11 Witkin/Baraff/Kass

the normal component off . However, if the applied force pointsawayfrom the contact plane, no
contact force is exerted (unless the surface is sticky,) the particle begins to accelerate away from the
surface, and contact is broken.

In the very simplest linear friction model, the frictional force is−k f (−f · N)vt , a drag force
that acts in the tangential direction, with magnitude proportional to the normal force. To model a
perfectly non-slippery surface,vt is simply zeroed.

References

[1] R.W Hocknew and J.W. Eastwood.Computer Simulation Using Particles. Adam Hilger, New
York, 1988.

[2] Gavin S. P. Miller. The motion dynamics of snakes and worms.Computer Graphics, 22:169–
178, 1988.

[3] Andrew Witkin, Kurt Fleischer, and Alan Barr. Energy constraints on parameterized models.
Computer Graphics, 21(4):225–232, July 1987.

An Introduction to Physically-Based Modeling C12 Witkin/Baraff/Kass

