
8 

Data Exchange 

The same data might sometimes be needed at different levels of the 
system. For instance, some output data (or different representations 
thereof) might reside inside the graphics system, inside the UIHS and 
inside the application. This is done for efficiency reasons, i.e. 
tc minimise data exchange and data transformations. (Compare with 
traditional ncache-ing"). However, modification of data at a lower 
level must now also lead to �odification of the corresponding data at 
the higher levels. This can be done via properly controlled shared 
access mechanisms. Alternatively, the higher levels might have to 
inspect the �ata at the lower levels and deduct updates from there 
(via an inverse transformation). 

Interaction Prinitives 

It would be very helpful to the interaction designer if there existed 
·standard interaction primitives" that were very well suited for 
building complex user interfaces. The abstractions (LID's) that 
exist in current graphics systems were mainly designed to enable 
portability. They are considered inappropriate for building user 
interfaces. It is unlikely that these interaction primitives can be 
put on top of a graphics system. However, they might merely extend 
the GS (and as such share the physical device drivers). An example 
of such abstract interaction primitive is a "rubberband" function. 
An appropriate set of these primitives has not yet been defined. 

5. REFERENCES 

Anson E (1982) The device model of interaction. Proceedings of 
SIGGRAPH 82. Computer Graphics 3:107-114 

Borufka HG, Kuhlmann HW, ten Hagen PJW (1982) Dialogue cells: a 
method for defining interactions. IEEE CG&A, July:25-33 

Herman I, Krammer G, Tolnay-Knefely T, Vincze A (1984) Picture book 
about user interface management and associated representation 
kernels. Proceedings of this workshop 

Kamran A (1984) Issues pertaining to the 
interaction handler. proceedings of this 

Matthys J (1984) The input tool model 
Proceedings of this workshop 

design of the abstract 
workshop 

a personal experience. 

Pfaff G (1983) Construction of operator interfaces based on logical 
input devices. Acta Informatica 19:151-166 

Strubbe HJ (1984) Components of interactive 
Proceedings of this workshop 

applications. 

ten Hagen PJW (1984) The relation between a UIMS and an application. 
Separate Subgroup report. Proceedings of this workshop 

Van den Bos J, Plasmeijer MJ, Hartel P (1983) Input-Output tools: a 
language facility for interactive and real-time systems. IEEE 
Trans. Software Eng. 3:247-259 

Report on Dialogue Specification Tools 

M. Green 

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada 

INTRODUCTION 

One of the goals of User Interface Management Systems (UIMS) is the 
automatic (or semi-automatic) construction of user interfaces. In 
order to accomplish this a description of the user interface to be 
implemented must be available. This report addresses three questions 
related to user interface descriptions. These questions are: what 
user interface descriptions are required to automatically produce a 
user interface, how do these descriptions relate to the human factors 
of user interfaces, and how can the existing user interface descrip­
tion techniques be classified? In order to address these questions 
an abstract model of a UIMS has been developed. This model does not 
represent how a UIMS should be' structured or implemented, instead it 
presents the logical components that must appear in a UIMS. Each of 
these components has a different function, and different description 
techniques are required for each one. The logical model of a UIMS is 
shown in fig. 1. This model is similar to ones proposed by Edmonds 
[Edmonds 1982], Green [Green 1984], and Olsen [Olsen 1984]. Each of 
the components of this model will now be discussed. 

1 r-- T"I---
I.presentation 1 1 Dialogue 1 1 Application 

USER <_>1 1<---->1 Control 1<---->1 Interface 

1 I I I I Model 

1 1 1 1 1 

1 1 1 1 .LI 
__ 

� 
1 
1 
1 

1 1 1 

-----------<---------r-T--------<----------
_1_1 

Fig, I Logical model of a UlMS 

The presentation component is responsible for the external presenta­
tion of the user interface. This component generates the images that 
appear on the display screen, and reads the physical input devices, 
converting the raw input data into the form required by the other 
components in the user interface. The user interface employs an 
abstract representation for the input and output data. This 
representation consists of a type or name that identifies the kind of 



10 

data, and the collection of values that define the data item. This 
representation is similar to that used to represent tokens in a com­
piler {Aho and Ullman 1977]. Por this reason the term token is used 
for the chunks of information handled by the UIMS. The main purpose 
of the presentation component is to translate between the external 
physical representation of the tokens, and their internal abstract 
representation. In most cases this translation is a simple one-to­
one mapping. 

The external-internal mapping can be viewed as a dictionary, with one 
entry for each of the external and internal data items. This entry 
indicates how the token is to be translated. The presentation com­
ponent has no control over the contents of the dictionary, it cannot 
change the external-internal mapping. The dictionary can only be 
changed by the dialogue control component. The dictionary is a gen­
eralization of the physical/logical device bindings that appear in 
some graphics packages. In terms of Foley's language model (Foley 
and Van Dam 1982] the presentation component deals with the lexical 
aspects of the user interface. 

The dialogue control component defines the structure of the dialogue 
between the user and the application program. This component 
receives a linear Sequence of input tokens from the presentation com­
ponent, and a linear sequence of output tokens from the application. 
Based on these two sequences of tokens the dialogue control component 
determines the structure of the interaction, and routes the tokens to 
their appropriate destinations. The dialogue control component can 
be viewed as the mediator between the user and the applications pro­
gram. The user, through the presentation component, makes requests 
and supplies data to the application program. The input tokens 
representing these requests and data are examined by dialogue con­
trol, and routed to the appropriate routines in the applications pro­
gram. Similarly the application program generates requests for data 
and answers to the user requests. The dialogue control component 
must channel these output tokens to the appropriate parts of the 
presentation component. 

Unlike the presentation component, the dialogue control component 
must maintain a state and have control over it. The actions per­
formed by this component will usually depend upon the context of the 
dialogue, therefore, any notations for it must be able to handle 
dialogue states and state changes. This component CDn also control 
the state of the presentation component, thus a means of specifying 
these state changes is also required. 

The application interface model is a representation of the applica­
tion from the viewpoint of the user interface. This component 
defines the interface between the UIMS and the rest of the applica­
tion program. The application interface model defines the semantics 
of the application. This representation includes the data objects 
that are maintained by the application, and the routines the user 
interface can use to communicate with the application. This com­
ponent contains the information required by dialogue control for 
routing tokens to the appropriate place within the application. This 
component also contains constraints on the use of the application 
routines. This allows the user interface to check the semantic vali­
dity of the user input before the application routines are invoked. 
This information can also be used in error recovery and undoing user 
actions. This component of a user interface has not appeared expli­
citly in any of the existing UIMSs. But, most of them have some 
mechanism for performing some of the functions we have assigned to 

11 

it. The exact nature of this component will evolve as it is incor­
porated into UIMSs and used in practice. 

HUMAN FACTORS 

In this section the relationship between the human factors of user 
interfaces, and the three user interface components is exploreo. 
There are two aspects to this relationship. First, how can human 
factors experts help us design the three user interface components? 
By dividing the user interface into three logical components it may 
be possible to develop better design guidelines, than by considering 
the user interface as a whole. Second, given descriptions of each 
component, is it possible to evaluate these descriptions from a human 
factors point of view? 

Starting with the first aspect and the presentation component of the 
user interface, it appears that name spaces are a key issue, The 
presentation component is responsible for mapping between the user's 
symbolism, and the internal representation of the user interface. 
When the user approaches an application he has a certain set of sym­
bols he uses to name the physical and conceptual objects in the 
application. In order to have a smooth dialogue the presentation 
component must deal with the user in terms of these symbols. The 
design of this set of symbols is where human factors enters the 
design of the presentation co�ponent. We need advice on how the sym­
bols should be designed. how the 'symbol space should be structured, 
and the effects of interactions between symbols. Should the symbol 
space be designed in such a way that all the symbols are obviously 
disjoint, or is there something to be gained from the interaction 
between symbols? In order to address these questions advice from 
experts in hu�an factors and cognitive psychology is needed. 

In the dialogue control component the key human factors issue is com­
mand and dialogue structure. It is fairly well known that certain 
command formats and dialogue structures are superior to others, and 
numerous sets of guidelines have been produced for command language 
design. It has also been shown that the interaction between commands 
can have an effect on the usability of a user interface. There is 
more readily available information on the design of this compone'nt 
than the other two c0mponents. But, there are still a large number 
of human factors issues to be addressed. One of the key issues is 
the effect of chunking and closure on dialogue design. How can we 
design a dialogue to take advantage of the user's natural chunking 
ability? Also, how can we design a dialogue so the closures occur at 
natural places, and the dialogue does not overload the user's pro­
cessing abilities? 

There is very little we can say about the human factors of the appli­
cation interface model. The design of this component should be based 
on the user's model of the application. In many ways this component 
reflects the user's view of the semantics of the application. It 
must provide the operations that the user wants to perform in the 
application. If a particular operator is missing the user must con­
struct a sequence of operators which has the same effect, and this 
may not always be possible. This imposes a greater cognitive load on 
the user than invoking a single command. 



12 

The design of both the presentation component and the application 
interface model require a user's model of the application. In this 
context a user's model is the model the user has of the application. 
This model exists in the user's mind and he is usually not aware of 
it. There are two problems with user's models, The first is, how do 
we determine the model the user has of the application? Since the 
user is usually not aware of this model, he cannot produce a written 
version of it. It may be possible to interview the user, and then 
construct an approximate model from the results of the interview. 
But, we currently have no way of knowing if this model is correct. 
The second problem is, given that it is hard to extract the user's 
model from the user, is it possible to design a user's model, and 
then transfer it to the user? If this were possible the first prob­
lem disappears, and we are left with the problems of designing good 
user's models and transferring them to the user. The problems of 
user's modeling are beyond the scope of this workshop, but these 
problems must be addressed in order to design good user interfaces. 

The second human factors issue, the evaluation of user interface 
descriptions, is motivated by the precise descriptions of the user 
interface that are produced when a UIMS is used. The main purpose of 
these descriptions is to facilitate the automatic or semi�automatic 
prOduction of a user interface. But, when Such descriptions exist 
there is a great potential to use them for other purposes. Some 
techniques have already been developed for user interface evaluation. 
The best known of these are the grammar based techniques of Reisner, 
and the keystroke model of Card, Moran, and Newell. Both of these 
techniques require a complete description of the user interface. A 
UIMS should produce a human factors evaluation of a user interface at 
the same time it was producing the implementation of it. This would 
give the user interface designer a feel for how the user interface 
will perform, and where it could be improved. This could lead to a 
�rocess of user interface debugging similar to the programming 
language debugging that is currently done with compiler generators. 

NOTATIONS 

Over the past few years a number of UIMSs have been designed and 
implemented. All of these systems have, in some form or another, the 
three user interface components identified in section 1. The 
designers of these systems have developed notations for these com­
ponents, largely without knowledge of what other UIMS designers were 
doing. One of the major goals of this working group was to analyze, 
and attempt to classify the notations that have been used in UIMSs. 
The classification scheme presented here is by no means complete, but 
it does cover most of the existing UIMSs. It is interesting to note 
that most of the members of this working group already had a classif­
ication scheme in mind before the workshop. The classification 
scheme that resulted from our discussions does not differ radically 
from any of these preconceived schemes. 

Our classification scheme is based on the three user interface com­
ponents. �ach component has its own set of notations. The notations 
for dialogue control are further divided into three groups. 

13 

Presentation Component 

Par the presentation component the notations must deal with both 
input and output. At the present time output notations deal mainly 
with graphical output. The range of these notations should be 
extended to cover sound, touch, and movement (as in robotics). Most 
of the notations for graphical output are based on the routines pro­
vided by standard graphics packages. Calls to these routines are 
combined to form the symbols presented to the user. This form of 
notation is very similar to a programming language, and in most cases 
the target language of the UIMS is used as the basis for the nota­
tion. 

This is not an acceptable form of notation, for the following two 
reasons. Pirst, a textual language is used to describe something 
that is graphical in nature. As a result the notation is both hard 
to use and read. Given a collection of subroutine calls it is not an 
easy task to determine the image they produce on the display screen. 
What is really required is a graphical notation for the output sym­
bols. One attempt at this can be found in the MENULAY system [Buxton 
et.al. 1983]. Second, by using a programming language notation the 
user interface designer is forced to do the work of the UIMS. The 
user interface designer should produce a high level description of 
the symbol, and let the UIMS convert it into a program. 

A similar situation exists on the input side of presentation com­
ponent notations. In most cases the input primitives provided by a 
graphics package are used as the input symbols generated by the user. 
Most of the UIMSs do not provide a mechanism for combining the input 
primitives into more complex symbols at the presentation level. 
Currently this function is performed by the dialogue control com­
ponent. The range of input primitive should be extended to cover 
video, voice, and more complicated body gestures (such as character 
recognition). As of yet no really useful input notations have 
appeared. 

The last issue to be dealt with in presentation component notations 
is the external-internal mapping. This mapping is controlled by the 
dialogue control component, but it resides in the presentation com­
ponent. There are several issues associated with this mapping. The 
first is whether the mapping is a simple table lookup, or can some 
form of simple decision making be involved. These decisions could be 
based on the values of the token. Por example, the presentation of 
an output token may depend upon the magnitude of its values. A 
detailed presentation would be given for small values, and an over­
view for large values. If decision making is included in the mapping 
what form should it take, and how would it be expressed? The presen­
tation component contains the definitions of internal and external 
tokens. The dialogue control component must be able to reference 
these tokens in order to establish the mapping between them. How 
does the presentation component assign a name to the tokens, and how 
are these names passed to the dialogue control component? These 
issues must be addressed in any notation for the presentation com­
ponent. 



14 

Dialogue Control Component 

The dialogue control component has the most highly developed nota­
tions. Since most of the existing UIMSs have concentrated on this 
component, it has more notations and there is considerably more 
experlence with their use. The notations that have been used for 
this component mainly fall into three groups. The major difference 
between these groups is the model the notations have of the user 
interface. The transition network notations view the user interface 
as a collection of states, and the user's actions cause transitions 
between these states. The grammar group views the dialogue between 
the user and the computer as a language, and uses grammar based tech­
niques to describe this interaction. The event group yiews the user 
interface as a collection of eyents and event handlers. When the 
user interacts with the computer, one or more events are generated, 
which are processed by the eyent handlers, possibly generating more 
events. This is not a complete classification scheme for dialogue 
control notations, since at least one well known system does not fit 
(the Tiger system of Kasik [Kasik 1982)). 

The transition network group is the oldest group of notations for 
dialogue control. This approach to user interface management dates 
back to at least 1968 with the work of Newman (Newman 1968]. This 
style of notation has been used in a number of systems since that 
time, and a considerable amount of experience has been gained in its 
use. A pure transition network, consisting solely of states and 
transitions between these states, is not powerful enough to handle a 
wide range of user interfaces, and tends to be hard to use. This is 
due to the fact that most user interface have a large number of 
states, with a large number of possible transitions between them. As 
a result, several schemes have been developed for partitioning the 
.network. One approach is the user of subnetworks. A subnetwork is 
an independent transition network having its own set of states and 
transitions. A subnetwork can be used to replace any of the states 
or transitions in another network. Once a subnetwork has been 
entered it retains control of the dialogue until one of its terminal 
states is reached. When this happens control returns to the point, 
in the calling network, where the subnetwork was invoked. Thus, com­
pound dialogues can be built up from smaller dialogues, each 
represented by a subnetwork. An extension of this approach is recur­
sive transition networks or RTNs, where the subnetworks are capable 
of inVOking themselves recursiYely. Bxperience with transition net­
works indicates that RTNs are necessary to handle the types of user 
interfaces that arise in practice. An example of a notation based on 
RTNs is SYNICS [Edmonds 1981). 

Experience with transition network based systems indicated that a 
multi-threaded implementation is desirable. This allows the user to 
interact with several networks at the same time. This can be used in 
help processing, where there is a separate network for the help com­
mand. The user can invoke the help network without fear of losing 
his place in the original dialogue. 

The grammar based notations use techniques from programming languages 
for both the description, and implementation of the dialogue control 
component. These notations are based on using context free grammar 
to describe the dialogue between the user and the program. As with 
transition diagrams, pure context free grammars do not form an ideal 
notation for the dialogue control component, so numerous extensions 
have been made. Most of these extensions give the dialogue designer 

15 

more control over the order in which the user's input is parsed. For 
example, it may be possible to specify that the ordering of the sym­
bols in a production is arbitrary. This allows the user to enter 
these symbols in any order. Other extensions deal with error detec­
tion, error recovery, and the ability to undo parts of the dialogue. 
It should be noted that the descriptive power of RTNs and context 
free grammars is the same. There is some indication that RTNs may be 
easier to use than context free grammars. Two examples of grammar 
based notations are SYNGRAPH [Olsen and Dempsey 1983] and D IALOG 
{Derksen 1983] [Borufka,. et.al. 1982). Closely related to this 

approach is the work of van den Bos (van den Bos 1980]. 

The event model is not as well known, or as highly developed as the 
other two groups of dialogue control notations. Since the event 
model is not widely known a brief description of it is presented 
here. The event notations are based on the concepts of events, and 
special procedures called event handlers. In may ways events are 
similar to the input and output tokens discussed in section I. Each 
event has a name and a collection of data values. �n event is gen­
erated each time the user interacts with an input device. These 
events are processed by one or more of the event handlers associated 
with the input, or display device involved in the interaction, An 
event handler is a procedure that performs a set of actions based on 
the name of the event it receives. These actions include passing 
output tokens to the presentation component, passing input tokens to 
the application interface model, performing some calculation, or gen­
erating new events. The collection of events processed by an event 
handler can be viewed as a state. The set of event handlers active 
(able to receive events) at any one time defines the legal user 
actions at that point in the dialogue. This set can be changed by 
disassociating an event handler with a particular device, or associ­
ating an new event handler with a device. An event may be sent to 
more than one event handler. In this case each event handler is 
responsible for one aspect of the event's processing, such as the 
different levels of feedback, error checking, and routing to high 
levels of the user interface. The event model is in many ways simi­
lar to object oriented programming as in Smalltalk [Goldberg and Rob­
son 1983). 

Most of the event based notations have the appearance of programming 
languages. This is mainly due to the procedural nature of the event 
handlers. These notations need some way of describing both the 
events, and how the events are processed. In most notations both of 
these components are combined into one description, that of the event 
handler. That is, each event handler defines all the events it can 
receive, even if these events are used in several event handlers. 
This results in self contained event handlers, at the price of 
increasing the redundancy of the descriptions, and possibly introduc­
ing inconsistencies. The description of an event handler contains 
one section for each of the events it can process. The section for 
an event starts with a description of the event itself, followed by 
the sequence of actions required to process the event. 

Application Interface Model 

Since the application interface model has not explicitly appeared in 
an existing UIMS, there have been no notations developed for it. In 
most U IMSs the application procedures called by the user interface 
form an implicit application interface model. While this identifies 
the application procedure used by the user interface, it tells us 



16 

very little about the application, and these calls are usually embed­
ded in other descriptions making them hard to find. The application 
interface model must contain certain information about the applica­
tion. To be useful the application interface model must cover at 
least the following three areas. First, it must contain a descrip­
tion of the application data structures that are of interest to the 
user and the user interface. The description of these data structure 
is at an abstract level, and implementation details are usually not 
important. The UIMS only needs to know the information that is 
stored in the data structures, and how it can find it. Second, there 
must be a description of the application procedures available to the 
user interface. This description must include the name of the pro­
cedure, and the operands it expects. This part of the description 
defines the interface between the user interface and the application. 
Third, the constraints on the application of the operators must be 
outlined. These constraints include any pre-conditions for the 
operators, and any ordering restrictions on them. This allows the 
user interface to filter out some of the semantically illegal opera­
tions before they reach the application. While this is the minimum 
amount of information that must be included in the application inter­
face model, there are several other things that would be useful. One 
of these is the effects, or post-conditions of the operators. This 
allows the user interface to anticipate the effects of commands, pro­
vide automatic help, and automatically perform some undo processing. 
Another useful component of an application interface model is pro­
cedures for performing standard tasks in the application. These pro­
cedures could be used by the user interface to guide naive users, and 
provide sophisticated help facilities. 

Since notations for the applications interface model have not been 
developed, a classification scheme for them cannot be presented. 
Instead, several possible notations are presented, along with several 
of the issues that arose in our discussions. One possible notation 
is Objects and operators. The objects correspond to the data struc­
tures in the application program, and the operators correspond to the 
application procedure available to the user interface. A notation of 
this kind, called UML, is described in [Green 1981] and [Green 1984]. 
In order to handle a wide range of user interfaces this type of nota­
tion must treat object deBcriptions as type definitions, and allow 
the creation of arbitrary numbers of object instances. In a number 
of applications a network of objects is required, so notations that 
only support object hierarchies are not desirable. Another issue 
related to this type of notation is the parameters to the operators. 
An operator definition will contain a number of implicit parameters, 
but should these be the only objects available to the operator? 
Should there be global Objects that represent the context of the 
interaction? If there are, how are these global objects defined and 
referenced? 

Another possible notation for the application interface model is 
based on relations (as in relational database [Date 1981]), and first 
order logic. This idea was prompted by the work done by Garret and 
Foley in graphical databases [Garret and Foley 1982). The relations 
are used to represent the data structures in the application, while 
statements in first order logic model the effect of the application 
procedures. 

Two issues that must be addressed by any notation for this component 
are invariants, and sequential relationships between application pro­
cedures. Invariants state properties of the application that are 
always true. There are two reasons why they pre a useful part of the 

17 

applications interface model. First, they form a concise descrip­
tion of general properties of the application. In most cases these 
properties could be described by other means, but this will usually 
entail a large amount of redundant material. Second, the UIMS can 
use them to detect errors in user input, and as the basis for guiding 
the user through interaction sequences. One issue related to invari­
ants is whether they should be passive or active. A passive invari­
ant describes some property of the application, while an active 
invariant takes an active part in the computation. That is, either 
the application, or the UIMS will perform whatever actions required 
to maintain the truth of an active invariant. 

Some of the procedures in the application cannot be performed in 
arbitrary sequences. For example, a file cannot be processed until 
it is open, therefore an open call must always precede any read or 
writes on the file. This is an example of a sequencing constraint. 

INTERRELATIONS BETWEEN COMPONENTS 

Figure 1 shows the interfaces between the components in our model of 
a user interface. These interfaces represent the flow of information 
or control between the components. In order to completely describe 
the u�er interface, the nature of these interfaces must be under­
stood. 

There are two issues related to the interface between the presenta­

tion component and dialogue control component that effect user inter­

face notations. One of these issues is the form of the tokens flow­

ing between these components. The are a number of ways in which this 

flow can be viewed. In one view, dialogue control treats the presen­

tation component as a collection of logical devices. In this view 

there are problems related to the definition of device classes, and 

device characteristics. One device characteristic is the type of the 

value produced by the device. Most graphics packages have a fixed 

set of types that can be used for device values. In the case of the 

presentation component, a fixed type structure may be too restric­

tive. On the other hand, the full type definition facilities of 

modern programming languages may be more than is required here, and 

needlessly complicate the interface between these components. Work 

needs to be done on the set of types required to support the communi­

cations between these two components. A related issue is the han­

dling of picks. In existing graphics packages there is one type for 

all pickable objects. This type usually refers to the display file 

segment containing the object selected, and not the object itself. 

With the presentation component, each pickable Object type could have 

its own device type, and the pick would contain a pointer into the 

application data structure identifying the object selected. This 

would relieve the dialogue control component of determining the 

object selected by the user. Another important device characteristic 

is its mode { as in the GKS model of graphical input (Rosen�hal 

et.al. 1982) . What are the interpretations of event, sample, and 

request modes' at the level of the presentation component? If the 

logical device view is not taken, some of these issues disappear. 
Another view of this interface is to treat the output of the presen­
tation component as a simple stream of tokens, without any informa­
tion on the devices that produced them (either logical or physical). 
In this view the problem of device modes does not occur, but the type 
problems remain. 



" 

Another important feature of this interface is the manner in which 
dialogue control exerts its control over the presentation component. 
Dialogue control is responsible for the state of the presentation 
component, it controls the external-internal mapping. How much 
information does dialogue control need in order to adequately perform 
this function? It must at least know the names of all the internal 
and external tokens, otherwise it will not be able to define the map­
ping. But, does it need more detailed information about these 
tokens? For example, should the physical devices associated with the 
external tokens be available to dialogue control? Or, is there a set 
of general device properties that would serve its needs? Another 
issue is whether dialogue control or the presentation component is 
responsible for enabling or initializing devices. The presentation 
component deals directly with the devices, so there is some argument 
for having it responsible for device initialization and control. On 
the other hand, dialogue control is responsible for the state of the 
presentation component, so it knows when the devices should be 
enabled. It may be necessary to share this responsibility between 
these two components. 

At the present time there are far more issues associated with this 
interface than there are answers. More experience with UIMS imple­
mentations is required before a more detailed description of this 
interface can be produced. 

The maJor lssue associated wlth the Interface between dialogue con­
trol and the appllcatlon Interface model, IS the access dialogue 
control has to the application data structure. In particular, can 
dialogue control directly access the application data structure 
wlthout Informing the appllcation? An argument can be made that 
dialogue control must always call an application routine whenever it 
wants to change the application data structure. This isolates the 
user interface from the implementation of the application data struc­
ture, and ensures that all modifications to the data structure are 
legal. On the other hand, this approach can be too inefficient for 
some applications, and places the burden of error recovery and undo 
processing on the application. This was an issue at the previous 
workshop is Seattle, and still appears to be unresolved. One possi­
ble, but inefficient, solution is to give the UIMS its own copy of 
the application data structure. The UIMS is free to modify this data 
structure without informing the application routines. At key points 
in the dialogue (determined by dialogue control) the UIMS copy of the 
data structure is used to update the application copy. In this 
approach error recovery and undo processing can easily be accom­
plished by restoring the UIMS copy of the data structure from the 
application's version. 

There are two issues associated with the interface between the 
presentation component and the applicatiQn interface model. The 
first issue deals with picking. The result of a picking operation 
should be some object in the application data structure that is 
currently displayed on the screen. The presentation component is 
responsible for the allocation of screen space, and the appearance of 
everything on the screen. But, it does not know about the applica­
tion data structure. When a pick occurs the presentation component 
knows the coordinates of the pick, but it doesn't know how to relate 
these coordinates to the contents of the application data structure. 
Some form of cooperation between the two components is required to 
determine the object the user selected. There needs to be some 
correlation mechanism between the coordinates in the presentation 

19 

component, and the data structure maintained by the application. 

The other issue involves the flow of output data from the application 
to the presentation component. In theory, all the information from 
the application, that is to be displayed, must go through dialogue 
control. In most cases dialogue control is not interested in the 
actual data, it assigns the data a format or template, and passes it 
on to the presentation component. Since dialogue control does not 
need to process this data, it could be directly transferred to the 
presentation component, saving some processing time. This flow of 
data is represented by the arc flowing from the application interface 
model to the presentation component in fig. 1. Dialogue control has 
control over this flow of information, it assigns the formats to the 
output data, and establishes the pipe line between the application 
and the presentation component. Once the pipe line has been esta­
blished, dialogue control does not take part in the information' 
transfer. This approach is particularly effective when large amounts 
of data must be transferred from the application to the screen. 

SUMMARY 

In this report we have presented some of the issues pertaining to the 
notations used in UIMSs. At the present time there are a small 
number of implemented UIMSs, so there is some experience to draw 
upon. This is the first workshop of this nature where there has been 
a significant number of participants with implementation experience. 
This experience seemed to raise more issues than it resolved. The 
conclusion that can be drawn from this is there is still a consider­
able amount of work to be done in notations for UIMSs. 

One of the major problems encountered by this working group was the 
inability to compare different UIMSs. The systems discussed in this 
group have been used to produce user interfaces for different appli­
cation areas, with different interaction styles and requirements. 
This makes it very difficult to compare the ease of use (for the user 
interface designer), and the quality of the resulting user interface. 
This problem could be partially solved by constructing a standard set 
of user interface problems. Each of the UIMSs could be used to solve 
these problems, and the results used as a means of comparison. This 
set of problems could be viewed as a benchmark test for user inter­
face management systems. Along with developing the problems, tech­
niques for measuring ease of use and the quality of the user inter­
face must also be developed. 

REFERENCES 

[AhO and Ullman 19771 Aho A.V., J.D. Ullman, Principles of Compiler 
Design, Addison-wesley, Reading Mass., 1977. 

(Boruflta, et.al. 1982) Boruflta, H.G., H.W. Kuhlmann, P.J.W. ten 
Hagen, "Dialogue Cells: A Method for Defining Interactions", IEEE 
Computer Graphics and Applications, vol.2 no.5, p.25, 19B2. 

[Buxton et.al. 1983] Buxton W., M.R. Lamb, D. Sherman, K.C. Smith, 
"Towards a Comprehensive User Interface Management System", SIG-



GRA.PH'B3, p.3S, 1983. 

[Date 1981] Date C.J., 
Addison-Wesley, Reading 

20 

An Introduct Ion 
Mass., 1981. 

to Database Systems. 

(Derksen 1983) Derksen J., "Een antwerp van programmeergereedschap 
vocr dialoogsystemen gebaseerd op dialoogcellen (Tools for dialo­
gue systems based on dialogue cells)�, TNO-IBBC rapport nr. Bl-
83-62/68.0.0004, 1983 (in Dutch). 

(Edmonds 1982] Edmonds E.A., nThe man-computer interface - a note on 
concepts and design", Int. J. Man-Machine Studies, vol.16, p.231, 
1982. 

(Edmonds 1981] Edmonds 
Coombs M.J., J.L. 
Interface. Academic 

E.A., "Adaptive Man-Computer Interfaces", in 
Alty (ed.), Computing Skills and the User 

Press, London, 1981. 

(Foley and Van Dam 1982] Foley J., 
Interactive Computer Graphics, 
1982. 

A. Van Dam, Fundamentals of 
Addison-Wesley, Reading Mass., 

(Garret and Foley 1982] Garret M.T., J.D. Foley, "Graphics Program­
ming Using a Database System with Dependency Declarations". ACM 
Transactions on Graphics, vol. 1, no. 2, p. 109, 1982. 

[Goldberg and 
Language 
1983. 

Robson 1983] Goldberg A., D. Robson, Smalltalk-80: The 
and Its Implementation, Addison-Wesley, Reading Mass., 

(Green 1984] Green M., "Design Notations and User Interface 
ment Systems", in this volume, 1984. 

Manage-

[Green 1981] Green M., "A Methodology for the 
Graphical User Interfaces�, SIGGRAPH'81, p.99, 

Specification 
1981. 

of 

[Kasik 1982) Kasik D.J., "A user Interface Management System", SIG­
GRAPH'82, p.99, 1982. 

(Newman 1968) Newman W.M., "A System for Interactive Graphical Pro­
gramming", SJCC 1968, Thompson Books, Washington DC., 1968. 

(Olsen 1984] 
ponents 
1984. 

Olsen D., "Presentational, Syntactic and Semantic Com­
of Interactive Dialogue Specification�, in this volume, 

[Olsen and Dempsey 1983] Olsen D., E. Dempsey, nSYNGRAPH: A Graphic 
User Interface Generator", SIGGRAPH'83, p.43, 1983. 

(Rosenthal et.al. 1982) Rosenthal D.S.H., J.C. Michener, G.Pfaff, R. 
Kessener, M. Sabin, "The Detailed Semantics of Graphics Input 
Devices", SIGG RAPH'82, p.33, 1982. 

[van den Bos 1980] van den Bas, J., "Hlgh-level graphlcs input tools 
and their semantics", in Guedj, R.A., et.al. (eds.), Methodo/cgy 
of Interaction, North Holland, p.159, 1980. 

Working Group Members: 
Jan Derksen, Ernest Edmonds, Mark Green, Dan Olsen, Robert Spence 

Report on the Interface of the UIMS to the Application 

G. Enderle 

SEL AG, Hclmuth-Hinh-StrtlS5c 42, 7<XXl Smugan 40, Federal RepUblic of Gennany 

SCOPE AND GOAL 

The qoal of the workshop was to find, evaluate, and describe models, 
principles, methods, and tasks for the design of User Interface 
Management Systems. This working group concentrated on aspects of this 
overall goal that are related to the interface between the application 
and the UrMS. 

One application was given specific attention: Computer Aided Design 
(CAD). CAD is an application that, on one hand, relies on Computer 
Graphics BS one basic component of the whole system. On the other 
hand, CAD is also an application area where a favourable user interface 
is of special importance. The application is the most relevant part of 
the interactive system. If we look at the application-UIMS interface 
from the viewpoint of the application, we can identify certain 
requirements which a UIMS must fulfil to serve the application in an 
optimal way. A problem of specific interest at the application-UIMS 
interface is the division of responsibility for graphical output 
between the application and the UIMS. 

PROBLEM AREAS 

Three major problem areas related to the application interface of a 
UIMS were addressed: 

The configuration of a UIMS with respect to a specific 
application, 

The responsibility for creating and managing graphical output, 

- The services and functions available at the communication 
interface between the application and the UIMS. 

In order to gain a common base for the discussion of these questions, 
an overall structure of the interactive system had to be agreed on. 
In all problem areas, special attention was paid to CAD aspects. 

STRUCTURE OF USER INTERFACE MANAGE�lENT SYSTEMS 

The application-UIMS interface can be situated at different places 
within the overall system depending on the design of the structure of 



User Interface 
Management Systems 

Proceedings of the Workshop on User Interface 
Management Systems held in Seeheim, FRG, 
November 1-3, 1983 

Edited by Gi.inther E. Pfaff 

With 69 Figures 

Springer-Verlag 

Berlin Heidelberg New York Tokyo 



Ellrographic Seminnrs 
Edited by G. Enderle and D. Duce 

for EUROGRAPHICS -

The European Association for Computer Graphics 

P.O. Box 16 

CH-1288 Aire-Ia-Ville 

Editor: 
Giirllher E. PfatT 

GTS/GRAL 

AlsfelderstraBe 7 

D-6100 Dannstadt 

ISBN 3-S40-13803-X Springer-Verlag Berlin Heidelberg New York Tokyo 
ISBN 0-387-I3803-X Springer-Verlag New York Heidelberg Berlin Tokyo 

Library of Congress Cataloling in Publication Data. 
Worbhop on User Interface Management Systems (1983 ; Seeheim.Jugenheim, 
Germany) User interface management systems. (EurographicSeminBrs) Bibliography: p. 
I. Interactive computer systems-Congresses. 2. Computer graphics-Congresses. 
I. Pfaff, G. (Gunther), 1951-. II. Title. III. Series. QA 76.9.158W67 1983001.64'404 85-2831 
ISBN ().387·13803·X (U.S.) 

This work is subject to copyright. AI! rights arc reserved, whether the whole or part of 
the materiat is concerned, specifically those of translation, reprinting, re-use of iIIustra. 
tions, broadcnting, reproduction by photocopying, machine or similar means, and 
storage in dala banks. Under § 54 of the German Copyright Law whcre copies arc made 
for other than private use, I fee is payable to 'Verwertungsgese!lschafl Wort', 
Munich. 

o 1985 EUROGRAPHICS The European ASSOciation for Computer GraphiCS, 
P. O. Rox 16, ell·1288 Aire-la·Ville 
Printed in Germany 

The use of registered names, trademaru, etc. in this publication does not imply, even 
in the absence of a speciOe statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 

Printing: Beltz Offsetdruck, Hemsbach/Bergstr. Boolr.binding: J. SchUfcr OllG, Gronstadt 
2145/3140-543210 

Editors Introduction 

The book contains the proceedings and reports of the "Workshop on 

User I nterface M anagement Systems", held in Seeheim, Federal Re­

public of Gennany, November 1-3, 1983. The workshop brought toge­

ther experts in using and developing techniques for managing the dialo­

gue between users and interactive graphics systems. The purpose of the 

workshop was to produce an agreed report contrasting existing ap­

proaches, and outlining directions for future work. Four different areas 
were defined and addressed at the workshop, namely 

a) role, model, structure and construction of a UIMS 

b) dialogue specification tools 
c) interface of the UlMS to the applic.'l.tion 

d) user's conceptual model 

All participants prepared papers each inoneof those problem areas. The 
papers have been rewritten in the light of the issues discussed during the 

workshop. Also a subgroup report was produced for each problem area 
summarizing the results of the discussions al the workshop. 


