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Abstract

We present a method for texture synthesisbased on the sim-
ulation of a process of local nonlinear interaction, called
reaction-diffusion, which has been proposed as a model
of biological pattern formation. We extend traditional
reaction-diffusion systems by allowing anisotropic and
spatially non-uniform diffusion, as well as multiple com-
peting directions of diffusion. We adapt reaction-diffusion
systems to the needs of computer graphics by presenting
a method to synthesize patterns which compensate for the
effects of non-uniform surface parameterization. Finally,
we develop efficient algorithms for simulating reaction-
diffusion systems and display a collection of resulting tex-
tures using standard texture- and displacement-mapping
techniques.

1 Introduction

Texture mapping techniques have become so highly de-
veloped and so widely used that textureless images tend
to appear barren, unrealistic, and boring. To date, though,
techniques for synthesizing natural textures have advanced
far less than texture rendering methods. A few noise-based
textures, such as marble and fractal bumps, have become
standard (see, e.g.,[12, 18, 17]), and specialized methods
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for synthesizing stone walls are presented in [13]. In [7], a
statistical method is presented for encoding and reproduc-
ing natural textures, while [3] describes the use of fractal
methods for statistical texture encoding. Even so, scanned
real-world images still provide a principal source of real-
istic texture maps.

In this paper, we investigate a class of patterns that
arise from local, nonlinear interactions of excitation and
inhibition. Our starting point is a chemical mechanism
that was first proposed by Alan Turing [23] to account for
pattern formation in biological morphogenesis. The basis
for Turing’s idea is the notion that cell properties, such as
pigment production, are fixed during the development of
the embryo in a way that depends on the concentrations of
one or more chemical messengers which he dubbed mor-
phogens. He postulated that patterning is governed pri-
marily by two concurrently operating processes: diffusion
of morphogens through the tissue and chemical reactions
that produce and destroy morphogens at a rate that de-
pends, among other things, on their concentrations. Such
mechanisms are called reaction-diffusion (RD) systems.

Reaction-diffusion systems give rise to nonlinear partial
differential equations, in which the time derivative of mor-
phogen concentration at each point in the medium is given
as a function of the current concentration and of derivatives
of concentration with respect to position. The nonlinear
model largely defies analysis; its behavior must be un-
derstood through numerical simulation. In [23], Turing
extensively analyzed a linear approximation to the nonlin-
ear equation, but lacked the computing tools to attack the
nonlinear model numerically.

Since Turing’s initial proposal, mechanisms of this
kind have been invoked to account for several biologi-
cal patterns, including spotted and striped coats of cats,
zebras and giraffes [1, 15, 2, 25, 24], the markings on
certain butterfly wings [14], and the arrangement of oc-
cular dominance columns in mammalian cerebral cortex
[22]. Reaction-diffusion equations have also arisen in
such diverse fields as image processing [19], population
dynamics[6] and epidemiology[11]. In [9] we considered
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Figure 1: Glass. Reaction-diffusion patterns are used to
control opacity, displacement, and shading parameters of
some glassware.

reaction-diffusion systems as a model for fingerprints.
Here we will address three main questions: (1) How

can we extend the range of patterns we can create
with reaction-diffusion systems? (2) How can we adapt
reaction-diffusion systems to the needs of computer graph-
ics? (3) How can we simulate the reaction-diffusion pro-
cess efficiently? Our answers to these questions lead to
the following specific contributions:

We generalize the basic RD model by introducing
anisotropic and space-varying diffusion. The addition of
anisotropy allows the creation of zebra stripes, and also,
surprisingly, of sand ripples. Allowing diffusion rates
and directions to vary over space creates more complex
patterns, including the swirling patterns typical of finger-
prints.

We consider new reaction function models, including
functions that allow multiple competing orientations at
each point. The addition of multiple competing direc-
tions gives rise to a host of new patterns, including some
exhibiting a striking woven or lattice-like appearance.

We investigate new patterns that can be created by us-
ing non-standard initial conditions or reaction-diffusion
parameters that change during the simulation. These in-
clude, for example, convincing giraffe markings.

We show how RD textures can avoid some standard dif-
ficulties of parametric texture mapping. First, by adjusting
diffusion rates and directions, it is possible to grow tex-
tures that incorporate correction for parametric distortion,
appearing uniform when applied to the surface. Second,
texture patches can be seamlessly joined through the use
of shared boundary conditions. Similarly, cyclic boundary
conditions may be used to join a patch to itself, or to create
seamless periodic textures.

We derive two fast but simple algorithmsfor the solution
of the partial differential equations governing reaction-
diffusion systems. The first makes use of the fact that
the Green’s function of the diffusion equation is a Gaus-

sian and computes the effects of diffusion with efficient
Gaussian convolution techniques. The second is a multi-
grid technique which simulates the equations rapidly on a
coarse grid and then refines its results on a series of finer
and finer grids.

2 Basic Reaction-Diffusion Dynamics

Our RD model incorporates three processes—diffusion,
dissipation, and reaction. Diffusion governs the trans-
port of morphogens from points of higher concentration
to points of lower concentration. Dissipation involves the
breakdown of morphogens, causing concentrations, in the
absence of other influences, to decay exponentially toward
zero. Reaction governs the rate of morphogen production.
The effects of these three processes sum to provide the
time derivative of concentration.

Since we are interested in generating surface textures,
we assume throughout that diffusion occurs through a two-
dimensional medium, although analogous results can be
derived for arbitrary dimensions. The concentration of
each of the morphogens is a function of position and of
time. We denote the concentration function for a particular
morphogen by C(x; y). The reaction-diffusion equation
governing the morphogen is then given by

_C = a2r2C � bC +R; (1)

where _C is the time derivative ofC,r2C is the Laplacian
of C, defined by

r2C =
@2C

@x2 +
@2C

@y2 ; (2)

a is the rate constant for diffusion, and b is the rate constant
for dissipation. The function R is the reaction function
governingC, which can depend on all the other concentra-
tions. The three terms on the right hand side of equation 1
represent diffusion, dissipation, and reaction, respectively.

In practice, we represent the concentration functions as
two-dimensional arrays of discrete samples. To evaluate
_C we approximate the space derivative r2C by a finite

difference. The second finite difference in the x direction
is

@2C

@x2
� Ci+1;j +Ci�1;j � 2Ci;j

h2
;

where the i’s and j’s are array subscripts, and h is the dis-
tance between adjacent samples. Taking the corresponding
second difference in the y direction, and summing, gives

r2Ci;j �
Ci+1;j + Ci�1;j +Ci;j+1 + Ci;j�1 � 4Ci;j

h2 :

(3)
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The discrete Laplacian can also be expressed as the
convolution of the concentration array with the 3�3 mask

L =
1
h2

2
4 0 1 0

1 �4 1
0 1 0

3
5 :

The values in the mask simply represent the coefficients in
equation 3. The convolution form offers the advantage that
any additional terms that are linear functions ofCi;j and its
neighbors may be readily combined to form a single 3� 3
mask. Multiplying the Laplacian by a2, and including the
term �bCi;j gives the mask

M =
1
h2

2
4 0 a2 0

a2 �4� h2b a2

0 a2 0

3
5 ; (4)

in terms of which equation 1 becomes

_C = M �C + R;

using “�” to denote discrete convolution.
To compute C using 1, we must integrate _C through

time. The simplest integration formula, known as Euler’s
method, is

Ct+�t = �t(M �Ct +Rt); (5)

which takes a timestep of size �t.

3 Anisotropic Diffusion

The simple model of equation 1 assumes that diffusion
occurs at a uniform rate in all directions and at all positions.
In relaxing this restriction, we make it possible to produce
a far wider range of patterns, including oriented patterns
typical of zebra stripes or sand dunes.

Recall that the isotropic diffusion term of equation 1 is
_Cd = a2(@2C=@x2 + @2C=@y2): To make C diffuse at

different rates in x and y, we replace a2 by independent
rate constants for x and y, so that _Cd = a2

1@
2C=@x2 +

a2
2@

2C=@y2. By varying a1 and a2, the RD pattern can be
stretched or compressed, but only along the two coordinate
axes.

To handle the general case, we introduce the Hessian
matrix, defined by

Hij =
@2C

@ri@rj
;

where the vector r = [x;y]. In terms of the Hessian,
the isotropic diffusion term is a2 Tr (H), where Tr (H),
the trace of the Hessian, is the the sum of its diagonal
elements. For the special case of anisotropic diffusion

with axis-aligned principal directions, we can define the
matrix

D =

�
a1 0
0 a2

�
;

in terms of which _Cd = Tr (DTHD). We model diffusion
with arbitrary principal directions by rotating the matrixD
to bring the x and y axes onto the desired principal direc-
tions, giving the diffusion term _Cd = Tr (DTQTHQD),
where Q is the rotation matrix.

Rather than working with this compound matrix di-
rectly, it is convenient to define the single diffusion matrix

A = QTDTDQ;

in terms of which the diffusion is _Cd =
P

i

P
j AijHij:

The diffusion matrix is given by

A =

"
a2

1 cos2 � + a2
2 sin2 � (a2

2 � a2
1) cos � sin �

(a2
2 � a2

1) cos � sin � a2
2 cos2 � + a2

1 sin2 �

#

(6)
where a1 is the diffusion rate in the principal direction
[cos �; sin �] and a2 is the diffusion rate in the principal
direction [� sin �; cos �].

When the Hessian is expressed in terms of finite dif-
ferences, the quantity

P
i

P
j AijHij � bC, representing

diffusion and dissipation, can be expressed as the convo-
lution of C with a 3� 3 mask which is a generalization of
the isotropic mask given in equation 4. That mask is

M =
1

2h2

2
4 �a12 2a22 a12

2a11 �4(a11 + a22)� 2h2b 2a11

a12 2a22 �a12

3
5 ;
(7)

where a11, a12 and a22 are the three distinct elements of
the symmetric matrix A.

The Euler update formula for anisotropic diffusion still
has the form

Ct+�t = �t(M �Ct +Rt);

but now the mask M is the one given in equation 7.

3.1 Space-varying diffusion

A diffusion matrix that is constant over position can only
produce patterns whose direction and degree of elongation
are constant as well. A further important generalization
of the model is obtained by allowing the matrix A to vary
with position. This is done by means of a diffusion map,
an array that specifies the three distinct elements of A at
each position. In practice, the diffusion map can be much
coarser than the concentration map, with bilinear interpo-
lation sufficing to obtain intermediate samples. Usually,
the diffusion map is most naturally specified indirectly, by
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giving [�; a1; a2], or often just �, as a function of posi-
tion. Direction fields may in turn be created in a variety
of ways—for example by interactive specification [20], by
analyzing natural images [9], or through analytic forms.

4 Mapping onto surfaces

A well-known difficulty with parametric texture mapping
is that textures undergo distortion in the mapping from
parameter space to the surface. Although solid texture
methods [18, 17] are not subject to this problem, they are
not well suited to modeling textures that actually grow on
surfaces, rather than in space. Generally, it is not possible
to correct parametric distortion by inverse warping a tex-
ture after the fact. However, in this section, we show how
RD textures may be grown in a way that incorporates the
inverse warp by transforming the diffusion matrix. Like
trick pictures that are meant to be viewed in curved mir-
rors, the resulting patterns appear grossly distorted when
viewed in parameter space, but map correctly onto the
surface.

The correction we will describe is based on a simplifying
assumption that the parametric surface function is locally
linear. Under this approximation, we correct fully for
parametric stretch and shear, but not for distortion due to
the second derivative of the parametric function. In our
experience to date, this approximation has not produced
visible artifacts. A related approach to the creation of
inverse-warped statistical textures is describe in [7]. In a
different approach, Turk [24] computes reaction diffusion
textures directly on the vertices and edges of a polygonal
mesh.

Previously, we described anisotropic diffusion in terms
of [�; a1; a2]where � is the angle between the first principal
direction and one of the texture coordinate axes, and a1

and a2 are the rates in the principal directions. We wish
to use essentially the same description for diffusion on a
surface, except that � is to be interpreted as the angle on the
tangent plane of the surface between one of the principal
diffusion directions and an arbitrary reference direction,
which could conveniently be chosen to be one of the two
parametric directions. Of course a1 and a2 should describe
the desired principal diffusion rates on the surface, not in
parameter space.

If the parametric surface function is x(u), then the Ja-
cobian matrix, J = @x=@u, serves as a basis for the
surface’s tangent plane at x, i.e. �x = J�u is a tangent
vector. First-order distortion arises because J generally is
not orthonormal, so lengths and angles are not preserved.
We remove the distortion by performing a change of vari-
ables from u to v(u) such that @x=@v is an orthonormal
basis. To apply the correction, we then post-multiply the
diffusion matrix A by the inverse of the matrix @v=@u,

and pre-multiply by the inverse transpose.
To orthonormalize J , we must find a 2 � 2 matrix V

such that
V T JTJV = V TMV = I;

where M = JTJ is the metric tensor of the surface, and
I is the identity matrix. Then JV is by definition or-
thonormal. Orthonormal bases are only unique down to
a rotation, so we must also pick an arbitrary reference
direction on the surface with respect to which � will be
measured. Letting � = [1;0] and � = [0;1]; we choose
J� as the reference direction, giving the additional condi-
tion on V that �TV � = 0, which simply means v21 = 0:
This leaves a quadratic system to solve for the remaining
components of V . Solving and inverting the matrix gives,
in terms of the components of M ,

~V =
1

p
m11

2
4 m11 m12

0
q
m11m22 �m2

12

3
5 : (8)

In summary, given the desired � relative to the [1;0] pa-
rameter direction on the surface and the principal rates a1

and a2, the corrected diffusion matrix Â can be computed
in the following steps:

� Compute the uncorrected diffusion matrixA, in terms
of [�; a1; a2], according to equation 6.

� Compute the surface Jacobian J = @x=@u.

� Compute the metric tensor M = JT J .

� Evaluate ~V according to equation 8.

� Obtain the corrected diffusion matrix by evaluating
Â = ~V TA ~V .

The 3 � 3 convolution mask is then computed, and used
according to equation 5 to take time steps. Figure 2 shows
comparable textures, in parameter space and on the sur-
face, with and without the correction described in this
section.

4.1 Sewing patches together

It is often difficult or impossible to describe a complex
surface using a single parametric function. Even simple
surfaces, such as the sphere, cannot be parameterized with-
out introducing singularities. These problems cannot be
solved using the correction described above. However, it
should be possible to solve them using piecewise param-
eterizations, letting each patch provide boundary condi-
tions for its neighbors. Differential geometry provides a
formalism for piecewise parameterizations in the construct
of coordinate charts and atlases [21]. Roughly speaking,
a chart is a parameterization for a piece of the surface, and
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Figure 2: Correcting parametric distortion. The object
on the left has been mapped with an uncorrected tex-
ture, showing marked parametric distortion. The object
on the right has been mapped with a corrected texture,
synthesized to appear undistorted on the surface. The raw
textures appear behind each object.

an atlas contains sufficient overlapping charts to cover the
surface, together with functions that map among the charts
where they overlap. For example, the faces of a cube can
serve as an atlas for a sphere. Althoughwe have not yet im-
plemented this scheme for curved surfaces, we have tested
the use of boundary conditions to join planar patches and
to create seamless periodic texture using cyclic boundary
conditions. Figure 3 includes such a periodic texture.

5 Efficient Solution Methods

The Euler simulation method of section 2 is adequate for
low-resolution simulations, but its computational com-
plexity is unfortunately at least O(r4) where r = 1=h
is the sampling rate or resolution of the pattern. In order to
improve on this bound, we develop two alternative algo-
rithms capable of achievingO(r2) performance. The first
of these algorithms is based on Gaussian convolutions,
while the second is a multi-grid algorthm.

While the full non-linear reaction-diffusion equation is
very difficult to analyze, we can gain substantial insight
into the complexity of the computation by considering
the linear differential equation which arises when R =
0 in equation 1 and the matrix A is constant. For this
special case of pure diffusion and dissipation, there exists
an analytic form for the solution [10]:

Ct+�t(x; y) = Ct0(x; y) �G�t

where

G�t(x; y) = � 1

4��t
p

det(A)
exp

�
�pTAp

4�tdet(A)
� bt

�
(9)

is known as the Green’s function of the differential equa-
tion. The solution is the convolution of the initial con-
ditions with a Gaussian that has been aligned with the
principal axes of the matrix A and scaled to take account
of the dissipation rate. The size of the Gaussian is propor-
tional to

p
�t.

Consider trying to compute the above solution with the
Euler method of section 2. Each iteration is a convolution
of the initial conditions with a 3� 3 kernel. Variances add
under repeated convolution [4], so after n iterations, the
resulting standard deviation of the Gaussian will be pro-
portional to

p
n. Achieving a fixed kernel size therefore

takes O(r2) iterations. Since each iteration takes O(r2)
work, the total computation is O(r4). Clearly this can be a
serious obstacle to synthesizing high-resolution patterns.

5.1 Gaussian Convolution

Instead of simulating the large-kernel convolution with a
series of small convolutions, we can simply convolve G
with C and get the same result. Using a direct spatial
convolution also results inO(r4) complexity, but there are
several ways of doing the convolution more efficiently.
Two-dimensional Gaussians are separable, so they can be
factored into the product of one-dimensional Gaussians.
This makes it possible to convert the two-dimensional
convolution into two one-dimensional convolutions and
thereby reduce the complexity to O(r3). If each of these
one-dimensional convolutions is approximated with re-
cursive filters[16], the complexity is further reduced to
O(r2). Another alternative is to use hierarchic convolu-
tions [5] which achieve O(r2) complexity by using image
pyramids.

While the above techniques efficiently compute the ef-
fects of diffusion and dissipation alone, we still need to
incorporate the effects of reaction in order to simulate
the full differential equation. Using the Green’s function
again, we can write the solution to the full differential
equation as follows:

Ct0+�t = Ct0 �G�t +

Z �t

0
(R �Gu) du: (10)

We already know an efficient way to compute the first
term on the right in equation 10. Now we seek a sim-
ple, efficient approximation to the second term in order to
complete the solution method. One way to do this is to use
a constant approximation R̂(x; y; t) = R(x; y; t0) leading
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to the iterative formula

Ct0+�t = Ct0 �G�t + R̂ �
Z t0+�t

t0

Gu du; (11)

where it remains to evaluate the definite time integral of
the Green’s function.

Unfortunately,G is not integrable, so even the piecewise
constant approximation to R is somewhat problematic.
We have three natural choices. First, we can perform
the integral numerically. Second, it is possible to obtainR
1

0 Gdt by means of Hankel Functions [10], allowing
us to solve each constant approximation to equilibrium.
Third, and by far the simplest, we can render the integral
trivial by approximatingR as an impulse applied at t = ti.
This option leads directly to the algorithm

Ct0+�t =
�
Ct0 + 
Rt0

�
�G�t; (12)

where 
 is a factor intended to correct for R’s application
at the beginning of the step, rather than throughout. To
make the space integral ofC after the step be the same as it
would have been under a constant, rather than impulsive,
approximation to R, this factor should be


 =
eb�t � 1

b
:

The algorithm that results from this approximation al-
lows for diffusion with O(r2) computation using hierar-
chic convolutions or separable recursive approximations
to Gaussians. The chief limitation is that the technique
only works when the matrix A does not vary over space.
Subject to this limitation, however, it offers a potentially
dramatic performance advantage over the methods that
have been used previously, particularly for large step sizes
or high diffusion rates. Swindale [22] arrived at a similar
algorithm by a different path in the course of modeling the
formation of ocular dominance columns.

5.2 Multi Grid

Another approach to avoiding the O(r4) behavior of the
Euler simulation is to use multi-grid techniques[8]. The
basic idea of these techniques is to simulate the equations
on a series of grids of different sizes. Iterations on the
coarser grids allow the simulation to proceed very rapidly,
while iterations on the finer grids provide the detail neces-
sary in the final result. If the grid sizes differ by a factor of
two in each dimension from one level to the next, then the
total number of samples in the grids is approximately 4=3
as many as in the finest grid. As a result, a constant num-
ber of iterations on each of the grids can be accomplished
in O(r2) time.

In some contexts, effective multi-grid implementations
require complex control strategies to switch from one grid

level to another. In order to synthesize reaction-diffusion
textures, however, we have found a simple strategy to be
very effective. We begin with the coarsest grid able to
resolve details at the intrinsic scale of the pattern being
synthesized. We do a small fixed number of iterations on
that grid and then interpolate the result onto the next finer
grid. This is repeated for all the remaining grids. Iterations
on the different grids make use of the same 3 � 3 matrix
M as the Euler method. The only change is that the grid-
spacing h changes as we move from one grid to another.
The resulting multi-grid method can be as efficient as the
Gaussian convolution method, but is not subject to the
limitation that the matrix A be constant.

5.3 Binary Convolution

Convolutions of binary data with an integer-valued mask
can be performed efficiently by means of lookup tables:
accessing eight consecutive binary data points as a byte,
the sum of the eight corresponding convolution values can
be obtained in a single table lookup. AlthoughO(r4), bi-
nary convolution may nevertheless be the fastest option for
convolution with small masks. For reaction functions that
are expressible in binary form, the algorithm of equation
12 may be reduced to one of iterated binary convolution
by allowing the diffusion constant, b to grow very large,
rendering the contribution of the old concentrations neg-
ligible. In the resulting simplified algorithm, the binary
reaction function is applied to the concentrations, with
binary convolution applied to the result. Binary convolu-
tion has been used previously to compute RD patterns by
Young [25].

6 Results

Although we have described one basic pattern-forming
mechanism, a wide variety of RD textures can be produced
by varying the initial and boundary conditions, the number
of morphogens involved, the rate constants for each, the
reaction functions that govern their interactions and the
manner in which concentrations are mapped into surface
appearance. In this section we show the textures we have
produced and describe the choices that led to their creation.

All of the images that accompany this paper were ren-
dered using Photorealistic RenderMan. RD textures were
used as displacement and texture maps. In most images,
monochrome concentration maps were used to blend be-
tween pairs of colors or other parameters such as opacity
and specularity.

6.1 Isotropic Patterns

To create a simple isotropic RD pattern, we can use two
concentration arrays C+ and C�, with different diffusion
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rates a+ and a�, producing convolution masks M+ and
M� according to equation 4. A threshold on the difference
C+ � C� serves as the reaction function:

R+ = R� = if (C+ > C�) thenk otherwise 0 (13)

where k is a reaction constant. Starting this RD system
from initial conditions which are zero except on a jittered
diamond grid produces a roughly cellular pattern that strik-
ingly resembles giraffe markings (figure 3-1b). A similar
pattern (3-1a), finer in scale and rendered with displace-
ment mapping, looks reptilian. Varying the reaction rate
constant k (from equation 13) over time as the pattern is
formed produces very different results (3-4a, 3-4c).

6.2 Simple Anisotropy: Stripes

The simple two-morphogen system used to produce the gi-
raffe markings involves two morphogensdiffusing isotrop-
ically, but at different rates. Introducing anisotropy allows
more freedom. If we describe anisotropic diffusion using
triplesP = [�; a1; a2], for each concentration mapC, then
branching and merging stripe patterns are produced with
P+ = [�; es; s], and P� = [�; es; ds]; which makes both
morphogens diffuse at the same rate in the � direction, but
different rates in the perpendicular direction. Satisfactory
zebra-like stripes can be produced with e = 2:0, d = 1:5,
s = 1:0, b = 1:0, k = 1:0, h = 1:0, �t = :02, and C+

and C� initialized to random noise in the interval [�1;1].
A typical zebra pattern is shown in figure 3-4b. A very
similar RD pattern, rendered as a displacement map with
appropriate coloring, resembles rippled sand. The addi-
tion of a fine noise-based grain texture (figure 5) enhances
the effect.

6.3 Competing Orientations: weaves, lat-
tices, and mazes

The interesting behavior of the anisotropic system de-
scribed above led us to consider more elaborate systems
involving multiple orientations. The general idea we con-
sidered was to replace the single antagonistic pair of mor-
phogens with a set of such pairs, each pair differently
oriented. Thus, a two-direction system might involve an
antagonistic pair of morphogens biased toward horizontal
diffusion, as well as a vertically biased pair.

Withinthis framework we discovered two reaction func-
tions that produce particularly interesting patterns. (We
denote by Di the difference C+ � C� for the ith pair of
concentrations.) The first is a “max of differences” (M-D),

R = k; if maxj Dj > �;

= 0; otherwise:
(14)

where � is a threshold, and the second, a “difference of
abs’s” (D-A):

R = k; if abs maxj Dj > abs minj Dj

= 0; otherwise:
(15)

Although the D-A and M-D reaction functions appear
similar, the patterns they produce could hardly be more
different. Figure 3-3b shows a two-direction D-A texture,
which has a maze-like appearance. In contrast, a two-
direction M-D texture (3-4e) appears woven, although
such irregularities as splitting and merging of “threads”
give it a distinctly organic appearance. Figures 3-2b and
3-1c show three- and five- direction M-D textures, while
figure 3-2c shows a five-direction D-A texture. All of
these derive from uniform random initial conditions.

6.4 Spatial Variation

Figures 3b, 4b, 4c, and 4d show RD patterns governed
by diffusion maps. Figure 3-3d is a two-orientation M-
D pattern grown on a radial/concentric orientation map.
Figure 3-2a shows a similar pattern, but with rotation of
the map orientations to produce a double spiral. Figure 3-
2e shows two competing nearly-radial orientations. Figure
3-3c shows the merger, with smoothing, of three uniform
orientation fields, resembling a zebra’s haunch markings.
Figures 3-1d and 3-4d show more complicated orientation
patterns. All of these diffusion maps were generated using
simple analytic forms.

6.5 Boundary Conditions

An unusual feature of RD textures is that texture patches
that join seamlessly can be created by copying data across
the boundaries at each iteration. This is illustrated in figure
3-2d: a texture was grown using doubly cyclic boundary
conditions, giving it the topology of a torus. This was
accomplished simply by wrapping the array references
across both horizontal and vertical boundaries while cal-
culating the convolution C �M . In the resulting pattern,
the left edge joins smoothly to the right, and the upper edge
to the lower. The figure shows how the replicated pattern
tiles the image without seams. The replication itself is
easily perceived, due to the repetition of gross features
within the texture. However, the seams between the tiles
are invisible.

7 Conclusion

Texture synthesis is a hard problem because the range of
natural textures, and of texture-forming processes, is vast.
Given this diversity, we cannot expect to find a single,
universal texture generator. Nonetheless, by identifying
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processes that are widespread in nature, we can develop
models that are broadly useful for texture synthesis.

Although RD models have been applied to problems
in a variety of fields, their use in computer graphics is in
its infancy. Already, RD models significantly extend the
range of textures that can be synthesized. Their character-
istic organic appearance lends an interesting new element
to synthetic imagery. In addition, RD textures have the po-
tential to extend the range of surfaces to which textures can
be applied because they can be grown to compensate for
parametric distortion and joined smoothly patch to patch.
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Figure 3: Texture Buttons. Row 1: (a) reptile, (b) giraffe, (c) coral, (d) scalloped. Row 2: (a) spiral, (b) triweave, (c)
twisty maze, (d) replication, (e) purple thing. Row 3: (a) sand, (b) maze, (c) zebra haunch, (d) radial. Row 4: (a) space
giraffe, (b) zebra, (c) stucco, (d) beats us, (e) weave.

By type. Isotropic: reptile, giraffe, space-giraffe, stucco. Multi-orientation: coral (5), spiral (2), triweave (3), twisty
maze (5), replication (3), purple thing (2), maze (2), radial (2), beats us (2), weave (2). Diffusion mapped: scaloped, spiral,
purple thing, zebra haunch, radial, beats us.
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Figure 4: Space Cookies. All texture and displacement maps, except those on the bag and the plate, are RD patterns.

Figure 5: Fungi. All texture and displacement maps are RD patterns, except the sky, the fine grain pattern on the sand, and
the fluting on the front right mushroom.
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