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Abstract

A simple but general approach to imposing and solv-
ing geometric constraints on parameterized models is
introduced, applicable to animation as well as model
construction. Constraints are expressed as energy
functions, and the energy gradient followed through
the model's parameter space. Intuitively, energy con-
straints behave like forces that pull and parametri-
cally deform the parts of the model into place. A wide
variety of geometric constraints are amenable to this
formulation, and may be used to in
uence arbitrary
model parameters. A catalogue of basic constraints
is presented, and results are shown.
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1 Introduction

A widely-used approach to modeling is to combine
geometric primitives|such as cylinders, blocks, and
bicubic patches|with a variety of operators|such as
translations, rotations, booleans, and deformations|
to form a model hierarchy. The task of constructing
a model within this framework has two parts: build-
ing the hierarchy, and setting the internal parameters
of the primitives and operators. Experience tells us
that the second task is usually by far the more di�-
cult and time-consuming, particularly when complex
operators such as deformations are used. As the com-
plexity of the model increases, the number of parame-
ters becomes large, and they tend to interact in ways
that make the model di�cult to control.

The user knows at the outset what the objects be-
ing modeled are supposed to look like|how the pieces
are supposed to �t together and move. The di�culty
lies in �nding settings of the parameters that achieve
the desired e�ect. The utility of hierarchic model-
ing systems would be greatly enhanced if this tedious
process could be performed automatically, permitting

the user to state in terms of constraints the proper-
ties the model is supposed to have, without the need
to manually adjust parameters to give it those prop-
erties.
In this paper we present a simple but general ap-

proach to expressing and solving constraints on pa-
rameterized model hierarchies. We formulate con-
straints as \energy" functions on the model's pa-
rameter space, non-negative functions with zeroes at
points satisfying the constraints. We then sum the
constraints' energy functions to create a single scalar
function of the parameters, and move through param-
eter space to minimize the energy.
We refer to the constraint functions as energy func-

tions not because they always model the energy of
actual physical systems, but because they play a role
similar to that of physical energy functions during
the constraint solving process. For example, an en-
ergy constraint attaching points on the surfaces of
two objects acts much like a spring that pulls the ob-
jects together. However, in addition to translating
and rotating, the objects are free to vary their inter-
nal parameters, so, for example, a cylinder may vary
its length or radius to meet the constraint. Although
no familiar physical material deforms in this stylized
way in response to applied forces, it is easy enough
to imagine an unphysical material that does. Since
we are using the energy analogy as a mechanism for
building models, rather than for simulating physical
phenomena, this kind of non-physical behavior poses
no problem.
Our approach provides:

� Self-assembling models, whose parts move and
deform parametrically from an initial con�gura-
tion to one that satis�es the speci�ed constraints.

� Animated models that, once assembled, may
move in response to time-varying constraints
while continuing to satisfy static ones.

� Generality and modularity: we can formulate a



wide range of constraints as energy functions,
and use them to in
uence arbitrary model pa-
rameters. To implement a new constraint we
need not know the details of other constraints,
nor of the primitives and operators to which they
will be applied. Similarly, new parameterized
primitives and operators may be implemented
without modifying existing constraints.

� Additivity: Energy functions compose by addi-
tion. The solution to a system of constraints
is the solution to a single equation, the sum of
the energy terms. This property is particularly
valuable in dealing with overdetermined systems.
While conventional algebraic methods return no
solution to an overdetermined system, the energy
minimum is a \compromise" that is sometimes
acceptable, nearly always informative, and often
easily repaired.

� Interactive control: since we satisfy constraints
by moving through a curve in parameter space,
the initial constraint solving process can itself
be animated, permitting the user to assist the
solver in escaping local energy minima, resolving
ambiguities, etc.

A signi�cant body of work in constraint-based and
dynamics modeling for computer graphics is con-
cerned with the the specialized problem of animating
articulated bodies, particularly human and animal
forms. These include Armstrong and Green, [1], Gi-
rard and Maciejewski, [6], and Wilhelms and Barksy
[13]. Nelson's Juno editor employs non-linear geomet-
ric constraints in the context of a 2-D image editor.
Dynamic models of elastic bodies for computer graph-
ics are treated by Terzopoulos et al. in [12]. Closest
to ours in approach are Barzel and Barr's dynamic
constraints [3], although their current work focuses
on constraining the motion of rigid bodies.

2 Energy constraints

A model hierarchy is a tree that de�nes the model's
geometry through a collection of mathematical func-
tions, three of which will concern us here. These are
a parametric position function, P(u; v) that returns
a 3-space point for each (u; v) pair, a surface normal

function, N(u; v), that returns a surface normal vec-
tor, and an implicit or inside-outside function, I(X),
that returns a scalar given a 3-space point, such that
I = 0 for points on the object's surface, I < 0 for
points inside the object, and I > 0 for points out-
side the object. One such collection of functions is

de�ned for each leaf in the tree, and represents the
combined e�ects of the primitive at the leaf and of all
the operators on the path from that leaf to the root.
De�nitions of these functions are given in Appendix
A.

In general, each primitive or operator possesses
some real-valued parameters, for instance the radius
of a sphere, a translation vector, or the bend angle
of a parameterized deformation. The position, nor-
mal and implicit functions each depend on these pa-
rameters: when they change, objects' surfaces move.
We refer to the union of all these parameters as 	.
Once the hierarchic structure is �xed, the state of
the model is completely determined by the value of
	. The notion of parameter spaces, and of motion
along curves through parameter space, is familiar in
computer graphics in the context of keyframe inter-
polation (see, e.g. [11].)

We will express geometric constraints in terms of
the functions P, N, and I . For instance, if we wish to
attach two surface points P1(u1; v1) and P2(u2; v2),
at least one condition we must satisfy is P1 = P2.
A solution is a value of 	 such that all the imposed
conditions are met.

Rather than solving the constraint equations al-
gebraically, we formulate constraints as energy func-
tions, and move through parameter space according
to the energy gradient. In general, to formulate an
energy constraint, we must construct a non-negative
smooth function E(	) such that E(	) = 0 at all and
only values of 	 for which the constraint is satis�ed.
The solutions to a set of n constraints are values of
	 such that

E(	) =

nX

i

Ei(	) = 0;

so to combine constraints, the corresponding energy
terms are simply summed. We are free to express E
in terms of position, normal, or implicit functions, or
any other quantities that may be extracted from the
model tree.

Intuitively, energy constraints may be viewed as
\forces" that pull the parts of the model into the
desired con�guration and hold them there, although
they are not necessarily intended to be physically re-
alistic forces. For instance, a simple attachment con-
straint might be implemented as a spring connecting
the points, in which case we have

Espring = � jP1(u1; v1)� P2(u2; v2)j
2
;

where � is a spring constant, and the \force" vector
in parameter space is rEspring .



From an initial condition	0, the energy E is mini-
mized by numerically solving the di�erential equation

dF(t)=dt = rE;F(0) = 	0;

for a �xed point of the parameter-space curve F(t);
i.e. a point at which rE = 0. The solution is a local
minimum, although it is not guaranteed to be a zero.
This is a steepest descent method for solvingrE = 0.
A variety of standard numerical methods may be

used to solve the energy equation. The simplest of
these, Euler's method, has

F (ti+1) = F (t) + hrE;

with h the step size. More sophisticated methods,
such as Gear's method [5] should be used to obtain ac-
curate, reliable results. Any solution method requires
evaluation of rE. To do so, the summed energy must
be di�erentiated with respect to each model parame-
ter, which may be done numerically by varying each
parameter in turn, re-evaluating E, and taking dif-
ferences. The structure of the tree may be used to
avoid the needless expense of di�erentiating energy
terms with respect to parameters on which they do
not depend.
A limitation of the method is that it may be

trapped at spurious (i.e. non-zero) local minima of
E. Our solution to this problem is user interaction.
Such minima are usually easy to interpret geomet-
rically, e.g. a single part has become stuck or been
turned backwards. Presented with a bad answer, the
user can often correct the situation by manually repo-
sitioning a part. In fact, with fast enough rendering
to view the evolving solution dynamically, the user
can literally push or pull on parts of the model with
a pointing device, introducing a time-varying energy
term, Euser , into the equation, to bump it out of local
minima. This style of user interaction has been used
to good e�ect in interactive image interpretation [7].
A di�erent form of user control is obtained by selec-
tively freezing and un-freezing model parameters, to
decompose a large problem into a sequence of smaller
ones.

3 A catalogue of useful con-

straints

A wide range of geometric constraints may be cast
in the form of energy functions. Here we list a few
basic constraints, most of which are used in the ex-
amples to follow. Many are subject to alternative
formulations. Each energy function is multiplied by
a weighting factor; these factors are not shown below.

� Attachment to a �xed point in space:

The energy term

E = jPa(ua; va)�Qj
2

attaches a speci�c point on the surface of object
a, de�ned by parameter point (ua; va), to a spe-
ci�c point in space, Q.

� Surface-to-surface attachment: Place
speci�ed points on two surfaces in contact. To
acheive contact, the points must coincide. In ad-
dition, their tangent planes at those points must
coincide, and the surfaces should not (locally) in-
terpenetrate. These conditions can be encoded
by

E =
��Pa(ua; va)�Pb(ub; vb)

��2 +
Na(ua; va) �N

b(ub; vb) + 1;

where P a and P b are the positions at the two
attachment points, and Na and N b are the unit
surface normals at those points. This function is
zero when the points coincide and the dot prod-
uct of the normals is �1.

� Floating attachment: Attach a speci�ed
point on an object to some point on a second ob-
ject, allowing the point of contact to slide freely
on the second object. Our implementation of this
constraint is similar to that for simple surface-to-
surface attachment, but uses the second object's
implicit function instead of its parametric posi-
tion function:

E = Ib(Pa(ua; va))
2 +

Na(ua; va) �
rIb

jrIbj
+ 1;

noting that rIb= jrI j is a unit normal to surface
b where Ib = 0. A useful variation is double

oating attachment, in which both points 
oat
on their respective surfaces.

� Slider constraint: Constrain a speci�ed
point on an object to a line in space:

E = PLD(Pa(ua; va);P1;P2)
2;

where PLD is the point-to-line distance func-
tion, and P1 and P2 are points on the line. Use-
ful variations constrain the point to a line seg-

ment, or constrain two line segments to be colin-
ear and to overlap (like segments of a telescope.)



� Collision using the implicit function: For
objects possessing inside-outside functions, inter-
ference or collision constraints may be imposed
without calculating surface intersections. The
implicit function is zero everywhere on the ob-
ject's surface, and, by our convention, negative
inside and positive outside the object. To im-
pose an anti-interference constraint, we trans-
form the implicit function into a thin repulsive
\force �eld" surrounding the object. At a single
point, P a(ua; va) on object a, a suitable energy
function is

E = e��I
b(Pa(ua;va));

where � is a positive scale factor. This makes
the energy high inside object b, tending to zero
far from object b. Thus a point inside the ob-
ject is repelled, the repulsion approaching zero
o� the object's surface. To implement a general
interference constraint, this function must be in-
tegrated over u and v. An e�cient implementa-
tion must make use of intelligent sampling, hi-
erarchic bounding boxes, etc., which are beyond
the scope of this paper.

� Direct constraints on parameters: It is
sometimes useful to impose constraints directly
on model parameters, for instance to establish
default values, or to constrain relations among
parameters. If � is some model parameter, then
a defaulting constraint may be written as E =
(� � �0)

2; where �0 is the default value. If �
and � are two model parameters, then a linear
relational constraint may be written as E = (��
k1� � k2)

2, which says that the linear relation
� = k1� + k2 should hold between � and �. For
instance, if we want one rod to be twice as long
as another, we have E = (l1�2l2)

2, where l1 and
l2 are the lengths of the rods.

4 Examples

This section presents three examples of the use of
energy constraints to build and animate models. The
�rst, a relatively simple one, is described in detail as a
concrete illustration of the method. The second and
third are described more brie
y.

Pipe�tting: A simple example illustrating self-
assembly and adjustment of a variety of model pa-
rameters is shown in �gure 1. A cylindrical pipe,
subjected to a translation, a rotation, and a param-
eterized bend is to be �tted to other pipes at either

end. All other parts of the model have already been
assembled, and their parameters frozen.
The model hierarchy for the adjustable tube is de-

scribed schematically by Trans(Rot(Bend(Tube))):

� A tube is a primitive, whose axis is coincides with
the x-axis in model space, and whose dimensions
are controlled by three parameters |length, ra-
dius, and thickness.

� A bend (after [2]) is a parameterized deforma-
tion that maps the x-axis into a circular arc in
the x; z plane. Its e�ect on shape is controlled
by three parameters|start, stop, and amount.
Start and stop determine the \tightness" of the
bend, and amount is the angle between the ends
of the curved axis.

� A quaternion rotation is speci�ed by a 4-vector.
Although any rotation may be speci�ed by three
Euler angles, we use quaternions to avoid gimbal
lock.

� A translation is speci�ed by a 3-vector of x, y,
and z displacements.

The union of these parameters, 	, is a 13-
dimensional vector. Motion along a curve through
	-space corresponds to some combination of bend-
ing, translating, rotating, and changing the tube's
dimensions. Despite the simplicity of the example,
this means that we have to come up with 13 inde-
pendent numbers to pin down the model in the de-
sired con�guration. Doing this manually, or writing
a special purpose program to do it, would have been
unpleasant.
For our purposes, two pipes are attached if their

axes join smoothly and they have the same radius
and thickness. An \attach-pipes" (AP) energy con-
straint may be built by combining a surface-to-surface
attachment constraint, as de�ned in the previous sec-
tion, with relational constraints that make the radii
and thicknesses agree. Let P1 and P2 be the end-
points of the two pipes' axes, i.e. the points to be
joined, and let N1 and N2 be two unit vectors ex-
tending outward from the axis endpoints in a direc-
tion tangent to the axes. Then we want P1 = P2
and N1 �N2 = 0. Additionally, we want r1 = r2 and
t1 = t2 for the radii and thicknesses. In energy form,
this gives us

EAP = jP1 �P2j
2
+N1 �N2+1+(r1�r2)

2+(t1�t2)
2:

To attach both ends of the moving pipe, we have as
the total energy the sum of two terms of this form.
Prior to bending, rotation, and translation, the

endpoints of the moving tube's axis are situated



at the points P1 = (length=2; 0; 0), and P2 =
(�length=2; 0; 0), with unit normals N1 = (1; 0; 0)
and N2 = (�1; 0; 0) pointing outward from the ends.
The two �xed pipes to which the moving one is
to be attached each have a similarly de�ned end-
point and normal, which are constants. The trans-
formed endpoints are Trans(Rot(Bend(P1))) and
Trans(Rot(Bend(P2))), respectively, so their posi-
tions in model space depend on all the model pa-
rameters except radius and thickness. Using the fact
that surface normals transform under deformations
by multiplication with the inverse transpose of the
deformation's jacobian ([2]), the transformed normals
are Rot(J�1TBendN1) and Rot(J�1TBendN2), where J�1TBend

is the inverse transpose of the bend operator's jaco-
bian, evaluated at P1 and P2 respectively (see [2] for
the formula.)

To solve the constraints, we solve the equation
d
dt
	(t) = rE from a starting point 	(t0), until we

reach a point at which rE � �, where � is a small tol-
erance value. At any point 	 in parameter space, we
can evaluate P1, P2, N1, and N2, and hence the en-
ergy function de�ned in terms of them. To compute
rE numerically, we �rst evaluate E at the current
	, then add a small � to each parameter (i.e. each
component of 	) in turn, re-evaluate E and subtract
the central value of E, obtaining the corresponding
component of rE. Using Euler's method the new
value of 	 is given by 	t+1 =	t +hrE, where h is
a step size.

Figure 1 shows the model at the initial condition, at
several steps toward the solution, and at the solution.
Finally, we show a new solution obtained when one
of the �xed pipes is moved.

Oldham linkage: An oldham linkage is used to
transfer rotation between shafts that are o�set in a
plane perpendicular to their axes, by means of a sys-
tem of tongues and grooves. Figure 2 shows sev-
eral frames from the self-assembly sequence for an
oldham linkage, and several frames from an anima-
tion sequence. The speci�cation of this mechanism
involved a variety of constraints, including sliders,
surface-to-surface contact, and position and orienta-
tion constraints. This example illustrates the use of
energy constraints both for assembly and for anima-
tion of the assembled model.

Cam and rocker arm: This example (�gure 3)
shows an already-assembled cam and rocker arm at
several points in its cycle. This is a working model:
the pressure of the spring on the valve head pushes
the follower against the cam via the fulcrum. The fol-
lower \feels" the cam using an implicit-function inter-
ference constraint, so that if the cam were reshaped,

the motion of the arm would change accordingly.

5 Conclusion

Energy constraints were shown to provide an e�ec-
tive means of building and controlling parameterized
models. A principle advantage of the energy method
is its generality: it does not depend on the details of
the constraints used or the models to which they are
applied. It is tolerant of over- and under-determined
systems, and amenable to user interaction. Among
its disadvantages, it can be numerically intensive|
particularly when the equations become sti�|and it
can be trapped in local minima. The second di�culty
is largely overcome by e�ective user interaction.

Appendix A

In this appendix we de�ne the position, normal and
implicit functions in terms of the structure of the
model tree. Our de�nition describes the SPAR mod-
eling testbed [4], but is typical of hierarchic modelers
in most relevant respects. Each leaf in the tree rep-
resents a primitive. The root is a camera, and the
intermediate nodes represent operators. We denote
the leaves by Li, and the n nodes on the ascending
path from leaf Li to the camera as Oi;j , where Oi;1

is Li, Oi;2 is the �rst operator above Li, and Oi; n is
the camera. (When we refer to the objects comprising
the tree without regard to the paths they lie on, we
index them as Oi.) For the purpose of sampling and
rendering, each such path de�nes a distinct object,
characterized by a coordinated bundle of mathemat-
ical functions. These include:

� A parametric position function, Pi(u; v), <2 !
<3, de�ned recursively by

Pi(u; v) = Pi;n(u; v);

Pi;j(u; v) = Ti;j(Pi;j�1(u; v)); j 6= 1;

Pi;1(u; v) = PLi

(u; v);

where Ti;j ; <3 ! <3 is associated with opera-
tor Oi;j , de�ning the transformation it performs,
and PLi

is the primitive position function associ-
ated with Li. By convention, the domain of P is
the unit square 0 � u � 1, 0 � v � 1. In words,
the primitive Li generates 3-space positions on
the object's surface as a function of u and v, and
each operator transforms those positions.

� A parametric normal function, Ni(u; v), similar
to the position function but generating surface



normals. This is de�ned by

Ni(u; v) = Ni;n(u; v);

Ni;j(u; v) = Ni;j�1(u; v)J�1T(Ti;j); j 6= 1;

Ni;1(u; v) =
@PLi

(u; v)

@u
�

@PLi

(u; v)

@v
;

where J�1T is the inverse transpose of the Jaco-
bian matrix [2].

� An implicit (inside-outside) function, I i(X),
<3 ! <1, such that the solution to I i(X) = 0
is the same surface de�ned by Pi. The implicit
function is de�ned recursively by

I i(X) = I i;n(X);

I i;j(X) = I i;j�1((T i;j)�1(X); j 6= 1;

I i;1(X) = IL
i

(X);

where T�1 is the inverse of T, and IL
i

is the
primitive implicit function associated with Li.
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Figure Captions

Figure 1: Pipe�tting. A pipe subjected to a parametric bend is attached to other pipes at either end using
surface-to-surface attachments. Starting with the upper left we see the initial con�guration, three steps in the
assembly process, and the �nal solution. At the lower right is shown a new solution obtained by moving one of
the �xed pipes.

Figure 2: An Oldham's linkage being assembled and moved using a variety of energy constraints including
sliders. The system of tongues and grooves serves to transfer rotation through the 
oating disc while allowing
translations of either shaft in the plane of the disc.

Figure 3: A working model of a cam and rocker arm, speci�ed using energy constraints, shown at several
points in its cycle. The spring creates a torque around the fulcrum, pushing the follower against the cam. The
follower \feels" the cam using an implicit-function interference constraint.


