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Abstract

Physically-based modeling has been used in the past to support a va-
riety of interactive modeling tasks including free-form surface de-
sign, mechanism design, constrained drawing, and interactive cam-
era control. In these systems, the user interacts with the model
by exerting virtual forces, to which the system responds subject
to the active constraints. In the past, this kind of interaction has
been applicable only to models that are governed by continuous
parameters. In this paper we present an extension to mixed con-
tinuous/discrete models, emphasizing constrained layout problems
that arise in architecture and other domains. When the object being
dragged is blocked from further motion by geometric constraints, a
local discrete search is triggered, during which transformations such
as swapping of adjacent objects may be performed. The result of the
search is a “nearby” state in which the target object has been moved
in the indicated direction and in which all constraints are satisfied.
The transition to this state is portrayed using simple but effective an-
imated visual effects. Following the transition, continuous dragging
is resumed. The resulting seamless transitions between discrete and
continuous manipulation allow the user to easily explore the mixed
design space just by dragging objects. We demonstrate the method
in application to architectural floor plan design, circuit board layout,
art analysis, and page layout.

Keywords—Interactive techniques, physically-based modeling,
grammars.

1 Introduction

Physically-based modeling has been a topic of interest in computer
graphics for some time. A particular area of interest has been the
use of physical simulation or related optimization techniques as a
means of geometric interaction, allowing users to directly manip-
ulate simulated objects subject to constraints. This approach has
been applied to animation, image analysis, drawing, free-form sur-
face modeling, mechanical design, and interactive molecular simu-
lation [29, 28, 30, 5, 31, 33, 27].

Despite its successes, this approach has been subject to the se-
vere limitation that it only supports manipulation of systems gov-
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erned by continuous variables. Neither discrete operations such as
the addition, deletion, or replacement of parts nor discrete changes
in object shapes or spatial relationships can be accommodated at all
within the physically-based manipulation framework. This is an un-
fortunate limitation because a great many problems of interest in-
volve both continuous and discrete parameters. An important class
of such problems are layout or arrangement problems in which a col-
lection of objects are to be placed and reshaped subject to constraints
that prevent interpenetration, require adjacency, bound dimensions,
etc. Such problems arise in architecture for floor planning and furni-
ture layout, in mechanical and electromechanical design, and even
in fine art.

We would like to extend the physically-based interaction
paradigm to encompass the exploration of this kind of continu-
ous/discrete problem space. We envision systems in which objects
respond continuously to the user’s pushing and dragging actions
in a physical or quasi-physical manner, until they “hit a wall”
imposed by some constraint. They then spontaneously undergo
some discrete rearrangement or other transformation that does
what the user asked (essentially, moving the dragged or pushed
object point in the indicated direction) with the least perceived
disruption in the overall arrangement. The change should occur
rapidly enough to maintain interactivity, and should be visually
portrayed in a fashion that the user can clearly understand.

For example, in laying out a floor plan there are many degrees
of freedom as well as many constraints. Rooms may not overlap.
A residential plan must include a living room, some number of bed-
rooms, etc. The dining room should adjoin the kitchen. Rooms have
minimum dimensions or areas. Typically, all but bathrooms must
adjoin an exterior wall or courtyard wall. The whole house must fit
within some pre-specified envelope. Within these constraints, the
size, shape, and arrangement of rooms is free to vary. Some rooms
(e.g. a library or den) might be optional. Although plans may be
judged objectively by criteria such as cost, subjective aesthetic crite-
ria also play a large role, so the problem cannot be reduced to one of
“black box” mixed-integer combinatorial optimization. (And such
problems are, as a general rule, NP-hard.)

If the basic arrangement is fixed, it is a straightforward matter us-
ing existing physical manipulation techniques to push and pull on
walls, adjusting dimensions within the size or area constraints. The
new ingredient we want to add is this: when a wall is pushed to one
of its constraint limits, the system should find a re-arrangement, (e.g.
swapping the living room to the other side of the dining room) that
allows the wall on which the user pushes to continue to move in the
indicated direction. The disruption to the rest of the plan should be
minimal, and it should be immediately clear to the user what hap-
pened.

For any particular instance of this class of problem, we are given
a model whose state is given by a set of continuous and discrete (in-
teger or boolean) variables, with a graphical representation that de-
pends on state, and a set of equality or inequality constraint func-
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tions that likewise depend on state. Our approach to the problem
handles continuous and discrete changes separately, although tran-
sitions between the two modes are seamless and transparent to the
user. The user’s dragging motions are treated as a “force” to be
applied to the model’s continuous parameters subject to the con-
straints. As long as this applied force is not entirely cancelled
by constraint forces, the discrete variables remain frozen, and our
method is just like that used in previous physical manipulation sys-
tems.

When the constraint forces cancel the user’s applied force, the
model is “stuck.” We then search for a new state of the discrete vari-
ables. The main contribution of this paper lies in this area. We be-
gin with a problem-specific search space that is defined by a set of
transformations on the discrete variables. The form of these trans-
formations depends on the structure of the models. The idea is to
define this set of transformations to do a reasonable job of captur-
ing perceptual similarity, so that each single transformation makes
a perceptually small change to the arrangement of objects. In the do-
mains on which we have experimented, constructing the transforma-
tions has not been difficult; we have done very well with simple op-
erations such as swaps and moves. The set of transformations gives
us a new space in which we may perform shallow searches. The
search is limited to transformations that directly influence the ele-
ment being dragged by the user, and is also subject to a depth limit.
Subject to these restrictions, we look for a state that does the best job
of moving whatever was grabbed by the user in the desired direction.
To portray the transition to this new state we use simple animation
tricks that provide smooth motion cues for the user.

This combination of discrete and continuous mechanisms pro-
vides seamless, pleasing interactions. The discrete search is hidden
from the user. In the case of swapping rooms in a floor plan, the
user’s experience is something like this: we grab one wall of the liv-
ing room, pulling toward the opposing wall, which is shared with the
dining room. The living room shrinks until it reaches its minimum
width. If we continue to pull strongly on the wall, the living room
“pops” through to the other side of the dining room, with a brief in-
terpenetration. Most of the rest of the plan is undisturbed, but the
kitchen, which is constrained to be adjacent to the dining room, has
swapped places as well.

The remainder of the paper is organized as follows: in the next
section, we discuss the background of physical manipulation meth-
ods, as well as the relevant architecture background of shape gram-
mars. In the following section we review the math and algorithms of
continuous constrained manipulation. We then describe the discrete
portion in detail. Next, we present results in architecture, board lay-
out, page layout, and grammar-based analysis exploration of paint-
ings. We conclude with discussion and directions for future work.

2 Background

An active research area in architecture involves the use of Shape
Grammars as a means of formally capturing architectural style. De-
spite considerable evidence that such grammars are capable of rep-
resenting styles, it has not previously been clear how they could ac-
tually be used to interactively explore design spaces or create de-
signs. A main motivation of our work has been to develop means of
interacting with shape grammars through direct geometric manipu-
lation. The first portion of this section reviews prior work on shape
grammars for architecture.

Embedded in the discrete problem of searching grammar-based
design spaces is a problem of exploring a continuous design space
by varying sizes, positions, etc. within the design constraints. Our
approach to this sub-problem closely follows previous work in the
use of physically-based methods for interactive manipulation. The
second portion of this section reviews this prior work.

2.1 Shape Grammars in Architecture

Shape grammars were first introduced to architecture by Stiny and
Gips in the 1970’s [25, 24]. Since then, shape grammars have been
used theoretically to describe the historical style of architectural de-
signs [26, 7, 17] and to specify new forms [15]. Shape grammars are
appealing to architecture researchers because they are visual, and
because they offer a formal mechanism for capturing the previously
vague and ambiguous notion of “style.”

The basic idea of shape grammars is to define a set of rewrite
rules that operate on geometric models by replacing, re-arranging
or modifying elements. The grammar serves to implicitly define a
set of geometric models, i.e. all those that can be derived by some
legal sequence of rule applications. The hope is that relatively sim-
ple rule sets can be devised that capture some aspect of architectural
style, for example, generating designs for all and only Queen Anne
Houses [13].

Several computer programs have been developed based on the
theoretical foundation of shape grammars.1 These systems have
been used to demonstrate grammars representing floor plan layouts
[8], framing structures [21], and a class of building designs [13].

Interacting with grammar-based systems has been problematic.
The only means of exploring the discrete space of designs defined
by a grammar has been sequential manual rule selection by the user,
with, in some systems, the ability to edit an existing derivation. This
mode of editing can be frustrating and extremely difficult, because
the relation between a rule and its geometric effect can be obscure,
particularly for rules that occur early in the sequence. We believe
that the formalism of shape grammars would be far more useful if
the architect could explore the space by directly manipulating the
grammar’s geometric output rather than the sequence of rules that
produced it.

A further issue has been that these systems do not handle contin-
uous dimensional variations (the flip side of the problem we have
faced in physically-based manipulation.) A few applications allow
grammars to include continuous parameters, with some user control
over parameter values [21]. However, the problem of solving si-
multaneously for parameter values that satisfy constraints has been
finessed. No existing grammar-based system allows the user to di-
rectly manipulate designs to produce geometric variations. Existing
physically-based techniques, on the other hand, appear to be ideally
suited to supporting such direct manipulation.

2.2 Physically-Based Modeling for Graphical
Interaction

Interactive physical simulations have been used as a technique for
interaction with a variety of graphical models. In computer vision
and image analysis, quasi-physical active contour models known
as snakes are widely used for interactive edge finding and tracking
[14]. Snakes are essentially simulated springy “wires” that are at-
tracted to edge features in images, and simultaneously subjected to
manipulation forces imposed by the user.

The use of constrained dynamics simulations for interactive ge-
ometric modeling was described by Witkin et al. [32]. Flexible-
surface simulations for interactive computer vision and free-form
surface modeling are areas that have also been extensively inves-
tigated [29, 28, 30, 5, 31, 33]. Constrained dynamics simulations
have also been used to support drawing applications [11] and for in-
teractive camera control for animation [10]. Surles [27] describes

1Shape grammars in their original form could not be implemented di-
rectly, due to problems of ambiguity. Several additional formalisms were in-
troduced on which system implementations were based [4, 13]. Henceforth
we use “shape grammar” in the broader sense of these extended geometric
grammars.
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a system for interactive molecular simulations. Interactive simula-
tions that include contact constraints were described by Baraff [3];
the continuous simulation techniques in this paper most closely fol-
low that work.

3 Continuous Manipulation

During any interval of time in which the discrete variables of the
model stay fixed, the model is represented simply as a continuous
function of state q(t), where q(t) ∈ IRn is a vector of the model’s
n continuous variables. Over such an interval, the model may be
subject to some constraints: that is, we may require the model to
satisfy the conditions

C1(q(t)) ≥ 0

C2(q(t)) ≥ 0

... (1)

Cm(q(t)) ≥ 0

where each function Ci is a scalar function of state, q. The evolution
of this type of constrained system over time exactly parallels work
on physical simulation of impenetrable objects [2]; accordingly, we
cast the continuous manipulation of our models as a problem in con-
strained physical simulation.

Assuming that the model’s initial state q(t0) satisfies Ci(q(t0)) ≥
0 for 1 ≤ i ≤ m, the model evolves from time t0 according to the
first-order differential equation

q̇(t) = d
dt

q(t) = M−1F(t) (2)

where F(t) ∈ IRn is the “force” acting on the model at time t and
M is an n × n diagonal “mass” matrix. By adjusting entries in M,
state variables can be “heavier” or “lighter” (that is, harder or easier
to change). Aside from user preferences, the matrix M is needed to
properly scale the problem in the case when two or more of the state
variables have vastly different scale/ranges from each other. The
force F(t) has the form

F(t) = Fa(t) + Fc(t)

where Fa(t) represents the force applied by the user to alter the
model, and Fc(t) represents a constraint force that is introduced so
that the conditions of equation (1) can be maintained.

To allow the model to be manipulated with as little interference
as possible, we seek a constraint force Fc(t) that interferes with the
user’s applied force as little as possible. Treating our manipulation
problem as a physical problem, we choose Fc(t) to be a workless,
compressive constraint force [19]. At any particular time t, such a
constraint force depends on the applied force Fa(t) and the set of
active constraints. A constraint Ci is said to be active at time t if
Ci(q(t)) = 0. The workless, compressive constraint forces we seek
have the form

Fc(t) = ∂C1(q(t))
∂q

f1 + · · · + ∂Cm(q(t))
∂q

fm

where the scalar variables fi are all nonnegative and fi is zero if the
ith constraint is not active.

Suppose at time t only k of the m constraints on the model are
active; without loss of generality, let C1(q(t)) = C2(q(t)) = · · · =
Ck(q(t)) = 0. Only the k active constraints have an effect on the
model’s motion at time t; in particular, if k is zero the system is (mo-
mentarily) completely unconstrained in its motion. Let C(q(t)) ∈

IRk be defined as the vector-collection of these k active constraints,

C(q(t)) =


C1(q(t))
C2(q(t))

...
Ck(q(t))

 ,

and let the n × k matrix J be defined by

JT = ∂C(q(t))
∂q

.

Using this notation, Fc(t) has the form Fc(t) = JT f where the
vector f = ( f1, f2, . . . , fk) satisfies f ≥ 0 (with 0 a k-vector of ze-
ros). To prevent the active constraints from decreasing past zero, we
require that Ċ(q(t)) ≥ 0. Using the chain rule, this yields

Ċ(q(t)) = ∂C(q(t))
∂q

T

q̇(t) = Jq̇(t) ≥ 0. (3)

Since q̇(t) = M−1F(t) and

F(t) = Fa(t) + Fc(t) = Fa(t) + JT f,

we can rewrite equation (3) as

JM−1JT f + JFa(t) ≥ 0. (4)

For the constraint force to be workless, we require not only that
f be nonnegative and satisfy equation (4), but also that the ith com-
ponent of f be zero if Ċi(q(t)) > 0. This last condition prevents the
constraint force from gratuitously changing q(t) so that an active
constraint becomes inactive. Baraff [2] discusses the implementa-
tion of a fast, efficient algorithm for computing a vector f which sat-
isfies all of these conditions; our system computes f using the de-
scribed implementation.

Once f is computed for a given t, the constraint force and thus
the total force F(t) acting on the system is known. Standard numer-
ical methods are then used to integrate the system q̇(t) = M−1F(t)
forward in time. Since constraint forces only prevent currently ac-
tive constraints from being violated, and since numerical integration
techniques take discrete steps from time t to time t +1t, a constraint
j that is inactive at time t may occasionally be violated at time t +1t
(i.e. Cj(q(t + 1t)) may be negative). In this case, we employ stan-
dard root finding techniques to evolve the system forward to the time
tc between t and t + 1t at which Cj(q(tc)) becomes zero. The jth
constraint then becomes an active constraint at this time, and a more
accurate projection of q(t + 1t) can be computed. The process is
the same as the collision-resolution processes employed in physical
simulation systems [1].

4 Discrete Manipulation

We wish to extend the paradigm of continuous physically-based in-
teraction to allow the state of the system to undergo discrete struc-
tural change in response to the user’s actions. Although such dis-
continuous behavior is inherently non-physical we want to retain
the spirit of continuous physical interaction, letting the user operate
on the design simply by dragging objects subject to whatever con-
straints are in force.

In a continuous system, when the user drags an object into a wall
or other constraint-imposed “dead end,” the object simply halts. In-
stead, if the user continues to pull, we want the system to seek some
discrete change that permits the object to move further in the indi-
cated direction.

Finding such a change is a search problem. Of the discrete space
of alternative states, we must find a new state that satisfies several
criteria:
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• The new state must match our interpretation of the user’s in-
tent. In the case of simple dragging, this means that the ele-
ment being dragged must be displaced in the direction indi-
cated by the user.

• The new state should be consistent with all problem con-
straints, although it turns out we will want to briefly portray
illegal intermediate states as a visual cue.

• The change should not surprise the user. Rather than an in-
volved global rearrangement, we want the change to be sim-
ple, local, and easily grasped. Ideally, we want the user to per-
ceive some sort of direct mechanical connection between his
or her action and the resulting change, as if, for example, nor-
mally impenetrable rigid objects were allowed momentarily to
squeeze past or pop through each other.

• If several otherwise equivalent alternatives are found, we may
wish to choose the one that rates best according to a problem-
specific objective function.

• We must find the new state quickly enough to maintain inter-
activity, which rules out a large-scale combinatorial search.

We approach the problem by creating a set of domain-specific
transformations that map states in the discrete space into other
states. We use these to structure a local search and to define a met-
ric intended to capture perceptual similarity, with distance to a new
state defined by the number of transformations required to reach
it. In practice, this means that we want transformations that make
small, local changes, such as swapping two adjacent elements.

The user actions that triggered the search provide information
that can be used to limit it, for instance, considering only those trans-
formations that directly influence the element being dragged. In ad-
dition, to maintain interactivity, we limit the depth of the search to
at most a few levels. Subject to these restrictions we seek the closest
state that satisfies the user’s intent subject to the design constraints,
possibly weighting the similarity of the old and new states against
the absolute merit of the new one as defined by the design objective
function. In the subsections that follows, we describe the method in
detail.

4.1 Triggering a Local Search

In our system, continuous manipulation is the main mode of inter-
action. The search for a discrete change is triggered automatically
when continuous manipulation “hits a wall” in the sense that no fur-
ther continuous change can be made in response to the force Fa ap-
plied by the user. Specifically, the discrete search is activated when
the following conditions apply:

• there are user-applied forces (Fa 6= 0),

• the applied forces do no work (FT
a q̇ ≈ 0),

• the applied forces are large enough to signal the direction of
user action (‖Fa‖ ≥ k, where k is the smallest force needed to
activate discrete manipulation), and

• the configuration is not identical to that preceding the most re-
cently performed search.

The last condition is added to avoid “thrashing” after a local dis-
crete search fails. If these conditions are met, we initiate a local
search, using the object being pulled by the user and the direction
in which it is pulled to limit the search.

Although the choice of transformations is problem-specific,
we generally want transformation rules that make minimal, local

changes so that nearby states will appear globally similar to the orig-
inal. Additional criteria are that the transformations should tend to
yield nearby states that are consistent with the topological and ge-
ometric constraints, and steerable in the sense that we can directly
limit the search to states that are consistent with the user’s intent.

We limit the search to operations that move the target element in
the desired direction, and also place an absolute limit on the depth
of the search to maintain interactivity. Each candidate state is tested
against the constraints and objective functions. An example of a set
of transformation rules is described in the next section.

4.2 Constraints and Objectives

In addition to the “user’s intent” constraint which has already been
built into the search, we must consider topological and geometric
constraints that are part of the problem specification. We also have
two sorts of objective function: a relative one, measuring distance
from the old state to a candidate new state, and an absolute one mea-
suring the goodness of the overall design. We take a weighted sum
of the two, choosing the best solution that satisfies the constraints.
If no legal state is found within the depth limit of the search we re-
main at the old state. In this last case, the user’s experience is that
the object being pulled “can’t go that away,” in which case he or she
is free to try something else.

To satisfy the constraints, we consider topological constraints
first, such as adjacency requirements. If a candidate state meets all
the topological constraints, we then perform a numerical constraint
solution in an effort to meet the applicable continuous geometric
constraints, using a general purpose continuous constrained opti-
mization program [9]. Since we are making incremental changes,
the previous geometric parameter values generally give good initial
estimates for finding a new state that satisfies the constraints.

Of the states that satisfy the topological and geometric con-
straints, we choose the best one as measured by a compound objec-
tive function. This objective function has discrete and continuous
parts as well. We let the “closeness” of the new state to the old de-
pend on continuous geometric measures of the change, as well as
on the integer-valued transformation distance between them. We
could use an additional objective function to modify the search, ei-
ther a persistent objective function that measures the “goodness” of
the design, or a temporary one that measures the degree to which the
change matches what the user asked for, or both.

After a new state is chosen, the numerical values obtained by op-
timization become the initial continuous parameter values for the
new state. We then return to the continuous manipulation phase.

4.3 Visualizing Discrete Changes

Although we are trying to make the smallest possible discrete
changes, any abrupt change to the displayed state of the model tends
to be confusing. We have found that the addition of some simple
visual cues is of great help to the user in understanding the discrete
changes. Instead of switching directly to the new state we smoothly
animate the transition, using highlighting and icons to help direct the
viewer’s attention. With some tuning of the appearance and timing
of these visual effects we have been able to produce seamless transi-
tions between the continuous and discrete modes of interaction, with
the subjective impression that the discrete change, like the continu-
ous one, takes place in direct mechanical response to the user’s ac-
tion.

5 Implementation Examples and Results

We have built an interactive system that implements the discrete
and continuous manipulation techniques described in this paper.
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Our initial experiments have centered on a class of layout problems
known as floor planning problems. The floor planning problem is
also known as the rectangular packing or rectangular dissection
problem.

The floor planning problem, in general, is to arrange a given num-
ber of rectangles within a larger rectangular space so that the space
is completely filled, without any overlap between boxes.2 Each rect-
angle may have lower-bound and upper-bound constraints on its di-
mensions and area. There may also be structural constraints be-
tween rectangles, such as adjacency constraints. The goal of floor-
planning problems varies with the application, but often involves an
optimization subject to the constraints, and may also involve aes-
thetic or other subjective criteria. Floor planning problems have
long been investigated [12] and are of particular interest in archi-
tecture [22, 6, 8] and VLSI design [34, 20, 35]. In this section, we
describe the implementation of a system for attacking this class of
floor layout problem interactively. After showing examples, we de-
scribe the results of our experiments.

5.1 Implementation of a Floor Planning Program

Our representation for floor planning problems is based on rectangu-
lar dissection. We begin with a single rectangular region, then recur-
sively subdivide regions, either horizontally or vertically, into two
or more sub-regions.3 Each dissection structure can be defined by
a subregion tree in which nonterminal nodes represent either hor-
izontal or vertical subdivisions, and leaf nodes represent the final
rectangles that comprise the dissection. Kundu [18] gives a detailed
description of subregion trees. A rectangular dissection and its sub-
region tree are shown in figure 1a. The chief advantage of this rep-
resentation is that it guarantees a non-overlapping arrangement of
boxes, with no empty space. In addition, the subregion tree allows
us to easily extract adjacency relationships between rectangles.

The structure of the subregion tree defines the topology of the dis-
section. Additional information is required to define the rectangles’
dimensions. In the root node we store the absolute height and width
of the bounding rectangle. In each other node we store a dimension-
less value r that defines its height or width as a fraction of the enclos-
ing rectangle’s height or width. If V is a vertical subdivision node
with dimensions [x, y] and children R1, R2 . . . , Rn, then the dimen-
sions of rectangle Ri are [ri x, y], where ri is the value stored in Ri,
and similarly for horizontal subdivisions. The dimensions of any
rectangle, and the derivatives of its dimensions, are easily evaluated
by recursively descending the tree. We enforce the constraint that
r > 0 for all nodes, and that

∑
i ri=1 for each set of sibling nodes.

Our current system implements constraints that place upper and
lower bounds on width, height, area, and aspect ratio, as well as rect-
angle adjacency constraints. Additional geometric constraints are
easily added, since we only need to add code to compute C(q) and
∂C(q)/∂q to handle a new type of constraint.

In addition to constraint forces, it is sometimes desirable to add
default values or “preferences” to a model. For example, a given
rectangle may have a desired size, area, or aspect ratio, which the
system should try to achieve unless blocked by constraints. Such
preferences are easily implemented by adding penalty forces to the
model. Penalty forces are obtained by negatively scaling the gra-
dient of the squared difference between the actual state and the de-
sired one. Penalty forces act like springs that pull objects toward the
desired configuration. They are subordinate to the hard constraints,

2Non-overlapping, no-unused-space arrangements are sometimes called
“tightly packed.” If we allow unused spaces, the problem becomes a
“loosely packed” problem. As we see in our examples, loosely packed prob-
lems are a subset of tightly packed problems.

3We define a vertical subdivision to be one that introduces a vertical
boundary, and a horizontal subdivision, a horizontal boundary. Thus the
rectangles created by a horizontal subdivision are one above the other.
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Figure 2: Architectural room layout. (top) The user pulls on the dining room, and a discrete change occurs. (middle) Two intermediate frames
from the resulting animated transition. (bottom) The new configuration.
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• The rotate transformation takes a single node as its argument.
It does not change the structure of the subregion tree. Rather,
it swaps the x and y values of the minimum and maximum di-
mensions assigned to the corresponding rectangle. This oper-
ation is only applicable to leaf nodes.

The search space for discrete changes is the set of subregion trees
generated by applying sequences of these transformations to the
original tree. We are interested in interactive manipulation rather
than large-scale combinatorial optimization. To maintain interac-
tivity we must restrict the search to a very small number of alterna-
tive states. We limit the search in two ways. First, we consider only
transformations that operate on nodes which are directly involved
with the rectangle or edge being dragged by the user. Second, we
limit the depth of the search: in the examples presented here we con-
sider only transformation sequences of length two or less.

For each new discrete state we consider, it is generally necessary
to adjust the continuous parameters to satisfy the geometric con-
straints if possible, and to obtain a local optimum of whatever ob-
jective function is attached to the model. To perform the continu-
ous constrained optimization we use a general purpose optimization
package called NPSOL [9] to compute a new state vector q. The
NPSOL package optimizes smooth nonlinear functions subject to
both linear and nonlinear constraints. We have considered several
objective functions for the new state vector q, including objective
functions that seek to keep rectangular areas close to a desired size,
functions that try to minimize the change in q from its prior value,
and objective functions which minimize the total area of the rect-
angular dissection. Like constraints, new types of objective func-
tions are easily added by supplying code which evaluates an objec-
tive function’s value and gradient for a particular state q.

5.2 Examples

Within the class of floor planning problems, we show examples
from four domains: architectural room layout, circuit board layout,
page layout, and stylistic analysis of abstract painting.

Architectural Room Layout

A primary motivation of our research has been to build a system for
architectural layout planning. In our architectural examples, rooms
or functional areas are modeled as rectangles. The sides of the rect-
angles are the walls surrounding a room. In addition to the con-
straints to set bounds on the lengths and areas of each room, and
the overall floorspace occupied by the rooms, adjacency constraints
can be defined between some rooms. For example, we might spec-
ify that a kitchen must remain adjacent to the dining room, while
an entranceway must always be adjacent to an exterior wall of the
layout.

Using the system, the user can pull on either a wall or the cen-
ter of a room to change the position and size of a room. Constraints
or preferences can be used to prevent rooms from becoming overly
narrow during this manipulation. The user can also add constraints
to fix walls in place and prevent them from moving from their cur-
rent position. When the user pulls on an interior wall, the exterior
walls of the layout remain fixed. When the user pulls on an exterior
wall, the entire layout is scaled.

During manipulation, constraints are visually indicated. For ex-
ample, if a room’s width has reached its lower bound, a bright line
is drawn horizontally across the room, to indicate that no more hor-
izontal compaction of the room is possible. Even if the user con-
tinues pulling in the same direction, the constraint forces prevent
the room’s width from further decreasing. Similarly, a room whose
area cannot be increased or decreased is bordered with a bright line
to inform the user that the area of the room is currently bounded.
When all progress is blocked by the constraints, a sufficiently hard

Figure 3: Circuit board layout.

pull on a blocked component of the layout activates a search for a
discrete change. After the system finishes the search, a transition
between the current state and the new state is shown as an “anima-
tion”; rooms fly from the current state to the new state (using simple
linear interpolation).

For a proposed discrete change, the objective function on the state
q is the difference of the desired total area of the house, and the total
area occupied by the house in state q. Two examples of architectural
layout are shown; the first example shows a house with 14 rooms,
while the second example has 24 rooms (21 actual rooms plus 3 ex-
tra rectangular areas to produce indentations, yielding a nonrectan-
gular exterior shape for the house). A sample layout for the second
house is shown in figure 2.

Circuit Board Layout

PC board layout is a heavily investigated application area of floor
planning. In this context, the goal is to arrange a set of circuit
modules on a board while minimizing the total interconnecting wire
length. The objective of this problem sounds much clearer than the
architectural examples. However, there are many flexible parame-
ters that the designer must consider. The design process involves
the selection of a representative among many alternatives. As an
example, in designing a board layout for a wearable computer, the
primary objective is to make the computer wearable; i.e., it must be
small, and comfortable to carry around. The designer’s concern then
shifts to interface issues, such as the position of switch, the position
of a strip, and the balance of weight.

We have taken a sample board layout from a design team working
on a wearable computer. We have chosen an objective function that
seeks to minimize the total area occupied by the circuit board. The
basic interactions for the board layout are the same as in the archi-
tectural examples. We have added some icons to make it easier for
users to recognize each module. Additionally, rotational transfor-
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Figure 4: Page layout.

mations are part of the allowable set of transformations during dis-
crete search. A sample configuration of the circuit board is shown
in figure 3.

Page Layout

Another potential application area of our approach is in graphic de-
sign for posters, covers and page layout. Figure 4 shows a sample
image of typographic design, in which headlines, picture areas, and
text areas are considered. In this example we apply aspect-ratio con-
straints to headlines and pictures, and area as well as dimension con-
straints to text blocks.

Analysis of Abstract Painting

Constraints are known to be one of the essential elements in defining
an artistic style. In the rich combinatorial space of design, an artist’s
method of selective search through that space is thought to be a key
element of style [23]. Our last example focuses on images from ab-
stract painting. This example is taken from Knight [16], who has
analyzed stylistic changes in the paintings by De Stijl artists. The
purpose of this example is to show the usefulness of exploratory ma-
nipulation as a tool to study “styles.” Knight studied artists’ paint-
ings over periods of time. Dividing them into several stages, she
defined generative grammars for each stage of each artist. Our ex-
ample is based on her analysis on the first stage (1945–50) of Frits
Glarner’s work.

Figure 5: De Stijl style art.

Primary elements of Glarner’s stage I paintings are rectangu-
lar divisions; oblique divisions in each rectangle; and grey, black,
white, and primary colors (red, yellow, and blue). The constraints
in Glarner’s work are characterized as follows:

1. The oblique division is angled slightly from 90 degrees.

2. The placement of the oblique is near the edge of a rectangle,
forming a wedge shaped “strip.”

3. For each rectangular division, the larger wedge is grey or
white, and the narrower wedge is grey, black, white or a pri-
mary color.

4. The rectangular divisions appear regular.

5. Among six combinatorially possible relationships between
two obliquely divided rectangles, only three are used.

Currently, our system is limited to the constraints listed above.
Whatever changes a user makes, continuous or discrete, the image
keeps the original style, as defined by the constraints. In future
work, we would want to let the user easily impose new stylistic con-
straints if they encounter transformations which are not consistent
with the desired style. Conversely, if the constraints prevent us from
seeing a legal instance, we may wish to modify or delete some of
the constraints. According to the work by Knight, for example, a
modification to the second constraint above is one of the changes
needed to go on to the next stage of Glarner’s work. A sample piece
of artwork in the De Stijl style generated by our system is shown in
figure 5.

5.3 Results

Overall, our initial experiments in continuous and discrete manip-
ulation have been successful. The system runs at a pleasingly in-
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teractive speed on the examples discussed. Continuous and discrete
manipulations are integrated seamlessly. The usefulness of direct
continuous manipulation was expected. We were gratified to find
that continuous manipulation, combined with a variety of continu-
ous constraints, yielded a powerful and simple style of manipula-
tion. In particular, the complexity of interrelated constraints gener-
ated continuous movements of the layout that were far too compli-
cated for the user to have formulated on their own.

The feeling when discrete changes are made is much the same:
the user is freed from the burden of remembering and maintaining
a large and complicated set of constraints. The work so far defi-
nitely encourages us to try more changes in the system. The con-
ditions which activate and set the direction of discrete search work
well. The set of transformations we implemented seemed trivial
at first, but we found that they were powerful enough to generate
many alternate solutions. Although the system makes structural
changes relatively quickly, the evaluation of each possible alterna-
tive slows down as we work with more complex objective functions.
The visualization of discrete changes using an interpolating anima-
tion is very effective in helping the user to understand what discrete
changes have occurred. Without this visualization, users hardly rec-
ognize when and where changes have occurred.

6 Conclusion

In this paper, we have introduced a new technique for interaction
with discrete/continuous geometric models, allowing users to ex-
plore problem spaces having both continuous and discrete param-
eters. The user can continuously manipulate an object as long as
the given constraints are satisfied. When a point is reached at which
no further continuous movement in the desired direction is possi-
ble, a slightly stronger pull on the mouse triggers a discrete change.
This change is based on a rapid, behind-the-scenes local search, con-
strained by the user’s pulling action. A small number of transforma-
tion rules are defined to perform actual changes. Alternatives are
compared in terms of goodness of the overall design and the mag-
nitude of the change from the previous state, subject to continuous
and discrete constraints. The best among the alternatives becomes
the new state.

Our approach is most useful for discrete/continuous exploration
problems which are not governed by a cut-and-dried objective func-
tion, but involve aesthetic or other subjective judgements as well,
and that therefore cannot be solved by conventional combinatorial
optimization methods.

We have implemented a system that demonstrates seamlessly in-
tegrated continuous and discrete manipulation. We have applied the
technique to planar layout problems in architecture, PC board lay-
out, page layout, and analysis of art.

Our plans for additional work focus on ways to improve perfor-
mance, and on applications to a broader class of models and prob-
lem domains. From a performance standpoint, the discrete evalua-
tion phase is the largest bottleneck, even though the discrete search
is local and limited. We currently call an external nonlinear con-
strained optimization package at each discrete evaluation; it may be
that we can enhance performance by writing custom numerics code,
or by using heuristics to further prune the search. Our current sys-
tem is limited to axis-aligned rectangles; we have been able to han-
dle somewhat more general shapes, such as L-shapes, as constrained
sets of rectangles. We intend to move to much more general shapes
and shape grammars.

We are currently investigating scheduling problems as a an addi-
tional application area. For example, in a resource allocation prob-
lem, resources are usually limited in quantity, and can be discrete,
such as humans and machines. The activities in a project have con-
straints on sequential order (discrete) and completion time (con-
tinuous). We believe that our methods will carry over directly to

scheduling projects such as those that arise in construction project
management.

Another direction for future work is the extension of our system
to 3D models. A first step is to handle floor plans for multi-story
houses, which can be treated as a set of 2-D plans which are linked
by constraints. For instance, locations of stairways and structural
walls must be consistent.
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