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Abstract

In this paper we introduce through-the-lens camera con-
trol, a body of techniques that permit a user to manipulate
a virtual camera by controlling and constraining features
in the image seen through its lens. Rather than solving
for camera parameters directly, constrained optimization
is used to compute their time derivatives based on desired
changes in user-defined controls. This effectively permits
new controls to be defined independent of the underlying
parameterization. The controls can also serve as con-
straints, maintaining their values as others are changed.
We describe the techniques in general and work through
a detailed example of a specific camera model. Our im-
plementation demonstrates a gallery of useful controls and
constraints and provides some examples of how these may
be used in composing images and animations.

Keywords: camera control, constrained optimization,
interaction techniques

1 Introduction

Camera placement and control play an important role
in image composition and computer animation. Conse-
quently, considerable effort has been devoted to the devel-
opment of computer graphics camera models. Most cam-
era formulations are built on a common underlying model
for perspective projection under which any 3-D view is
fully specified by giving the center of projection, the view
plane, and the clipping volume. Within this framework,
camera models differ in the way the view specification is
parameterized. Not all formulationsare equivalent—some
allow arbitrary viewing geometries, while others impose
restrictions. Even so, alternative models can be viewed to
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a great degree as alternative slicings of the same projective
pie.

How important is the choice of the camera model’s pa-
rameterization? Very important, if the parameters are to
serve directly as the controls for interaction and keyframe
interpolation. For example, the popular LOOKAT-
/LOOKFROM/VUP parameterization makes it easy to
hold a world-space point centered in the image as the
camera moves without tilting. To do the same by man-
ually controlling generic translation/rotation parameters
would be all but hopeless in practice, although possible in
principle.

The difficulty with using camera parameters directly
as controls is that no single parameterization can be ex-
pected to serve all needs. For example, sometimes it is
more convenient to express camera orientation in terms
of azimuth, elevation and tilt, or in terms of a direction
vector. These particular alternatives are common enough
to be standardly available, but others are not. A good
example involves the problem, addressed by Jim Blinn[3]
of portraying a spacecraft flying by a planet. Blinn de-
rives several special-purpose transformations that allow
the image-space positions of the spacecraft and planet to
be specified and solves for the camera position. The need
for this kind of specialized control arises frequently, but we
would rather not face the prospect of deriving and coding
specialized transformations each time they do.

In short, camera models are inflexible. To change the
controls, one must either select a different pre-existing
model or derive and implement a new one. If this in-
flexibility could be removed, the effort devoted to camera
control could be reduced and the quality of the result en-
hanced.

In this paper, we present a body of techniques, which we
call through-the-lens camera control, that offer a general
solution to this problem. Instead of a fixed set, the user
is given a palette of interactive image-space and world-
space controls that can be applied “on the fly,” in any
combination. For example, the image-space position of
an arbitrary world-space point can be controlled by inter-
active dragging, or pinned while other points are moved.
Image-space distances, sizes, and directions can also be



controlled. Points can be constrained to remain within the
image or within a specified sub-region. These and other
image-space controls can be freely combined with direct
world-space controls on camera position and orientation.
The set of controls is extensible, with a general procedure
for adding new ones.

Using through-the-lens control, the spacecraft/planet
problem, and others of its kind, could be solved imme-
diately and interactively: a point on the planet would be
grabbed, dragged to its target location, then left pinned at
that image point. The spacecraft would be similarly posi-
tioned and pinned. Residual degrees of freedom could be
fixed by dragging additional points, or manipulating the
camera in world space, while both image points remained
nailed. All the while, the required camera motions would
be computed automatically at interactive speed.

The principal technical obstacle to achieving this kind of
control lies in the nonlinearity of the relationship between
the desired controls and the underlying view specification.
No general guaranteed procedure exists for solving non-
linear algebraic systems; in fact there may often exist no
solution, or many. The direct approach—solving numer-
ically for the camera parameters given the controls—is
therefore unlikely to succeed.

The key to our approach is that we instead formulate the
problem differentially—solving for the time derivatives of
the camera parameters, given the time derivatives of the
controls. For example, a point is dragged by specifying
its velocity from moment to moment, rather than giving a
final target position. When the camera is under interactive
control, it falls to the user interface to convert user actions,
such as pointer motions, into suitable velocity signals. In
keyframe control, the velocity is calculated by taking the
time derivative of the interpolating function. The use of
differential control does not allow us to directly position
the camera in global leaps, but instead provides a robust
and accurate means of translating continuous adjustments
of the controls into continuous motions of the camera. We
are primarily interested in interactive control by grabbing
and dragging, for which continuous motion is desirable,
and with low-level camera control for animation, for which
continuous motion is sufficient.

We formulate the problem of computing time deriva-
tives of camera parameters as a simple constrained op-
timization. Once the derivatives have been computed,
using them to update the camera’s state over time reduces
to the standard problem of solving a first-order ordinary
differential equation from an initial value, for which good
numerical methods abound (see Press et. al. [20] for a
good practical introduction.)

An interesting feature of through-the-lens control is the
new role in which it places the camera parameterization.
Although we retain a fixed underlying camera model, the
model’s parameters no longer bear the burden of serving
as user-level controls. In fact, the parameters may be com-

pletely hidden from the user. This leaves us free to choose a
camera model on the basis of numerical well-behavedness
and implementation convenience. Our preferred formula-
tion, based on quaternion rotations, is a case in point: it is
a very poor model by conventional criteria, since the four
components of the quaternion would be exceedingly diffi-
cult to control directly. Yet it provides an ideal substrate
for through-the-lens control because it allows free cam-
era rotations without singularities or other artifacts. We
avoid the well-known difficulties involved with interpo-
lating quaternions for animation[22] by interpolating the
controls instead.

The remainder of the paper is organized as follows: Fol-
lowing a discussion of related work, we develop the ma-
chinery of through-the-lens control in terms of a generic
camera model, starting with the problem of controlling the
image-space velocity of a single point, then generalizing
to the full solution. We then present complete through-
the-lens equations for our simple quaternion-based cam-
era model. We describe our implementation and present
examples, then conclude with a discussion of future work.

2 Related Work
As we noted in Section 1, standard computer graphics cam-
era models are based on specialized transformations that
specify the view as a function of parameters that are useful
for interactive, procedural, or keyframed control. Earlier
we discussed the standard LOOKAT/LOOKFROM model.
An example of a more general viewing model currently in
wide use is the PHIGS+ model[6]. In addition, a vari-
ety of special-purpose models such as Blinn’s spacecraft
flyby transformations [3] have been developed. Issues
involved in using the LOOKAT/LOOKFROM model to
navigate virtual spaces are considered by [16]. In [7], the
LOOKAT/LOOKFROM model is embedded in a proce-
dural language for specifying camera motions.

Much of the work on interactive camera placement in
computer graphics has been concerned with direct con-
trol of the camera’s position and orientation. The prob-
lem of developing intuitive controls for 3-D rotations is
a difficult one[5], particularly when the input device is
two-dimensional. Several researchers have addressed the
problem through the use of use of 3-D interfaces, includ-
ing six degree-of-freedom pointing devices[26, 25, 1] and
more specialized devices such as steerable treadmills[4].

Problems involving the recovery of camera parame-
ters from image measurements have been addressed in
photogrammetry1, computer vision, and robotics. All of
these are concerned with the recovery of parameter val-
ues, rather than time derivatives. Algebraic solutions to
specific problems of this kind are given in [18] and [9],
while numerical solutions are discussed in [15, 10, 17]. In
[24], constrained optimization is employed to position a

1Also see chapter 6 of [21] for amazing mechanical solutions to
photogrammetry problems.



real camera, mounted on a robot arm, for the purpose of
object recognition. Factors considered in the optimization
include depth of field, occlusion, and image resolution.

Optimization techniques have been applied to the re-
lated problem of object placement in computer graphics.
In [1] articulated figures are posed using penalty meth-
ods to meet positional goals. In [28], similar methods are
employed for general object placement and control. The
use of these methods for camera placement in animation
is described in [30].

The differential control methods employed in this paper
are formally more closely allied to the methods of con-
strained dynamic simulation described in [29, 2, 19, 31, 23]
than to the positional optimization methods cited above.
Some of the issues involved in adapting these methods to
differential kinematic control are addressed in [13], while
[27] considers their application to the design of free form
surfaces, and [12] illustrates their use in a constraint-based
drawing program.

3 The Machinery

In this section we introduce the basic mechanisms that
support through-the-lens control, employing a simple con-
strained optimization formulation. Assuming that we have
chosen a camera model to provide the fixed, underlying
parameterization, we solve for the time derivatives of the
parameters such that their mean squared deviation from
a desired value is minimized, subject to the constraints
imposed by the image-space controls. Setting the default
values to zero yields a solution that minimizes the mean
squared rate of change of camera parameters. Non-zero
values can be used to support interactive dragging subject
to the constraints imposed by other controls.

We begin by giving the relationship between a world-
space point and its image-space counterpart, which we
express in terms of a generic camera model. A specific
quaternion-based model will be fully described in section
4. We give the coordinates of an image point p as

p = h(Vx); (1)

where x is the world-space point that projects to p, V
is a homogeneous matrix representing the combined pro-
jection and viewing transformations, and h is a function
that converts homogeneous coordinates into 2-D image
coordinates, defined by

h(x) =

�
x1

x4
;
x2

x4

�
;

where the xi’s are components of homogeneous point x.
The matrixV is some (for now unspecified) function of the
camera model parameters, which we denote by a length-n
vector q. In practice, V would usually be computed as
the product of several matrices, each a function of one or
more of the parameters.

3.1 Camera motions and image point velocities.

Assuming for now that the world space point x is fixed,
the image point p is entirely a function of the camera
parameters q. This is a nonlinear relationship because h is
nonlinear, as in general isV(q). We obtain the expression
for the image velocity _p by applying the chain rule:

_p = h0(Vx)

�
@(Vx)

@q

�
_q; (2)

where h0(x) is the matrix representing the derivative of
h(x), given by

h0(x) =

2
664

1
x4

0
0 1

x4

0 0
�

x1
x4

2 �
x2
x4

2

3
775 ; (3)

_q is the time derivative of q, and @(Vx)=@q is the 4 � n

matrix representing the derivative of the transformed point
Vxwith respect toq. We differentiate the pointVx rather
than the matrix V to avoid differentiating a matrix with
respect to a vector, which would give rise to a rank-3 tensor.
In section 4, we give an example of how this derivative
matrix can be computed.

For notational compactness we will define the 2 � n

matrix

J = h0(Vx)
@(Vx)

@q
; (4)

so that

_p = J _q: (5)

Notice that equation 5 gives _p as a linear function of _q,
even though p is a nonlinear function of q.

3.2 Controlling a single point

Having obtained _p as a function of _q, we next consider
the problem of controlling a single image point, i.e. solv-
ing for a value of _q that makes the image point assume
a given velocity _p = _p0. In practice the value for _p0

might be supplied by the user interface or might indicate
the velocity on a keyframed motion path. Although the
relation between _p and _q is linear, we cannot simply solve
_p0 = J _q for _q unless matrix J is square and of full rank,
which in general it will not be.

The singularityof the matrixJ reflects the fact that many
distinct camera motions can cause a single point to move
in the same way. One way to solve the problem might be to
require the user to control enough points or other features
to yield a square matrix. We choose a different option
that offers far more flexibility: subject to the constraint
that _p = _p0, we minimize the magnitude of _q’s deviation
from a specified value _q0. Letting _q0 = 0 imposes a
criterion of minimal change in the camera parameters. As
we shall see later, the ability to choose other values makes
it possible, for example, to drag image points and other
features subject to the hard constraints.



The problem we now wish to solve is:

minimize E =
( _q � _q0) � ( _q � _q0)

2
subject to _p� _p0 = 0:

(6)
To qualify as a constrained minimum, _q must satisfy sev-
eral conditions. First, of course, the constraint must be
met, i.e.

_p0 = J _q:

At an unconstrained minimum, we would require that the
gradient dE=d _q vanish. Instead, we require that it point
in a direction in which displacements are prohibited by the
constraints. This condition is expressed by requiring that

dE=d _q = _q� _q0 = J
T�;

for some value of the 2-vector � of Lagrange multipliers.
This equation simply states that the gradient of E must
be a linear combination of the gradients of the constraints.
Combining the two conditions gives

JJT� = _p0 � J _q0; (7)

which is a matrix equation to be solved for �: Then the
camera parameter derivatives are given by

_q = _q0 + J
T�: (8)

Finally, we must use the computed value of _q to update
the camera state q, a standard initial value problem. See
Press et. al. [20] for a discussion of the issues and a good
assortment of numerical methods for ordinary differential
equations. The very simplest method, Euler’s method,
employs the update formula

q(t +�t) = q(t) + �t _q(t):

Although easy to implement, Euler’s method is notoriously
unstable and inaccurate. Use it at your own risk! In the
interactive loop of through-the-lens control, drawing and
input are interleaved with solver steps.

3.3 General quadratic objective functions

The restricted form of the objective function given in equa-
tion 6 is often adequate, but can cause problems: when the
controls do not fully determine the camera’s state, the task
of accounting for the remaining degrees of freedom falls to
the objective function. For example, if the camera is able
to respond to the motion of a controlled point by a com-
bination of tracking and panning, the objective function
determines how much of each will take place. Because
the error norm of equation 6 is the Euclidean distance in
the camera’s parameter space, rather than being intrinsic
to the world-space camera motion, the behavior depends
in a somewhat haphazard way on the choice of camera
parameterization, and could even depend, for example, on
the choice of linear and angular units of measure!

To allow such behavior to be controlled in a more ratio-
nal way we make a reasonably straightforward generaliza-
tion, allowing E to be any quadratic function of _q, having

the form

E =
1
2
_qM _q + b � _q+ c;

where M is a matrix, typically symmetric and positive-
definite, b is a vector, and c is a scalar, none of them
depending on _q. SinceE is quadratic, the problem remains
linear, although the matrix equation to be solved becomes
a bit more complex. The gradient of E becomes

@E

@ _q
=M _q + b:

Denoting the inverse of M by W = M�1; equation 7
assumes the form

_p0 = JWJT�� JWb: (9)

It is also possible to solve for � without obtaining the
explicit inverse for M by forming a larger linear system
(see [8].)

Under this general linear/quadratic formulation, the
camera’s response to controls can be decoupled from the
parameterization, for instance by lettingM be a mass ma-
trix for the camera[13, 29, 31].

3.4 Multiple Points and Other Functions

Controlling more than one point involves a simple exten-
sion to the foregoing derivation. The matrix J depends on
x, so each point being controlled yields a distinct version
of equation 5. We combine the m equations into a sin-
gle one by concatenating the derivative matrices to form a
2m� n matrix, and concatenating the image velocities to
form a 2m-long vector. From that point on, the derivation
proceeds as above, to the solution of equation 7 for �,
which is now also a vector of length 2m.

In addition to controlling image points directly, we
would like to control functions of one or more points, such
as image distance or orientation. In fact, to mix image-
space and world-space controls we may want to control
other functions of q that do not involve the image at all,
such as object-to-camera distance. Conceptually, this is
not a difficult generalization to make: in equation 5, we
simply interpretp not as a literal point, but as the vector of
quantities we wish to control. Matrix Jmust then give the
derivative of each controlled quantity with respect to each
camera parameter. In practice, performing the derivative
evaluations, indexing and other bookkeeping, etc., can be-
come quite complex. See [14, 29] for general-purpose
schemes that facilitate the handling of this kind of matrix-
assembly problem. Although our own implementations
are based on such a scheme, the camera control problem
is sufficiently restricted in scope that this certainly is not
necessary.

Many through-the-lens controls, such as point-to-point
distance, can be expressed as functions of several image
points’ positions. The labor involved in implementing
such controls can be greatly reduced through through the
use of the chain rule. For instance, consider a scalar



function of two image points f (p1;p2). The derivative of
f with respect to _q is

df

d _q
=

@f

@p1
J1 +

@f

@p2
J2;

where J1 and J2 are the derivative matrices for p1 and
p2, computed according to equation 4. The code that
evaluates J for image points need only be implemented
once. Thereafter, just derivatives with respect to image
points need be treated anew for each control. These tend to
be simple, and as an added advantage, they are independent
of the choice of the underlying camera parameterization.

3.5 Constrained Dragging and Soft Controls

When controls are added dynamically by the user, it is en-
tirely possible for inconsistencies to arise, either because
the degrees of control exceed the camera’s degrees of free-
dom, or because some controlsare in conflict, e.g. tryingto
move one point in two directions. These problems can be
handled gracefully by employing a least-squares method
to solve the matrix equation—see for example the conju-
gate gradient solver described in [20]—so that the error
due to the inconsistency is distributed uniformly over the
controls, in a least-squares sense.

Although the least-squares solution avoids disaster
when conflicts arise, we have found that it is very helpful
to permit the user to drag points and other features sub-
ject to the constraints imposed by existing controls, so that
conflicts can never arise. We achieve this behavior by in-
corporating the dragged point’s desired behavior into the
objective function, rather than using a “hard” constraint to
control it. The constrained optimization solution then re-
solves any conflicts strictly in favor of the hard constraints.
Thus, for example, a point whose range of motion is re-
stricted by the controls will move freely up to the limit of
its travel, but no further. A simple way to implement such
“soft” controls is to specify the desired camera motion _q0

according to the formula

_q0 = kcJ
T (pc � p); (10)

where kc is a constant and pc is the position of the cur-
sor in image coordinates. Using this value to drive the
system is similar to attaching a rubber band between pc
and p, inducing camera motion that causes p to “chase”
pc. Inserting this value of q0 into equation 7 minimizes
the mean squared difference between _q and _q0, subject to
the constraints. Soft controls can be implemented more
accurately, at the expense of greater complexity, by min-
imizing the squared difference between _p and a desired
value _p0, subject to the constraints. To express this objec-
tive function, the general form given in equation 9 must
be used.

A greatly simplified though much less powerful version
of through-the-lens control is obtained by using soft con-
trols only. Then, the constrained optimization of equation

6 collapses into an unconstrained optimization. For exam-
ple, an image point could be dragged by using equation 10
directly to determine _q.

3.6 Position Feedback

So far, we have cast the problem in terms of velocity con-
trol. The velocity signals that drive the control process
may come from several sources. For example, during
interactive dragging of a controlled image point, the ve-
locity may represent an estimate of mouse velocity. In
keyframing, the velocity represents the derivative of a
known trajectory curve p0(t): In both cases, position as
well as velocity information is available. This extra infor-
mation can be used to greatly improve tracking accuracy
by preventing error accumulation and drift as velocity is
integrated over time. We do this by the addition of a simple
linear feedback term to our initial statement of the control
requirement:

_p = _p0 � kf (p� p0);

where kf is a feedback constant, and p0 is the desired
position for p at the current time. When p is on target,
the feedback term vanishes, but if positional error exists,
the velocity is biased in a direction that reduces the error.
The feedback term carries straight through the derivation,
leading to the following modified form for equation 7:

JJT� = _p0 + kf (p0 � p)� J _q0: (11)

3.7 Tracking a moving point

Until now, we have assumed that the world-space point x
is stationary. A small generalization makes it possible to
accurately track a moving point. In keyframe animation,
for example, this would allow moving points on objects
to be tracked automatically. To make the generalization,
we assume that the world-space point moves according to
a known function x(t). In practice, we need only know
the point’s current positionx and velocity _x. Since x now
depends on time, an additional term appears in equation 2,
the chain-rule expression for _p, accounting for the part of
x’s image velocity due to the motion of x itself:

_p = h0(Vx)
@(Vx)

@q
_q + h0(Vx)V _x (12)

As before, the extra term carries through, adding an addi-
tional correction factor to the right hand side of equation
7, yielding

JJ
T� = _p0 + kf (p0 � p)� h

0(Vx)V _x � J _q0: (13)

This formulation makes it possible to control the image-
space motion of a point independently of its world-space
motion. If the image point is pinned, the camera will move
as necessary to maintain its position. Both the image point
and the world point can be keyframed independently: the
camera will move as required to achieve the desired image
motion, regardless of the world-space motion of the point.



4 A Quaternion Camera

Having developed the through-the-lens equations in
generic form, it remains to fill in the blanks. In the equa-
tions of the last section, the camera transformation was
described in terms of an anonymous matrix V depending
on an anonymous parameter vector q. To proceed, we
must say what the function V(q) actually is. Then we
must formulate the equations that are required to evaluate
the image point derivative matrix J. If we limit ourselves
to image-space controls that can be expressed purely as
functions of point positions, then the matricesV and J tell
us everything we need to know about the camera.

As we noted in section 1, through-the-lens control hides
the underlying camera parameterization from the user, so
that most of the criteria by which a conventional camera
model would be judged do not apply. The model we
present in this section is unusual in that a quaternion is used
to represent the camera’s orientation; we choose it because
of the quaternion’s ability to represent arbitrary rotations
free of singularities and other artifacts. The equations of
section 3 are compatible with any camera model. If you
prefer another one, the derivation in this section can still
serve as a template for the general procedure.

4.1 The View Matrix

Our model employs a translation to specify the Lookfrom
point and a quaternion to specify orientation. The view
matrix V called for by equation 1 is given by the matrix
product

V = P(f)T(tx; ty; tz)Q(qw; qx; qy; qz); (14)

where P is a matrix for perspective projection with focal
length f , T is the matrix for translation by [tx; ty; tz],
and Q is a quaternion rotation matrix, performing the
rotation specified by the quaternion q, with scalar part
qw and vector part [qx; qy; qz]. The camera parameter
vectorq is the length-8 vector formed by concatenating the
transformation parameters, [f; tx; ty; tz; qw; qx; qy; qz].

The perspective matrix is a simple one, placing the focal
point at the origin and the image plane at distance f from
the origin along the z-axis, lying parallel to the xy-plane:

P =

2
664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1=f 0

3
775 :

The translation matrix is the standard one:

T(tx; ty; tz) =

2
664

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

3
775 :

The quaternion rotation matrix is a bit more complex. The

form given in [22],

Q = 2

2
64

1
2 � qy

2
� qz

2
qxqy + qwqz qxqz � qwqy 0

qxqy � qwqz
1
2 � qx

2
� qz

2
qwqx + qyqz 0

qwqy + qxqz qyqz � qwqx
1
2 � qx

2
� qy

2 0
0 0 0 1

2

3
75 ;

(15)

assumes that the quaternion has unit magnitude, i.e. that

jqj =
q

q2
w
+ q2

x
+ q2

y
+ q2

z
= 1:

Otherwise,Q is not a pure rotation, and shapes will be dis-
torted. This constraint on jqj means that the camera has
only seven true degrees of freedom. To enforce the con-
straint, it is not sufficient simply to normalize Q between
iterations: in that case, the derivative matrix wouldn’t
“know” about the constraint, and the control solution
would be incorrect. While it would be possible to add
the constraint, in differential form, to the control solution,
there is a much simpler alternative: in place of equation
15, we express Q in a form that incorporates the normal-
ization, so that quaternions q and �q specify the same
transformation, for any scalar �. Under this scheme, we
must still normalize q from time to time to prevent the
accumulation of numerical errors. The modified version
of Q is most simply expressed as the product

Qn =
1

jqj
2 Q̂;

where

Q̂ = 2

2
6664

jqj
2

2
� qy

2
� qz

2
qxqy + qwqz qxqz � qwqy 0

qxqy � qwqz
jqj
2

2
� qx

2
� qz

2
qwqx + qyqz 0

qwqy + qxqz qyqz � qwqx
jqj

2

2
� qx

2
� qy

2 0

0 0 0 jqj
2

2

3
7775 :

4.2 Evaluating J

Employing the notation of section 3, the image coordinates
corresponding to world point x are given by

p = h(Vx) = h(PQnTx):

The rows ofJ are formed by differentiating this expression
with respect to each camera parameter in turn. To perform
the differentiations, we note that each camera parameter
influences exactly one matrix in the chain. Therefore,
using the rule for differentiation of a product, the deriva-
tive of the chain with respect to a parameter is another
chain, obtained by replacing the appropriate matrix by its
element-by-element derivative. Thus, for example,

@Vx

@tx
= P

@T

@tx
Qnx;

and we obtain the row of J corresponding to tx from
@p

@tx
= h0(Vx)

@V

@tx
;

where h0(Vx) is as defined in equation 2, and where

@T

@tx
=

2
664

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

3
775 :



Differentiating each matrix with respect to each parameter
on which it depends yields eight matrices in all. The matrix
for @T=@tx is given above—the other two derivatives of
T are likewise trivial. The derivative ofP with respect to
its only parameter, f , is

@P

@f
=

2
664

0 0 0 0
0 0 0 0
0 0 0 0
0 0 �1=f 2 0

3
775 :

The four derivatives of Qn may be expressed compactly
as

@Qn

@qw
=

�2qw

jqj4
Q̂+

2

jqj2

2
664

qw qz �qy 0
�qz qw qx 0
qy �qx qw 0
0 0 0 qw

3
775 ;

@Qn

@qx
=

�2qx

jqj
4 Q̂+

2

jqj
2

2
664

qx qy qz 0
qy �qx qw 0
qz qw �qx 0
0 0 0 qx

3
775 ;

@Qn

@qy
=

�2qy

jqj
4 Q̂+

2

jqj
2

2
664

�qy qx �qw 0
qx qy qz 0
qw qz �qy 0
0 0 0 qy

3
775 ;

and

@Qn

@qz
=

�2qz

jqj
4 Q̂+

2

jqj
2

2
664

�qz qw qx 0
�qw �qz qy 0
qx qy qz 0
0 0 0 qz

3
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To evaluate J, we need only implement functions that
calculate each of these eight derivative matrices, along
with the function that calculates h0(x). Standard ma-
trix/vector operations are then used to produce the eight
rows of J.

5 Implementation and Examples
We have implemented through-the-lens control as part of
a multi-view, direct manipulation testbed. The program is
written in C++ on a Silicon Graphics Iris workstation and
uses a toolkit which permits rapid evaluation of dynami-
cally composed functions and their derivatives[14]. All of
the examples in this paper can be specified interactively
and run at interactive rates on a Silicon Graphics IRIS
4D/210 GTX.

We have experimented with a wide variety of through-
the-lens controls including

� the position of a point on the screen,

� the distance between two points on the screen,

� the orientation of two points in the image,

� the ratio between two screen space distances.

All can be interactively specified and connected to ver-
tices in the scene, can be made into hard or soft controls,
can serve as constraints, and can be keyframed. Controls
that do not have an obvious geometric method for direct
manipulation, such as the last three on the list, can be
connected to sliders.

The architecture of our system makes it easy to define
new types of controls, although this must be done at com-
pile time. Unlike finding new transforms, which entails
solving systems of non-linear equations, defining new con-
trols is easy to automate in a general and guaranteed man-
ner since the only required mathematical manipulation is
differentiation. We have built automatic code generation
tools that facilitate defining new types of controls.

By adding the ability to place boundaries on the values
of a control, we have been able to create several interesting
through-the-lens features in our system, such as

� bounding a point within a region of the image,

� ensuring that an object does not become larger or
smaller than a certain size,

� preventing an object from becoming too much bigger
or smaller than another.

We use an active set technique[11] to extend the methods of
section 3 to provide the capability of inequalityconstraints.

These through-the-lens controls work in concert with a
variety of world-space controls. Because a camera is a first
class object in our system, these controls can be applied to
them as well as other objects in the scene. Multiple win-
dows with cameras dynamically assigned to them make
it easy to use world and image space controls together in
composing an image.

Building on top of a general purpose facility for com-
posing derivatives permits our implementation to exercise
the full generality of the methods in section 3 by allowing
us to solve simultaneously for camera and object parame-
ters. Through-the-lens controls can therefore affect other
objects in addition to the camera. Although removing the
restriction that x does not depend on q does not require any
change to the techniques presented, the pragmatic issues
that arise in including parameters of objects other than the
camera in q are beyond the scope of this paper. These
issues are discussed in [14, 13, 29]. They permit a uni-
fied approach to controlling and constraining all objects,
including cameras.

When the state vector includes objects besides the cam-
era, through-the-lens controls provide a way to couple the
camera and scene objects. If a point on an object is pinned
to a particular place in the image, as the object moves
the camera will also change to maintain the constraint.
Changing the camera will similarly alter the object. If
the camera is locked in place, the object is restricted to
locations where its image satisfies the through-the-lens
requirements. Adjusting a through-the-lens control can
cause both the camera and the scene objects to change,



Figure 1: Multiple through-the-lens constraints: Multiple through-the-Lens point controls fixate two corners of the center cube. As
the camera is translated along the faces of the cube (following the arrows on the floor), it rotates and zooms to maintain the constraints.

Figure 2: Through-the-lens keyframing: Through-the-lens controls are moved along keyframe paths. Each arrow grabs a corner of the
cube and pulls it along a path in the image.

such controls permit manipulation of an object in terms
of how it appears in the image. In a highly constrained
environment, this can make it easy to achieve a desired
effect when it is unclear how to do it by controlling the
camera and other objects independently.

As a simple example of what through-the-lens con-
trols can do, consider the role of the standard LOOKAT/-
LOOKFROM/VUP camera model in our system. The
ability to place points in the image and specify the orienta-
tions of line segments subsumes the need for this camera
model. Although L/L/V is one of several camera models
we have coded into our system2, we typically prefer to use
representations like the quaternion-based one in section
4 for their well-behavedness, using through-the-lens con-
trols to point the camera. Even if the L/L/V representation
is employed, the user is not restricted to specifying the
view using these parameters.

The spacecraft example from the introduction exempli-
fies the use of through the lens controls to compose an
image (Figure 3). Continuing with the example, the con-
straints used to position the spacecraft and planet can be
maintained as the spacecraft flies past the planet to create
a fly-by animation, either by coupling the state variables
or using the tracking techniques of section 3.7. If the ge-
ometry of the scene isn’t predetermined, through-the-lens
control can help specify it. For example, consider creat-
ing a picture of the spacecraft flying by the planet and its
moons. If we free the position of the craft, through-the-
lens controls can move it so that its position in the image
is maintained as we move the camera to find a view which
shows the planets and the moons in a desirable manner.

Another use of through-the-lens controls is registering
3D models with photographs. This can be done by display-
ing a real image as a backdrop and pinning points on the
synthesized image to their corresponding locations. Using

2Finding the derivatives of this matrix is not for the faint of heart —
don’t try it without a symbolic mathematics program.

a least squares technique for overdetermined matrices can
allow several points to be specified: the system will move
towards the best fit (Figure 4). A viewing transform can be
derived for registering 3 points[18], but through-the-lens
techniques provide a general method for performing these
manipulations.

6 Conclusion
As we gain more experience using through-the-lens con-
trol, we find more interesting controls and constraints to
aid in the process of composing pictures and manipulating
scenes. Other additions to through-the-lens manipulation
might include using optimization and constraints to help
compose images, developing an interface that makes it
easier to specify both through-the-lens and world-space
controls, inferring constraints to make manipulation eas-
ier, and providing a method of detecting and preventing
unwanted occlusions. We are beginning to explore us-
ing through-the-lens techniques to connect 3D models to
real photographs and live video. We are also considering
how to use through-the-lens techniques to address issues
in planning good camera motions for animations.

Through-the-lens techniques provide a method for ma-
nipulating the virtual camera by controlling and constrain-
ing image attributes. Interactive control techniques permit
the user to control the virtual camera by directly manip-
ulating the image as seen through the lens. The control
techniques make it easy to enforce constraints on attributes
of the image and scene. The techniques make it simple to
implement a wide variety of constraints and controls.
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Figure 4: Decorating the lab with Through-the-Lens controls: The rectangular polygon has the same dimensions as the tabletop. By
interactively positioning the vertices to correspond with their respective corners, the virtual camera models the real camera.
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