
1

1515--859(B) Machine Learning 859(B) Machine Learning
TheoryTheory

Bandit Problems and sleeping Bandit Problems and sleeping
expertsexperts

AvrimAvrim BlumBlum

Start with recapStart with recap

Consider the following setting…
�� Each morning, you need to pick Each morning, you need to pick
one of one of NN possible routes to drive possible routes to drive
to work.to work.

�� But traffic is different each day.But traffic is different each day.
�� Not clear a priori which will be best.Not clear a priori which will be best.

�� When you get there you find out how When you get there you find out how
long your route took. (And maybe long your route took. (And maybe
others too or maybe not.)others too or maybe not.)

CMU

32 min

�� Want a strategy for picking routes so that in the long Want a strategy for picking routes so that in the long
run, whatever the sequence of traffic patterns has run, whatever the sequence of traffic patterns has
been, you’ve done nearly as well as the best fixed been, you’ve done nearly as well as the best fixed
route in hindsight. route in hindsight. (In expectation, over internal (In expectation, over internal
randomness in the algorithm)randomness in the algorithm)

“No-regret” algorithms for repeated decisions

General framework:

� Algorithm has N options. World chooses cost vector.
Can view as matrix like this (maybe infinite # cols)

� At each time step, algorithm picks row, life picks column.

� Alg pays cost for action chosen.

� Alg gets column as feedback (or just its own cost in
the “bandit” model).

� Need to assume some bound on max cost. Let’s say all
costs between 0 and 1.

A
lg

or
ith

m

World – life - fate

“No-regret” algorithms for repeated decisions

� At each time step, algorithm picks row, life picks column.

� Alg pays cost for action chosen.

� Alg gets column as feedback (or just its own cost in
the “bandit” model).

� Need to assume some bound on max cost. Let’s say all
costs between 0 and 1.

Define average regretaverage regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best

fixed row in hindsight).
We want this to go to 0 or better as T gets large.
[called a “no-regret” algorithm]

To be clear…

�� View of world/life/fate: unknown sequence LRLLRLRR...View of world/life/fate: unknown sequence LRLLRLRR...

�� Goal: do well (in expectation) no matter what the Goal: do well (in expectation) no matter what the
sequence is.sequence is.

�� Note: Not trying to compete with best adaptive Note: Not trying to compete with best adaptive
strategy strategy –– just best just best fixed choicefixed choice in hindsight. Also in hindsight. Also
assuming your decisions assuming your decisions do not affectdo not affect the future.the future.

�� Algorithms Algorithms mustmust be randomized or else it’s hopeless.be randomized or else it’s hopeless.

�� NoNo--regret algorithms can potentially do better than regret algorithms can potentially do better than
playing playing minimaxminimax optimal, and never much worse.optimal, and never much worse.

A
lg

or
ith

m

World – life - fate

1 0
0 1

dest

2

History and development (abridged)
�� [Hannan’57, Blackwell’56]: Alg. with regret O((N/T)[Hannan’57, Blackwell’56]: Alg. with regret O((N/T)1/21/2).).

�� ReRe--phrasing, need only T = O(N/phrasing, need only T = O(N/εε22) steps to get time) steps to get time--
average regret down to average regret down to εε. . (will call this quantity T(will call this quantity Tεε))

�� Optimal dependence on T Optimal dependence on T (or (or εε)). Game. Game--theorists theorists
viewed #rows N as constant, not so important as T, so viewed #rows N as constant, not so important as T, so
pretty much done.pretty much done.

History and development (abridged)
�� [Hannan’57, Blackwell’56]: Alg. with regret O((N/T)[Hannan’57, Blackwell’56]: Alg. with regret O((N/T)1/21/2).).

�� ReRe--phrasing, need only T = O(N/phrasing, need only T = O(N/εε22) steps to get time) steps to get time--
average regret down to average regret down to εε. . (will call this quantity T(will call this quantity Tεε))

�� Optimal dependence on T Optimal dependence on T (or (or εε)). Game. Game--theorists theorists
viewed #rows N as constant, not so important as T, so viewed #rows N as constant, not so important as T, so
pretty much done.pretty much done.

�� LearningLearning--theory 80stheory 80s--90s: “combining expert advice”. 90s: “combining expert advice”.
Imagine large class C of N prediction rules.Imagine large class C of N prediction rules.
�� Perform (nearly) as well as best fPerform (nearly) as well as best f∈∈C.C.
�� [L[LittlestoneittlestoneWWarmutharmuth’89]: Weighted’89]: Weighted--majority algorithmmajority algorithm

�� E[cost] E[cost] ≤≤ OPT(1+OPT(1+εε) + (log N)/) + (log N)/εε..
�� Regret O((log N)/T)Regret O((log N)/T)1/21/2. . TTεε = O((log N)/= O((log N)/εε22))..

�� Optimal as fn of N too, plus lots of work on exact Optimal as fn of N too, plus lots of work on exact
constants, 2constants, 2ndnd order terms, etc. order terms, etc. [CFHHSW93]…[CFHHSW93]…

�� Extensions to bandit model (adds extra factor of N).Extensions to bandit model (adds extra factor of N).

�� Bounds have only log dependence on # choices N.Bounds have only log dependence on # choices N.

�� So, conceivably can do well when N is exponential So, conceivably can do well when N is exponential
in natural problem size, if only could implement in natural problem size, if only could implement
efficiently.efficiently.

�� E.g., case of paths…E.g., case of paths…

�� nxn grid has N = (2n choose n) possible paths.nxn grid has N = (2n choose n) possible paths.

�� Recent years: series of results giving efficient Recent years: series of results giving efficient
implementation/alternatives in various settings, implementation/alternatives in various settings,
plus extensions to bandit model.plus extensions to bandit model.

Efficient implicit implementation for large N…

dest

�� [H[HelmboldelmboldSSchapirechapire97]:97]: best pruning of given DT.best pruning of given DT.

�� [BC[BChawlahawlaKKalaialai02]:02]: listlist--update problem.update problem.

�� [T[TakimotoakimotoWWarmutharmuth02]:02]: online shortest path in DAGs.online shortest path in DAGs.

�� [K[KalaialaiVVempalaempala03]:03]: elegant setting generalizing all aboveelegant setting generalizing all above
�� Online linear optimizationOnline linear optimization

�� [Z[Zinkevichinkevich03]:03]: elegant setting generalizing all aboveelegant setting generalizing all above
�� Online convex optimizationOnline convex optimization

�� [A[AwerbuchwerbuchKKleinbergleinberg04][M04][McMahancMahanB04]:B04]:[KV][KV]→→bandit modelbandit model

�� [K[Kleinbergleinberg,F,FlaxmanlaxmanKKalaialaiMMcMahancMahan05]:05]: [Z03] [Z03] →→ bandit modelbandit model

�� [D[DanianiHHayesayes06]:06]: improve bandit convergence rateimprove bandit convergence rate

�� [G[GolovinolovinSStreetertreeter08]:08]: online submodular fn maximizationonline submodular fn maximization

More…More…

�� Recent years: series of results giving efficient Recent years: series of results giving efficient
implementation/alternatives in various settings:implementation/alternatives in various settings:

Efficient implicit implementation for large N…

[Kalai-Vempala’03] and [Zinkevich’03] settings

[Z] setting:

� Assume S is convex.

� Allow c(x) to be a convex function over S.

� Assume given any y not in S, can algorithmically find
nearest x ∈ S.

[KV][KV] setting:setting:

�� Implicit set S of feasible points in RImplicit set S of feasible points in Rmm. . (E.g., m=#edges, (E.g., m=#edges,
S={indicator vectors 011010010 for possible paths})S={indicator vectors 011010010 for possible paths})

�� Assume have oracle for Assume have oracle for offlineoffline problem: given vector c, problem: given vector c,
find x find x ∈∈ S to minimize S to minimize cc··xx. . (E.g., shortest path algorithm)(E.g., shortest path algorithm)

�� Use to solve Use to solve online online problem: on day problem: on day tt, must pick x, must pick xt∈∈ S S
before cbefore ct is given.is given.

�� (c(c11··xx11+…++…+ccTT··xxTT)/T)/T →→ minminxx∈∈SSxx··(c(c11+…++…+ccTT)/T.)/T.

xx

Plan for today

�� Bandit algorithmsBandit algorithms

�� Sleeping expertsSleeping experts

�� But first, a quick discussion of [0,1] But first, a quick discussion of [0,1] vsvs {0,1} costs for {0,1} costs for
RWM algorithmRWM algorithm

3

[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all We analyzed Randomized Wtd Majority for case that all
costs in {0,1} costs in {0,1} (correct or mistake)(correct or mistake)..

Here is a simple way to extend to [0,1].Here is a simple way to extend to [0,1].

�� Given cost vector c, view cGiven cost vector c, view cii as bias of coin. Flip to create as bias of coin. Flip to create
boolean vector c’, s.t. E[c’boolean vector c’, s.t. E[c’ii] = c] = cii. Feed c’ to alg A.. Feed c’ to alg A.

�� For any sequence of vectors c’, we have:For any sequence of vectors c’, we have:
�� EEAA[cost’(A)] [cost’(A)] ≤≤ minminii cost’(i) + [regret term]cost’(i) + [regret term]

�� So, ESo, E$$[E[EAA[cost’(A)]] [cost’(A)]] ≤≤ EE$$[min[minii cost’(i)] + [regret term]cost’(i)] + [regret term]

�� LHS is ELHS is EAA[cost(A)].[cost(A)].
�� RHS RHS ≤≤ minminii EE$$[cost’(i)] + [r.t.] = min[cost’(i)] + [r.t.] = minii[cost(i)] + [r.t.][cost(i)] + [r.t.]

In other words, costs between 0 and 1 just make the In other words, costs between 0 and 1 just make the
problem easier…problem easier…

c
$

c’
world A

Cost’ = cost on
c’ vectors

Experts → Bandit setting

�� In the bandit setting, only get feedback for the action In the bandit setting, only get feedback for the action
we choose. Still want to compete with best action in we choose. Still want to compete with best action in
hindsight.hindsight.

�� [ACFS02] give algorithm with cumulative regret [ACFS02] give algorithm with cumulative regret
O((TN log N)O((TN log N)1/2 1/2).). [average regret O(((N log N)/T)[average regret O(((N log N)/T)1/2 1/2).]).]

�� Here, will give more generic, simpler approach but with Here, will give more generic, simpler approach but with
worse bounds worse bounds (T(T1/21/2→→ TT2/32/3)) ..

Experts → Bandit setting

Given: algorithm A for fullGiven: algorithm A for full--info setting with regret info setting with regret ≤≤ R(T).R(T).

Goal: use in blackGoal: use in black--box manner for bandit problem.box manner for bandit problem.

Preliminaries:Preliminaries:

�� First, suppose we break our T time steps into K blocks of First, suppose we break our T time steps into K blocks of
size T/K each. size T/K each.

�� Use same distrib throughout block and update based on Use same distrib throughout block and update based on
average cost vector average cost vector ccττ for block for block ττ..

�� Then, will get regret Then, will get regret ≤≤ R(K) R(K) ×× T/K.T/K.

�� What if we instead update on cost vector What if we instead update on cost vector c’ c’ ∈∈ [0,1][0,1]NN

that’s a random variable whose that’s a random variable whose expectation expectation is correct?is correct?

B1 B2 Bτ BK

T/K

Because really paying
T/K × cτ per block

B1 B2 Bτ

Experts → Bandit setting

Given: algorithm A for fullGiven: algorithm A for full--info setting with regret info setting with regret ≤≤ R(T).R(T).

Goal: use in blackGoal: use in black--box manner for bandit problem.box manner for bandit problem.

Preliminaries:Preliminaries:

�� First, suppose blocks of First, suppose blocks of
size T/K each. size T/K each.

�� Use same distrib throughout block and update based on Use same distrib throughout block and update based on
average cost vector average cost vector ccττ for block for block ττ..

�� Then, will get regret Then, will get regret ≤≤ R(K) R(K) ×× T/K. T/K.

�� What if we instead update on cost vector What if we instead update on cost vector c’ c’ ∈∈ [0,1][0,1]NN

that’s a random variable whose that’s a random variable whose expectation expectation is correct?is correct?

c
$

c’
world A

BK

T/K

Because really paying
T/K × cτ per block

B1 B2 Bτ

Experts → Bandit setting

Given: algorithm A for fullGiven: algorithm A for full--info setting with regret info setting with regret ≤≤ R(T).R(T).

Goal: use in blackGoal: use in black--box manner for bandit problem.box manner for bandit problem.

Preliminaries:Preliminaries:

�� First, suppose blocks of First, suppose blocks of
size T/K each. size T/K each.

�� Do at least as well by {0,1}Do at least as well by {0,1}→→[0,1] argument. Still get [0,1] argument. Still get
regret bound R(K) regret bound R(K) ×× T/K.T/K.

�� How does this help us for bandit problem?How does this help us for bandit problem?
�� What if we instead update on cost vector What if we instead update on cost vector c’ c’ ∈∈ [0,1][0,1]NN

that’s a random variable whose that’s a random variable whose expectation expectation is correct?is correct?

c
$

c’
world A

BK

T/K

Experts → Bandit setting

�� For bandit problem, for each action, pick random time For bandit problem, for each action, pick random time
step in each block to try it as “exploration”.step in each block to try it as “exploration”.

�� Define c’ only wrt these exploration steps.Define c’ only wrt these exploration steps.

�� Just have to pay an extra at most NK for cost of this Just have to pay an extra at most NK for cost of this
exploration.exploration.

�� Do at least as well by {0,1}Do at least as well by {0,1}→→[0,1] argument. Still get [0,1] argument. Still get
regret bound R(K) regret bound R(K) ×× T/K.T/K.

�� How does this help us for bandit problem?How does this help us for bandit problem?
�� What if we instead update on cost vector What if we instead update on cost vector c’ c’ ∈∈ [0,1][0,1]NN

that’s a random variable whose that’s a random variable whose expectation expectation is correct?is correct?

B1 B2 Bτ BK

T/K

4

Experts → Bandit setting

�� For bandit problem, for each action, pick random time For bandit problem, for each action, pick random time
step in each block to try it as “exploration”.step in each block to try it as “exploration”.

�� Define c’ only wrt these exploration steps.Define c’ only wrt these exploration steps.

�� Just have to pay an extra at most NK for cost of this Just have to pay an extra at most NK for cost of this
exploration.exploration.

�� Final bound: R(K) Final bound: R(K) ×× T/K + NK.T/K + NK.

�� Using Using K = (T/N)K = (T/N)2/32/3 and bound from RWM, get cumulative and bound from RWM, get cumulative
regret bound of regret bound of O(TO(T2/32/3NN1/31/3 log N)log N) ..

B1 B2 Bτ BK

T/K

A natural generalization
� A natural generalization of our regret goal is: what if we
also want that on rainyrainy days, we do nearly as well as the
best route for rainyrainy days.

� And on MondaysMondays, do nearly as well as best route for
MondaysMondays.

� More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

� For all i, want E[costi(alg)] ≤ (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

�� Can we get this? (Going back to fullCan we get this? (Going back to full--info setting)info setting)

A natural generalization
� This generalization is esp natural in machine learning for
combining multiple if-then rules.

� E.g., document classification. Rule: “if <word-X> appears
then predict <Y>”. E.g., if has football then classify as
sports.

� So, if 90% of documents with football are about sports,
we should have error ≤ 11% on them.

“Specialists” or “sleeping experts” problem.“Specialists” or “sleeping experts” problem.

� Assume we have N rules, explicitly given.
� For all i, want E[costi(alg)] ≤ (1+ε)costi(i) + O(ε-1log N).

(costi(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)
� Start with all rules at weight 1.
� At each time step, of the rules i that fire,
select one with probability pi ∝ wi.

� Update weights:
� If didn’t fire, leave weight alone.
� If did fire, raise or lower depending on performance
compared to weighted average:
� ri = [∑j pj cost(j)]/(1+ε) – cost(i)
� wi← wi(1+ε)ri

� So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+ε)
factor. This ensures sum of weights doesn’t increase.

� Final wi = (1+ε)E[costi(alg)]/(1+ε)-costi(i). So, exponent ≤ ε-1log N.
� So, E[costi(alg)] ≤ (1+ε)costi(i) + O(ε-1log N).

Can combine with [KV],[Z] too:

� Back to driving, say we are given N “conditions” to pay
attention to (is it raining?, is it a Monday?, …).

� Each day satisfies some and not others. Want
simultaneously for each condition (incl default) to do
nearly as well as best path for those days.

� To solve, create N rules: “if day satisfies condition i, if day satisfies condition i,
then use output of KVthen use output of KVii”, where KVi is an instantiation of
KV algorithm you run on just the days satisfying that
condition.

Other uses

� What if we want to adapt to change - do nearly as well
as best recent expert?

� Say we know # time steps T in advance (or guess and
double). Make T copies of each expert, one who wakes
up on day i for each 0 ≤ i ≤ T-1.

� Our cost in previous t days is at most (1+ǫ)(best expert
in last t days) + O(ǫ-1 log(NT)).

� (not best possible bound since extra log(T) but not bad).

