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1515--859(B) Machine Learning Theory859(B) Machine Learning Theory

Lecture 13: Lecture 13: Learning from noisy data, Learning from noisy data, 
intro to SQ modelintro to SQ model

Avrim Blum
03/03/10

Learning when there is no perfect Learning when there is no perfect 
hypothesishypothesis

• Hoeffding/Chernoff bounds: minimizing training 
error will approximately minimize true error: just 
need O(1/ε2) samples versus O(1/ε).

• What about polynomial-time algorithms?  Seems 
harder.
– Given data set S, finding apx best conjunction is NP-hard. 

– Can do other things, like minimize hinge-loss, maxent type 
loss, but not directly connected to error rate.

• One way to make progress: make assumptions on 
the “noise” in the data.  E.g., Random Classification 
Noise model.

Learning from Random Classification NoiseLearning from Random Classification Noise
• PAC model, target f ∈ C, but assume labels 
from noisy channel.

• “noisy” Oracle EXη(f,D). η is the noise rate.
– Example x is drawn from D.

– With probability 1-η see label l(x) = f(x).
– With probability η see label l(x) = 1-f(x).

• E.g., if h has non-noisy error p, what is the 
noisy error rate?
– p(1-η) + (1-p)η = η + p(1-2η).
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Learning from Random Classification NoiseLearning from Random Classification Noise

Algorithm A PAC-learns C from random classification
noise if for any f∈C, any distrib D, any η < 1/2, any 
ε, δ > 0, given access to EXη(f,D), A finds a hyp h 
that is ε-close to f, with probability ≥ 1-δ.  

Allowed time poly(1/ε, 1/δ, 1/(1-2η), n , size(f))

•• Q: is this a plausible goal? We are asking the Q: is this a plausible goal? We are asking the 
learner to get closer to f than the data is.learner to get closer to f than the data is.

•• A: OK because noisy error rate is linear in A: OK because noisy error rate is linear in 
true error rate (squashed by 1true error rate (squashed by 1--22ηη))
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NotationNotation

• Use “Pr[…]” for probability with respect to 
non-noisy distribution.

• Use “Prη[…]” for probability with respect to 
noisy distribution.

Learning ORLearning OR--functions functions (assume monotone)(assume monotone)

• Let’s assume noise rate η is known. Any ideas?
• Say pi = Pr[f(x)=0 Æ xi=1]

• Any h that includes all xi such that pi=0 and
no xi such that pi > ε/n is good.

• So, just need to estimate pi to ± ε/2n.
– Rewrite as pi = Pr[f(x)=0|xi=1] × Pr[xi=1].

– 2nd part unaffected by noise (and if tiny, can 
ignore xi). Define qi as 1st part.  

– Then Prη[l(x)=0|xi=1] = qi(1-η)+(1-qi)η = η+qi(1-2η).
– So, enough to approx LHS to ±O((ε/n)(1-2η)).
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Learning ORLearning OR--functions functions (assume monotone)(assume monotone)

• If noise rate not known, can estimate with 
smallest value of Prη[l(x)=0|xi=1].

Generalizing the algorithmGeneralizing the algorithm

Basic idea of algorithm was:

• See how can learn in non-noisy model by 
asking about probabilities of certain events 
with some “slop”. 

• Try to learn in noisy model by breaking 
events into:
– Parts predictably affected by noise.

– Parts unaffected by noise.

Let’s formalize this in notion of “statistical 
query” (SQ) algorithm.  Will see how to 
convert any SQ alg to work with noise.

The Statistical Query ModelThe Statistical Query Model
• No noise.

• Algorithm asks: “what is the probability a 
labeled example will have property χ? Please 
tell me up to additive error τ.”
– Formally, χ:X × {0,1} → {0,1}. Must be poly-time 
computable. τ ≥ 1/poly(…).

– Let Pχ = Pr[χ(x,f(x))=1].
– World responds with P’χ ∈ [Pχ-τ, Pχ+τ].
[can extend to [0,1][can extend to [0,1]--valued or vectorvalued or vector--valued valued χχ]]

• May repeat poly(…) times.  Can also ask for 
unlabeled data.  Must output h of error ≤ ε. 
No δ in this model.

The Statistical Query ModelThe Statistical Query Model
• Examples of queries:
– What is the probability that xi=1 and label is 
negative?

– What is the error rate of my current hypothesis 
h? [χ(x,l)=1 iff h(x) ≠ l]

• Get back answer to ±τ.  Can simulate from   
≈ 1/τ2 examples. [That’s why need [That’s why need ττ ≥≥ 1/poly(…).]1/poly(…).]

• To learn OR-functions, ask for Pr[xi=1Æf(x)=0] 
with τ = ε/(2n).  Produce OR of all xi such 
that P’χ ≤ ε/(2n).

The Statistical Query ModelThe Statistical Query Model
• Many algorithms can be simulated with 
statistical queries:
– Perceptron: ask for E[f(x)x : h(x)≠f(x)]  (formally 
define vector-valued χ = f(x)x if h(x)≠f(x), and 0 
otherwise.  Then divide by Pr[h(x)≠f(x)].)

– Hill-climbing type algorithms: what is error rate 
of h? What would it be if I made this tweak?

• Properties of SQ model:
– Can automatically convert to work in presence of 
classification noise.

– Can give a nice characterization of what can and 
cannot be learned in it.

SQSQ--learnable learnable ⇒⇒ (PAC+Noise)(PAC+Noise)--learnablelearnable
• Given query χ, need to estimate from noisy 
data.  Idea:
– Break into part predictably affected by noise, 
and part unaffected.

– Estimate these parts separately.

– Can draw fresh examples for each query or 
estimate many queries from same sample if 
VCDim of query space is small.

• Running example: χ(x,l)=1 iff xi=1 Æ l=0.
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How to estimate Pr[How to estimate Pr[χχ(x,f(x))=1]?(x,f(x))=1]?

• Let CLEAN = {x : χ(x,0) = χ(x,1)}
• Let NOISY = {x : χ(x,0) ≠ χ(x,1)}
– What are these for χχ(x,(x,ll)=1 iff x)=1 iff xii=1=1 ÆÆ ll=0 =0 ?

• Now we can write:
– Pr[χ(x,f(x))=1] = Pr[χ(x,f(x))=1 Æ x∈CLEAN] +

Pr[χ(x,f(x))=1 Æ x∈NOISY].
• Step 1: first part is easy to estimate from 
noisy data (easy to tell if x ∈ CLEAN).

• What about the 2nd part?

How to estimate Pr[How to estimate Pr[χχ(x,f(x))=1]?(x,f(x))=1]?
• Let CLEAN = {x : χ(x,0) = χ(x,1)}
• Let NOISY= {x : χ(x,0) ≠ χ(x,1)}

– What are these for χχ(x,(x,ll)=1 iff x)=1 iff xii=1=1 ÆÆ ll=0 =0 ?

• Now we can write:
– Pr[χ(x,f(x))=1] = Pr[χ(x,f(x))=1 Æ x∈CLEAN] +

Pr[χ(x,f(x))=1 Æ x∈NOISY].

• Can estimate Pr[x∈NOISY].
• Also estimate Pη ≡ Prη[χ(x,l)=1 | x∈NOISY].
• Want P ≡ Pr[χ(x,f(x))=1 | x∈NOISY].
• Write Pη = P(1-η) + (1-P)η = η + P(1-2η).
• So, P = (Pη - η)/(1-2η).

– Just need to estimate Pη to additive error τ(1-2η).
– If don’t know η, can have “guess and check” wrapper 
around entire algorithm.

Characterizing what’s learnable Characterizing what’s learnable 
using SQ algorithmsusing SQ algorithms

• Key tool: Fourier analysis of boolean 
functions.

• Sounds scary but it’s a cool idea!

• Let’s think of functions from {0,1}n→{-1,1}.

• View function f as a vector of 2n entries:

(D[000]1/2f(000),D[001]1/2f(001),…,D[x]1/2f(x),…)

• What is 〈f, f〉? What is 〈f, g〉? 

• What is an orthonormal basis?  Will see 
connection to SQ algs next time…


