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1515--859(B) Machine Learning 859(B) Machine Learning 
TheoryTheory

Avrim Blum
01/13/10

Lecture 2: Online learning I

Mistake-bound model:
•Basic results,  halving and StdOpt algorithms
•Connections to information theory

Combining “expert advice”:
•(Randomized) Weighted Majority algorithm
•Regret-bounds and connections to game-theory

Recap from last timeRecap from last time
• Last time: PAC model and Occam’s razor.

– If data set has m ≥ (1/ε)[s ln(2) + ln(1/δ)]
examples, then whp any consistent hypothesis 
with size(h) < s has err(h) < ε.

– Equivalently, suffices to have s≤(εm-ln(1/δ))/ln(2)
– “compression ⇒ learning”

• [KV] book has esp. good coverage of this 
and related topics.

• Occam bounds ⇒ any class is learnable if 
computation time is no object.

Online learningOnline learning
• What if we don’t want to make assumption 
that data is coming from some fixed 
distribution?  Or any assumptions at all?

• Can no longer talk about past performance 
predicting future results.

• Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

MistakeMistake--bound modelbound model
• View learning as a sequence of stages.

• In each stage, algorithm is given x, asked to 
predict f(x), and then is told correct value.  

• Make no assumptions about order of 
examples.

• Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈ C.

MistakeMistake--bound modelbound model

• Note: can no longer talk about “how much data do 
I need to converge?”  Maybe see same examples 
over again and learn nothing new.  But that’s OK if 
don’t make mistakes either…

• Want mistake bound poly(n, s), where n is size of 
example and s is size of smallest consistent f ∈ C.  

• C is learnablelearnable in MB model if exists alg with 
mistake bound and running time per stage poly(n,s).

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈ C.

Simple example: disjunctionsSimple example: disjunctions
• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12. 
• Can we find an on-line strategy that makes 
at most n mistakes?

• Sure.
– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} ⊇ {vars in f }
– Mistake on negative: throw out vars in h set to 1 
in x.  Maintains invariant and decreases |h| by 1.

– No mistakes on positives.  So at most n mistakes 
total.
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Simple example: disjunctionsSimple example: disjunctions
• Algorithm makes at most n mistakes.

• No deterministic alg can do better:

1 0 0 0 0 0 0    + or − ? 
0 1 0 0 0 0 0    + or − ?
0 0 1 0 0 0 0    + or − ? 
0 0 0 1 0 0 0    + or − ?
...

MB model propertiesMB model properties
An alg A is “conservative” if it only changes its 
state when it makes a mistake.

Claim: if C is learnable with mistake-bound M, 
then it is learnable by a conservative alg.

Why?

• Take generic alg A.  Create new conservative 
A’ by running A, but rewinding state if no 
mistake is made.

• Still ≤ M mistakes because A still sees a 
legal sequence of examples.

MB learnable MB learnable ⇒⇒ PAC learnablePAC learnable
Say alg A learns C with mistake-bound M.

Transformation 1:

• Run (conservative) A until it produces a hyp h 
that survives ≥ (1/ε)ln(M/δ) examples.

• Pr(fooled by any given h) ≤ δ/M.
• Pr(fooled ever) ≤ δ.
Uses at most (M/ε)ln(M/δ) examples total.

MB learnable MB learnable ⇒⇒ PAC learnablePAC learnable
Say alg A learns C with mistake-bound M.

Transformation 2: O(ε−1[M + ln(1/δ)]) examples
• Run conservative A for O(ε−1[M + ln(1/δ)]) 
examples.  Argue that whp at least one of 
hyps produced has error ≤ ε/2.

• Test the M hyps produced on O(ε-1 ln(M/δ)) 
new examples and take the best.

• Wait on full analysis until we get to Chernoff 
bounds…

One more example…One more example…
• Say we view each example as an integer 
between 0 and 2n-1. 

• C = {[0,a] : a < 2n}.  (device fails if it gets too 
hot)

• In PAC model we could just pick any 
consistent hypothesis.  Does this work in MB 
model?

• What would work?

What can we do with What can we do with 
unbounded computation time?unbounded computation time?
• “Halving algorithm”: take majority vote 
over all consistent h∈C.  Makes at most 
lg(|C|) mistakes.

• What if C has functions of different sizes?
• For any (prefix-free) representation, can 
make at most 1 mistake per bit of target.
– give each h a weight of (½)size(h)

– Total sum of weights ≤ 1.
– Take weighted vote. Each mistake removes at 
least ½ of total weight left.
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What can we do with What can we do with 
unbounded computation time?unbounded computation time?
• “Halving algorithm”: take majority vote 
over all consistent h∈C.  Makes at most 
lg(|C|) mistakes.

• What if we had a “prior” p over fns in C?
– Weight the vote according to p.  Make at most 
lg(1/pf) mistakes, where f is target fn.

• What if f was really chosen according to p?
– Expected number of mistakes ≤ ∑h[ph·lg(1/ph)]

= entropy of distribution p.

Is halving alg optimal?Is halving alg optimal?
• Not necessarily (see hwk).

• Can think of MB model as 2-player game 
between alg and adversary.
– Adversary picks x to split C into C-(x) and 
C+(x).  [fns that label x as – or + respectively]

– Alg gets to pick one to throw out.

– Game ends when all fns left are equivalent.

– Adversary wants to make game last as long as 
possible.

• OPT(C) = MB when both play optimally.

Is halving alg optimal?Is halving alg optimal?
• Halving algorithm: throw out larger set.

• Optimal algorithm: throw out set with 
larger mistake bound.

• You’ll think about this more on the hwk…

What if there is no perfect function?What if there is no perfect function?
Think of as h∈C as “experts” giving advice to 
you.  Want to do nearly as well as best of 
them in hindsight.

These are called “regret bounds”.  
�Show that our algorithm does nearly as 
well as best predictor in some class.

We’ll look at a strategy whose running 
time is O(|C|).  So, only computationally 
efficient when C is small.

Using “expert” adviceUsing “expert” advice

• We solicit n “experts” for their advice. (Will the 
market go up or down?)

• We then want to use their advice somehow to 
make our prediction.  E.g.,

Say we want to predict the stock market.

Can we do nearly as well as best in hindsight?

[“expert” ≡ someone with an opinion.  Not necessarily 
someone who knows anything.]
[note: would be trivial in PAC (i.i.d.) setting]

Using “expert” adviceUsing “expert” advice
If one expert is perfect, can get ≤ lg(n) mistakes 
with halving alg.  

But what if none is perfect?  Can we do nearly as 
well as the best one in hindsight? 

Strategy #1:
• Iterated halving algorithm.  Same as before, but 
once we've crossed off all the experts, restart 
from the beginning.

• Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better?
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Weighted Majority AlgorithmWeighted Majority Algorithm
Intuition: Making a mistake doesn't completely 
disqualify an expert. So, instead of crossing 
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Analysis: do nearly as well as best Analysis: do nearly as well as best 
expert in hindsightexpert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

constant  
ratio

Randomized Weighted MajorityRandomized Weighted Majority
2.4(m + lg n)2.4(m + lg n) not so good if the best expert makes a 
mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 
70:30) Idea: smooth out the worst case.

• Also, generalize ½ to 1- ε. 

unlike most 
worst-case 

bounds, numbers 
are pretty good.

M = expected 
#mistakes

AnalysisAnalysis
• Say at time t we have fraction Ft of weight on 
experts that made mistake.

• So, we have probability Ft of making a mistake, and 
we remove an εFt fraction of the total weight.
– Wfinal = n(1-ε F1)(1 - ε F2)...
– ln(Wfinal) = ln(n) + ∑t [ln(1 - ε Ft)] ≤ ln(n) - ε ∑t Ft

(using ln(1-x) < -x)

= ln(n) - ε M.            (∑ Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-ε)m).
• Now solve: ln(n) - ε M > m ln(1-ε).

SummarizingSummarizing

• E[# mistakes] ≤ (1+ε)OPT + ε-1log(n).

• If set ε=(log(n)/OPT)1/2 to balance the two terms 
out (or use guess-and-double), get bound of 
E[mistakes]≤OPT+2(OPT·log n)1/2≤OPT+2(Tlogn)1/2

• Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best 

fixed expert in hindsight).
Goes to 0 or better as T→∞ [= “no-regret” algorithm].

What can we use this for?What can we use this for?
• Can use to combine multiple algorithms to do 
nearly as well as best in hindsight.

• Can apply RWM in situations where experts 
are making choices that cannot be combined.
– Choose expert i with probability pi = wi/∑i wi. 

– Experts could be different strategies for some 
task, or rows in a matrix game. (Alg generalizes 
to case where in each time step, each expert 
gets a cost in [0,1])
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Minimax Theorem (von Neumann 1928)Minimax Theorem (von Neumann 1928)
• Every 2-player zero-sum game has a unique 
value V.

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V.

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V.

Counterintuitive: Means it doesn’t hurt to 
publish your strategy if both players are 
optimal.  (Borel had proved for symmetric 5x5 
but thought was false for larger games)

Nice proof of minimax thmNice proof of minimax thm
• Suppose for contradiction it was false.

• This means some game G has VC
> VR:

– If Column player commits first, there exists 
a row that gets the Row player at least VC.

– But if Row player has to commit first, the 
Column player can make him get only VR.

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - δ.

VC

VR

Proof, contdProof, contd
• Now, consider playing randomized weighted-
majority alg as Row, against Col who plays 
optimally against Row’s distrib.

• In T steps,
– Alg gets ≥ (1−ε/2)[best row in hindsight] – log(n)/ε   
– BRiH ≥ T·VC [Best against opponent’s empirical 
distribution]

– Alg ≤ T·VR [Each time, opponent knows your 
randomized strategy]

– Gap is δT. Contradicts assumption if use ε=δ, once 
T > 2log(n)/ε2.

How can we think of RWM as an alg for 
repeatedly playing a matrix game???

A natural generalizationA natural generalization
• A natural generalization of this setting: say we have a 
list of n prediction rules, but not all rules fire on any 
given example.

• E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports.  

• Natural goal: simultaneously, for each rule i, guarantee to 
do nearly as well as it on the time steps in which it fires. 

– For all i, want E[costi(alg)] ≤ (1+ε)costi(i) + O(ε-1log n).

• So, if 90% of documents with football are about sports, 
we should have error ≤ 11% on them.

“Specialists” or “sleeping experts” problem.  Will get to 
this later…


