1. Make a Piazza comment related to Chapter 2 if you have not done so yet.

2. Make a Piazza comment related to Chapter 3 if you have not done so yet.

3. Suppose matrix A is a database of restaurant ratings: each row is a person, each column is a restaurant, and a_{ij} represents how much person i likes restaurant j. What might v_1 represent? What about u_1? How about the gap $\sigma_1 - \sigma_2$? (There are multiple reasonable answers here).

For this specific question, feel free to combine with question 2 and either post your thoughts or comment on someone else’s thoughts, or post thoughts about what v_2, u_2 might represent, etc. You could also read up and make a post about how one might do SVD when A has missing entries (not all people have ranked all the restaurants).

4. Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \\ 1 & -2 \\ -1 & -2 \end{bmatrix}$$

(a) Run the power method starting from $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ for $k = 3$ steps. What does this give as an estimate of v_1?

(b) What actually are the v_i’s, σ_i’s, and u_i’s? It may be easiest to do this by computing the eigenvectors of $B = A^T A$.

5. Prove that u_1 is the first singular vector for A^T (let’s assume $\sigma_1 > \sigma_2$ so we can say “the” instead of “a”). Hint: we know the power method applied to $C = AA^T$ will approach the first singular vector of A^T if it approaches any fixed vector at all.

6. Consider a set S of n points in \mathbb{R}^d whose center of mass is the origin. As we have been discussing in class, the first singular vector (for a matrix in which each of these points is a row) gives the line through the origin that minimizes the sum of squared distances of all the points in S to that line. What if we allowed lines not through the origin? Here we will prove that such lines don’t help. Specifically, for any line ℓ, the line ℓ' parallel to ℓ that goes through the origin is at least as good.

Formally, fix some line ℓ. Let b be the point on ℓ closest to the origin and let v be a unit length vector parallel to ℓ. Mathematically, we have $\ell = \{b + \lambda v : \lambda \in \mathbb{R}\}$ (convince yourself of this fact before going on). Let $\ell' = \{\lambda v : \lambda \in \mathbb{R}\}$ be the line parallel to ℓ that goes through the origin.
(a) Explain why for any point \(x \), its squared distance to \(\ell' \) is \(||x||^2 - (v \cdot x)^2 \).

(b) What is the analogous formula for distance squared of a point \(x \) to \(\ell \)?

(c) Now prove the theorem: prove that the sum of squared distances of points in \(S \) to \(\ell' \) is less than or equal to the sum of squared distances of points in \(S \) to \(\ell \). Be clear where you use the fact that the center of mass of \(S \) is the origin.