Hierarchical Radiosity with Multiresolution Meshes

Andrew J. Willmott

Committee

Paul Heckbert
David O'Hallaron
Steven Seitz
Francois Sillion (iMAGIS)

Thesis Statement

The Domain

Radiosity on scenes with detailed models

By using face cluster hierarchies we can

- Get sub-linear or constant time complexity
- Better approximate detailed model surfaces

Route

- Global illumination
- Radiosity & Hierarchical Radiosity Methods
- Problems
- Face cluster hierarchies
- Face Cluster Radiosity
- Results

Simple Illumination

Solid Colours

Direct Illumination

Global Illumination

+ Shadows

+ Indirect Illumination

Reflection Types

Specular

Diffuse

Reflection Types

Specular

Diffuse

Radiosity

Definition

 The calculation of global illumination for scenes with only diffuse surfaces

Consequences

- Easier to solve than the full equation
- Suitable for finite-element methods
- The solution produced is view-independent

Indirect Illumination

Lightscape Technologies

View-Independence

Quake: ID

Finite Elements

Discretize scene into *n* elements, solve for each element

Solving for Radiosity

Each element emits
 radiosity [Watts/sr/m²]

Can write in terms of all other elements:

$$b_i = \rho_i \sum_j F_{ij} b_j + e_i$$

Gives system of linear equations

Early Radiosity Methods

Matrix Radiosity [Cohen '85]

- Initially used standard matrix techniques (Jacobi, Gauss-Seidel)
- **But** this is $O(n^2)$ in time and space

Progressive Radiosity [Cohen '88]

- Reorder computation
- Repeatedly shoot element with most unshot radiosity: can see results improving
- Still $O(n^2)$ speed, but O(n) memory

Hierarchical Radiosity

- [Hanrahan '91]
- Use hierarchical mesh (quadtree)
 - Coarse level: unimportant interactions
 - Fine level: Interactions between close surfaces
- $O(k^2 + n)$ time and space complexity
 - *k* is the number of *input polygons*
 - n is the number of elements used by the solution
- k^2 is a problem for k > 1000 polygons

Refinement for Hier. Rad.

Hierarchical Radiosity with Volume Clustering

Constructs a complete scene hierarchy

- [Smits '94, Sillion '94]
- Adds volume clusters above input polygons (octree)
- Completes the hierarchy
- Algorithm is $O(k \log k + n)$
- $K \log k$ is a problem for k > 100,000

Volume Clustering

Hier. Radiosity Demo

Problems with HRVC

- Slow for complex scenes (k >> n)
 - Must push irradiance down to leaves when gathering, pull radiosity up when shooting
 - O(logk), and all input polygons must be touched on each iteration
- Approximation
 - Volume clusters approximate a cloud of unconnected polygons
 - Idea: We can do better for connected, largely smooth surfaces

My Focus

Working with large scanned models

- Large enough to make klogk a problem
- Observation
 - Most polygons are for high resolution detail
 - Don't affect radiosity computations much

and with Multiresolution Models

 Allow you to adjust the resolution of the model at different places on the model

Detailed Models

200,000 triangle model. Medium Resolution version(!)

Demo of a MR Model

Intuition

Instead of running radiosity on detailed model

Run radiosity on simplified model

Apply results to original model

Simplification

Advantages

- No manual selection of simplification level
- Don't access each of the k input polygons during each iteration
- Don't store radiosity for each input polygon
- Multiresolution models are precalculated
 - Once for each new model acquired
 - Amortized over many scenes and renders

Face Clusters

- Dual of standard multiresolution model
- Group faces rather than vertices
- Don't change geometry of the model

Face Cluster Hierarchies

- Iteratively merge face clusters
- Initial clusters each contain a single polygon
- Create links between two child clusters and their union
- Repeat until only root cluster left

Face Cluster Demo

A Face Cluster

- An approximately planar region on the mesh
- Container for a set of connected faces
 - Oriented bounding box
 - Aggregate area-weighted normal
 - Pointers to the two child clusters that partition it

Radiosity with Face Clusters

Building the Hierarchy

We use Garland's Quadric method

- Dual of edge-collapse simplification
 - Quadric error term measures distance to best-fit plane of face vertices, rather than distance to face planes of best-fit vertex.
- Most important properties
 - Produces clusters that are approximately planar
 - Tight oriented bounding box calculated via Principal Component Analysis
 - Add well-shaped term to get compact clusters

Radiator Demo

Vector Radiosity

Standard radiosity equation is scalar

- Applied to face clusters it incorrectly ignores variation in local normals
- No obvious way of combining radiosities of two elements with different normals

Solution

 Recast radiosity equation in terms of irradiance vector

Why Vector Radiosity?

Gather in FCR

- Gather: process of transferring radiosity between elements
- Must be able to calculate *VisibleProjected Area* quickly

Developed methods of bounding VPA without sampling visibility

Vector Interpolation

- Can get inter-cluster discontinuities, same as with constant radiosity basis function
- Can fix by resampling irradiance vector at corners of the cluster, and interpolating
- Final pass only

Vector Interpolation

Same clusters: without & with interpolation

Algorithm Summary

- Construct face cluster hierarchy file for each new model. klog k (Approx. linear in k)
- Create scene from models
- Read in scene description, add root face cluster nodes to a volume cluster hierarchy
- Run gather/push-pull/refine solver. Sub-linear in k

Dominant

 Propagate radiosity solution to leaves of all models, write to disk. Linear in k

Results: Test Patch Whales

FCR, 127s

Radiance, 378s

RenderPark, 2700s

Results: Complexity

Tested on several scene resolutions

- Museum scene
- Medium-high illumination complexity (nighttime, daytime)
- 6 scanned models, implicit surface podium, displacement-mapped floor
- 550,000 polygons in maximum scene; lowerresolution ones generated by simplification

Results: Solution Time

Same scene, progressively more polygons

Results: Memory Use

Same scene, progressively more polygons

Results: Complexity

Face Cluster Radiosity, 150s

Volume Clustering, 850s

Results: Large Scene

3,350,000 triangles

Time: 450s secs

Radiance,
Progressive and
HRVC would
not fit in 1GB

Results: Large Scene

Conclusions

Face cluster hierarchies are highly effective for use with radiosity

- Sub-linear time in the number of input polygons, as opposed to 'previous best' of O(klogk)
- After a point, solver is constant time
- Low memory usage
- Extremely detailed scenes

Contributions

- FCR helps make radiosity practical for general use
 - Runs on a laptop!
 - One of the most complex radiosity scenes simulated
- Three essential parts to making it work
 - Use of Face Clusters
 - Vector Radiosity
 - Tight visible area bounds for polygonal clusters
- Sped up Garland's cluster creation algorithm
- 80,000 lines of code available
 - http://www.cs.cmu.edu/~ajw/thesis-code

Future Work

- Better visibility sampling in final pass
- Extend bounded projected area to higherorder BRDFs (non-diffuse)
- Use of irradiance map to represent illumination

EXTRAS

Face Cluster Creation

Modified & Extended Garland's method

- Existing code needed lots of memory
- Showed how balance was important to clustering time
- Created new, cheaper cost terms
- Improved stability and quality of bounding boxes

Test Models

Clustering Times

1s

150s

Integration for GI

State of the Art

Research

Hierarchical/wavelet radiosity systems

High-quality: Lightscape, Lightworks

- Progressive radiosity, 1,000-100,000 polygon scenes
- Raytracing post-pass to add specular component, 2-3 hour renders is fine.

Virtual worlds

- Progressive radiosity, 10,000 polygon scenes
- Quick previews, 10 minute final renders.

Virtual Memory

- Face cluster files are written in breadth-first order, so get good memory locality
- Usually only small first section of the face cluster file used, so it's memory mapped
- Progressive Radiosity has good total memory use, but very poor locality. Hierarchical Radiosity thrashes better.

Details

- Visibility by ray casting, nested grids
- Fractional visibility used during simulation

Complexity

- O(slogs), not O(klogk), where s is the number of face cluster hierarchies.
- s << k
- Almost always, s << n</p>
- Each face cluster hierarchy represents a separate polygon mesh
- Corresponds to a connected part of a model surface

Vector Radiosity Equations

$$E_{i} = \sum_{j} \frac{(\hat{\mathbf{n}}_{i}^{T} \hat{\mathbf{r}}_{ij}) (\hat{\mathbf{r}}_{ji}^{T} \hat{\mathbf{n}}_{j})}{\pi r_{ij}^{2}} v_{ij} A_{j} b_{j}$$

$$E_{i} \approx \hat{\mathbf{n}}_{i} \sqrt{\frac{-\hat{\mathbf{r}} \hat{\mathbf{r}}^{T}}{\pi r^{2}}} \sum_{j} \hat{\mathbf{n}}_{j} A_{j} b_{j}$$

$$\mathbf{E}$$

$$\mathbf{E} = -\mathbf{m} \mathbf{m}^{T} \mathbf{P}$$

The Sky as a Light Source

Colour Bleeding

A Better Solution

- Combine simplification & radiosity algorithms
- Use multiresolution hierarchies of the models directly
- Adjust resolution on the fly to match that needed by the radiosity algorithm

Hierarchical Radiosity

Justification

- Simplest representation that captures the appropriate behaviour
- Minimises storage for each face cluster node
- We combine vectors hierarchically to represent complex radiosity distributions

Multiresolution Models

- Initially used edge-collapse models directly
 - These contain vertex hierarchies
- Switched to using dual of vertex hierarchy algorithm: face cluster hierarchies
 - It's easier to deal with face hierarchies