
C h a p t e r  6
Implementation
Details
The algorithms described in the previous chapters have been implemented in a
radiosity code base I call “radiator”. In this section I will discuss some of the more
interesting implementation details of my system. We start with a basic overview
of the component parts of the system, and then in turn look at details of the face
cluster system, and the radiosity system built on top of it.

6.1. System Architecture

The basic architecture of the face-cluster radiosity system is shown in Figure 81.
All components share a common library, “gcl”, which provides rendering and
scene-graph services, scene-file handling, and other basic graphics utilities. In
particular the library has support for multiresolution models as one of its scene-
file types—both the geometry-simplification edge-collapse models, and the geom-
etry-aggregation face-cluster models. Both types of model share the same basic
multiresolution data structure. (Indeed, both kinds of model can be merged into a
meta model containing basic geometry, a vertex hierarchy, and a cluster hierar-
chy.)

An original base model file can be processed and an ascii log-format cluster
hierarchy output by the “make-fch” utility. (File formats supported include
AutoDesk’s 3DS, Cyberware’s PLY, MGF, and the ascii Wavefront OBJ format.)
The gcl library can then translate this file into a convenient memory-mappable
181



Chapter 6.  Implementation Details
binary format. (An ascii format is used for the initial cluster file both for flexibility
and because it can be moved between machines with different byte orders,
whereas the binary format cannot.)

The radiosity system, “radiator”, uses gcl to read scene descriptions that
reference such models. (These descriptions describe the scene hierarchy with
embedded geometric transforms and material properties.) Where necessary, it cre-
ates radiosity elements from face clusters on demand. (See Section 6.3.5.) Once it
has calculated a radiosity solution, it writes out the corresponding solution mesh
with vertex colours. If no input polygon refinement has taken place for a particu-
lar scene model, only a list of vertex colours needs to be written out; the geometry
of the model stays as is.

These view-independent solution meshes can then be viewed with
“slview”, and images generated from various vantage points. They can also be

Figure 81: Interaction between various components of the radiosity sys-
tem.

make-fch

ascii cluster file

model file

binary cluster file scene description

solution mesh

solution image

radiator

scene
viewer

radiosity
engine

graphics
library

gcl

slview

cluster
creation
182

http://www.cs.cmu.edu/~ajw/thesis-code/
http://www.cs.cmu.edu/~ajw/thesis-code/


6.2.  Face Clusters: Algorithms and Data Structures
fed to an animation program for generating fly-throughs. The entire system is
available on-line at http://www.cs.cmu.edu/~ajw/thesis-code/.

6.2. Face Clusters: Algorithms and Data Structures

In this section we describe generic face cluster algorithms and data structures. In
the next section we will specialise them for radiosity.

6.2.1. A Clustered Model

A clustered model is stored using a number of contiguous arrays, as in Listing 3.
The base model is stored in the points and faces arrays, containing a list of
vertices and indexes into that list for each model triangle respectively. Other
attributes such as vertex or face colours or texture coordinates can also be stored,
but we will consider only geometry here.

The face clusters themselves are stored in the clusters array. Only inter-
nal nodes are stored; there are no clusters corresponding to the model’s faces, in
the interest of saving storage space. Each cluster stores information about its
bounding box, sum area normal, and two child IDs, as we shall see in the next sec-
tion.

If there are total faces in the model, then there are a total possible number
of face clusters, assuming that the model is completely connected and thus
there is only one root node. This is not always the case, however, as each separate

struct ClusteredModel array length
{

PointList points; v
FaceList faces; f
ClusterList clusters; f - r
IndexList rootClusters; r
ActiveList clustersActive; 2f - r

};

Listing 3: A face-clustered model’s data structure.

f
f 1–
183

http://www.cs.cmu.edu/~ajw/thesis-code/
http://www.cs.cmu.edu/~ajw/thesis-code/


Chapter 6.  Implementation Details
connected surface component corresponds to a single hierarchy, and a model may
contain more than one such component. In the more general case, if there are
root nodes, then there are face clusters. The rootClusters array holds the
IDs of all root clusters in the model.

It is convenient to assign a universal ID to all nodes in the cluster hierarchy,
both faces and face clusters, as follows. The faces are numbered to ,
according to their occurrence in the faces array, and the clusters from upwards,
according to their order of creation by the clustering program. This numbering
corresponds to a so-called log format; it is the order we get if we start at the model
leaves and write each clustering operation to a log file as we successively merge
clusters. This numbering has the following advantages:

• The child IDs of any cluster are always smaller than its own ID. This means
that by iterating linearly through the IDs we can accomplish a preorder (for-
wards) or postorder (backwards) traversal of the hierarchy, as illustrated in
Listing 41. Many common operations on the cluster hierarchy can be imple-
mented in this way.

• We can detect when we are at a leaf by checking the child ID of a particular
cluster. If it is less than , the child is a leaf, and the index of the correspond-
ing face in the faces array is just the child ID.

The resulting set up is shown in Figure 82. The face clusters are generally stored
in order of their ID in the clusters array, to make it easy to map between the ID
and their position in the array. To make truncation of the hierarchy easier, we can
store them in reverse order, so that discarding clusters below a certain point in the
hierarchy is simply a matter of shortening the cluster array.

Finally, the last field, clustersActive , is used by visualisation software
to track a cut through the cluster hierarchy to be displayed. Any such cut is guar-
anteed to completely cover the model’s surface without redundancy; we are
merely varying the number and size of clusters used to do so. The field holds
mark bits corresponding to every ID in the cluster hierarchy. The clusters or faces
in the current cut have their mark bits set, and the rest are clear. The cut can be
moved lower in the hierarchy (and thus the number of active clusters increased)
by doing a preorder traversal, and marking the children of any currently active
cluster. Likewise, the active cut can be moved higher by doing a postorder traver-

1. These are not strict pre and postorder traversals, as the traversal does not visit child and parent nodes in
consecutive order; it is only guaranteed that the parent will be visited before the children and vice-versa.
For most purposes this suffices, however.

r
f r–

0 f 1–
f

f

184



6.2.  Face Clusters: Algorithms and Data Structures
sal, and marking any cluster whose children are both currently active1. An illus-
tration of the latter is shown in Listing 4.

Generally, this field is unused (and unallocated) by the radiosity simula-
tion.

Figure 82: The cluster hierarchy data structure. In (a) we see an array of
root indices, one for each connected submesh. Each root index point-

ing into the cluster array, which contains the clusters written in log for-
mat, from the original model faces to the last cluster. There are leaf
faces, and total clusters. As shown in (b), we don’t store clus-
ters for the leaf faces, and if we want to truncate the hierarchy, we can
optionally store only the top  clusters.

1. This is similar to the approach taken by Hoppe in his method for view-dependent refinement using pro-
gressive meshes [Hopp97].

r-1

r-1

2f-2

0

0

Root Indices

ff-1

ff-1

r-1

2f-20

Cluster Array

m clusters

(a)

(b)

Not Stored

Leaf faces Clusters

r

f
2 f r– 2–

m

185



Chapter 6.  Implementation Details
6.2.2. The Face Cluster Data Structure

To represent the oriented bounding box of the cluster we need to store both an ori-
entation, and minimum and maximum bounds of the cluster in each of the three
directions of that orientation. The orientation can be represented by an rota-
tion, i.e., a matrix. We can save space over the nine floats required to store a
full rotation matrix (or more correctly, the six floats required to store the symmet-
ric matrix) by storing it as a quaternion, which requires only four floats. (As a
comparison, RAPID [Gott96] also uses quaternions, though they store a centroid
and the three dimensions of the OBB instead of three min/max pairs). The algo-

// a preorder traversal: from the leaves to the root nodes
for (i = 0; i < maxID; i++)

VisitNode(i);

// a postorder traversal, checking for cluster type
for (i = maxID - 1; i >= 0; i--)

if (i < faces.NumItems())
VisitFaceNode(faces[i]);

else
VisitClusterNode(Cluster(i));

// adapting the active hierarchy cut upwards
for (i = 0; (activeClusters > targetClusters) && i < maxID; i++)
{

if (clustersActive[Cluster(i).child[0]]
&& clustersActive[Cluster(i).child[1]])

{
// if both children are active, deactivate them and
// active the parent

clustersActive[Cluster(i).child[0]] = 0;
clustersActive[Cluster(i).child[1]] = 0;
clustersActive[i] = 1;
activeClusters--;

}
}

Listing 4: Traversing the face cluster hierarchy. The Cluster() func-
tion maps an ID to the appropriate cluster in the clusters array.

ℜ3

3 3×
186



6.2.  Face Clusters: Algorithms and Data Structures
rithm for converting the three principle axes to a quaternion and back [Shoe85]
has proved to be very stable. Thus it requires a total of 10 floating point numbers
to store the oriented bounding box.

Storing the side areas of the cluster, which we need to construct our upper
bounds on projected area, requires a further six floats. It is tempting to use instead
the side-areas of the bounding box, which are easily available from the OBB min
and max fields, and as discussed previously are in turn an upper bound on the
cluster side-areas. A compromise, which I use, is to store the more accurate sam-
pled side-areas as 8-bit fixed-point fractions of the side-areas of the bounding
boxes. Of course, when converting the fractional area to the 8-bit representation,
the fraction must be rounded up so as to maintain our upper bound.

The face cluster data structure is shown in Listing 5. Further space savings
could be possible by using Deering’s normal encoding technique in conjunction
with a projected-area scale factor to represent the sum area normal. Such com-
pression must be approached with caution given how heavily we rely on the sum
area normal [Deer95].

We can write the total memory use of the face cluster hierarchy data structures as:
totalMem = (66 * clusters + 12 * faces + 12 * vertices) bytes

If we assume there is only one root cluster, and thus clusters, and that, as in
the limit case for a manifold, there are twice as many faces as vertices, we have:

struct FaceCluster bytes
{

Int child[2]; // two child cluster IDs  (8)
Quaternion axesQuat; // orientation of the OBB  (16)
Point min; // min point in OBB coord system  (12)
Point max; // max point in OBB coord system  (12)
Vector areaNormal; // sum area normal  (12)
Float totArea; // total surface area  (4)
Byte sideArea[6]; // side area fractions  (6)

};

Listing 5: The face cluster data structure. The storage in bytes of each
field is shown in brackets. The total structure requires 66 bytes.

f 1–
187



Chapter 6.  Implementation Details
totalMem = (84f - 66) bytes

Thus on average we incur an overhead of 84 bytes per face, assuming we store the
full hierarchy.

6.2.3. Reordering the Hierarchy

We can reorder the faces in any face cluster model to have the property that, for
any cluster in the hierarchy, all its corresponding faces occur in sequential order.
This is easily accomplished by a pre-order traversal of the hierarchy in which
faces are added to a new face list in the order in which they are encountered. This
has the following benefits:

• It improves the locality of face storage, because faces belonging to the same
cluster are always guaranteed to be stored contiguously.

• It makes it easier to locate the faces corresponding to a particular cluster.
Rather than recursively descending the hierarchy to find these faces, we
descend only the left-most and right-most child paths, as in Listing 6, and
can then perform any operation over the faces via a simple for loop. Indeed,
if we are willing to add an overhead of two indices to each cluster, we can
get the corresponding range of IDs directly.

• It makes it possible to handle truncation of the hierarchy cleanly. If we wish
to modify the hierarchy to remove all clusters below ID , we simply iterate
through the remaining clusters, and replace all indices smaller than with
their corresponding left ID or right ID. Again, see Listing 6.

To test the benefits of hierarchy reordering and truncation, a simple radiosity sim-
ulation was run using different versions of the clustered 1,000,000 triangle “bud-
dha” model from Figure 79. All file caches were cleared before each run1, and the
results of five runs averaged together for each version. The results are presented
in Table 9. Shown are the total size of the face-clustered model, the time taken for
radiosity solution, the time for the final post-processing pass (which touches all
faces of the model), and the total wall-clock time for the radiosity algorithm. For
the original clustered model, the wall-clock time is much longer than the total
measured solution and post-processing time (47s compared to 6.5s), indicative of
the heavy disk activity taking place. Both the reordered cluster hierarchies do not
suffer from this problem; the final post-processing pass becomes a simple ordered

1. Under Linux this is most easily achieved by unmounting and then remounting the partition the cluster file
resides on.

ic
ic
188



6.2.  Face Clusters: Algorithms and Data Structures
step through the faces array. The truncated hierarchy not only takes only 3 MB of
extra storage over the 18.5 MB base model, but saves a little on post processing

VisitClusterFaces(Int clusID)
{

leftFaceID = rightFaceID = clusID;

while (!IsFace(leftFaceID))
leftFaceID = Cluster(leftFaceID).child[0];

while (!IsFace(rightFaceID))
rightFaceID = Cluster(rightFaceID).child[1];

for (i = leftFaceID; i <= rightFaceID; i++)
PerformFaceAction(i);

}

PostOrderAction(Int i, Int truncID)
{

if (Cluster(i).child[0] < truncID)
Cluster(i).child[0] =

Cluster(clus.child[0]).child[0];

if (clus.child[1] < truncID)
Cluster(i).child[1] =

Cluster(clus.child[1]).child[1];
}

Listing 6: Visiting the faces in a cluster with a reordered hierarchy, and
truncating the hierarchy.

Type of Scene Size Soln. Post. W/C

Base model 18.5 MB
Original clustered model 87 MB 4s 2.5s 47s
Reordered 87 MB 4s 1.8s 8.7s
Reordered and truncated 21.4 MB 4s 0.9s 8.0s

Table 9: The effect of reordering face clusters.
189



Chapter 6.  Implementation Details
time, because the distance to the end of the cluster hierarchy from the radiosity
solution leaf nodes is smaller.

6.3. Radiosity Implementation

In this section we will look at some of the specifics of the face cluster radiosity sys-
tem built for this thesis.

6.3.1. Volume Clustering

To build volume clusters, I followed the methods described in [Gibs96, Sill95a].
An octree that encloses the scene is created, and scene polygons are placed within
that octree according to their size and position. This is the “tightest-fit octree”
method referred to by Hasenfratz et al. [Hase99]; see that paper for alternative
volume clustering algorithms. In my experience this method provides acceptable
quality, and is very fast. Because I don’t also use the volume cluster data structure
for visibility testing, the advantages of more sophisticated schemes summarized
by Hasenfratz et al. are not so important.

6.3.2. Visibility Testing

Visibility is sampled using ray-tracing; the spatial data structure used for acceler-
ation is a nested grid data structure [Fuji86, Jeva89]. Traditionally, of the ray-trac-
ing optimising schemes, grid-traversal is amongst the fastest, if not the fastest
algorithms for ray-casting against a scene with many similar-sized primitives.
When the scene contains primitives with widely disparate sizes, however, this
approach suffers from the so-called “teapot in a stadium” problem. A single uni-
form-density grid cannot efficiently cover all primitive sizes, leading to many
primitives in some cells.

To solve this problem, we can instead create a number of nested grids, each
adapted to a particular primitive size. To build such nested grids, within each grid
primitives are sorted into cells, and, depending on their local density and size,
become candidates for insertion into a subgrid. The grids rely on lazy evalua-
tion—this sorting process only takes place when a ray hits the grid in question.
Thus if no rays hit a subgrid, the primitives within it are never processed, saving
considerable pre-processing time. However, this optimization is not so important
for most radiosity solutions, where the scene tends to be completely and evenly
sampled.
190



6.3.  Radiosity Implementation
Fractional visibility is used during simulation, but the visibility can be
resampled at higher resolution during the final push-to-leaves step. This is dis-
cussed further in Section 6.3.7. The visibility data-structure is usually built from
the input polygons only; it ignores subdivided input polygons and face clusters.

6.3.3. Approximate Visibility

While the nested grid scheme is highly efficient, even for large models, for very
complex scenes the ray-casting part of the algorithm ends up being carried out at
a much higher resolution than the finite-element part of the algorithm. This can
result in the occlusion-testing data-structures dominating the time and memory
cost of the algorithm.

Ideally, we would like to incorporate some kind of multiresolution visibil-
ity algorithm, taking advantage of the face-cluster hierarchies to test visibility
against coarser resolutions of the model when our accuracy requirements are not
high. This is an interesting area of research, but outside the scope of this thesis.

A simpler approach I currently employ is to use the face cluster hierarchies
to construct an approximate occlusion data-structure for the scene. This can be
seen as a combination of using the cluster hierarchy to test visibility, as per Sillion
[Sill95a], and the voxel-based opacity grids of Christensen and Gibson [Chri95,
Gibs95]. It can be summarized as follows:

• adapt the complexity of each cluster hierarchy to a user-specified fraction
of the total number of clusters. This is achieved by starting at the root clus-
ters, and expanding the active cluster list until it covers the required number
of clusters, as in Listing 4;

• add the bounding boxes of these clusters to the nested grid data structure;

• ray-trace against the bounding boxes for the purposes of occlusion testing,
optionally using the projected area estimates to determine fractional opac-
ity1.

There is one minor adjustment needed to make this approach work well. To avoid
self-occlusion by clusters, we ignore a cluster for the purpose of occlusion testing
when either the start or end point of a shadow test ray falls within it. (Recall that
intra-cluster occlusion is subsumed into the visible projected area estimates of
Chapter 4.)

1. The probability of a ray hitting a surface is proportional to its visible projected area in the direction of the
ray [Gold87]. Thus a fractional visibility or albedo estimate for a cluster’s bounding box can be obtained
by taking the ratio of the bounding box’s projected area to that of the surface it contains.

f v
191



Chapter 6.  Implementation Details
The major disadvantage of this approach is that another parameter must be
set for the rendering process. Generally, the smaller epsilon is chosen to be, the
larger should be. It is desirable that the clusters used for visibility testing be
smaller than those used in the radiosity solution.

This approach can lead to considerable speed and memory savings for
large models. See Section 7.4 for an example.

6.3.4. Transport Calculation and Refinement

In face cluster radiosity we must handle a number of different types of light trans-
fer; radiosity exchange between face clusters, standard planar elements, and vol-
ume clusters. This can lead to problems in choosing an error metric that is
consistent for all transfers. To handle these in a common framework we use sam-
pling across the receiver to estimate the error in the transfer at the same time as
we estimate the transfer itself. We use the norm to measure error, i.e., the BFA-
weighted refinement discussed in [Smit94].

The basic “link” data structure representing radiosity transport between
two elements is shown in Listing 7. The pseudo code shown in Listing 8 illus-
trates how the error and the transport vector can be calculated for a link, given
a number of sample points over each element. For face clusters, the minimum and
maximum projected areas are calculated as described in Chapter 4. For an input
polygon or refinement thereof, the upper and lower bounds are both just the pro-
jected area of the polygon. For a volume cluster, the upper bound is established
by summing the upper bounds of all the root face clusters or polygons it contains,
and the lower bound is taken to be zero.

Given the transport error, we must also decide whether the corresponding
transport link should be refined or not by comparing it to a refinement epsilon.
For links that are partly occluded, the refinement epsilon is reduced to encourage
subdivision at shadow boundaries. (The refinement epsilon controls link subdivi-
sion; links with transport error greater than this are split.) Pseudo code for the
resulting refinement oracle is given in Listing 9.

The algorithm presented chooses which end of the transport link to subdi-
vide by comparing the total surface areas of the elements at either end. This has
the advantage of simplicity and robustness, but we can do better with a bit more
calculation. Listing 10 gives pseudo code corresponding to the approach outlined
in Section 4.4.3. Here, the fraction of the estimated error due to each element is
calculated, and the element contributing the most error is subdivided.

f v

L1

m

192



6.3.  Radiosity Implementation
6.3.5. Face Cluster Solution Elements

The data structure for a generic, non radiosity-specific face cluster was presented
in Section 6.2.2. For those clusters used in the radiosity solution, we must in addi-
tion store radiosities and other extra information. Because typically the number of
clusters used as radiosity elements is much smaller than the total number of clus-
ters, it makes sense to save time by storing some face cluster attributes trans-
formed into world space coordinates, rather than performing these
transformations on the fly. The radiosity element data structure is shown in
Listing 11.

The use of vector instead of scalar irradiance means that, compared to the
storage required for a face in standard hierarchical radiosity, we store 9 real num-
bers per hierarchical element instead of 3, and 3 reals per link instead of 1.
Although the face cluster hierarchical elements are more expensive than standard
Haar elements, they are in general more lightweight than volume cluster ele-
ments, which require 8 child pointers in our implementation, and much more
lightweight than storing a general radiance distribution.

6.3.6. Irradiance Vector Interpolation

One of the great advantages that face clusters have over volume clusters is that
they are intrinsically surface-based. This means that it is much easier to interpo-
late irradiance values across the cluster. In volume-based clusters, there is no

struct VecLink
{

Element from, to; // can be patches, face or volume
// clusters

Vector m; // transport vector

Float error; //  from § 4.4.2

Float visibility; // average visibility between
// the two elements

}

Listing 7: The vector radiosity transport data structure.

m
GD S←〈 〉
193



Chapter 6.  Implementation Details
VecLink::CalcTransport()
{

m = 0;
factor.InitBounds(-infinity, infinity);

// find samples over the upper face of each cluster’s
// bounding box
p1 = from.CreateSamples(numSamples);
p2 = to.CreateSamples(numSamples);

for (i = 0; i < numSamples; i++)
{

r = p1[i] - p2[i];

rLen = len(r);
if (rLen > 0.0)
{

r /= rLen;
m2Len = pi * sqr(rLen) + from.area;

l1 = from.MinProjArea(-r);
l2 = to.MinProjArea(r);
factor.UpdateBounds(l1 * l2 / m2Len);

u1 = from.MaxProjArea(-r);
u2 = to.MaxProjArea(r);
factor.UpdateBounds(u1 * u2 / m2Len);

m += 0.5 * (l1 + u1) * r / m2Len;
}

}

m *= visibility / numSamples;
error = factor.Range();

linkViable = (len(m) > 0.0 || error > 0.0);
}

Listing 8: Calculating link transport and error. We must calculate an es-
timate of the transport vector , and the error in the transferred power.
Only if both are zero should we ignore this link for the purposes of fur-
ther refinement (linkViable ).

m

194



6.3.  Radiosity Implementation
notion of a largely co-planar, contiguous surface, and interpolation leads to prob-
lems with visibility, and requires deciding which reference planes to use for sam-
pling irradiance. (Greger and Shirley’s “irradiance volume” approach is one
solution to this, albeit an expensive one [Greg98].)

A useful strategy in dealing with inter-cluster irradiance discontinuities is
as follows:

• On the final solution pass, resample the point irradiance at the corners of
each face cluster, rather than once over the entire cluster.

• During the push-to-leaves phase, interpolate the irradiance vectors for the
cluster a leaf polygon falls within in order to find the irradiance at its verti-
ces.

RefChoice VecLink::RefineOracle()
{

w = abs(1.0 - 2 * visibility) * (1.0 - visEps) + visEps;

// compare error in power (radiosity * error) to epsilon

if (error * from.B < w * )

return(SubdivideNone);

if (to == from)
return(SubdivideBoth);

if (to.area > from.area)
if (to.area < minRefinementArea)

return(SubdivideNone);
else

return(SubdivideTo);
else

if (from.area < minRefinementArea)
return(SubdivideNone);

else
return(SubdivideFrom);

}

Listing 9: RefineOracle: deciding how to refine cluster links given the
transport error and average visibility.

ε

195



Chapter 6.  Implementation Details
RefChoice VecLink::FindClusterToSubdivide()
{

pa1.InitBounds(-infinity, infinity);
pa2.InitBounds(-infinity, infinity);
p1 = from.CreateSamples(numSamples);
p2 = to.CreateSamples(numSamples);

r = normalised(from.centre - to.centre);
s1 = from.MaxProjArea(-r);
s2 = to.MaxProjArea(r);

for (i = 0; i < numSamples; i++)
{

r = to.centre - p1[i];
rLen = len(r);
if (rLen > 0.0)
{

r *= s2 / (rLen * (pi * sqr(rLen) + to.area));

pa1.UpdateBounds(from.MinProjArea(r));
pa2.UpdateBounds(from.MaxProjArea(r));

}

r = from.centre - p2[i];
rLen = len(r);
if (rLen > 0.0)
{

r *= s1 / (rLen * (pi * sqr(rLen) + from.area));

pa1.UpdateBounds(to.MinProjArea(r));
pa2.UpdateBounds(to.MaxProjArea(r));

}
}

if (pa1.Range() < pa2.Range())
return(SubdivideTo);

else
return(SubdivideFrom);

}

Listing 10: Choosing which cluster to subdivide by estimating the error
contributed by each to the transport.
196



6.3.  Radiosity Implementation
This process is illustrated by Figure 83, and the dramatic results it can have in
some situations are shown in Figure 84.

We can use the midpoint of each of the four edges of the cluster’s bounding
box that are parallel to the sum area normal to sample vector irradiance. Unfortu-
nately, this is not necessarily the best place to sample visibility. If clusters lie on a
concave surface, and their bounding boxes overlap, it is possible for a sample
point to lie beneath the adjacent cluster. This problem can be largely overcome by
insetting the sample points from the edge of the bounding box by a small amount.
However, this leads to a further problem: interpolation overshoot. When we use
our irradiance vector samples to reconstruct the vector irradiance at a point on the
cluster, we may have to extrapolate if such a point lies outside the samples, which
is a possibility now that we have inset them from the edges of the cluster. If the
nearest sample is small in magnitude, or zero, this can lead to negative irradi-
ances.

struct RadFaceCluster : Element
{

Int fci; // ID of corresponding face cluster
ModelInfo* info; // associated model’s information

// copies of face cluster items in world-space coordinates

Vector areaNormal; // sum area normal
Float sideArea[6]; // for VPA upper bound
Float totArea; // total surface area
Float maxVisArea; // max externally visible area

Element *child[2]; // solution child elements
Colour B; // cluster radiosity
IrradVec R; // vector irradiance: § 3.4.2

};

Listing 11: A radiosity face cluster solution element. The ModelInfo
structure contains auxiliary information about the model containing this
element, such as a pointer to its cluster data structures (see Listing 3 ),
and its position and orientation in the scene. Thus a single model can be
instantiated at multiple points in the scene. An IrradVec contains a
vector for each of the colour channels represented.
197



Chapter 6.  Implementation Details
A simple way to overcome this is to only inset the visibility samples, and
treat them as if they were collocated with the irradiance samples at the edge of the
cluster. This leads to small errors in visibility interpolation, but avoids overshoot.

6.3.7. Post-solution Refinement

It is often the case that some post-solution refinement is carried out after the radi-
osity solver has finished. This can range from Gouraud-shading the mesh to an
image space “final gather” (Section 2.5.3) to resampling the visibility more accu-
rately [Gibs95]. The motivation in all cases is that the eye is more sensitive to
shadow and shading discontinuities than we can account for with linear radios-
ity-centred metrics, and thus it makes sense to refine such features in the solution
before display. While an image-space final gather has its place, it imposes an
expensive cost for each viewpoint generated. Instead, I have adapted some of

Figure 83: Irradiance vector interpolation. The irradiance vector at any
surface point within the cluster is interpolated from samples at the cor-
ners of the cluster.

E0
E1

E2
E3

Lerp(Ei)
198



6.3.  Radiosity Implementation
Gibson’s ideas on post-solution refinement for face cluster radiosity. Whereas
Gibson re-evaluates visibility at the input polygon level, for the type of scenes
considered in this thesis, this becomes prohibitively expensive.

There are a number of alternative post-processing solutions that can be
applied.

• The minimal approach: we use the irradiance vector at each leaf cluster to
colour all of its constituent faces. This can work well if visibility does not
vary much, and surfaces are rough enough that vector irradiance discontinu-
ities between clusters are masked.

• The irradiance-interpolation approach. We re-evaluate the vector irradiance
at all corners of each leaf cluster, and use vector interpolation to colour its
constituent faces, as above. This requires reevaluating all transport links at

Figure 84: Vector interpolation. On the left, using a constant irradiance
vector across each cluster leads to a blocky effect, reminiscent of the
Haar basis. On the right, interpolating the irradiance vector across each
cluster leads to a smoother result. The level of refinement for both pic-
tures is the same.
199



Chapter 6.  Implementation Details
the leaves, which can be expensive. A link pointing to a node relatively high
up in the hierarchy must be re-evaluated at each leaf element it contains.
Still, this is a reasonably robust approach.

• The irradiance-interpolation-everywhere approach. We perform vector irra-
diance interpolation at all face cluster nodes throughout the hierarchy. Irra-
diance vector samples at any given node are calculated by interpolating the
parent’s samples, and adding in resampled vector irradiance for the set of
links pointing to the node, similar to the push phase of the familiar push/
pull algorithm. This is less robust, but much faster.

• Finally, we can optionally subdivide all solution leaf elements a further
levels before doing our final visibility-resampling pass. This achieves some
of the benefits of Gibson’s resampling-at-vertices approach, in that shadow
resolution is markedly improved, without the cost of descending all the way
to the input polygons.

Typically I use the first or third approach. In my experience the vector irradiance
interpolation post-process typically takes 50% of the solution time, when it is per-
formed throughout the hierarchy rather than just at the leaves. The extra solution
quality makes this cost is almost always worth it.

m

200


	Chapter 6 Chapter 6 Implementation Details
	6.1. System Architecture
	6.2. Face Clusters: Algorithms and Data Structures
	6.2.1. A Clustered Model
	6.2.2. The Face Cluster Data Structure
	6.2.3. Reordering the Hierarchy

	6.3. Radiosity Implementation
	6.3.1. Volume Clustering
	6.3.2. Visibility Testing
	6.3.3. Approximate Visibility
	6.3.4. Transport Calculation and Refinement
	6.3.5. Face Cluster Solution Elements
	6.3.6. Irradiance Vector Interpolation
	6.3.7. Post-solution Refinement



