
C h a p t e r  5
Improving the Face
Cluster Construction
Algorithm
5.1. Introduction

In this chapter I explore ways to improve the performance and quality of the orig-
inal face clustering algorithm presented in Section 3.3, and in Garland’s disserta-
tion [Garl99]. The face clustering algorithm is a vital part of the radiosity
algorithm described in this thesis. For our goal of handling complex scenes on a
standard workstation to be achieved, it is imperative that we be able to produce
the face cluster hierarchies required by the radiosity algorithm on such a worksta-
tion. To achieve this goal, I have reimplemented Garland’s original face clustering
algorithm, and made a number of changes to improve both general quality and
performance, as well as suitability for use with radiosity. The resulting implemen-
tation seems similar in speed to the “oconv” octree builder of Radiance [Warda].

I will begin by discussing the various improvements that can be made to
the algorithm, present some performance results, and conclude by discussing
some other work on clustering strategies for polygonal models.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.2. Speed

5.2.1. Evaluating Running Time

We start by evaluating the running time of Garland’s cluster algorithm. We split
this time into two operations, both of which can be carried out independently;
construction of the actual hierarchy, and calculation of bounding box extents. In
the following sections we shall show how these results can be improved.

Face Cluster Hierarchy Construction

The results of profiling the face cluster algorithm described in Chapter 3 for a
large, 100,000 polygon model, are shown in Table 5. Only four routines contribute
significant computational cost; all the others contribute less than 1% each to the
overall running time.

By far the most time spent in the algorithm is on the Jacobi eigensolver routine
used to calculate the principle components of each cluster [Pres92]. This routine,
the simplest possible for the problem, uses Jacobi transformations to find the
eigenvectors of the covariance matrix of the cluster. (As discussed earlier, these
components are used both to estimate the flatness of the cluster, and to provide an
orientation for the bounding box of the cluster.) Obviously this routine is a natural
candidate for optimization.

Bounding Box and Side Area Calculation

After the cluster hierarchy has been constructed, we must also calculate the actual
extents of the bounding boxes corresponding to each node in the hierarchy. For
each cluster, a simple hierarchy traversal is performed to find the corresponding
leaf polygons, and the vertices of these polygons used to calculate its extents. This

Time Pctg. Routine Description

9.2s 55% Jacobi Find eigenvectors for PCA
4.8s 30% FindCost Calculate cost term for a dual edge
1s 6% MergeEdgeLists Merge the dual edge lists of two clusters
0.6s 4% InitFromFace Create initial leaf cluster
0.7s 5% - All other routines
16.3s 100%

Table 5: Profiling Garland’s face cluster algorithm
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5.2.  Speed
is an operation in time, where is the height of the hierarchy, and is the
number of cluster nodes. ( is when the hierarchy is balanced, and

 in the worst case.)
For use with vector radiosity, we must also calculate the projected area of

the cluster in each direction corresponding to a face of the box. This can be done at
the same time as the iterative bounding operation, and adds an overhead of
approximately 30% over just bounding box calculation.

The times taken to calculate the bounding boxes for two cluster hierarchies
are shown in Table 6. Also shown is the actual height of the hierarchies, and the
height of each hierarchy if it were balanced.

At first glance, it seems as if the bounding box calculation is a much more
significant part than the actual hierarchy calculation of the overall time cost of cre-
ating a cluster hierarchy suitable for radiosity. These times show the bounding
box calculations taking over twice as long as cluster creation in the case of the
whale model. However, this need not be the case. The hierarchies produced by
the original clustering algorithm can be extremely unbalanced; in the case of the
results above, by balancing the hierarchies we could gain potential speed-ups of
20 and 30 times respectively. This would also have a positive effect on any query-
based algorithm that might use face clusters, such as ray-tracing or collision
detection, as these also have  complexity.

If the poor balance of these hierarchies were solely a result of the need to
constrain clusters to be flat, there is not much we could do to improve the situa-
tion without seriously diluting the effect of our cost metric. Luckily, this is not the
case. Much of the imbalance is due to highly tessellated flat regions in each
model, where the cost metric approaches zero, and provides little guidance as to
which clustering operation to perform first. In such situations the heap-based
algorithm clusters faces in order, often in the most unbalanced way possible. (This
is the reason the much smoother whale model is less balanced than the bumpier
dragon model; see Figure 79 for both models.) As we shall see later, we can

Model
Bounding
Box Time

Cluster
Nodes

Tree
Height

Balanced
Height

Dragon 17.1s 102,264 342 17
Whale 41.44s 101,812 506 17

Table 6: Garland’s hierarchy: results for bounding box and side area
calculation for two models.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
exploit this by altering our cost metric to produce more balanced hierarchies, and
reduce drastically the time taken to calculate bounding boxes.

5.2.2. Speeding up Principle Component Analysis

A first approach to eliminating the bottleneck of principle component analysis in
the cluster creation algorithm is speeding up the eigensolver at its heart. There are
a number of more sophisticated algorithms for the eigenvalue/eigenvector prob-
lem than the Jacobi eigensolver, which was originally chosen for simplicity of
implementation. Techniques based on QR iteration with shifting work well for
medium size matrices, and for large matrices, divide-and-conquer works best
[Demm97, Golu89].

Unfortunately, these algorithms are more efficient the larger the problem
size, and our problem size is extremely small; matrices. For such a small
problem size, it turns out that brute-force Jacobi iteration is as fast as we can rea-
sonably expect, and has the advantage of being more stable than the other rou-
tines [Demm97]. This is illustrated in Table 7, which shows the average
performance of several eigensolvers over a number of random box-shaped co-
variance matrices on a Pentium II-class processor. Jacobi takes 60% of the time of
the QR shift-based algorithm, where both are hard-coded for matrices, and
both are an order of magnitude faster than a general SVD routine used for the
same purpose.

As a result, it appears we cannot reasonably expect to speed up the eigensolver
routine itself.

5.2.3. Eliminating PCA for Flat Clusters

An alternative to reducing the time taken by the PCA algorithm is to instead
reduce the number of such computations needed. The PCA algorithm has two
uses in the face cluster algorithm; determining the best fit plane of the cluster, and

Clocks Routine

218,347 Generalised SVD
14,102 QR-Shift
8,395 Jacobi

Table 7: Average performance for various eigenvalue solvers.
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5.2.  Speed
determining directions for the bounding box. We will examine its application to
the bounding box further in Section 5.3.

An alternative to calculating the best fit plane of the cluster is to instead
use the sum-area normal, , to determine the orientation of the cluster, and use
that in our error metric. This has two advantages. Firstly, it is much easier to cal-
culate, and secondly, it is much more stable than the PCA routine for calculating
orientations (see Figure 67).

The disadvantage of using the sum-area normal is that, as clusters become
less flat, the quality of the approximation to the best-fit plane falls off, and the esti-
mate of the flatness of the cluster suffers. However, for such clusters we can revert
to using the PCA algorithm. A good metric for deciding when to do so is to com-
pare the length of the sum-area normal vector, namely, the projected area of the
cluster in that direction, against the total area. This approaches one as the cluster

Figure 67: Determining cluster orientation. On the left is a cylinder clus-
tered using PCA to determine the orientation of clusters. On the right are
clusters created by using the sum area normal for this purpose. When
clusters are reasonably flat, as in this case, doing so leads to more stable
results than using PCA.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
becomes completely flat, and zero as the cluster’s surface becomes closed. I have
had good results with using

(78)

as a test for whether to use instead of the principle component to determine the
cluster’s orientation. The impact on running time is shown in Table 8. The cost of
the PCA analysis is much reduced, and in general the performance of the algo-
rithm is at least twice as fast.

5.2.4. The Impact of Balance on Running Time

At first glance, it would appear that the balance of the hierarchy would not have
an effect on the running time of the clustering algorithm. As described by Gar-
land, the clustering and edge-collapse algorithms have a complexity of ;
there are merge operations, and each such operation requires updating the
heap, an  operation [Garl99].

However, on closer examination I have found that balance can have a con-
siderable impact on the running time by affecting the degree of clusters in the
model. Each face cluster node is connected to its immediate neighbours by dual
edges, representing potential clusterings. The degree of a cluster node corre-
sponds to the number of these dual edges. Whenever two clusters are merged, we
must merge their dual edge lists (a constant time operation), and visit all of the
edges in the new list, updating their corresponding costs in the heap. So the cost
of a merge operation is , where is the number of dual edges in the new
cluster.

If the algorithm is producing a balanced hierarchy, the number of dual
edges belonging to any given cluster is approximately equal, and constant. Thus

Time Pctg. Routine Description

4.5s 58% FindCost Calculate cost term for a dual edge
1s 14% Jacobi Find eigenvectors for PCA
1s 11% MergeEdgeLists Merge the dual edge lists of two clusters
0.6 7% InitFromFace Create initial leaf cluster
1s 10% - All other routines
7.8s 100%

Table 8: Profiling the new face cluster algorithm
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5.3.  Calculating Oriented Bounding Boxes
can be assumed to be constant, and Garland’s analysis of for a merge
operation holds. In the worst case, however, polygons are iteratively collected
into a single large cluster, and this assumption is no longer true. Figure 68 shows
this effect. As a consequence, performance suffers. In fact, for a planar regular
grid, the accumulation cluster can have dual edges incident on it in the
worst case. As a result, merge operations are , and the algorithm as a
whole is rather than . We can expect similar worst-case
behaviour for manifold surfaces.

The impact of this on clustering time is illustrated in Figure 69, which
shows the time taken to cluster flat triangular meshes of varying sizes. (An exam-
ple mesh is shown in Figure 70.) The results for both a constant-cost clustering
metric, which results in an almost completely unbalanced hierarchy, and an area-
based metric, which results in an almost completely balanced hierarchy, are
shown. The reason for the differing performance is clearly illustrated in Figure 71,
which shows the respective maximum dual edge adjacencies for the two metrics.

(I speculate that this is also the reason for the running-time jump for the
Turbine model in figure 6.4 of Garland’s dissertation [Garl99]. The turbine con-
tains a number of highly tessellated flat surfaces; when the algorithm starts to
simplify them, it seems probable that this will lead to vertices of extremely high
degree. I have observed similar effects on smaller flat models.)

This result provides further motivation for altering the cluster algorithm to
produce more balanced hierarchies. We will discuss how this can be accom-
plished in Section 5.4.1.

5.3. Calculating Oriented Bounding Boxes

In Garland’s original method, the orientation of the bounding box is calculated by
performing principal component analysis, and the extents of the box by iterating
over each point contained in each cluster node. We shall briefly examine both of
these approaches.

5.3.1. The Need for Robust Extent Calculations

Iterating over every face in a cluster for each cluster in order to calculate the
extents of its bounding box is costly. In the best case (the hierarchy is balanced) it
is ; in the worst, . A much cheaper approach that has been used
elsewhere would be to calculate the extents from just the vertices that define the
bounding boxes of its two child clusters, rather than every point in the cluster.
This reduces bounding time to a constant per cluster, and overall time to .

d O nlog( )

O n( )
O n nlog( )

O n3 2/ nlog( ) O n nlog( )

O n nlog( ) O n2( )

O n( )
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Chapter 5.  Improving the Face Cluster Construction Algorithm
Figure 68: Hierarchy balance affecting dual-edge degree. On the left, in
an unbalanced hierarchy, one large cluster slowly absorbs all other clus-
ters (from top to bottom.) On the right, a balanced hierarchy leads to
roughly similar-sized clusters as merging proceeds from smaller clusters
(top) to larger ones (bottom).

A balanced hierarchy leads to a small, approximately constant
number of dual edges per cluster (arrows, bottom-right), while in an
unbalanced one, a single large cluster is adjacent to many small ones,
leading to a non-constant dual edge count (arrows, bottom-left).

unbalanced balanced
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5.3.  Calculating Oriented Bounding Boxes
Unfortunately, in such an algorithm a little bit of error is potentially intro-
duced in each bounding operation, typically making the parent cluster larger than
it really has to be. Worse, the error accumulates up the tree, so that nodes near the
root have very sloppy bounds. This effect is especially bad for the large models
(and consequently large hierarchies) we must deal with. As the radiosity algo-
rithm is most sensitive to error at the top of the hierarchy, due to its top-down
refinement approach, any error, and especially any cumulative error, is unaccept-
able.

Any approximation algorithm we do choose to speed up bounding box cal-
culation must be carefully designed to avoid cumulative approximation error.

5.3.2. Picking Bounding Box Orientations

A major problem for the use of face cluster hierarchies in radiosity simulations is
that principle component analysis can fail to produce a reasonable bounding box

Figure 69: The effect of hierarchy balance on clustering time. An unbal-
anced hierarchy can make clustering very slow.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
in degenerate cases. While it handles objects with three differently-sized major
axes well, if any two of these axes are close to equal, the algorithm becomes unsta-
ble. Worse yet, these are cases that occur commonly in radiosity scenes.

The problem with the principle component approach is that it is in essence
fitting an ellipsoid to a cloud of points, and then taking that ellipsoid’s principal
axes as those of the oriented bounding box for the cluster. The worse case for this
approach is a cube, where there is no preferred direction at all for the fit ellipsoid
(the best fit being a sphere), resulting in an essentially random orientation for the
bounding box. Because the algorithm used to calculate the eigenvectors of the
covariance matrix is iterative, it is difficult to predict what this orientation will be.

While cubical objects don’t occur often in practice, their two-dimensional
equivalent, meshes in a rectangular shape, do. This leads to poor bounding boxes,
as in Figure 72.

In some applications this is not critical. However, in radiosity the quality of
our transfer approximations, and in particular the quality of our visibility calcula-
tions, is highly dependent on the tightness of the bounding boxes. Consider a
floor in a square room; if the bounding box for the entire floor is oriented at 45
degrees to the floor, much of it will lie outside the walls of the room. Visibility
tests against this bounding box will show the floor is partially occluded, even

Figure 70: An example flat mesh of 800 faces.
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5.3.  Calculating Oriented Bounding Boxes
though in reality it is not occluded at all. Such problems lead to poor refinement
decisions and unnecessary work on the part of the radiosity algorithm.

It is possible to calculate the optimal minimal-volume bounding box for a
cloud of points in 3D, but this takes time [ORo85']. (Principal component
analysis is , and of course, we get it largely for free due to needing it also for
our cost metric calculations.) This is far too expensive for our situation and geom-
etry size.

A hybrid approach is to use PCA to establish a single principal axis, and
then, after projecting all vertices onto a plane perpendicular to that axis, use a
simpler algorithm to find the minimum-area enclosing rectangle (MER). The cost
of finding the MER is for finding the two-dimensional convex hull, and

for finding the rectangle using a rotating callipers-type algorithm [Tous83].
(Briefly; it can be shown that a minimum-area enclosing rectangle must have one
side coincident with an edge of the hull of the point set being enclosed. We can
thus iterate through all such rectangles in linear time, and pick the one with the

Figure 71: Dual edge degree increases when creating unbalanced hier-
archies.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
smallest area.) In practice we can merge hulls as we ascend the hierarchy, rather
than creating a new one each time; the cost of merging two hulls is .

This approach works particularly well for flat clusters. For larger, non-flat
clusters, the smallest-length component is no longer the most stable orientation
feature of the cluster, and just using PCA works as well or better than this hybrid
approach. Luckily, this meshes well with the approach to eliminating the need for
PCA on flat clusters described in Section 5.2.3. For clusters meeting the condition
of Equation 78, the vector is used both to define a fit plane for the cluster, and
to define the “flattest” axis of the bounding box, with the minimal-area enclosing
rectangle algorithm used to find the remaining two axes. For all other clusters,
PCA is used both for the fit plane, and to define the orientation of the bounding
box. This approach works well, especially because it limits application of the MER
algorithm to those clusters that genuinely need it for stability, and saves on the
expense of PCA at the same time.

5.4. The Cost Metric

Garland’s original cost metric, as outlined in Equation 12, sums three penalty
terms to form the total cost of merging two clusters. These per-dual edge costs are
then used to decide which two clusters to merge next.

Figure 72: Badly oriented bounding boxes. From left to right we see the
first three levels of subdivision of a square but curved surface. Because
the clusters are close to symmetrically shaped, their bounding boxes
have essentially random directions in the plane.
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5.4.  The Cost Metric
This formulation suffers from a couple of problems. The first is that,
because the cost terms are added, they can wind up interfering with each other in
some situations. For instance, the original face cluster radiosity paper used
weights on the three terms of , , and for some
models, in an attempt to get the directional term to have the desired effect
[Will99]. On further investigation, it turned out that the directional and shape
costs interfered with each other—turning on the shape metric pretty much
destroyed the effect of the direction metric.

Another problem is that the three cost terms have different units. is the
variance of the cluster's points in one dimension, so it has units of area. Scaling
the model by a factor will lead to scaling of all associated fit costs by . The

term measures the variance of cluster normals from some average normal.
This varies from 0, when all normals point in the same direction, to 1, when the
normals are distributed randomly over the sphere of directions. Thus it is unitless.
Finally, is also unitless, and varies from 0 (when two elongated clusters are
merged into a fatter, more rounded one) to 1. Unlike the directional term, how-
ever, it tends to usually fall around 0.5, when no improvement to shape is made.

Thus, scaling the model can lead to different ratios of the cost terms, and
thus different clustering behaviour, a situation we would like to avoid. We would
also like to avoid the situation where the size of one term prevents the others from
taking effect. To do this, I propose a modified cost metric:

(79)

This metric works by taking as the base cost and scaling it according to the
penalty terms and , which we will define to be 1 when both terms
should have no effect, and to rise above 1 for clusters deemed “bad” by both
terms.

5.4.1. Addressing Balance

As discussed previously, Garland’s original metric does not produce particularly
balanced hierarchies. In the case of flat sections of a mesh, moreover, goes to
zero everywhere, and we get extremely unbalanced hierarchies.

There is a simple fix to this problem. If we consider a flat mesh made up of
evenly-sized polygons for the moment, a cost metric that would produce a bal-
anced cluster hierarchy for such a mesh is just the surface area of the cluster. Such
a metric ensures that clusters are merged evenly in order from small to large, pro-
ducing a balanced hierarchy.

wfit 1.0= wdir 20.0= wshape 1.0=
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Chapter 5.  Improving the Face Cluster Construction Algorithm
Of course, this approach only works if all leaf elements are approximately
the same size. However, empirically this is the case for most detailed models.
Also, where it is not the case, it usually suits the radiosity algorithm better to have
approximately equal-area clusters, as this ensures that the depth of hierarchy that
must be descended to reach a certain level of accuracy is relatively constant.

We must combine this fix for flat meshes with the usual metric in such
a way that the changeover from curved surfaces, where the standard fit metric
should predominate, to flat surfaces, where the area-based metric should predom-
inate, is smooth. The approach I use is to combine them as follows:

(80)

Here the constant controls the mix of the two metrics. As the variance of the
points (roughly speaking, the height of the cluster squared) drops below times
its surface area (again, roughly, the cross-sectional area), balance of the hierarchy
starts to take precedence over the flatness of clusters. Note that and
both have units of distance squared. Figure 73 shows the effects of this new fit
term on hierarchy balance.

5.4.2. The Directional Term

The calculation of Garland’s term is expensive, especially in terms of mem-
ory use, which it doubles. Also, its attempts to minimise variation in normals is
not so well suited to our radiosity method. We are generally happy to have large
amounts of micro-scale normal variation, as long as the surface is relatively flat,
and does not fold over on the macro scale. A cluster can meet both of these condi-
tions, and still be heavily penalised by Garland’s variance-of-normals term,
because of small bumps on the surface.

An alternative is to use the ratio of the projected area in the direction of the
area-weighted normal to the total area of the cluster as a measure of how much it
folds over. (This is just .) In the case of a completely flat cluster this is one;
as the cluster folds over and the projected areas on each side of the fold cancel out,
it drops, reaching zero in the case of a completely closed surface. We can thus
define the penalty term of the previous section as

. (81)

The major advantage of this is that, while it gives similar results to the original
, as seen in Figure 74, there is no required additional storage cost, as we must
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5.4.  The Cost Metric
already track the area and sum area normal of each cluster. This can lead to space
savings of almost 40% over Garland’s original method, and can make the differ-
ence between being able to cluster the dragon model in under a minute on a
128MB laptop, and having to wait half an hour for results while it thrashes heav-
ily.).

Figure 73: Enforcing hierarchy balance. Top: a dragon model clustered
using, from left, the original cost metric, and the modified metric for two
values of . Bottom: the corresponding cluster hierarchies.

height = 343 nodes height = 41 nodes height = 28 nodes

original k 0.0001= k 0.01=
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.4.3. The Shape Term

In tests I found that the difference between using the of the cluster (the ratio of
squared perimeter to area) and Garland’s more complicated term seemed
to be minimal; see Figure 75, for instance. The term works better with the scal-
ing penalty approach outlined above; we can define the shape penalty simply as:

(82)

Again, this is one for a perfectly circular cluster, the most compact shape possible,
and increases as the cluster’s shape moves away from that ideal.

Figure 74: The directional term. Top to bottom: the first level of the clus-
ter hierarchy for successively thinner ellipsoids. Left, the original
metric based on normal quadrics. Right, the new metric based solely on
projected area.

Ideally, we would like this first split in the hierarchy to divide
the ellipsoid cleanly into top and bottom halves. For this particular
example, we see that the new metric is no worse (and arguably a little
better) than the original metric.
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5.4.  The Cost Metric
Figure 75: Effect of the shape term. Top to bottom: progressively coarser
clusterings of three flat meshes. Left, no shape term; middle, the new
term; right, Garland’s .Eshape
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.4.4. A New Cost Metric

Putting it all together, we can write the complete cost term as:

(83)

which can be rewritten more simply as

(84)

where as usual, . (We can drop the because the cost term is
scale independent.) The term controls the mix between balancing the hierarchy
and obeying the metric; it should be set to some small value (I use 0.0001) for
good results.

This metric has proven to be simple and robust, and much less sensitive to
the effects of conflicting purposes for the metric. For instance, even if an area-
weighted term is added to Garland’s original “summed” metric, its effect on bal-
ance is easily overwhelmed by the and terms. The approach of scal-
ing the basic cost, , by penalty terms, suffers much less from this.

Finally, while trying to construct a cost metric capable of guiding face clus-
ter creation according to some notion of “goodness”, it is tempting to engage in
micro management, adding a succession of terms. One must be careful about this;
the face cluster algorithm is a greedy algorithm, and trying to get subtle effects via
the relatively blunt tool of the cost metric can be a frustrating exercise. Keeping
the metric simple and straightforward seems the best approach.

5.5. Time and Space Trade-Offs

The cluster files for complex models can be large. For instance, the geometry of
the whale model shown earlier in this chapter requires 3MB of storage (1.1 MB
compressed). Its corresponding binary cluster file (which includes the geometry
as well as the face clusters) is 15MB (9MB compressed.) While these files can be
compressed for storage, they must be uncompressed for use by the radiosity sim-
ulation. This is not really a problem for moderate numbers of cluster files given
the current cost of hard disk space; approximately US$5/GB for IDE disks. How-
ever, while I make an effort to limit the amount of cluster overhead for my partic-
ular application, radiosity, it would be nice to have a method for reducing the size
of these files in situations where either we wanted to store more information per
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5.5.  Time and Space Trade-Offs
cluster, or many (different) models must be used. Also, there are some situations
in which we must traverse the entire face cluster hierarchy; in such cases, overly
large files can lead to long disk read times, and problems with thrashing.

We look at two possible approaches to trading off cluster file size in return
for more computation time: increasing the branching factor of the hierarchy, and
truncating the hierarchy.

5.5.1. Picking a Branching Factor

The standard face cluster hierarchy is a binary tree; it has a branching factor of
. It is relatively simple to recast this hierarchy as one with a larger branch-

ing factor; would give us a quadtree, and an octree. This can lead to
space savings, but we must analyse the corresponding impact on performance.

Let us briefly recap the situation where we wish to build a hierarchy with a
branching factor of above leaf polygons. The total number of internal nodes
(and thus clusters) will be

. (85)

The height of the corresponding balanced hierarchy is

, (86)

and that of the corresponding unbalanced hierarchy is .
Ignoring storage for leaf nodes, which remains constant, the storage

required by our hierarchy is , where is the internal
node storage (e.g., a bounding box for a bounding volume hierarchy), and
is the storage size of a pointer. The query time for each node is simply ,
where is the time taken to test a single node—we must test each of a node’s

 children1. Thus the worst-case query time is

, (87)

1. For a bounding volume hierarchy we must test each child because there is a chance more than one child
will match.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
and the best-case time is

. (88)

In the case of the face cluster hierarchy used by the radiosity algorithm, is
an order of magnitude larger than , so we approach space savings of

over a binary tree. Thus, a quadtree will take the space of the orig-
inal binary tree, and an octree the space, ignoring the storage for leaf faces.
These are considerable space savings, and they increase with .

The drawback to a higher branching factor is slower spatial-data structure
queries. It is often assumed that a randomly-built hierarchy has height ,
and thus is on average close to being balanced. We will assume that here, espe-
cially as we have a specific term to promote balance in our cost equation. (See
Section 5.6 for empirical evidence that our hierarchies are always close to the bal-
anced case.) In such a case, it is that determines query performance.
Figure 76 shows the -dependent term of . For quadtrees and higher, the
cost increases close to linearly with . Interestingly, quadtrees have the same
query cost as binary trees, and a hierarchy with a branching factor of three has a
slightly lower cost1.

This analysis assumes we have built a hierarchy with branching factor
from scratch, guaranteeing that every internal node except one has children.
However, constructing an algorithm that directly produces such a face cluster
hierarchy is challenging. We would have track all possible -way grouping oper-
ations on adjacent nodes, rather than using simple bi-directional links. For a node
with neighbours, there would be possible groupings.
For example, for and , we would need to represent (and calculate
the cost of) 20 potential groupings rather than 6. Also, if we start from a triangular
mesh, for the initial leaf nodes , and many internal nodes would have only

 children, with .
In general it is simpler to recast the binary hierarchy produced by the orig-

inal algorithm into one with a higher branching factor. In doing so, we must
maintain the structure of the original hierarchy, so that only groups of adjacent
nodes are produced. If this is not done, we could have clusters containing discon-
nected surface areas, violating the assumptions of the face cluster hierarchy.

1. A three-way hierarchy is only 5% faster in this situation. In general binary trees work better because of the
extra cost of three way group-selection or comparison operations. A binary comparison requires fewer
gates to implement that a trinary one.
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5.5.  Time and Space Trade-Offs
In practice this leads to the requirement that a node and its children in the
transformed tree correspond to the root node and leaf nodes of a valid subtree of
the original binary hierarchy. This restriction can produce a number of internal
nodes that have less than children, with two consequences: potentially wasted
pointer space on one hand, but fewer nodes to test against on the other.

I will not go into details here, but it can be shown that:

• the smallest possible number of children in such a tree is ;

• any completely balanced or completely unbalanced tree can be transformed
into one where all but one of the internal nodes have the full set of chil-
dren;

• in the worst case, it is possible for all internal nodes in the new hierarchy to
have  children;

Figure 76: The -dependent factor in the query cost for a balanced spa-
tial data structure with a branching factor of .
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Chapter 5.  Improving the Face Cluster Construction Algorithm
• the maximum height of such a worst-case tree is , and the
number of internal nodes is 1.

The consequences of this are that the best-case storage and performance are the
same as for our original analysis, but in the worst case performance and pointer
storage costs of the transformed tree match that of the original binary tree. How-
ever, the total internal node storage is reduced by a factor of , so we still save
some space with a higher branching factor. For , whereas we were origi-
nally guaranteed to reduce our internal node storage to of its original size,
with the transformed tree this is just the best case, with the worst case being .

In summary, by increasing the branching factor we can decrease the stor-
age needed for face clusters, ignoring pointer storage, to at worst of that
required by the original binary hierarchy. This can increase the query time of the
face cluster data structure by a factor of up to . However, this is impor-
tant only if we are using the data structure for visibility queries, or proximity or
collision detection. In my current implementation of face cluster radiosity, the
data structure is only used for hierarchical radiosity, and a nested grid data struc-
ture is used for visibility queries. Thus the only performance consideration is that
of the radiosity algorithm, which we will look at next. For face cluster applica-
tions which are primarily query-based, there is no performance drawback and
considerable space savings to be had by recasting the hierarchy as a quadtree.
Higher branching factors are possible, but the space savings become progres-
sively smaller and performance is impacted; finding the ideal branching factor
would require further experiment or analysis.

5.5.2. The Impact of Branching Factor on Radiosity

For the face cluster radiosity algorithm, we must examine the impact of the
branching factor on the following stages of the radiosity algorithm (see
Section 2.4.2).

Gather

The cost of the gather operation in radiosity depends solely on the number of
transport links currently existing in the simulation. This number depends on the
refinement epsilon, , as well as the quantization of surfaces—how we discretize
them, and how we organize them into a hierarchy. The branching factor affects

1. Briefly, the smallest binary tree corresponding to this worst case contains a left subtree that is unbalanced
and has b’ leaf nodes, and a right subtree that has b/2 leaf nodes. Larger such trees can be produced by
repeating this base tree.
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5.5.  Time and Space Trade-Offs
the set of possible links between hierarchical surface regions. Larger branching
factors correspond to a smaller set of possible links, that cover the possible trans-
port space more coarsely. If there is some theoretically optimal number of trans-
port links that exactly meets the desired refinement threshold, the imposition
of any hierarchy leads to approximation error; we still meet the threshold, but it
requires links, where . The larger the branching factor, the larger the
approximation error, and thus .

Unfortunately, given the wide range of transport schemes, and the depend-
ence of transport error on the current state of the radiosity solution in the popular
brightness-weighted schemes, the relation of these quantities is hard to analyse
except in trivial, unrealistic cases. We can make the following simplistic analysis,
however.

Assume that all nodes have an equal number of links pointing to them
(Section 2.4.1). We will compare a hierarchy with branching factor to one
with branching factor 2, when both have the same leaf nodes. From
Equation 85 the binary hierarchy must have more nodes
than the hierarchy with higher branching factor. For each of these nodes, the cor-
responding links must be pushed down to the first descendent node that has a
counterpart in the non-binary hierarchy. This must result in the generation of at
least one new link, and at most new links, for each of the links to be pushed
down. Thus we can conclude that, assuming a constant refinement and the
same scene, the links formed in a hierarchy with branching factor will have the
following relation to the number of links formed in a binary hierarchy:

. (89)

This increase in the number of links, and consequently link storage and gather
time, quickly approaches a factor of two for branching factors of eight and higher.

Push-Pull

The cost of a push-pull operation for an internal node is linear in the branching
factor. (We must push irradiance down to children, and then average their radi-
osities during the pull phase.) We can write this cost as . For each leaf there is
an additional constant cost in transforming irradiance into radiosity, . This
gives us a total cost for a push-pull operation over the solution hierarchy of
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Chapter 5.  Improving the Face Cluster Construction Algorithm
. In the balanced and unbalanced cases, where almost all nodes have
 children, we have

, (90)

and in the worst case mentioned above, where all nodes have children, we find

. (91)

Thus by increasing the branching factor, we can decrease the cost for the internal
nodes, by a maximum factor of 2. The cost for a binary tree is ,
and for an octree it lies between  and .

We can conclude that for face cluster radiosity, increasing the branching factor
would decrease cluster memory use, and speed up the push-pull section of the
radiosity algorithm, but likely increase transport link memory use, and slow
down the gather section of the algorithm. My feeling is that a low branching fac-
tor at the top of the hierarchy is important, as accuracy at the top of the hierarchy
is crucial to any top-down algorithm. This hypothesis needs to be tested empiri-
cally, however. In the meantime, it seems that increasing the branching factor to at
least four is an experiment well worth pursuing, especially considering that pre-
vious hierarchical radiosity algorithms typically have branching factors of four or
more, and that face cluster storage is typically much greater than link storage. An
alternative to increasing the branching factor of the hierarchy everywhere might
be to do so at lower levels of the hierarchy only, leaving the higher levels with the
original low branching factor.

5.5.3. Truncating the Hierarchy

One of the particular problems with large cluster files for the radiosity application
is that typically a large portion of the cluster file goes unused. This is especially
the case with models containing large flat areas; a single cluster representing the
flat area suffices for the radiosity simulation, and the only use for the rest of the
hierarchy in that area is for the final push-to-leaves step.

A useful way to take advantage of this is to truncate the face cluster file,
and thus the hierarchy. The cluster file can be organised so that the leaf nodes
belonging to any given cluster are numbered consecutively. Thus if we store face
ranges with each cluster, it is possible to go directly to the leaf polygons enclosed
by that cluster without traversing the hierarchy below it. Because the cluster file is
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5.5.  Time and Space Trade-Offs
generally stored in a reverse-log format, where clusters occur in reverse order
from the order in which they were generated, it is possible to simply eliminate all
nodes below a certain cut through the hierarchy by discarding all nodes after a
certain point in the file.

The result is a trade-off between memory or disk space and speed. If the
radiosity algorithm needs to descend beyond the cut at which the rest of the hier-
archy has been removed, it will incur a speed hit as it must switch directly to
using the leaf polygons in the simulation. The truncation can also be viewed as a
form of lossy compression of the hierarchy. Because the cluster file is written out
in order of clustering, the first clusters to be discarded are those most likely to be
largely flat, and thus ideal candidates to be discarded.

For technical details on how this truncation can be carried out, see
Section 6.2.3.

5.5.4. Out of Core Face Clustering

Unfortunately the face cluster algorithm has poor performance when the model
being clustered will not fit in main memory. Because the algorithm starts by creat-
ing dual edges between all adjacent faces, its memory consumption is greatest
during initialisation, when it must access the entire model. Finding adjacency
relationships between faces for such large models is also an expensive operation.
These problems are similar to those faced by geometric simplification methods
based on edge contractions when models grow too large.

One solution that has been presented for geometric simplification is to use
a variant of Rossignac and Borrel’s vertex decimation [Ross93, Lind00]. In vertex
decimation, we place a grid around the model, and then collapse all model verti-
ces in one cell to a single vertex, discarding all triangles that become degenerate.
(That is, all triangles that have two or more vertices lying in the same cell.) We can
adapt this algorithm to the dual-space face-clustering algorithm, by adding all tri-
angles in the same cell to a single face cluster. The algorithm is outlined in
Listing 2.

This approach has the advantage that, like the out-of-core simplification
algorithm, the memory use is determined completely by the grid size used, and
thus can be constrained to match the available in-core memory. Moreover, it gen-
erates the appropriate initial set of dual edges as part of the triangle addition step;
there is no separate, triangle adjacency-finding algorithm needed.

The main disadvantage of this approach is that it is no longer strictly guar-
anteed that the surface within a cluster is a manifold connected surface, although
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Chapter 5.  Improving the Face Cluster Construction Algorithm
it is the usual case. (This is the corresponding problem to the way Rossignac and
Borrel-style vertex decimation can produce a non-manifold output surface from
manifold input.)

The other disadvantage is that we limit the depth of the face cluster hierar-
chy. At the leaf clusters corresponding to the original grid cells, we go directly
from a cluster to all the faces contained in that cluster. However, this is similar to
the approach outlined in Section 5.5.3, where we deliberately truncate the hierar-
chy to save space. In fact, the approach outlined there is needed to handle such a
cluster hierarchy, where a cluster can contain more than two leaf faces.

OutOfCoreCluster()
{

Engrid(); // place grid around model

foreach (cell in grid)
initialise a cluster quadric

foreach (triangle in model)
find cell coordinate of triangle’s centre
add triangle to that cell’s cluster, updating quadric

find cell coordinate for each vertex
foreach (edge with endpoints in different cells)

add dual edge between those cells
if not already present

Initialise(dualEdges); // find error term for each edge
FaceCluster(dualEdges); // add edges to heap and

// cluster as usual.
}

Listing 2: Out-of-core face clustering. Each grid cell is treated as a clus-
ter. The process of adding triangles to cells also identifies neighbour re-
lations between those clusters.
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5.6. Performance of Face Clustering

In this section I will give some results for the modified face cluster algorithm pre-
sented in this chapter, for the kinds of polygonal models I’m most interested in
being able to handle well with radiosity algorithms. Figure 79 shows sixteen such
models, ranging in complexity from a few thousand polygons (the cup and ellip-
soid) to over one million (the buddha).

Figure 77 shows log-log plots for both memory and time use by the cluster
algorithm. The models in both graphs fall along a line of slope 1, suggesting both
are roughly . In the case of memory consumption, this is expected. In the
case of time consumption, we expect best case performance, and get it
for this range of models. (For large numbers, looks much the same as

on any plot.) Crucially, the time results are always close to this best-case, as
opposed to the worst-case performance that would be represented
by a line of slope .

The reason for this good performance is shown in Figure 78, which shows
the average and maximum dual-edge degree during the clustering process for
each model. The average degree always falls between 4 and 6 edges, which is con-
sistent with the lowest curve of Figure 71, and thus the assumption about the
dual-edge degree being constant that underlies the theoretical best-case
performance of the algorithm are satisfied. The maximum degree is a measure of
the largest cluster boundary. It is particularly high in the case of the buddha; I
speculate that this is because of its planar base remaining as one cluster until rela-
tively high in the cluster.

Finally, free source code implementing the face cluster algorithm is availa-
ble on the internet, at http://www.cs.cmu.edu/~ajw/thesis-code/. As well as its
use in radiosity, this code should prove valuable for other spatial data structure-
oriented algorithms that need to be able to handle large detailed models well,
such as collision detection or ray-tracing.

5.7. Comparison to Other Techniques

5.7.1. Hierarchies of Oriented Bounding Boxes

Hierarchies of oriented bounding boxes have proven useful in other contexts
besides radiosity, in particular for query-based operations on spatial data struc-
tures, such as collision detection [Ball81]. Barequet et al. present the BOXTREE
data structure, which is essentially a hierarchy of oriented bounding boxes, con-
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Chapter 5.  Improving the Face Cluster Construction Algorithm
Figure 77: Performance of the new face cluster hierarchy creation algo-
rithm for a variety of models.
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5.7.  Comparison to Other Techniques
structed top-down [Bare96]. They also discuss several methods for both creating
the hierarchy and picking appropriate bounding boxes. They conclude that the
minimal-component pie-slice works better than oriented bounding boxes for their
test models. I suspect that this is because:

• Their box-tree hierarchies calculate bounding boxes for the leaves of the
hierarchy, i.e., the original triangles of the model. In this case, the advantage
of a triangularly-shaped bounding volume is obvious.

• The triangular shape is more oriented than a box; this could lead to fewer
stability problems and more accurate PCA directions for their strategy of
using child bounding boxes to form the covariance matrix.

Pie slices also take slightly more storage than oriented bounding boxes (8 floating
point numbers plus a rotation, as opposed to 6 floats plus a rotation.)

The BoxTree paper also presents results showing that, as we might expect,
the strategy of using PCA to select one direction rather than all directions of the
bounding box can lead to better performance.

Figure 78: Variance in dual-vertex degree for a variety of models.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.7.2. Volume Clustering for Radiosity

There are a number of different approaches to clustering in radiosity. Hasenfratz
et al. have studied a number of the data structures and strategies used in volume

Figure 79: Test models. Shown are a selection of models of varying com-
plexity. The new face cluster algorithm was run on each model and test
results collected.
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5.7.  Comparison to Other Techniques
clustering [Hase99]. They classify clustering approaches by data structure used,
and type of construction algorithm. Data structures are classified as either regular
structures, such as octrees or -d trees, that recursively subdivide space, or
bounding volume hierarchies, which adapt to object geometry using optimization
criteria. Construction algorithms are classified as either top-down (the simplest)
or bottom-up. Within this schema, the face clustering algorithm is most closely
related to bounding volume hierarchies, as it tries to adapt to object geometry,
and it uses a bottom-up construction algorithm.

Face clusters have some of the advantages of both kinds of data-structure.
Their speed of construction is similar to regular subdivision-based data struc-
tures, such as octrees, however their bounding boxes are of much higher quality.
Their adaptiveness to geometry is similar to that of bounding volume hierarchies,
but they do not suffer from overlapping clusters or mixing of surfaces in single
clusters, because they are constrained to share only connected geometry.

The authors pay some attention to why cluster overlap in bottom-up clus-
ter constructions is a problem. It leads to situations where scattered elements of a
surface end up in different clusters, leading to disturbing visual artifacts. The face
cluster algorithm, because it always merges topologically adjacent surface clus-
ters, avoids this problem.

The bottom-up construction of face clusters means the algorithm is more
complex to implement than simple top-down clustering methods, because adja-
cency relationships must be tracked. However, the constant-time nature of the
quadrics used to evaluate the goodness of potential clusterings, and the use of a
greedy iterative clustering routine, means it is much faster than most volume
clustering methods that are trying to optimize for some feature of the hierarchy.
These methods tend to be quadratic in the number of input surfaces, whereas face
clustering is close to linear.

Finally, Figure 80 compares the time taken for face clustering and volume
clustering two of the models from Figure 79; the dragon and whale models. The
volume clustering method used is one of the simplest (and fastest) possible: the
tightest-fit octree. It proceeds by recursively subdividing a subset of the model
into eight octants, and placing a cluster around each octant. Polygons in the
model that are larger than the size of an octant are kept at the same level as the
cluster being processed.

As can be seen, the two algorithms have roughly the same asymptotic com-
plexity. The face cluster algorithm has a larger constant, but as a hierarchy need
only be generated once per model, rather than on a per-scene basis, its amortised
clustering time may well be smaller in many situations.

k
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.8. Summary

In this chapter I have analysed the performance of the previous face cluster crea-
tion algorithm, in particular showing how hierarchy balance can have an adverse

Figure 80: Speed comparison to simple volume clustering. Top: the time
taken to volume cluster and face cluster two models, for a number of dif-
ferent resolutions of each model, generated by Garland’s simplification
algorithm. Bottom: the ratios of these times. The volume-clustering
method used is the fastest possible; tightest-fit octree.

Face clustering takes around 2.5 times as long as face clustering,
a figure that stays steady with increasing model size. This is a good
result considering that the face cluster algorithm is trying to optimize
the hierarchy according to flatness and shape criteria, whereas the vol-
ume clustering method is simply partitioning space.

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
lu

st
er

in
g 

T
im

e 
(s

)

Number of Faces

Whale Model

Volume Clustering
Face Clustering

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
lu

st
er

in
g 

T
im

e 
R

at
io

Number of Faces

Whale Model

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
lu

st
er

in
g 

T
im

e 
(s

)

Number of Faces

Dragon Model

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
lu

st
er

in
g 

T
im

e 
R

at
io

Number of Faces

Dragon Model
178



5.8.  Summary
effect on the construction algorithm, and presented a new algorithm that per-
forms considerably better. The algorithm is based on a new cost metric, which

• produces more balanced hierarchies;

• is simpler and cheaper to evaluate, with quality comparable or better than
the previous metric.

I have also modified the algorithm, resulting in

• faster bounding box calculations, by avoiding principle component analysis
for flat clusters;

• better (tighter) bounding boxes for flat clusters, by using a minimal-area
bounding rectangle algorithm.

Finally, I have provided results for the new algorithm for a wide range of models,
showing that its running time is close to linear in the number of input polygons,
and reasonably independent of model geometry. I have also compared face clus-
ter hierarchies to other hierarchies of oriented bounding boxes, as well as those
types of hierarchy commonly used in radiosity.
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