Chapter 4

Analysis

In this chapter we will analyse the vector radiosity approach presented in
Section 3.4 in more detail. We will look more closely at the role the sum-area nor-
mal plays in face cluster radiosity, and investigate its relationship to more conven-
tional measures of the projected area of a cluster. We will also develop methods
for bounding the transfer of radiosity between two face clusters.

4.1. Sources of Error in Face Cluster Radiosity

I will start by examining possible sources of error in vector radiosity; any approx-
imations made in the method are only acceptable if we have a reliable way of
detecting the error in these approximations. As we shall see, it turns out the pro-
jected area of a cluster plays a crucial part in such approximations. | will intro-
duce some useful definitions for later sections, and end with an example to
illustrate some of the concepts involved.

4.1.1. Recap

In vector radiosity, we are trying to approximate the transfer of radiosity between
the individual elements in two clusters of faces, as depicted in Figure 37, with a
single cluster-to-cluster transfer. We assume the faces within a cluster are all part
of one, manifold surface.
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Figure 37: Radiosity transfer between clusters of faces.

As discussed in Section 3.4.2, we wish to calculate quickly
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We do this by making the vector radiosity approximation:
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(39)

For each face cluster we have a bounding box, oriented such that the z axis is the
normal of the best-fit plane to the faces within the cluster, and we also store the
sum area-weighted normal, S,

s=3y.s. (40)

where S; = A/, is the area-weighted normal of face i in the cluster. The area-
weighted average face normal of the cluster is then S, and its projected area in
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4.1. Sources of Error in Face Cluster Radiosity

that direction is || . Note that, although S is roughly perpendicular to the best-fit
plane, it is rarely exactly so.
Finally, we also have the total surface area A of the cluster:

A=3S A (41)

Given this setup, we can state the sources of error in our approximation to the
radiosity transfer between face clusters as follows:

. The assumption that the direction vector r is constant.
. The assumption that Zi (fTSi)+ = (fTS)+.
. That any self-shadowing within the face clusters is ignored.

. That the occlusion between the two clusters is assumed to be constant.

4.1.2. The Face Cluster Approximation

We are essentially representing the surface within a face cluster by its area-sum
normal S, a directed surface element. That is, we are representing a diffusely
reflecting curved surface with a single planar Lambertian reflector. If our assump-
tions about the distance of the cluster from the light sources illuminating it hold
up, then when viewed from the direction of S, our approximation is close to per-
fect. However, from side on, the approximation is not so good. Whereas the
apparent size of a single planar element goes to zero as our viewing angle tends to
90 degrees from S, the apparent size of our curved surface does not. In the worst
case of a spherical surface, the apparent size will not change no matter where we
view it from.

The worst case for this error is generally at the top level cluster, which con-
tains the entire (connected) surface mesh. The planarity metric of the face cluster-
ing algorithm takes account of the orientation of faces, and heavily penalises any
surface that is curved, so if we descend a few levels in the face cluster hierarchy,
the surface will be split into face clusters that are more planar. As long as we
detect this source of error, and force subdivision in areas where it is excessive, we
can be sure our algorithm will produce a reasonable approximate answer to the
global illumination problem.
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4.1.3. The Importance of Projected Area

If we multiply the element-to-element radiosity transfer equation, Equation 38,
by the area of the receiver, we get the received power on element i from element
j » which can be written as

~T AT
(= §).(F Sj)+b_

- N (42)

where again S; = A;f;. This received power depends on three quantities: the pro-
jected areas of the source and destination clusters along r, and a scalar term that
accounts for falloff with distance. When we try to use this equation to approxi-
mate more complex situations (cluster-to-cluster interactions, for instance), we
must be aware of how accurate our approximations to each of these quantities are.
Generally this is easy with the distance term, but more difficult to do with pro-
jected area terms.

The differences in apparent size between the actual face cluster and our
representation of it discussed above can be more accurately viewed as represent-
ing an error in our approximation to the actual projected area of the cluster. We
are representing the projected area of a face cluster as (S m),, and we must be
able to decide when this approximation is a bad one in order to force subdivision
and improve the approximation. Ideally, this requires bounding the projected area
of the cluster in a particular direction m. Stamminger et al. have shown how this
can be done for simple objects that are capable of providing a cone of normals, but
for face clusters we require a more general solution [Stam97c].

4.1.4. Notation

We will be using the mathematical notation shown in Table 2 for this chapter.
There is also a summary of useful physical quantities in Appendix A.

4.1.5. Projected Area Definitions
We define the visible projected area (VPA) of a cluster P as

VPA(P, m) = [, 1 (TS, (43)

where V [ P is the subset of the surface points in P that are visible from the direc-
tion m. This is the quantity that we must try to approximate for our transfer cal-
culations.
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4.1. Sources of Error in Face Cluster Radiosity

Symbol | Meaning

(x), Maximum of x and 0

[x] Upper bound on x

| x| Lower bound on x

[X] Average value of x: ([ x|+ x])/2
O The interval of x: [| x|, [ x1].

Table 2: Mathematical definitions

We also define the non-negative unoccluded projected area (NUPA) of the cluster in
the direction m as

NUPA(P, m) sJ’P(m s), . (44)

This is simply the projected area over all of P, rather than just the visible regions,
V. Because occlusion only ever reduces the amount of surface visible in the clus-
ter, VPA < NUPA.

Finally, we define the signed unoccluded projected area (SUPA) of a cluster as

SUPA(P, m) = ((m quS)+ =(M5),). (45)

For this estimate, we find the sum-area normal vector of the cluster, S, and use
its clipped dot product with the direction vector m to calculate projected area.
This is the equivalent of treating the cluster as a flat surface, and is the primary
approximation we employed in Section 3.4.

As an illustration of how these methods work, Figure 38 shows a number of
example surfaces split into regions. These projected area of each region may be
counted differently by each projected area method. For instance, the VPA will
count each region where the surface is facing forwards once, and thus only region
5 is ignored. The NUPA can overcount the forward-facing projected area of some
regions, for example region 4, because it ignores visibility. The SUPA can under-
count some regions, such as region 11, because the back-facing area in those
regions cancels out the forward-facing area.

4.1.6. Visibility Definitions

In our discussions of the role of occlusion in radiosity transfer, it is helpful to
establish the following terms:
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(@)

(d)

Surface | Region || VPA NUPA | SUPA
(@) 1 1 1 1
(b) 2,6 1 1 1
3 1 1 0
4 1 2 1
5 0 1 0
() 7,8 1 1 1
9 1 2 1
(d) 10, 11 1 1 1
12 1 2 1
13 1 1 0

Figure 38: When calculating the projected area of the above surfaces in
the viewing direction, the VPA, NUPA and SUPA count the regions dif-
ferently, as shown in the table.

104




4.1. Sources of Error in Face Cluster Radiosity

. Tangential visibility: whether a surface is occluded by its tangential plane.
This is usually addressed by clipping the projected area calculation of sur-
face elements to zero.

. Intra-cluster visibility: local visibility or shadowing; a surface element is shad-
owed by other parts of the surface within the face cluster.

. Inter-cluster visibility: global visibility or shadowing; the surface element is
shadowed by some other surface outside the face cluster.

. Macro-scale self-shadowing: the shadowing is on a scale comparable to the sur-
face. For instance, a convex surface where one side shadows the other, or a
concave surface where the “lip” of the surface shadows part of the “bowl”.

. Micro-scale self-shadowing: self-shadowing that occurs on a scale much
smaller than the surface. Consider small bumps and notches on the surface.
This is the kind of self-shadowing that must be taken into account when
computing new BDRFs.

4.1.7. Discussion

An example will illustrate a number of points about dealing with clusters of sur-
faces. Consider the two-dimensional cluster shown in Figure 39, a simple saw-
tooth surface. In considering the transfer of radiosity between it and a putative
source, we must calculate the visible projected surface area of the cluster as seen
from that source. From directly above, i.e., source a, this will be ./2nA, where n is
the number of teeth in the surface, and A is the area of one side of a tooth. From
side-on, source ¢, it will be zero, as only the right-most face is visible, and it is fac-
ing away from c. From source b, which lies in the same direction as the left slope
of each saw “tooth”, the visible projected area is simply nA.

Traditional volume clustering algorithms deal with such a situation by
summing the projected area of each polygon within the cluster in the direction of
m. l.e., they find the NUPA of the cluster, zi (S, n), . This has two drawbacks; it
requires traversing every polygon within the cluster, and it ignores occlusion of
polygons by each other within the cluster. If this intra-cluster occlusion is ignored,
the projected area in direction ¢ will be calculated as nA/ /2, rather than zero.
This is a large error, and gets worse as n increases. For a largely flat but crinkled
surface, it can lead to badly overestimating the amount of radiosity received or
radiated from the cluster horizontally.

Some researchers have proposed accounting for intra-cluster occlusion by
calculating an isotropic estimate of it. This is done by a Monte-Carlo sampling of
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Figure 39: A sawtooth surface. The surface is potentially lit by light
sources a, b and ¢, and has the sum-area normal vector S.

the visibility over different points and directions within the cluster to find an
average visibility estimate, v. This may not help much in the case of directional
clusters. In the example in Figure 39, such an estimate, being isotropic, would
result in underestimating the projected area in direction a, and would still overes-
timate the projected area in direction c.

It is also possible to calculate an occlusion factor on a per-link basis, in the
direction of the link, in the same way that the projected area in the direction of the
link is calculated. A number of rays are cast in the direction m from points evenly
distributed through the cluster; the visibility factor v, is taken to be the average
visibility value of these rays. While this improves the estimate markedly, it is
expensive, and, in the case of surfaces, it still leads to errors. In the sawtooth case,
the average visibility in the vertical direction is v, = 1/2, even though all of the
surface is visible in that direction, because at least half of the samples will fall
behind the surface.

| would argue that, for clusters containing surface meshes, the location of a
surface and the visibility of points on that surface are too tightly coupled to be
separable in a well-behaved way. There is simply too much coherence in the struc-
ture of the surface, and alternative techniques are needed. Ideally we should be
sampling visibility from points on the surface contained by the cluster, but track-
ing such points will either be memory or time-intensive.

The vector radiosity approach we introduced in Section 3.4 approximates
the projected area by storing the sum of area-weighted normals of each polygon
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4.1. Sources of Error in Face Cluster Radiosity

in the cluster as S, and calculating the projected area of the cluster as (SCm), .
Thus it uses the SUPA estimate of projected area. This reduces the calculation time
to a single dot-product, but seemingly also ignores visibility, and is only an esti-
mate.

So, what is the error in approximating the sawtooth surface with a single
sum-area normal vector, S? Obviously, from straight above (source a), the calcula-
tion has no error. From side-on (source c), it calculates the projected area as zero,
which in this particular case is correct. Also, from an angle from the vertical
smaller than the pitch of the surface’s “teeth”, there is no self-shadowing taking
place, and once again (S [Om), returns the correct result. Once the angle increases
past this, self-shadowing starts to occur, as in Figure 40, and to be accurate we
must calculate the visible projected area, the VPA, of the surface, taking into
account self-occlusion. We might expect that at this point our sum-area normal
approximation would fail.

Figure 40: Self-shadowing on the saw-tooth surface. Surprisingly,
(SOm,) gives the correct projected area, even taking into account the
surface self-shadowing illustrated here.

Surprisingly, this is not the case. It is possible to show with some simple
algebra that, regardless of the pitch of the teeth in such a sawtooth surface, its pro-
jected area in a direction m, taking into account self-shadowing, is exactly
(SOm), . Thus our estimate of the total projected area of the cluster has turned out
to be a much better estimate of the area taking occlusion into account, than the
original calculation we were trying to approximate. In this case, the VPA = SUPA.
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This result seems almost too good to be true, and unfortunately, in most
cases it is. Consider Figure 41, which contains an almost identical surface, but one
whose side-on projected area is A/ /2, and not zero as our approximation would
predict. It is still the case that the sum-area normal gives a much more accurate
estimate of the projected area of the cluster than performing the complete sum,
however; the SUPA is a much better approximation to the VPA than the NUPA.

It is also the case that this property does not necessarily hold for weighted
area-normal sums. If we instead consider a reflective surface vector,
R = z p;A;f, then things work as before if the reflectivity of the surfaces is con-
stant. In Figure 42 we see a surface where one side of each tooth is considerably
brighter than the other. For this surface, R underestimates the visible projected
reflective area from source a, and overestimates it from b.

Figure 41: Sawtooth surface with non-zero side area. S Om does not give
the correct projected area in the direction of c.

Our observation raises some interesting questions; what other surfaces
might our estimate do a good job on, and under what conditions? It seems that in
some situations the sum-area normal can be used to generate an excellent approx-
imation to the visible projected area of a cluster containing a relatively flat sur-
face. But we must formalize this observation for it to be useful.

In Section 4.3.2 | will outline the conditions under which this observation
holds. | will also show how the error of the approximation can be quantified in
Section 4.2, firstly by proving that the estimate (S [m), is almost always a lower
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Figure 42: Sawtooth surface with varying reflectance. If we use a reflect-
ance-weighted vector R, the estimate fails.

bound on the actual projected area of the cluster, and then by showing how a con-
servative upper bound can be constructed.

4.1.8. Cancellation

It might seem intuitively that representing a sum of irradiances by a single irradi-
ance vector E could lead to cancellation. Consider Figure 43, for instance: if we
naively sum the irradiance vectors from light sources b and d, the light from d will
cancel out the light from b, and the point P shown on the surface will be incor-
rectly illuminated. However this is only a problem if we fail to clip to some con-
sistent plane when calculating E. (If we did not have to take into account
tangential visibility when calculating the illumination from a light source, then
we could indeed just use the vector sum with no error.) To avoid this problem,
whenever we gather power across a link, we must clip the resulting irradiance to
the corresponding S; the same is also true when we push or pull irradiance, as in
Section 3.4.2.

Even with clipping, it may seem at first glance that light sources can cancel
each other out. If we consider light sources a and ¢ in Figure 43, being opposite
each other and close to the horizon, it looks as though their horizontal compo-
nents cancel out when we sum their irradiance vectors. In fact there is no cancella-
tion; this is a standard vector sum. The confusion arises because E is implicitly
measuring irradiance with respect to the plane of the surface, so the horizontal
components of the irradiances from a and c are irrelevant to the scalar irradiance.
Therefore, there is no cancellation problem with our method.
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Figure 43: Avoiding cancellation in vector irradiance.

4.2. Bounding the Projected Area of a Cluster

Estimating the actual projected area of a face cluster is a crucial operation in our
algorithm. In this section we examine how we can construct bounds on this quan-
tity, such that it can be evaluated in constant time. We start by ignoring visibility,
so we are trying to bound the NUPA.

4.2.1. A Lower Bound

Finding a lower bound to the projected area is straightforward. We can use the
inequality,

(a+ D), =(a), +(b),, (46)
to show that, if S = Zi S, then

(SOM), <3 (S (m),. (47)

That is, our approximation to the projected area of a cluster is provably a conserv-
ative lower bound on the actual projected area: SUPA< NUPA.
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Proof

Obviously given Equation 46 we have:

(SpfM+ S, M +...), <(Sy M), + (S, (M), + ... (48)

4.2.2. An Upper Bound
Using Equation 46 it is possible to show that:

if D; = zi(si xj),,and m = zjcjxj where ¢; =0, then

Y (Sm), <y ¢D;. (49)

That is, say we sample the projected area of a cluster in a number of different
directions Xj. Then, if we can write m as a linear combination with positive coef-
ficients of some subset of the X; vectors, using the same coefficients to interpolate
the corresponding projected area samples gives us an upper bound on the pro-
jected area in the direction of m. Figure 44 illustrates how this works in two

dimensions.

Xo: P(Xp) = A,

m:COX0+CIX1

P(m)<cA, + CA

>

X;: P(x) = A

Figure 44: Finding an upper bound from projected area samples.

111



Chapter 4. Analysis

Neither of these two bounds assume that the surfaces are connected, and
thus they can both be applied to volume clusters as well as face clusters.

Proof

We can prove Equation 49 through the following steps:

Z%s DZCJ i0

Zisi Etjqu

< IZZ(Si [E;x;),
ZZC(SD‘ “ if ;20
y6 3 (50

. ZCij

3 (S ),

Implications

If we sample the projected area of a cluster over a number of directions, we can
calculate an upper bound on the projected area in an arbitrary direction by inter-
polating from the three surrounding sampled directions. This estimate will be bet-
ter the closer to the sampled directions the required direction is, and of course
exact if it matches one of the samples?.

Thus the total projected area of a face cluster can be bounded, as long as we
have at least four samples of its projected area in different directions. (The mini-
mal set of samples corresponds to the vertices of the minimal polytope, a tetrahe-
dron.) The fit of the upper bound depends on the sample directions chosen, and
the number of samples; obviously the more samples, the better the coverage and
resulting bound. Also, if the surface is largely oriented in a particular direction,
sampling primarily in that direction will provide better results than sampling in
random directions.

One of the simplest collections of directions corresponds to a box, with the
projected area sampled in the direction of each of the (six) faces of the box. Inter-

1. I speculate that this technique is approximating the real surface with a polyhedral convex hull.

112



4.3. Intra-cluster Visibility

estingly, if the box in question is a bounding box for the cluster, the six projected-
area samples are in most cases bounded by the side areas of the box. There is an
important exception; in some cases the fact that we ignore occlusion in the pro-
jected area sample can cause it to be larger than the corresponding side area of the
box.

A good choice for the basis vectors is the set of axes of the tightest-fit ori-
ented bounding box (OBB) enclosing the cluster. The tightest-fit OBB minimises
the side areas of the box, and as the side areas are in turn bounds on the projected
area, we are in some sense minimising our upper bounds.

4.3. Intra-cluster Visibility

We now consider the visible projected area of a surface, namely, how to calculate
the projected area taking into account intra-cluster visibility. We’ll start with some
simple illustrative examples.

4.3.1. Self-Shadowing

Radiosity papers commonly ignore self-shadowing by the surfaces under consid-
eration. Even the way the familiar form-factor equation accounts for tangential
visibility, by the clamping of both cosine factors to zero, is usually implicit. (Con-
sider the standard radiosity equation in Equation 22; it is not explicitly stated that
we do not let the cosine factors become negative.) This has partly been because
the radiosity method has its roots in the consideration of radiosity transfer
between two planar polygons, which inherently have no self-shadowing other
than tangential. Because face clusters contain curved surfaces which may self-
shadow, we must pay closer attention to this phenomenon.

For mostly planar surfaces, self shadowing is restricted to the micro scale:
small folds or bumps in the surface that shadow correspondingly minor parts of
the surrounding area. Figure 45 shows an example. There can also be macro-scale
self-shadowing: more major silhouette-type shadowing when the surface is
curved, as shown in Figure 46, where up to half the surface can be shadowed by
the other half, even though the surface itself is relatively smooth.

Interestingly, as discussed in Section 4.1, our sum-area normal approxima-
tion works well where micro-scale self-shadowing is involved; in some cases it
can actually help account for small-scale self-shadowing. An example of this can
be seen in Figure 45. Using the projected area calculated from S accounts for the
self-shadowing in the small fold shown reasonably well. If we clipped on a per
element basis when calculating the projected area of the cluster, we would over-
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Figure 45: Micro-scale self shadowing.

Figure 46: Macro-scale self shadowing.

count contributions from the fold in the surface, and our total projected area in the
vertical direction would be a+ 2b + c.

The way a surface shadows itself is highly correlated with the geometry of
the surface itself, and thus its projected area. We need to be able to take it into
account, preferably without accessing the detailed geometry of the cluster. (If we
don’t maintain a constant cost overhead in calculating it, we will lose the effi-
ciency of our algorithm.) Ideally we would like to extend our bounds of a clus-
ter’s projected area to bounds on the same area, taking into account self-
shadowing. The remainder of this section is thus devoted to the analysis of the
visible projected area.
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4.3.2. The Visible-Projected-Area Sum Rule

We have observed that in some cases, the sum-area normal approximation to the
projected area of P is a surprisingly good approximation to the visible projected
area. But we need to be clearer about under what conditions this is so. Fortu-
nately, we can construct a rule that allows us to do this. Let us start with the two-
dimensional case. The visible-projected-area rule for two dimensions is as follows:

Consider an open path, for which we have defined a top and bottom
side; only the top side is considered visible. Consider also the two
parallel lines passing through either end point of the path, in direc-
tion m. We claim that, for the section of the path that falls between
these two end-point lines, the visible projected area in direction m is
exactly equal to the dot product of m and the sum of area normals
S. Thatis, |l UPA | = VPA. Further, we claim that for any remainder
of the path lying outside those two lines, the dot product of m and
the sum of area normals is exactly zero.

Figure 47 illustrates some examples of this rule.

Derivation

There are a number of ways to derive this result. The simplest for purposes of
explanation is as follows. We divide the path P into slabs pointing in direction m,
such that each slab has a consistent number of path segments intersecting it. (See,
for example, Figure 47a-c.) We then connect the two end points of the path with a
line r, creating a closed path Q. We then observe that:

For any slab, the projected area of a path segment that intersects it is either
the positive or negative width of the slab, depending on the orientation of
the path segment with respect to m.

The sum projected area in direction m of the closed path Q within any slab
will add to zero. (This is analogous to the famous winding number principle
used to test for the interior of a closed path.)

The projected area of the path P plus that of the line r within each slab is
equal to that of the path Q, namely zero.

Within the end-point lines, the projected area of r within each slab is the
width of the slab; outside it is zero.
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Figure 47: Estimating visible projected areas. In (a) the entire curve falls
within the end-point lines, and the estimate ((} S;) Cm), is correct. In
(b), as m gets more side-on, most of the curve still falls within the lines,
but the VPA of the top peak of the curve is incorrectly estimated as zero.
(c) Shows the worst case; the end-point lines are coincident, and the vis-
ible projected area of the curve is wrongly estimated as zero. (d) Shows
how this rule applies to curves, where the estimate is IdS rather than a
discrete sum.

Thus, for all the slabs that lie between the path end points, the visible projected
area of P in direction m is equal to (S; i), , where S; = Zs  siab SJ

For all slabs that lie outside the path end-point lines, this sum is zero. For
these slabs, (S [im), obviously underestimates the visible projected area.

A condition on this rule is that the path must not self-intersect. If it does,
any path loops cancel themselves out, and visible area can be missed. This is illus-
trated in Figure 48, where using the sum surface vector results in an estimated
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projected area of O; instead the loop in the central slab should contribute a positive
amount of area.

Figure 48: The VPA rule does not hold for paths that self-intersect.

4.3.3. Extension to Three Dimensions

This result can be extended to three dimensions; what was a path becomes a sur-
face, and the end points of the path are now the boundary of that surface. We can
state the new rule as follows:

Consider an oriented manifold surface with a single closed bound-
ary path. Extend the path in the direction m, sweeping out an infi-
nitely-long volume V, and thus sectioning the surface into two
parts. Then the visible projected area of the surface inside the vol-
ume is in most cases correctly calculated as (S, [im), , where S, is
the sum area normal of the surface lying within the volume.
(Sq M), , where S, is the sum area normal of the surface lying out-
side the volume, is always zero.

See Figure 49 for an example. Again, this usually has the same consequence as the
two dimensional rule: SUPA< VPA.

There is an important exception to the first part of this rule, hence the qual-
ifiers above. In three dimensions, it is possible for a section of the surface to over-
lap the rest of the surface without a corresponding back-facing section to cancel
out the occluded area. Figure 50 shows some examples of how this can happen.
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\3

Figure 49: Visible Projected Area Rule in 3D. The surface P shown is a
hemisphere. When projected in the direction m, only the blue region of
the surface (to the right), which lies within the open boundary of P
swept in that direction, is calculated correctly by the SUPA. The external
orange region’s VPA is incorrectly estimated as zero. As m tends to the
horizontal, the SUPA underestimates the true VPA more and more.

@ ®) )

(- (@ :]

Figure 50: Exceptional cases for the 3D VPA rule. In the examples above
the surface overlaps itself in region (2), and the projected surface area in
that region will be counted twice, leading to a situation where
SUPA> VPA. Fortunately such situations aren’t common (see text).
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These situations seem to occur rarely in practice. For the models and clus-
tering techniques used in the course of this thesis, the SUPA has proven a good
lower bound. (See Section 4.5.5 for empirical data.) When such overcounting situ-
ations do occur, they tend to be for only a small part of the surface, and are often
balanced out by undercounting elsewhere.

| surmise, but have not yet proved, that such exceptions cannot happen
when the boundary contour is convex. Regardless, it almost always seems to be
the case that overlaps correspond to severe concavities in the boundary curve. As
our cluster cost metric seeks to produce well-shaped clusters by minimizing
boundary length (Section 3.3.4, Section 5.4.3), it in some sense tries to avoid such
situations. In general, the clusters in face cluster hierarchies contain surfaces that
are compact and largely concave.

The VPA rule can also be extended to a manifold surface with holes; the
accurate calculations will take place for those parts of the surface that are both
inside the volume swept out by the boundary contour, and outside the volumes
swept out by the hole contours.

4.3.4. Winding Numbers and Boundary Paths

We can be more precise about the conditions under which the SUPA fails as a
lower bound on the VPA. In three dimensions it is possible for the projected
boundary contour of the surface in direction m to have a winding number greater
than one for some regions. It turns out that these regions correspond exactly to
possible SUPA/VPA bound violations: Note that each of the overcount regions in
Figure 50 has a winding number of two with respect to the boundary path of the
surface.

We can explain this observation as follows. Firstly, we define the winding
number of a contour y with respect to a point p as:

w(p.y) = zinfyl—_l—adl (50)

Figure 51 shows some examples of different curves and their corresponding
winding numbers. We observe that for any connected region that does not cross
the contour, all points within will have the same winding number. Thus it makes
sense to talk of the winding number of such a region with respect to the contour
Y.

Consider the silhouette of a surface projected in direction m. The area
within the silhouette is precisely the VPA of the surface. Now, we project the sur-
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Figure 51: The winding number of a contour. Points inside the projected
boundary contour have a winding number of 1, as in (a), and points out-
side have a winding number of 0, as in (b). When the boundary self-in-
tersects, it is possible to get a winding number greater than 1, as in (c).

face’s boundary contour(s) in direction m. This projected boundary path must of
course lie within the silhouette.

These projected contours will section the silhouette into a set of regions R,
each of area A, such that Op, 0 R, w(p;, yg) = w;. That is, a set of regions such
that all points in region i have the same winding number with respect to the pro-
jected boundary curve, yg. Then, using a trivial application of Stoke’s theorem to
convert the area integral of the surface sections within each region to the corre-
sponding path integral, we find that

SUPA= S Aw. (51)

The total area of the silhouette is just VPA = \ A,.

As a consequence, if the surface is closed, and there is no boundary path,
there is just one region of winding number 0, and SUPA = 0. If Oi,w; <1, then
we have SUPA< VPA. If there are regions for which w, > 1, which is only possible
if the projected boundary path self-intersects, as in Figure 51c, it is possible to

have SUPA> VPA.

An interesting way of looking at the SUPA approximation is:

For a given direction m, we are approximating the boundary of the
projection of the surface by the projection of the boundary of the surface.
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That is, we approximate the area within the boundary of the 2D projected surface,
its silhouette, by using the area of the projected boundary of the 3D surfacel. It is
possible for areas of the surface to lie outside the boundary path, if it is suffi-
ciently curved; then the SUPA underestimates the VPA. For a flat surface, how-
ever, the two are always equal, and SUPA = VPA.

4.3.5. Implications of the Rule

The visible projected area rule has the following important consequences for face
clusters:

. (S0Om), is not only a lower bound on the unoccluded projected area of the
face cluster, it is almost always a lower bound on the visible projected area of the
face cluster, except in some uncommon situations where the surface crosses
over itself.

. For flat surfaces with mainly micro-level occlusion, using (S[m), to esti-
mate the visible projected area often gives good results.

. The rule means that micro-level self-shadowing is handled well, and macro-
level shadowing less well, especially when the surface is highly convex. The
worst case comes when the surface is closed, and thus S = 0.

4.3.6. The Bounding Box

Our upper bound from Section 4.2.1 is a bound on the unoccluded projected area.
As occlusion only ever reduces the amount of projected area visible, it does serve
as an upper bound on the VPA. However, when there is a lot of concave self-shad-
owing (as in Figure 39), it can fit poorly.

As Stamminger et al. have observed [Stam97c], the projected area of the
bounding box of a general cluster is an upper bound on the visible projected area
of the entire cluster. To take advantage of its potential superiority in instances of
high occlusion, we can combine both bounds. If our directional samples of the
projected area correspond with the axes of each cluster’s oriented bounding box,
we can take
vis

D.

| = min(Xj,Dj), (52)

1. Note that the SUPA is in turn just an approximation of this, albeit an exact one when the path does not self-
intersect.
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where D; is defined as in Equation 49, and X; is the corresponding side-area of
the bounding box. Using D;"* in Equation 49 gives us a tighter upper bound on
the VPA.

4.3.7. Bounds on the Visible Projected Area

In summary, we have now established bounds on the visible projected area A of
a cluster P, as:

L VPA(P, m) | O(Sp Om), (53)

and

[VPA(P,m)] = ¥ c;D}* (54)

where c; are calculated from m as in Section 4.2.2. We have also shown that usu-
ally

| UPA | < VPA< UPA<[ UPA], (55)

namely, the bounds on the UPA presented in the previous section are often
bounds on the VPA.

4.4. Bounding The Radiosity Transfer

A consequence of the hierarchical formulation of the radiosity problem is that for
every transfer of radiosity between two parts of the scene that we calculate, we
must also calculate an error value that measures the error in the approximation.
This error value is used to drive the refinement process.

4.4.1. Choosing an Error Metric

When we evaluate the error in the transfer of radiosity, we must chose some met-
ric with which to do so. Typically we define the norm of a function f (x) as

La(f(x)) = (TN, (56)

In a radiosity simulation, we are typically measuring the error between our radi-
osity estimate for a surface, b;, and the actual radiosity at each point x on the sur-
face, b(x). The choice of an error metric affects both how we calculate our error
measure for b,, and how we combine the radiosity errors of the child nodes in
order to calculate the error of their parent. The relevant expressions for both are

122



4.4. Bounding The Radiosity Transfer

shown in Table 3 for the standard norms (following Lischinski et al. [Lisc94], sec-
tion 4). In all cases, the error measure is bounded above by an expression of the
range of bounds on b;.

Norm Error Measure Parent Error Calculation
L, 1 The maximum of the chil-
maxs ([b(x) —bj|) < 5(['b; |- by |) dren’s errors
L A((Tb.1=|b Sum the children’s errors

1 Is|b(X)—bi|dAS |(|_ |—|2 |_ |J)

Take the root-mean-
A([b. -] b
JI |b(x)—bi|2dAsJ_'(|_ 1=[ b ) square of the children’s
S 2 errors

Table 3: Error Norms

Stamminger et al. undertook a study of the results produced by the use of differ-
ent error metrics in a radiosity algorithm [Stam97b], and concluded that the L,
and L, metrics produced much the same results, and both were better than L, .
They also found that L, and L, treat non-conservative bounds better than L.
The ﬂ factor in the L, norm is often taken to be the maximum side length of the
polygon being treated; it has been shown that this can be better suited to account-
ing for the error over long, thin polygons than the straight area-weighted error
measure.

Lischinski et al. quote Delves and Mohamed as saying that a cheap, good,
occasionally inaccurate error bound often leads to better results than conservative
bounds [Lisc94]. This has been borne out in my own experience with bounded
radiosity [Will93]. Finding a conservative bound is not enough; it must be shown
that as the solution is refined, bounds become more accurate. (We will demon-
strate empirically the quality of our bounds in Section 4.5.)

The approach to measuring error used in this work is to use the area-
weighted irradiance (often referred to as BFA in the literature), following the prac-
tice of a number of recent hierarchical radiosity papers. Thus the rest of this sec-
tion will assume the L; error norm.

4.4.2. Bounding the Transfer

We can use the bounds we have established on the projected area of a cluster to
help bound the transfer of radiosity between two clusters. The bounds give us
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both an estimate for the radiosity transfer to use in the simulation, and an error
term for the transfer, to use in refining the solution.

The derivation is as follows. The total flux received from a source cluster S
by a differential element dS; on a destination cluster D is (see Figure 52):

doy 5= (dSy qsbsvsdmds(mSol EdSS)+)+ [Wattg (57)
D S
ds,
ds,
rsd
rsd

m
2

Figure 52: Vector radiosity transfer. Radiosity is transferred between
differential surface elements on two face clusters, S and D.

Assume that the source cluster’s radiosity is bounded by [b[1= [| bg|,[ bg] eve-
rywhere on its surface. We then wish to formulate an error metric that measures
how much error our various approximations are introducing. If we have bounds
on the irradiance at every point on the destination cluster, then we can use some
L,, norm as a measure of the error in the transfer. As mentioned previously, | use
the L, norm for this purpose, which corresponds to the BFA error metric of tradi-
tional hierarchical radiosity, i.e., the error in the total flux ® (power) received by
the destination element. We can then write the flux using interval arithmetic
[Moor66, Snyd92, Duff92] as follows:

[y . = Gy _ JIbg] (58)

where Gp _ g is the geometry term between the two clusters,
Gp.s= ID(de qsvsdmds(msd EdSS)+)+ [m2] (59)
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Thus the total error in the flux can be written as

A®, 5= [bs][Gp._s|-|bs]|Gp.s] [Wattg , (60)
and the error due to the geometry factor, i.e., the face cluster approximation, as:

A‘D%egn;; = [bS](|—GD - s—| _|_GD - SJ)
= [bg]AGy _ 5

If we were to store bounds on the source cluster’s radiosity, we could likewise cal-
culate the error in @5 _ g due to Abg, A(DB _ s at the cost of added memory use.

(61)

We calculate the geometric error AG _ g when creating a link, and store it with
that link. We then take its product with bg on each iteration, and use the result to
decide whether to refine the link.

We can use interval arithmetic to rewrite [Gy _ JJas the product of the
bounds on the two projected-area calculations, first rewriting it in discretized
form:

Gp . = ng o Dg vymy (mj; 05)),5 O
i jgs +
D ~ S D S
i iTs
i So D i
= AL (DY~ TTAS(Tng )0
where

ij = m(d; s m-1], 63
i LDDjDs(' i) [m™] (63)

and AJ°(m) is the visible projected area of cluster D in direction m, and AS(m)
that of cluster S in the opposite direction. The term v,? = P accounts for all occlu-
sion that takes place between the two clusters, but is not caused directly by either
one, v:j3 ~  represents any self-occlusion by cluster D, and vﬁ'” does the same
for cluster S. . .
While we have a way of calculating strict bounds on A} °(m) and AS°(m)
for a single direction m (from Section 4.3.7), we do not have an analytical way to
do this for a range of directions, [l (In this case we are interested in the bounds
over the range of directions between the two clusters.) We can instead use the
standard Monte-Carlo solution to the problem of estimating these bounds by

using an appropriate number of samples of m 4 [Lisc94]; this seems to work well.
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4.4 .3. Refinement

Given that the bounds on the transfer indicate we should subdivide, which of the
source and destination clusters should we pick to subdivide? One way to solve
this problem is to decide which cluster contributes most to the error in E. If we
have a function F(x,y), and it is separable so that F(x,y) = G(x)H(y), the
amount of error due to x and y, respectively, is AG(X)H(y) and G(X)AH (y). If we

ignore the error due to m;; , then, and define

Q = Zj(m” [5)), (64)
and vice versa, then the geometric error due to the source is
Qi+ Q
865 = (o]~ p 2L ©

and vice versa. We then choose the cluster with the largest error to subdivide.

This approach is somewhat more accurate than the traditional “choose the
patch with the largest projected area”. It has the advantage that it is more likely to
subdivide a cluster that has a small projected area in the direction of the transfer
but a large relative error. In particular, it promotes the subdivision of clusters on
the silhouette of an object.

4.4.4. Interreflection

We must consider the special case of a radiosity transfer link between a face clus-
ter and itself, the so-called “self-link™. This link measures internal reflection. Tra-
ditionally this is calculated by using the same process as a link between two
separate clusters. This tends to fail badly for clusters containing any kind of
coherent surface. Interreflection is closely tied to self-shadowing, so we can hope
to use the bounds on the visible projected area to help.

Most hierarchical radiosity methods ignore micro-scale interreflection.
They do this because in its standard form, hierarchical radiosity is a top-down
algorithm, in that solution starts at the coarsest representation of the scene, and
proceeds to more detailed scene representations as judged necessary; a process
known as refinement.

A problem with this approach is that it is hard to estimate the interreflec-
tion of a cluster successfully. One approach is to take the amount of form-factor
“left over” from 1 after interactions with external nodes are taken into account as
an upper bound on the amount of internal interreflection. If the external interac-
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tions are small (and this can easily be the case — consider any surface illuminated
solely by a small but powerful light source), this can badly overestimate the
amount of internal interreflection.

With our visible projected area bounds, we can hope to do better. If we con-
sider a large sphere enclosing a cluster, as in Figure 53, then the total form-factor
from that cluster to the sphere should account for all possible external interactions
the cluster could have. The total internal form-factor is then simply the remainder
of this from 1. This is as above, only now we are accounting for all possible exter-
nal interactions, and not just those that actually exist.

Figure 53: Calculating the external form factor. The projected area of
cluster P in direction 0 is integrated over the enclosing sphere Q hav-
ing surface area A, .

Thus we can write the internal form-factor of cluster P as

Fe_p=1-Fp_o
Aq (66)
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and, if the cluster has projected area A(8) in direction 6, we have

Fo._p= (67)

where AL® is the visible external area of P, and is defined as

AVis _ A(e)rzdw
P IQ Tr 2
(68)

. %Jf I(Z)HA(G)cosed(pdG

It is a straight-forward exercise in integration to use Equation 67 to show that:

- For a planar cluster, A(8) = Ap(cosB),, and thus AL = A,. This gives us
Fo._p = As/Ag,andhence Fp | = 0.

. For a cluster that radiates evenly in all directions (for instance, a sphere),
A(B) = Ay (where A, is the cross-sectional areal), AL° = 4A, = A, and
thusagain Fp | = 0.

Both of these are as we expect: neither surface features any self-shadowing and
thus interreflection.

We can use our lower bound on the visible projected area, (Sp [Im), , to establish
an upper bound on the internal form-factor. We find that, similar to the planar
case, A(8) = (Sp[hy), , LA‘F’,'SJ = ||S|, and thus

[Sel
If the cluster P contains a completely flat surface, ||Sp| = Ap and [Fp _p]| =0
as we might expect.
For the lower bound, it is possible to show that, for three orthogonal vec-
tors X, , spanning an octant of 03, and with corresponding projected area sam-

ples D, ,,the integral of the projected area over that octant is:

vis _ I

Aoctant - Z(DO + Dl + DZ)' (70)

1. The cross-sectional area of a sphere is T/ 2 : its total surface area is 4TTr 2,
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Thus, for our standard complete set of six directional samples, the integral over
the sphere is

5
PN S D; = Dy (71)
i=0

If our cluster contains the usual worst-case sphere, Equation 70 will over-estimate
the total surface area as 6D, rather than 4D, i.e., (3/2)Aq, leading to a negative
lower bound on the internal form-factor; thus we must be careful to clip Ap° to
Ap, so that:
ma VIS' A
|Fo.p] = 1—%. (72)

Using more samples per cluster would help reduce the overestimated visible sur-
face area, but at the cost of added memory. (As our clusters are constructed to be
as planar as possible, we think the existing error is acceptable.)

Proof of Equation 70

Assume without loss of generality that our orthogonal sample directions are the
X, y and z axes, and that our area samples in those directions are a, b and c respec-
tively. Then

[A@)] = av, +bv, +cv,

, (73)
[ A(6, ) | = acosBsing+ bcosBcosp + csind
and
. nn
A\éf{am = ﬁf; (acosBsing+ bcosB cosp + csinB) cosbdpdd
n
_ 2 .
= Io %a+ b) cog6 + Ecsmecose%ie -

Tt

2 1 . L
[é(a+ b)(sinBcosh + B) — cho%}

2
0

- I
= 4(a+ b+ ¢
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4.4.5. Interreflection of Leaf Clusters

In previous radiosity methods, the total element area was used to calculate a leaf
element’s radiosity from the incident power, in a calculation similar to
Equation 37. This works well when the leaf solution elements are always planar.
However, problems arise when they are not, and internal interreflection occurs.
Previous methods always descended to the input polygons, so that this was not a
problem, but in face cluster radiosity our leaf solution elements can be face clus-
ters.

Consider the cluster shown in Figure 54, which consists of a small exter-
nally-visible region, A, and a larger internal region. Externally, it seems the
cluster should act as a small flat element of area A, ;. On the other hand, we can
let the total area of the cluster become arbitrarily large without affecting A, ¢, by
increasing the internal area, and thus decreasing our estimate of the cluster’s radi-
osity. This seems counter intuitive, and leads to the question of how we can recon-
cile such a situation with the constant radiosity assumption that leads us to divide
by total area.

Figure 54: A cluster with a small externally visible region.
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The answer is that the difference between our intuition and the calcula-
tions we are performing is that we are ignoring potential internal interreflection.
To account for this, we must use the internal form-factor of the previous section to
write

pS'E

b=F,_pb+ (75)

(We will ignore emittance for the moment.) Solving for b gives us
_ pS'E/A
1-Fp_»p

_ __pS'E/A
1—(1-A./A)

pS'E

Avis

and adding back in emittance gives a new form of Equation 37,

(76)

b:pSE

: (77)

which satisfies our intuition. The radiosity of the example cluster will be calcu-
lated relative to its visible external area, and increasing the internal area of the
cluster will have no effect on its radiosity.

Thus, to take into account internal interreflection, we substitute the equiva-
lent cluster external area, A g, for A. We only do this at the leaf clusters, when
calculating the leaf radiosities, because for any other cluster, any interreflection is
taken care of by transfer links between its children. Self-links are thus unneces-
sary for face clusters.

4.5. Empirical Projected Area Results

To test the goodness of fit of our bounds, we ran tests on a number of polygonal
models that had been face clustered. Results for two of these objects, a teacup and
a pipe fitting (Figure 55) are presented here.
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4

y

Figure 55: The two objects for which we tested projected area estima-
tions. Left, a teacup, with 1000 polygons. Right, a pipe fitting, with
11,000 polygons.

4.5.1. Hierarchy Bounds Errors

For every cluster in the face cluster hierarchy of a model, a large number of direc-
tions distributed evenly over the directional sphere were sampled. For each direc-
tion, the actual (unoccluded) projected area, and the upper and lower bounds on
the projected area were calculated. | then calculated the root-mean-square error of
the bounds over all directions, as a fraction of the total surface area of the cluster.
Figure 56 shows the results plotted for both objects against the node depth. (That
is, the depth of the node in the hierarchy.) As we would hope, the error over all
directions decreases with depth for both objects. This trend is somewhat noisier in
the case of the coarser cup model.

Figure 57 shows the results of plotting the error in the lower bound only
(that due to our sum-area normal calculation.) This shows that our clusters are
getting flatter and thus our bounds are getting tighter as we descend in the hierar-
chy. Of the lower and upper bounds, the lower seems to provide a better fit to the
actual projected area, which provides some justification for only using the sum-
area normal in the actual radiosity calculations. Note that the error shown here is
the error between the unoccluded projected area and our lower bound; the error
in the bound’s representation of the visible projected area is at most this, and pos-
sibly smaller.

132



4.5. Empirical Projected Area Results
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Figure 56: Performance of bounds over the entire face cluster hierarchy.
The root cluster is at level zero, and the leaves are at the highest levels.
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Figure 57: Error in the lower bound on the projected area. Top: for the
cup mode the initially high relative error decreases with depth in the hi-
erarchy. Bottom: for the pipes model, even at the highest levels of the hi-
erarchy the lower bound for some clusters is exact.
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4.5.2. Cluster Error Bounds

| also looked at the performance of the bounds over several individual cluster
nodes, two from each model. Figure 58 shows the relevant clusters from the cup
model, and Figure 59 shows the clusters from the pipes model. The bounds can be
shown relative to the direction from the cluster by plotting them against c, the
cosine of the angle between the direction and the “up” direction of the bounding
box. Thus at ¢ = 1 we are looking at the cluster from directly overhead, at ¢ = 0,
we are looking at the cluster from side-on, and at ¢ = —1 from the rear. Again, we
measure the error in the bounds as the difference between our upper and lower
bounds, relative to the total surface area of the cluster.

Figure 58: Two clusters from the cup model. The cluster on the left cor-
responds to the bottom of the cup, and lies three levels deep in the hier-
archy. The cluster on the right is the immediate parent of that cluster, and
is considerably less planar in character.

Figure 60 shows the results for the cup clusters, and Figure 61 the results
for the pipes clusters. In both cases, while the error curve is large for the less
directional clusters, for the smaller clusters it flattens out considerably. We would
expect that, as we get deeper in the hierarchy, projected areas for c< 0 will go to
zero, as the clusters get flatter.
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Figure 59: Two clusters from the pipes model. On the left, a smaller, flat
cluster from level five of the hierarchy, and on the right, a larger cluster
from level three.

Figure 62 shows how the upper and lower bounds behave as the cluster
gets flatter. The lower bound tends to be accurate both immediately in front of
and behind the cluster, and most inaccurate “side-on” to the cluster, around
¢ = 0, where its assumption that the cluster is perfectly flat proves false. The
upper bound, on the other hand, has greatest error outside this side-on region,
although its error also goes to zero (though not nearly as quickly) at the front, side
and back (¢ = 1, ¢ = 0 and ¢ = —1) of the cluster, because this is aligned with
our VPA sample directions. Thus, luckily, the regions of error for both estimates
cancel out to some extent.

4.5.3. Projected Area Functions

While graphing these results makes it easier to directly compare the various pro-
jected area estimates, for a more intuitive idea of what is happening, we can plot
the various estimates in three dimensions as PA(R), that is, the projected area
over the sphere of all directions. For the “cup bottom” cluster, Figure 63 shows
such plots for the actual projected area of the cluster, as well as our bounds for
that area. The actual projected area function extends mainly downwards, with a
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Cup, Smaller Cluster Cup, Larger Cluster

Figure 60: Error in the bounds for the cup clusters.

Pipes, Smaller Cluster Pipes, Larger Cluster

Cos(theta)

Figure 61: Error in the bounds for the pipes model’s clusters.

little ring around the horizontal, and an indentation at the top where the projected
area goes to zero as we move directly behind the surface. The lower bound is a
simple cosine lobe in the direction of the cluster, while we can see that the upper
bound consists of one large lobe in the direction of the cluster, with four much
smaller lobes corresponding to the side areas of the cluster. The sixth lobe, corre-
sponding to the sixth area sample, is non-existent, due to the zero projected area
behind this cluster. The final image in the sequence shows how closely the two
bounds enclose the actual projected area in this case.

Figure 64 shows the same results for the larger, decidedly non-planar clus-
ter which covers part of the side of the cup as well. While the upper bound is
much looser for this cluster, indicating the need for further subdivision, note that
the lower bound still gives a surprisingly good fit to the function.
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Pipes, Smaller Cluster Pipes, Smaller Cluster

Cos(theta) Cos(theta)

Figure 62: Upper and lower bound error for the small pipes cluster. The
errors in the two bounds offset each other for largely flat clusters.

4.5.4. Upper Bound Strategies

| investigated how my preferred strategy of finding an upper bound for a clus-
ter’s projected area, by interpolating projected area samples from the axes of its
OBB, compared to two other possible strategies. Firstly, we could take samples
along the axes of an axis-aligned bounding box; this saves us having to transform
the sample direction into the coordinate system of the OBB. Comparing to this
strategy is also a good measure of how important picking “good” sample direc-
tions is. Secondly, we could follow the approach of previous researchers, and use
the projection of the bounding box itself as an upper bound on the projected area
of its contents [Stam97c].

Figure 65 compares these approaches for the two clusters from the pipes
model. For the large cluster, both sampled approaches clearly outperform the pro-
jected bounding box approach, and the oriented sample approach is marginally
better than the axis-aligned one. For the small, more planar cluster, the oriented
sample strategy does much better than the axis-aligned one; picking good sample
directions becomes more important for such a highly directional cluster. The pro-
jected bounding box approach deals particularly badly with angles “behind” the
small cluster, because it takes no account of face orientation.

45.5. The SUPA as a lower bound on the VPA

There were a number of reasons given in section Section 4.3.3 as to why the
signed unoccluded projected area, SUPA, should only rarely overestimate the vis-
ible projected area, VPA. However, we would like to show some empirical sup-
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Actual Lower Bound

Upper Bound Nested

Figure 63: Projected area as a function of direction, cup bottom. From
left to right we see the actual projected area of the cluster, the sum-area
normal estimate of the area, and the sampled estimate. The last image
shows all three functions together, illustrating how they nest correctly.

139



Chapter 4. Analysis

Actual Lower Bound

Upper Bound Nested

Figure 64: Projected area as a function of direction, cup side. The cup
side approximates a flat surface less well, and hence the fit of the lower
bound in particular is looser than that for the cup bottom.
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Figure 65: Different approaches to finding the upper bound. Top, errors
for the small pipes cluster, and bottom, errors for the large pipes cluster.
Using sampled projected areas along the axes of the oriented bounding
box of the cluster gives better results than using samples on an axis-
aligned bounding box, or the projected area of the oriented box.
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port for these observations. To this end, we can test a number of models and their
associated cluster hierarchies in the hope of finding the following:

. How often the SUPA fails to be a lower bound on the VPA. (We will refer to
this as a bounds exception.)

. By how much it fails. Even if it only happens occasionally, if the SUPA is
sometimes wildly wrong, its value as a lower bound estimate is much
reduced. If it is close to the VPA even in situations where the bound is vio-
lated, however, its value is high.

. What kind of situations it fails in.

Unfortunately, accurately finding the visible projected area is more difficult than
for the various other projected area metrics. We could employ analytic methods to
calculate the silhouette of the cluster from a particular direction exactly. However,
doing this for a large number of direction samples, and for potentially every clus-
ter in a real model with a large number of faces, could take weeks of computation
time. We must strike a balance between the accuracy of our VPA calculation, and
the ability to test a large number of clusters for potential SUPA bounds violations.

| chose to use sampling to estimate the VPA, as follows. For each face in the
cluster, a single ray was traced from the face’s centre in direction m. If the ray did
not hit another face in that cluster, the face’s projected area was added into the
total. This approach is not ideal, as the resulting estimate of the VPA can underes-
timate the actual VPA, due to a face being counted as totally occluded when it is
partially unoccluded. Thus when we test the SUPA against this estimate, there is a
chance the SUPA will be larger than the VPA due to error in the estimate, rather
than because it is actually larger than the VPA. Again, this is a compromise
between total running time and accuracy in measuring errors in our lower bound;
as it stands, each model test required the casting of over 1.5 billion rays, and a
number of hours to run.

Using this technique | measured Ax = (SUPA- VPA)/ A, namely, the dif-
ference between the SUPA and VPA as a fraction of the cluster’s total surface area,
over a large number of directions?, for every cluster in a number of models.
Whenever this number was positive, a bounds exception was registered, and the
direction and cluster involved were logged. Also, the maximum Ax for each clus-
ter, AXqax Was logged.

The results for three models, each containing 100,000 polygons, are shown
in Table 4. (The models can be seen in Figure 79.) Because some number of the

1. 484 directions distributed evenly over the sphere.
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positive values of Ax will be occurring because of inaccuracies in the VPA esti-
mate, and because we are more concerned with larger violations, exception
counts are shown for a number of thresholds. Overall the results are as we might
hope: a very small number of exceptions for each model, and none of these partic-
ularly large. The Buddha model suffers from the most exceptions, and the Isis
model the least. This makes some sense, as the Buddha has a number of holes and
areas of sharp curvature, whereas the Isis is reasonably smooth, and has no holes.
No model has more than 0.2% exceptions where Ax > 0.01, that is, where the error
is more than one hundredth of the cluster’s surface area.

The average maximum exception is also shown, along with the largest
such maximum. Clusters with less than 16 faces were ignored for the purposes of
calculating the largest maximum, as clusters with so few faces suffer from consid-
erable error in the VPA estimate. These largest maxima tend to be reasonable close
to the average. Overall, we can conclude that bounds exceptions, when they do
occur, are acceptably small.

Finally, one such bounds exception, from the Buddha model, is shown in
Figure 66. Almost all exceptions examined where some error is obvious show this
general pattern.

Percentage of Bounds Exceptions | Avg. Max.
Model Ax>0.0 | Ax>0.001| Ax>0.01 | DXpax | BXpax
Buddha 0.52% 0.44% 0.20% 0.0043 | 0.066
Dragon 0.38% 0.32% 0.14% 0.0034 | 0.087
Isis 0.24% 0.18% 0.05% 0.0015 | 0.068

Table 4: Statistics for lower bound exceptions: SUPA> VPA.

4.6. Summary

In this chapter we have analysed the calculation of radiosity transfer between face
clusters, and derived useful bounds and error estimates for our technique. Our
bounds are almost always conservative (that is, not violated), and in practice we
have found our bounds to be tighter than those previously published. Due to the
visible projected area rule, using the sum-area normal vector S in our radiosity
calculations can give surprisingly good results. Recapping:

. A good estimate of a cluster’s visible projected area, the VPA, is critical to my
algorithm.
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Figure 66: An example of one of the larger SUPA/VPA bounds viola-
tions from the Buddha model. The surface spur marked on the left is ob-
scured in the rotated view shown on the right, but is still counted in the
SUPA, leading to an exception. (An orthographic projection was used
for both pictures.)

(m Elz S),, which | call the signed unoccluded projected area, or SUPA, is an
approximate lower bound on the VPA.

In my algorithm, this bound is rarely violated, because of the tendency of
face clusters to be flat and well-shaped.

The lower bound may only be violated when a cluster’s projected boundary
has regions with a winding number greater than one.

As an upper bound, we can sample the non-negative unoccluded projected
area, the NUPA, in six axial directions corresponding to the bounding box,
and interpolate these samples. This bound is conservative.

Both bounds are constant time to evaluate in the number of polygons a cluster
contains. They rely on preprocessing of a cluster, which

144

for the lower bound is constant time to calculate from its children.



4.6. Summary

for the upper bound is linear in the number of polygons in the cluster—no
worse than the requirement for the calculation of bounding box extents.
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