
C h a p t e r 3
Face Cluster
Radiosity
3.1. Introduction

The best hierarchical radiosity methods, using volume clustering, permit scenes
of moderate complexity (several hundred thousand input polygons) to be simu-
lated in times ranging from ten minutes to a few hours, depending on the level of
accuracy chosen for the simulation, and the geometric arrangement of the scene.
Unfortunately, current radiosity techniques, even with clustering, use excessive
memory and their speeds are not competitive with other, less realistic rendering
methods. We would like to be able to apply radiosity methods to the complex
scenes common in special effects. Such scenes routinely use objects each employ-
ing 100,000 polygons or more. We therefore seek an enhancement to the hierarchi-
cal radiosity algorithm that will permit very complex scenes—scenes with
millions of input polygons—to be economically simulated on a standard compu-
ter.

One of the greatest difficulties with existing radiosity methods is that their
memory use is at least linear in the number of input polygons. This is not a prob-
lem if the scene is small, but if the input polygons cannot fit in physical memory,
the algorithm will thrash and performance will degrade dramatically. To deal
with very complex scenes, we need methods which in practice have memory and
time cost that is sub-linear in the number of input polygons. This is possible
63

Chapter 3. Face Cluster Radiosity
because for many such scenes, the geometric detail represented by the input poly-
gons is much greater than that needed for the radiosity simulation.

In this chapter I describe the core elements of the face cluster radiosity
algorithm, a technique that achieves this goal. This algorithm grew out of research
into adapting the radiosity method to use multiresolution models. Later chapters
will deal with technical details and some of the assumptions behind the algo-
rithm, but for now, I will focus on its overall structure.

3.1.1. Overview

A preview of the technique is shown visually in Figure 19. If one of the best exist-
ing radiosity algorithms (hierarchical radiosity with volume clustering) is used on
a detailed model, a solution takes over ten minutes (Figure 19a)1. If, on the other
hand, the input geometry is simplified by cutting the number of triangles by a fac-
tor of 100, and the same algorithm is applied to the simplified model, a solution
can be calculated much more quickly (Figure 19b, 7 seconds). This is fast, but the
accuracy and visual quality are poor. The face cluster radiosity technique allows a
solution not much more expensive than this to be calculated and propagated to
the fully detailed model, yielding Figure 19d. This is much faster than the full
solution and almost as accurate.

The three main phases of the algorithm are preprocessing, solution, and
postprocessing. Preprocessing converts the scene description into a multiresolu-
tion, hierarchical model. The time cost of this is super-linear in the number of
input polygons, but preprocessing can be done on an off-line, object-by-object
basis, so its memory costs are modest and its time costs can be amortized over
multiple solutions. Next, one or more radiosity solutions are found. This is the
costliest step, in practice. The solution phase is sub-linear in cost because it
accesses only the coarsest levels of detail from the hierarchy that are necessary.
Consequently, often large portions of the hierarchy need never be paged in during
this phase, with huge physical memory savings. After solution, postprocessing
evaluates the radiosity of the finest details of the scene. This requires linear time.
The overall cost, being dominated by solution, is thus sub-linear in practice.

1. These times are highly dependent on accuracy settings, platform and implementation. The times quoted
are meant to be illustrative, though care was taken to use similar settings for each algorithm.
64

3.1. Introduction
Figure 19: Radiosity on a detailed dragon model. Face cluster radiosity
(FCR) and hierarchical radiosity with volume clustering (HRVC) algo-
rithms applied to a detailed dragon model.

(b) HRVC, 1000 triangles, 7 s(a) HRVC, 108,000 triangles, 707s

(c) Constant FCR, 108,000 triangles, 7s (d) Vector FCR, 108,000 triangles, 8s
65

Chapter 3. Face Cluster Radiosity
3.2. Outline

In this section we present the ideas which lead to the development of the face
cluster radiosity algorithm, and a rough sketch of the algorithm itself. We close
with a more thorough analysis of the complexity of the new method and its rela-
tionship to previous work on hierarchical radiosity algorithms.

3.2.1. Motivation

The current state of the art in radiosity methods, hierarchical radiosity with vol-
ume clustering [Smit94], has a complexity that depends, among other things, at
least linearly on the number of polygons in the input scene. The work presented
in this chapter has a number of motivations, but the primary motivation can be
summarised very simply:

If we increase the number of input polygons in our scene by tessel-
lating existing polygons1, it should have no impact on the speed,
memory use, or results of our radiosity simulation.

That is, we would like the performance of our radiosity algorithm to be sub-linear
in the number of input polygons. This should hold if we simply tessellate poly-
gons in the scene, but we would also like it to be largely true if we add small-scale
detail to surfaces, perhaps by perturbing the tessellations slightly, that is unlikely
to affect the broader radiosity computation. In other words, high-resolution detail
in a scene should have minimal impact on the radiosity solution time.

This motivation arose from experiments with radiosity simulations on
scenes that contained large scanned models; large enough to make the depend-
ence on input polygons of the volume clustering system a problem. The observa-
tion that most of the polygons in such models are for high resolution detail, and
don’t affect radiosity computations much, led me to investigate the use of model
simplification in radiosity. Model simplification is a process whereby the polygon
count of an existing model is reduced, while trying to keep the same approximate
shape as the original model [Heck] (see Figure 20). In particular, it lead to the use
of multiresolution models [Hopp97].

A multiresolution model allows the resolution of an existing polygonal-
mesh model to be lowered by different amounts at different points on that model.
It is possible to have one region of the model be heavily simplified, and another

1. Tessellating means replacing an existing polygon with several smaller polygons that cover the same area.
66

3.2. Outline
region simplified almost not at all, with the intermediate regions having corre-
sponding gradations of resolution. Such models are generated by applying an
iterative simplification process to the original model, and generating a corre-
sponding tree of simplifications, with the original model’s polygons at the leaves
of the tree. Any cut through this tree gives a version of the model with a particular
resolution.

Intuitively, we can envisage using such a model to remove the unneeded
high-resolution detail of models before running our radiosity algorithm. Instead
of running our radiosity simulation on a detailed model (as in Figure 19a), we
would run it on a simplified model (Figure 19b), and then somehow apply the
results back to the original model.

A better solution would be to combine both the multiresolution model and
radiosity algorithms. By using the multiresolution hierarchies of the models
directly in the element hierarchy of the radiosity solver, we could adjust the
model resolution “on the fly” to match that needed by the radiosity algorithm.
Apart from being more flexible, this would ensure that no manual selection of
simplification level was necessary. This is vital, because it is difficult to guess a
priori where the models can be simplified, as these decisions are best made using
global information. To do a good job, we would need the results of the radiosity
simulation we are trying to run.

Figure 20: Progressively simplified models of a DC10 aircraft.

500 polygons 110 polygons2320 polygons
67

Chapter 3. Face Cluster Radiosity
Traditionally, below the level of the input polygons we add refinements to
those polygons to capture any illumination detail that is at a higher resolution
than those polygons, as shown in Figure 21. If we envisage a radiosity hierarchy
where the root of the hierarchy represents the entire scene, and the input poly-
gons lie at some particular level in the hierarchy, refinements can be represented
by nodes below that line in the hierarchy.

In the same way, Figure 22 shows how in turn we can use simplification to
reduce the resolution of the scene above the input polygons; conceptually, these
simplifications make up the nodes above the input polygons in the hierarchy. This
also has the benefit of improving our representation of the scene at such levels.
Volume clusters, which are traditionally used to represent versions of the scene
coarser than the input polygons, are designed to approximate a cloud of uncon-
nected polygons. For the connected, largely smooth surfaces that occur in many
models, surface simplification provides a better and more natural approximation.

The particular multiresolution model format we use in our algorithm, as
discussed in the next section, is called a face cluster hierarchy. Figure 23 outlines
how these face clusters fit into a traditional hierarchical radiosity with volume
clustering algorithm. As indicated, they help bridge the gap between the surface

Figure 21: Refinement of polygonal elements in the detail hierarchy

Input
polygons

High resolution elements

Root: entire scene
68

3.2. Outline
representation of polygons, which are contiguous and have a single orientation,
and the representation of volume clusters, which is best at modelling a collection
of scattered, disconnected surfaces. Face cluster nodes are intended to model a
contiguous, connected chunk of the surface, which is assumed to be largely co-
planar, but to have varying surface normals.

With both a vanilla hierarchy, Figure 23 (a), and with volume clustering
(b), the solver must descend to at least the level of the input polygons. This level
gets ever further away from the root (as increases) as the detail of the scene
is increased. That is, as we arbitrarily tessellate the scene, the solver must do more
work. Once face clusters are introduced in (c), this is no longer the case; the solver
must only descend as far as the leaves of the solution hierarchy, which remain at a
constant level regardless of the tessellation of the underlying models. This has the
further advantage that we need not store radiosity coefficients for all input poly-
gons — only for those face cluster nodes within the solution hierarchy. In a simu-
lation where a detailed model can be safely approximated for the purposes of
radiosity computation by a much simpler model, this provides tremendous mem-
ory savings.

Figure 22: Simplification of polygonal elements in the detail hierarchy

Input polygons

Simplifications

High resolution elements

Root

k
klog
69

Chapter 3. Face Cluster Radiosity
Figure 23: Adding face clusters to the hierarchy. The original polygon-
only solution hierarchy (a) can be augmented with in turn (b) volume
clusters and (c) face clusters.

Input
polygons

Unused refinements

Used
refinementsUnused

face clusters

Face
clusters

Volume
clusters

Leaf
elements

Input
polygons

Unused refinements

Used
refinements

Volume
clusters

Leaf
elements

Input
polygons

Unused refinements

Used
refinements

Leaf
elements

(a)

(b)

(c)
70

3.2. Outline
3.2.2. Hierarchy Analysis

Figure 24 is a schematic comparison of variants of hierarchical radiosity on a
scene with two large polygons A and B in close proximity, and eight small poly-
gons C-J, more distant. Simple hierarchical radiosity (a) yields a forest of
quadtrees. Polygons A and B are subdivided and some of their children are
linked. The large number of links between the small input polygons C-J makes the
algorithm inefficient. Figure 24b shows hierarchical radiosity with volume clus-
tering. If cluster Q is sufficiently small and distant from cluster P then a single link
between them suffices. Since a cluster can illuminate itself, a self link on Q is nec-
essary as well. The algorithm is still slow because it is necessary to push light
down to polygons C-J.

Face Cluster Radiosity. We propose that volume clusters be replaced by mul-
tiresolution models for all groups of input polygons that represent a surface. The
use of such models allows pushing of light to the leaves to be avoided, and they
often provide a better fit to the original surfaces than volume clusters. The partic-
ular multiresolution representation that we use, face clustering, groups adjacent
faces that have similar normals, and thus can approximate largely planar surfaces
well.

With this scheme, the data structures for elements coarser than and finer
than the input polygons are more similar, since both face clustering and quadtree
refinement yield a contiguous piece of surface with a normal. Hierarchical radios-
ity is now free to subdivide below the level of the input polygons and to “unsub-
divide” above this level. This reduces the hitherto inordinate role of the input
polygons, permitting hierarchical radiosity to represent light transport at more
natural levels of detail, and to operate more efficiently in complex scenes.

The use of multiresolution models improves the accuracy of our represen-
tations and permits our algorithm to avoid touching the lowest portions of the
hierarchy during iterations. In Figure 24c we see how a tree of simplified models
is built above the input polygons. The tree nodes below T and above C-J are now
face clusters, not volume clusters, while the highest levels of the tree, above con-
nected objects, are volume clusters. Note that the subtree below T can be paged
out during simulation, saving time and memory.

3.2.3. Previous Work

The use of simplified models in radiosity has previously been proposed. Rush-
meier et al. demonstrated the feasibility of the concept, but their method
employed manually-constructed simplified models, making it impractical for
71

Chapter 3. Face Cluster Radiosity
Figure 24: Three approaches to hierarchical radiosity

C D E F G H I JA B

a) classical hierarchical radiosity

polygon/element
volume cluster
face cluster

link

C D E F G H I J

A B

P Q

b) hierarchical radiosity with volume clustering

A B

C D E F G H I J

T

NOT USED

during solution

c) face cluster radiosity
72

3.3. Building Surface Hierarchies
complex scenes [Rush93]. Greger et al. showed how a radiosity simulation of a
simple scene could be applied to a more detailed version of that same scene by
using an irradiance volume [Greg98]. Both these methods require the user to judge
the level of pre-simulation simplification; simplification and simulation are two
separate steps, whereas in our algorithm, the level of simplification is driven by
the radiosity simulation. That is, the simulation picks the level of simplification
appropriate to each transfer of radiosity between solution elements, and multiple
levels of simplification exist during the solution.

3.3. Building Surface Hierarchies

3.3.1. Multiresolution Surface Hierarchies

Recent work from the area of surface simplification provided a starting point for
our research into radiosity using multiresolution models. Iterative edge contrac-
tion, one of the currently popular simplification techniques, can be used to con-
struct a hierarchy of progressively larger vertex neighbourhoods on the surface.
Each edge contraction collapses the two vertices at either end of the edge to a sin-
gle, new vertex. The hierarchy is created by treating the endpoints as the children
of this new vertex. These vertex hierarchies have been used primarily for view-
dependent refinement of models for real-time rendering [Hopp97, Xia96, Lueb97].

In the original version of the algorithm presented in this dissertation, I
used vertex hierarchies directly, as implied by the preceeding section. This some-
times proved problematic, because vertex nodes don’t have a well defined area
and normal. (These properties are easier to establish for face hierarchies than for
vertex hierarchies.)

To address this problem, the initial algorithm treated vertices in the simpli-
fication hierarchy as faces on the dual graph of the model. That is, conceptually the
polygonal mesh was assumed to define the Voronoi diagram of the actual surface
used by the radiosity simulation. Both the area and the normal for each vertex
were constructed from its surrounding faces; the dual was never explicitly
formed.

This approach still had problems, not least of which was that the radiosity
solution was being performed on what amounted to a smoothed version of the
original model, which made the treatment of creases and sharp edges on the
model problematic. Also, without explicitly constructing the dual graph, a step
which would have been prohibitive in cost, the vertex nodes did not have a well-
73

Chapter 3. Face Cluster Radiosity
defined extent. This made calculating form-factors and good visibility estimates
difficult.

At this point the following critical insight presented itself: a more robust
approach to the problem would be to use the original faces of the model in the
radiosity solution, and instead have the simplification algorithm work on the dual
graph of the model.

To meet the need for such an algorithm, Garland developed face cluster hier-
archies [Garl99], a dual form of the quadric-based simplification algorithm of Gar-
land and Heckbert [Garl97]. (It is also closely related to the “superfaces”
simplification algorithm of Kalvin and Taylor [Kalv96].) Rather than iteratively
merging pairs of vertices to directly simplify the mesh, the algorithm iteratively
merges groups of topologically connected faces, which we refer to as face clusters,
thereby partitioning the original mesh (see Figure 25). This process does not
change the original geometry of the surface in any way; it merely groups surface
polygons into progressively larger clusters. These merge operations can be used
to create a multiresolution hierarchy in the same manner as edge collapses; an
example is shown in Figure 26. The resulting face cluster hierarchy has the property
that any cut across the hierarchy gives a particular partitioning or clustering of
the original model. Figure 27 shows an example hierarchy, and the corresponding
clusters on the model for several different cuts.

In Garland and Heckbert’s original paper [Garl97], quadric functions of
position, , are used to represent the set of planes associated with
a vertex node, and can be used to find the best-fit point to those planes. When we
are working in the dual space, we instead use quadric functions of the face nor-
mal, , to represent the set of vertices in a cluster node, and to find
the best-fit plane to those points. Because of this, it can be shown that by applying
the quadric error approach to the dual problem, face clusters can be made to pre-
serve planarity where possible, in the same way that vertex simplification tries to
preserve shape.

3.3.2. The Face Clustering Algorithm

Much of the material described in the next three sub sections is summarised from
Garland’s work on surface simplification. Further details can be found in chapter
8 of his dissertation, “Quadric-based Polygonal Surface Simplification” [Garl99].
Further discussion and refinement of the face cluster algorithm can be found in
Chapter 5.

vTAv 2bTv c+ +

nTAn 2bTn c+ +
74

3.3. Building Surface Hierarchies
Figure 25: Face clusters. Each
face cluster is created by merg-
ing two other adjacent face
clusters. The several levels of
the hierarchy are shown here
for a small, curved mesh. At
bottom, there are six surface
regions, which are iteratively
merged pairwise, until we are
left with only a single cluster
covering the entire surface, at
top. This is the root of the clus-
ter hierarchy.

Note how the cluster
regions largely follow the cur-
vature of the surface.
75

Chapter 3. Face Cluster Radiosity
Our aim is to automatically construct a hierarchy of surface regions for
every connected surface component. Each region must consist of a connected set
of faces. We begin by forming the dual graph of the input mesh. Every face of the
surface is mapped to a node in the dual graph, and two dual nodes are connected
by an edge if the corresponding faces are adjacent on the surface. For the moment,
we will assume that the surface is a manifold with boundary; in other words,
every surface edge has at most 2 adjacent faces. We will also assume that all input
polygons have been triangulated.

In the dual graph, an edge collapse corresponds to merging two face clus-
ters together. Figure 28 illustrates a simple example. On the left is a mesh where
each dual node corresponds to a single face; in other words, each face is its own
cluster. After collapsing a single dual edge, the two darkened triangles have been
merged into a single cluster.

To construct a complete hierarchy, we use a simple greedy procedure to
iteratively collapse dual edges. We assign a “cost” to each dual edge and itera-
tively collapse the edge of least cost. After each collapse, we update the costs of
the surrounding edges. At each iteration, we have constructed a partition of the
surface into disjoint sets of connected faces. This is in contrast to simplification,

Figure 26: Building a Face Cluster Hierarchy.
76

3.3. Building Surface Hierarchies
Figure 27: An example face cluster hierarchy. Left: several different clus-
terings of a cow model. Each cluster has a different colour, and the
number of clusters increases from top to bottom. Right: the correspond-
ing cut through the cow’s face cluster hierarchy is shown in red.
77

Chapter 3. Face Cluster Radiosity
where at each iteration we would have constructed an approximate surface. Face
clustering an object with f faces costs time and memory.

3.3.3. Dual Edge Cost Metric

Each dual edge corresponds to a set of faces, namely the faces associated with its
endpoints, and a set of points determined by the vertices of these
faces. We begin by fitting a least squares optimal plane through this set of points
using the standard technique of principal component analysis (PCA) [Joll86]. We
construct the covariance matrix

(11)

The three eigenvectors of the matrix CV determine a local frame with as the ori-
gin. The eigenvector corresponding to the smallest eigenvalue is the normal of the
optimal plane, and the remaining eigenvectors define a frame for parameterizing
this plane. Given this optimal plane, we assign a cost

(12)

to every dual edge. In addition, we use this plane to compute an oriented bound-
ing box for the cluster.

Figure 28: One edge of the dual graph (solid lines) is collapsed. The fac-
es corresponding to its endpoints (darkened) are merged into a single
face cluster.

Before After

collapse

O f flog() O f()

v1 … vk, ,{ }

CV vi v–() vi v–()
T

where v vi
i

∑ k⁄=
i

∑=

v

E Efit Edir Eshape+ +=
78

3.3. Building Surface Hierarchies
The first, and most important, error term measures the planarity of the
cluster, and is defined to be the average squared distance of all the points in the
cluster to the optimal plane

(13)

Following the quadric error metric of Garland and Heckbert [Garl98], we can
compactly represent this sum using quadrics as

(14)

where

(15)

(16)

Each dual node has an associated fit quadric which requires ten coefficients to
represent the symmetric 3x3 matrix , the 3-vectors , and the scalar . It is
important to note that the covariance matrix can be extracted directly from this
quadric: .

Minimizing the planarity term will naturally tend to merge clusters
which are collectively nearly planar. However, a surface may locally fold back on
itself; it will seem nearly planar, but the normal of the plane will not be a good fit
for the surface normals in the region. Therefore, we add an additional error term
which measures the area-averaged deviation of the plane normal from the sur-
face normals

(17)

where and are the area and unit normal, respectively, of a face in the clus-
ter. Again, we can represent this error term using a quadric by rewriting

 as where

(18)

Efit nTvi d+()
2

i
∑ k⁄=

Efit Pi n d,()
i

∑ k⁄ Pi
i

∑ 
  n d,() k⁄= =

Pi A i bi ci, ,() vivi
T vi 1, ,()= =

P n d,() nTAn 2bT
dn() cd

2
+ +=

P
A b c

CV A bbT() c⁄–=
Efit

n

Edir Ai 1 nTni–()
2

i
∑ 

  Ai
i

∑⁄=

Ai ni i

1 nTni–()
2

Ri n() nTDin 2ei
Tn f i+ +=

Ri Di ei f i, ,() nini
T ni 1,–,()= =
79

Chapter 3. Face Cluster Radiosity
Every dual node has two associated quadrics, a fit quadric and an orientation
quadric. Whenever we merge two nodes, we add their corresponding quadrics
together to form the quadrics for the resulting node.

3.3.4. Compact Shape Bias

If planarity is our only clustering criterion, then the combination of the error
terms and performs well. However, for our radiosity application, we
would also like the regions to have a compact shape; a compact region is one
which is as nearly circular as possible. Following Kalvin and Taylor [Kalv96], we
define the compactness of a region to be the ratio of its squared perimeter to its
area. Larger values of correspond to less compact (more irregular) regions.

For a given dual edge, the clusters associated with its endpoints will have
compactness and . If is the compactness of the resulting merged cluster,
we define the shape penalty as:

(19)

This penalizes clusters where the compactness worsens and rewards clusters
where the compactness improves. Figure 29 illustrates the effect of the shape bias.
With the shape bias disabled (a), the clusters tend to follow the features of the
model but may have non-compact shapes. The long strips stretching down the
forehead and the nose are a good example. In contrast, when using the shape bias
(b), the clusters still reflect the form of the surface, but they have a much more
compact shape.

3.3.5. A Face Cluster Node

Each node in our face cluster hierarchy is a representation of an approximately co-
planar region on the mesh. It acts as a container for a set of connected faces (see
Figure 30). Once we have constructed the hierarchy, we must address the ques-
tion of what representative surface properties to store for each node within it, in
addition to the pointers to the two child face clusters that partition it. A balance
must be struck between the amount of useful information we store, and the
amount of memory or disk space the hierarchy will occupy.

As discussed, for each node i in the face cluster hierarchy, we calculate an
oriented bounding box for the faces it contains using principal component analy-

Efit Edir

γ
γ

γ1 γ2 γ

Eshape 1 maxγ1 γ2,() 2γ⁄–=
80

3.4. The Face Cluster Radiosity Algorithm
sis [Joll86]. For each node, we store this, in addition to the sum of the area-
weighted normals of those faces:

(20)

for each face belonging to the cluster. As we will show in Section 3.4 and in
more detail in Chapter 4, this is a useful approximation of the reflective qualities
of the faces within the node.

3.4. The Face Cluster Radiosity Algorithm

In this section we describe our algorithm for simulating radiosity on multiresolu-
tion models that use face clustering. We show how the standard radiosity equa-

Figure 29: Partitions of the venus head, each with 8000 clusters

(a) No shape bias (b) With shape bias

S Aj n̂ jj∑=

j

81

Chapter 3. Face Cluster Radiosity
tions can be modified to better suit the use of these hierarchies, starting with the
standard formulas governing diffuse interreflection [Cohe93].

3.4.1. Standard Radiosity Derivation

The radiosity of surface i is the outgoing power per unit area due to emission
or reflection. It equals emittance plus reflectance times the sum of contribu-
tions from other surfaces j,

. (21)

Here is the form factor, the fraction of light leaving surface j that arrives at sur-
face i,

, (22)

and is the area of element i, and are the polar angles, is the distance
between points on elements i and j, and is the visibility between those points: 1
if visible and 0 if occluded.

Figure 30: A face cluster. For our purposes, a face cluster is defined by
a group of connected faces , with an enclosing oriented bounding box

, and an area-weighted normal, .

S

ΩB

Ω
B S

bi

ei ρi

bi ei ρi Fij bjj∑+=

Fij

Fij
1
Ai

θi θ jcoscos

πr ij
2

----------------------------vij Aid Ajd∫∫=

Ai θi θ j r ij

vij
82

3.4. The Face Cluster Radiosity Algorithm
To solve the above system of equations, our method, like most hierarchical
radiosity algorithms, repeatedly gathers light from all other elements j to update
the radiosity of element i. This is equivalent to one iteration of Jacobi’s method for
solving linear systems. Multiplying the equation above by , we get an equation
whose terms have units of power (area times radiosity):

(23)

The irradiance is the incident power per unit area. Calculating it exactly is typi-
cally intractable, so we approximate it using the point-to-point approximation of
the form factor [Cohe93],

(24)

where bold symbols denote vectors, , is a unit normal to sur-
face i, and is the unit direction vector from i to j. We have written the dot prod-
ucts in matrix notation because we will shortly be exploiting the associativity of
matrix multiplication to rewrite this formula.

3.4.2. Vector-based Radiosity

The classical radiosity method assumes piecewise constant (Haar) basis functions
and planar surfaces. In a hierarchy, the children are coplanar with the parent. For
the purposes of projecting radiosities up and down the tree, radiosities are scalar
quantities. If this method is applied to a multiresolution model, it causes curved
or bumpy portions of the model to be shaded a flat colour, leading to a faceted
appearance that hides the geometric detail (Figure 19c). This is similar to the step-
function effect in constant-basis radiosity, but applying a post-process smoothing
step at the leaves is no longer sufficient to cover up these discontinuities.

We now adapt the radiosity method to multiresolution models that use
face clustering. Consider the light transfer from one cluster to another (Figure 31).
We let j be an element in the source cluster and i be an element in the receiver
cluster. If we assume that all (i,j) pairs are inter-visible and that the sources are
close together and far from the receiver, then , , , and are independent
of and , and we can approximate the irradiance from a single cluster as:

, (25)

Ai

Aibi Aiei ρi AiEi+=

Ei

Ei

n̂i
T r̂ ij()+ r̂ ji

T n̂ j()+

πr ij
2

---------------------------------------vij Ajbj
j

∑=

x()+ max 0 x,()≡ n̂i

r̂ ij

r̂ ij r̂ ji r ij vij

i j

Ei n̂i
T r̂–

πr 2
-------- r̂ T n̂ j Ajbjj∑()

+
vi 

 
+

≈

83

Chapter 3. Face Cluster Radiosity
where is the average distance vector. Using Equation 19 we can then rewrite the
transfer in terms of two vector quantities. We find that:

, (26)

where the irradiance vector is defined as

, (27)

with

, (28)

and being the sum area normal of the receiving cluster. (The irradiance vector
has also been employed by Arvo [Arvo94].)

Figure 31: The transfer of radiosity between two clusters of faces. An in-
dividual face in the source cluster F radiates energy towards an indi-
vidual face in the receiving cluster G.

nj ni

Aj

Air

{

{

F G

P

E

j
i

r

Ei n̂i
TE=

E

E v
δ SG r̂,()–

πr 2
----------------------- r̂ TP()+=

δ S x,()
x

0



≡
if x S⋅ 0>
otherwise

SG
84

3.4. The Face Cluster Radiosity Algorithm
The power vector is defined as:

. (29)

If the source cluster has constant radiosity across its constituent faces, we can
simply write:

, (30)

where is the sum area normal of the source cluster.
The irradiance vector is parallel to , and is at a maximum when the power

vector is also parallel to ; it points towards the source cluster. Recording this
information, rather than the scalar irradiance to the average plane of the receiver,
allows coarse variations in the irradiance as a function of orientation to be mod-
elled. This eliminates most of the faceting effects of Figure 19c, as seen in
Figure 19d.

We employ the power vector to permit non-planar clusters to approximate
their outgoing power compactly and quickly. The magnitude of the vector
approximates the total power leaving the cluster, and the direction of the vector
indicates the hemisphere toward which most of the energy is directed (Figure 32).

Figure 32: The power vector. The radiosity emitted by the surfaces on
the left is approximated by the elemental surface on the right, whose di-
rection is the power-weighted sum normal.

P

P n̂ j Ajbjj∑ Sjbjj∑= =

b

P SFb=

SF

r
r

P

85

Chapter 3. Face Cluster Radiosity
When calculating the illumination of a cluster by one or more other clusters, we
transform each power vector into the corresponding irradiance vector via
Equation 27, and sum the resulting irradiance vectors.

Push Pull

These formulas are generalizations of the standard radiosity equations. In the case
of coplanar clusters, they reduce to the familiar hierarchical radiosity push-pull
formulas. In the general case, for the push operation, we find that

, (31)

where is the sum of the irradiance vectors incident directly on the child.
For the pull operation, there are two alternatives. We can operate directly on the
power vector, so that

, (32)

or we can instead operate on cluster radiosities, with

, (33)

and reconstruct the power vector with , as in Equation 30.
The former has the advantage of elegance, and the ability to better match the chief
direction of radiance of a cluster whose radiosity varies considerably over its sur-
face. The latter has the advantage that it is more amenable to error analysis and
the construction of bounds, as we shall see in Chapter 4.

Transfer Coefficients

To model the transfer of radiosity, instead of a single transfer coefficient, we store
a transfer vector , which allows us to apply Equation 27. Where we are working
directly with power vectors, as in Equation 32, we can write

, (34)

Echild δ Schild Eparent,() Rchild+=

Rchild

Pparent Pchild∑=

bparent

bchildAchild∑
Aparent

-----------------------------------=

Pparent Sparentbparent=

m

m r̂ v
πr 2
--------=
86

3.4. The Face Cluster Radiosity Algorithm
and we have . Where we are working with source radiosi-
ties, we can instead use

, (35)

and . Currently, this latter approach is more desirable, as we have a sup-
porting error analysis for it. The former may eventually be preferable if a match-
ing analysis can be found.

Generally, it is easiest to estimate by generating fixed sample points
across both the source and receiver clusters, and taking

(36)

where each is calculated using , the vector from sample point i on the source
to sample point i on the receiver. These samples can also be used for determining
bounds on the transfer, and thus an estimate of the error in the transfer, which can
be used to drive refinement [Gibs96, Lisc94]. However, I have developed a more
accurate and robust approach that relies on conservative bounds for a cluster’s
projected area in a given direction. An in-depth treatment of this error estimate
will be presented in Section 4.4.

Leaf Radiosities

Finally, at the leaves of the hierarchy, where we must transform the accumulated
irradiance vectors into radiosity, we apply the equation

. (37)

Again, we can reconstruct a leaf’s power vector from this by application of
Equation 301.

This treatment of vector-based radiosity transfer assumes a monochromatic
world. It can easily be extended to the familiar RGB colour model; we simply
maintain and or separately for each colour channel, and operate on each

1. In Section 4.4.5 we will show how to trivially rewrite Equation 37 to take account of interreflection within
the leaf cluster.

E δ SG m–,() mTP()+=

m
vδ SG r̂–,() r̂ T SF⋅()+

πr 2
---=

E mb=

m n

m
1
n
--- mi

i 1=

n

∑=

mi r i

b
ρSTE

A
-------------- e+=

E P b
87

Chapter 3. Face Cluster Radiosity
pair independently. Note that the transport vector, , is still wavelength inde-
pendent.

3.4.3. Algorithm Description

There are three types of nodes in the hierarchy used by our algorithm. At the top,
volume clusters contain all unconnected parts of the scene. In the middle, face
clusters contain connected surface meshes. At the bottom, there are polygonal ele-
ments, and refinements of those elements. In our implementation, all of these
nodes use a common object-oriented interface to communicate with each other.
Usually much of each face cluster hierarchy remains unused; only those face clus-
ters at the top of the tree are paged in during the solution phase.

Radiosity using vector-based transfer proceeds in much the same manner
as the irradiance/radiosity method first popularised by [Gers94], and outlined in
Figure 33. In Gershbein’s method, irradiance is gathered to each node in the hier-
archy, and then pushed down to the leaves, whereupon it is converted to radiosity
by the application of reflectance and emittance operators, and pulled back up the
hierarchy. In our algorithm, the irradiance vector, rather than scalar, is pushed to
the solution leaves, and either the power vector or scalar radiosity is pulled back
up the hierarchy. (Here “solution leaves” refers to the lowest level of cluster or
face refinement in the hierarchy, not the input polygons.) Below is an outline of
the algorithm.

Preprocessing

Face cluster hierarchies are generated for the input models. These hierarchies are
dependent only on the geometry of the models, and can be reused over multiple
instantiations of each model. This process is done off-line, and typically only
once, whenever a new model is acquired.

Initialisation

The scene description is read in. Hierarchical radiosity elements are then created
for all root face cluster nodes in the scene (there are typically a small number per
model), and these are volume clustered to complete the initial element hierarchy.

Solution

The solver proceeds according to the pseudocode in Listing 1. The refine proce-
dure follows that outlined in [Cohe93]. When a face cluster element needs to be
subdivided, its two child elements are created using position and sum area nor-

m

88

3.4. The Face Cluster Radiosity Algorithm
mal information retrieved from the cluster file on disk. When the input polygons
are reached, the children become Haar elements, and refinement proceeds as in a
standard hierarchical radiosity algorithm. Storage for irradiance vectors and other
such element information is only required for those face cluster nodes actually
being used by the solver. The solver runs in time and space sublinear in .

Post Processing

After the solution algorithm has terminated, the radiosity solution is propagated
to the leaves of the model by applying the irradiance vectors at the leaves of the
transport tree to all their descendents (e.g., node T of Figure 24c). This final proc-

Figure 33: Schematic of the Hierarchical Radiosity Cycle. The current set
of element radiosities are gathered across transfer links to find the corre-
sponding irradiances at different levels of the solution hierarchy. These
irradiances are then pushed to the leaves of the hierarchy to find the sum
irradiance there, transformed to radiosities by application of the reflec-
tion operator at each leaf, and then pulled back up the hierarchy to calcu-
late the average radiosity at each level of detail.

Gather

Push Irradiance Pull Power

k

89

Chapter 3. Face Cluster Radiosity
ess is , but is typically insignificant compared to the solution time. The radi-
osities of the vertices of the models in the scene are then written out to disk.

3.4.4. Examples

Detailed results of the face cluster radiosity algorithm will be presented in
Chapter 7. In the meantime, here are some informal examples of the algorithm in
action. Figure 34 shows results for a simple scene similar to that of Figure 14. In

solve(tree root)
while (not converged)

gather(root)
pushpull(root, 0)

refine(root,)

gather(element i)

foreach (child c of i)
gather(c)

pushpull(element i, vector)

// is irradiance on i from parent

if (i is a leaf)
// convert irradiance to power

else

// push irradiance, pull power
foreach (child c of i)

pushpull(c,)

Listing 1: Pseudo-code for the Face Cluster Radiosity algorithm

ε

∆Ei vij mij mij
TP j

links j->i
∑–=

E
E

E E ∆Ei+=

Pi Si Max Ŝi
T
Ei 0,()ρi ei+()=

Pi 0=

E
Pi Pi Pc+=

Θ k()
90

3.5. Discussion
this scene, however, the surface is bumpy, containing 13,000 triangles. Whereas
volume clustering takes four minutes to calculate the illumination of the surface,
face cluster radiosity takes just over a second. The use of surface-based clusters
also helps avoid the artifacts present in the volume clustering solution. These
dark patches are caused when the crest of a particular bump belongs to a volume
cluster that lies above the cluster containing the rest of the bump. This crest clus-
ter then shadows the cluster underneath, causing the rest of the bump to be
underlit. Face clusters explicitly follow the shape of the mesh, avoiding this kind
of overlap problem.

Figure 35 shows how a clustered object can also be used as a light source; a
tessellated torus is used to illuminate a bumpy surface. Ray tracing methods such
as Radiance have particular problems with such large distributed light sources;
they must distribute samples over the light source whenever its contribution is
being calculated, which requires some knowledge of its geometry. A common
approach is to simply sample over the bounding box of the light, which in the
case of the torus would result in a large number of samples missing the light
source.

Finally, Figure 36 shows a scene containing a bust lit from two different
directions, along with details of the illumination transfer.

3.5. Discussion

3.5.1. Strengths and Weaknesses

Our algorithm gives the greatest benefit for finely tessellated objects. For more
intricate, space-filling objects such as trees, we rely on volume clustering to pro-
vide a good simulation. This is because of the limitation in our algorithm that
each topologically connected surface has its own face cluster tree. For instance, a
pile of pebbles might need a separate tree for each pebble, if those pebbles were
modelled separately. While we currently aggregate disconnected components by
using volume clustering, better methods for tightly packed components such as
the pebble pile are an avenue for future research.

From any given viewpoint, some of the input polygons in a scene contain-
ing large models can be invisibly small. Arguably a similar picture from that
viewpoint could be generated using a much simpler scene. However, this ignores
the possibility of using an output mesh in a walk-through, where we might wish
to pass much closer to some of the models in the scene. Also, it is tedious to man-
91

Chapter 3. Face Cluster Radiosity
Figure 34: Face-cluster radiosity on a bumpy surface. In (a) face-cluster-
ing handles bumpy surfaces as well as a flat mesh. (b) shows the corre-
sponding clusters. This solution took under two seconds to generate. As
reference, we have both (c), the results of running Radiance (288s) and
(d), volume clustering (260s) on the same scene.

(a) (b)

(c) (d)
92

3.5. Discussion
Figure 35: A highly tessellated, curved light source. The light source is
a torus containing 8,200 polygons. Top left; face cluster radiosity took 28
seconds to calculate this (view-independent) solution. In contrast, vol-
ume clustering (top right) took well over an hour to calculate the corre-
sponding image, and Radiance (bottom-right) took five hours. A
solution for a flat surface is shown for comparison purposes, bottom
right.
93

Chapter 3. Face Cluster Radiosity
Figure 36: The bust of Beethoven. The bust is lit from overhead by a
white light, and from above and to the left by a blue light. Shown are (a)
the results of FCR, (b) the corresponding face clusters, (c) reflection off
the red carpet onto Ludwig’s back, (d) the contribution of nearby patch-
es to one of the back clusters.
94

3.5. Discussion
ually preprocess a scene in a view-dependent manner to optimise radiosity simu-
lations. Ultimately, we wish the radiosity simulation to be as independent of the
model resolution chosen for viewing as possible.

3.5.2. Memory Locality

Radiosity computations are traditionally extremely memory intensive. Because of
this, the memory locality of a radiosity algorithm is a critical aspect of its perform-
ance, albeit one that is often ignored. For instance, progressive radiosity is well
known for its good total memory use; in many cases it is better than that of hierar-
chical radiosity methods. However, it has very poor locality; each iteration of the
algorithm is essentially a linear sweep through several large vectors. Hierarchical
radiosity has much better locality, in the sense that each solution iteration, which
requires a tree-traversal of the data set, accomplishes much more than the equiva-
lent progressive iteration, resulting in significantly fewer iterations to generate a
solution.

This has interesting implications in terms of which algorithm is the speedi-
est. For scenes where both progressive and hierarchical radiosity can fit their com-
putations into physical memory, hierarchical radiosity is quickest. However, if the
scene becomes large enough, the hierarchy will no longer fit in physical memory,
and progressive radiosity becomes the quicker algorithm. Finally, when the scene
is so large that both algorithms must be accommodated by virtual memory, the
superior locality of hierarchical radiosity makes it again quicker than the progres-
sive algorithm; in other words, hierarchical radiosity thrashes better than progres-
sive radiosity.

Face cluster radiosity inherits the good data structure locality from the
hierarchical radiosity algorithm. To take advantage of this, face cluster files are
written in breadth-first order, so we get correspondingly good memory locality.
(These files are simply memory-mapped for use by the solver.) FCR also has the
added advantage of much smaller active memory use; it is almost always the case
that only the first small section of each face cluster file is used during solution.

3.5.3. Surface Material Maps

The visual complexity of a scene is often enhanced by the application of various
types of surface maps to the original models. Most of these are handled naturally
by our algorithm. Texture maps can be pre-sampled at the leaves and filtered over
the vertex or face cluster hierarchy as described in [Gers94]. A similar approach
95

Chapter 3. Face Cluster Radiosity
can be taken to emittance maps, although the quantity pre calculated for the hier-
archy needs to be an emittance vector, similar to the power vector.

In particular, our approach extends well to the use of displacement maps.
Displacement mapping is a useful tool for adding geometric complexity to simple
models. For instance in Pharr et al. [Phar97] a highly complex scene of 5 million
primitives is constructed from a number of simpler source primitives, each con-
taining on the order of 10,000 polygons, by applying displacement maps. Dis-
placement-mapped objects are characterized by highly tessellated surfaces with a
high degree of planar coherence, but widely varying normals. In such cases it is
possible to approximate the irradiance of large areas of the model with a single
link, applying the irradiance vector to the local surfaces only at the time of the
final render. Similarly, having the irradiance vector available makes applying
bump maps [Blin78] to surfaces trivial.

3.5.4. Animated Models

The face cluster hierarchies generated by the method outlined here can be reused
over different scenes, and even over successive frames of an animation, provided
the models they are generated from do not change. Of course, this is not always
the case, especially when a model takes the part of a central character in the ani-
mation, rather than a part of the static backdrop. It can be shown that rigid body
transformations and uniform scaling do not affect the construction of the hierar-
chy; hierarchies would not have to be rebuilt for model animations featuring only
such transformations.

However, deformations [Barr84, Gudu90], commonly used to bend and
reshape models on-the-fly in a non-linear manner, can and do affect the hierarchy.
In such cases, a new face hierarchy would have to be generated for the model for
each frame in the animation in which it is deformed, thus undoing some of the
benefit of my algorithm. (It should be noted that standard volume clustering has
to rebuild the entire hierarchy for each new frame regardless, although arguably
the same hierarchy pre-calculation techniques outlined here could be applied to
volume clustering also.) Deformations result in only incremental changes to a
model’s geometry from scene to scene, though, so we would hope that a local
pass could refit the hierarchy at each step of the animation, without the cost of
rebuilding it from scratch.

3.6. Summary

We can summarise the steps in the face cluster radiosity algorithm as follows:
96

3.6. Summary
• We construct a face cluster hierarchy file for each new model acquired. (Time
and space super-linear in . As we shall see in Section 5.6, this is in practice
linear in .)

• We create a scene from these models.

• The radiosity program reads in the scene description, and adds the root face
cluster nodes to a volume cluster hierarchy. (Time and space linear in ,
where is the number of disconnected surfaces in the scene.)

• The gather/push-pull/refine solver is run. (Sub-linear in .)

• The radiosity solution is propagated to the polygonal leaves of all models,
and written to disk. (Linear in .)

As usual, is the number of polygons in the input scene.

k
k

s
s

k

k

k

97

Chapter 3. Face Cluster Radiosity
98

	Chapter 3 Chapter 3 Face Cluster Radiosity
	3.1. Introduction
	3.1.1. Overview

	3.2. Outline
	3.2.1. Motivation
	3.2.2. Hierarchy Analysis
	3.2.3. Previous Work

	3.3. Building Surface Hierarchies
	3.3.1. Multiresolution Surface Hierarchies
	3.3.2. The Face Clustering Algorithm
	3.3.3. Dual Edge Cost Metric
	(11)
	(12)
	(13)
	(14)
	(15)
	(16)
	(17)
	(18)

	3.3.4. Compact Shape Bias
	(19)

	3.3.5. A Face Cluster Node
	(20)

	3.4. The Face Cluster Radiosity Algorithm
	3.4.1. Standard Radiosity Derivation
	. (21)
	, (22)
	(23)
	(24)

	3.4.2. Vector-based Radiosity
	, (25)
	, (26)
	, (27)
	, (28)
	. (29)
	, (30)
	, (31)
	, (32)
	, (33)
	, (34)
	, (35)
	(36)
	. (37)

	3.4.3. Algorithm Description
	3.4.4. Examples

	3.5. Discussion
	3.5.1. Strengths and Weaknesses
	3.5.2. Memory Locality
	3.5.3. Surface Material Maps
	3.5.4. Animated Models

	3.6. Summary

