
C h a p t e r 2
Previous Work on the
Radiosity Problem
2.1. The Physics of Global Illumination

We start by examining the physical basis for the simulation of global illumination
in a computer graphics scene; first we introduce some important physical quanti-
ties, and then present the equations that govern light transport in such a scene.

2.1.1. Important Quantities

The key quantity in the physical simulation of light is radiance. This is defined as
the amount of power radiated from a surface in a particular direction. It is meas-
ured in Watts radiated per unit area per unit solid angle, namely, .

We are primarily interested in the simulation of diffuse illumination; that
component of global illumination that is view independent. For this, the physical
quantity of radiosity is often more useful. It measures the amount of power radi-
ated from a surface over all directions, and thus is measured in Watts per unit
area, . Radiosity is usually taken to refer to the light radiated by a sur-
face. The light incident on a surface integrated over all directions is known as irra-
diance, and has the same units as radiosity.

Confusingly, the term “radiosity” is often used in computer graphics to
refer explicitly to finite-element methods for solving for the transfer of radiosity
in an environment. In fact, as we shall see, the various methods used to solve the

Watt m
2
sr⁄

Watt m
2⁄
23

Chapter 2. Previous Work on the Radiosity Problem
radiosity problem are independent of that problem, which is simply a more con-
strained version of the more general global illumination problem. A wide spec-
trum of approaches to solving this problem have been taken, from purely finite-
element methods to purely stateless Monte Carlo methods.

Both radiance and radiosity are known as radiometric quantities; they are
measured with respect to a specific wavelength, and are thus independent of the
human visual system. All radiometric quantities have corresponding photometric
ones, which are instead integrated over all possible wavelengths, weighted with
the response of the human visual system. The photometric equivalent of radiance
is luminance, and that of radiosity is illuminance. These quantities are impor-
tantly mostly when considering the transformation of radiometric quantities cal-
culated for the scene into those suitable for use on a display device; this
dissertation will largely ignore such issues. (However, see [Tumb99] for a full dis-
cussion of the issues involved.)

Appendix A has a full list of physical quantities and symbols used in this
dissertation.

2.1.2. The Rendering Equation

If we ignore participating media, and concentrate solely on the interaction of light
with scene surfaces, the global illumination problem can be summarized by the
following integral equation:

(1)

This is known as the rendering equation [Kaji86]. Basically, it states that the radi-
ance emitted from some surface point in the direction is equal to the radiance
the surface itself emits in that direction, , plus the integral over the hemisphere
of the incoming radiance that is reflected in that direction, . To be more pre-
cise:

• is the total radiance leaving in the direction ;

• is the radiance directly emitted from in the direction ;

• is the fraction of radiance incident from direction that is
reradiated in direction ;

• is the radiance incident on from the direction ;

• is the angle between the surface normal at and ;

L x ω,() Le x ω,() ρ x ω ωi→,()Li x ωi,() θxcos ωid
Ω∫+=

x ω
Le

ρLi

L x ω,() x ω

L x ω,() x ω

ρ x ω ωi→,() ωi

ω

Li x ωi,() x ωi

θx x ωi
24

2.1. The Physics of Global Illumination
• is the hemisphere lying above the tangent plane of the surface at .

For a summary of more general global illumination models, see [Glas94].
This integral equation is known as a Fredholm equation of the second

kind, as it follows the form

, (2)

where and are fixed, and is known as the kernel. It cannot be solved analyt-
ically, except for the most trivial of cases.

If we assume that all surfaces reflect light diffusely, i.e., , the
integral over the hemisphere collapses, and we have

(3)

which, given , and , can be rewritten as the
radiosity equation:

, (4)

where

(5)

and

• is the total radiosity at point ;

• is the emittance at point ;

• is the reflectance at point ;

• is the visibility between points and ;

• is the geometry kernel between points and .

This is the equation we must solve to find the global illumination of a purely dif-
fuse scene.

Ω x

b s() e s() κ s t,() td
α

β
∫=

α β κ

L x ω,() L x()≡

L x() Le x() ρ x() Li x ωi,() θxcos ωid
Ω∫+=

dω θcos() r 2⁄()dA= B x() πL x()=

B x() Be x() ρ x() G y x→()V y x→()B y() Ayd
y S∈∫+=

G y x→()
θxcos θycos

π x y– 2
-----------------------------=

B x() x

Be x() x

ρ x() x

V y x→() x y

G y x→() x y
25

Chapter 2. Previous Work on the Radiosity Problem
2.2. Solving Integral Equations

Given that global illumination is governed by an integral equation, it makes sense
to look at the various methods for solving such equations. Unfortunately, even the
simplest global illumination scene is unsolvable analytically, and we must look to
numerical methods for solving integral equations. We start by looking at numeri-
cal techniques for solving integrals, known as quadrature methods, and then
explain how they can be applied to solve an integral equation.

2.2.1. Monte-Carlo Quadrature

Commonly, quadrature methods estimate an integral of some function by
forming a weighted sum of samples of that function:

(6)

The sample points, , are known as abscissas. In some situations they are fixed
beforehand, but in most situations, including the ones we face in computer graph-
ics, we get to pick the abscissas.

In pure Monte-Carlo integration, we assume nothing about the integrand:
the abscissas are picked randomly, and the weights are set to one. It is also pos-
sible to take advantage of some knowledge of the integrand via importance sam-
pling, where the sample points are drawn not from a uniformly distributed
random variable, but from a probability distribution that matches some
known factor of the function being integrated. For instance, if we are evaluating
the integral in Equation 1, we can choose our probability distribution according
to the section of the integral, as this part of the function is known a pri-
ori. In this approach the weights are set to .

The Monte Carlo approach is particularly effective in dealing with high
dimensional integrals, and integrals with discontinuities in the integrand, and has
the advantages of being simple to implement, and almost no memory cost. How-
ever, the convergence rate of Monte Carlo, , is poor, and is the major reason
Monte Carlo methods are associated with computationally costly calculations. It
is possible to do better convergence-wise, especially with smooth integrands. The
other chief drawback of Monte Carlo methods is that the error in their approxima-
tion presents itself as noise; in places where we expect the results of an integral to
be smooth over some domain, this can be highly distracting.

F x()

F x() xd∫
wiF xi()∑

wi∑
--------------------------≈

xi

wi

p x()

ρ() θcos
wi 1 p xi()⁄=

O n()
26

2.2. Solving Integral Equations
2.2.2. Deterministic Quadrature Methods

Deterministic quadrature methods work by picking some set of and so that,
if some assumption about the integrand is true, the estimate of the integral is
exact. The simplest possible such method is to assume that the integrand is con-
stant, and estimate the integral with a single sample of . More general rules
are possible, such as those given by Gaussian quadrature formulas. For sam-
ples, these rules are guaranteed to be exact for polynomials up to degree .

The disadvantage of such methods is that they do not handle discontinui-
ties well, and they suffer from dimensional explosion. If a particular rule requires

samples in one dimension, the corresponding -dimensional rule will require
 samples; this soon becomes unwieldy above three or four dimensions.

The kernel of the radiosity equation consists of one largely smooth factor,
the geometry term , and one factor that can be highly discontinuous, the visibil-
ity term . Figure 6 shows the radiosity function for a trivial scene configuration
that illustrates the effect of both terms. The tension between these two factors is
one of the reasons there are so many competing methods for simulating diffuse
illumination; Monte Carlo methods do much better with the visibility part of the
kernel, and deterministic methods with the geometrical part of the kernel. Used
inappropriately, Monte Carlo methods lead to objectionable noise in the smooth
parts of the function shown, and deterministic methods can result in the illumina-
tion discontinuity in the middle of the patch being unnaturally smeared.

2.2.3. Solving The Rendering Equation

Of course, it does not suffice to have techniques for solving the integral in
Equation 1, because that integral is cast in terms of an unknown, namely the
quantity we’re trying to find in the first place, the scene radiance function. How-
ever it is possible to restate the equation recursively, in terms of an integral opera-
tor:

(7)

This allows us to solve for by using a generalisation of the geometric series,

, (8)

xi wi

F x()
m

2m

m n
mn

G
V

L Le ℜL+=

L

ar

r 0=

∞

∑ 1
1 a–
------------=
27

Chapter 2. Previous Work on the Radiosity Problem
called the Neumann series:

. (9)

This series is guaranteed to converge only if the spectral radius of is less than
one, but this is guaranteed for any reflection operator that conserves energy.

In computer graphics, this infinite sum has an obvious analog; each appli-
cation of the operator represents a single bounce of light from every emitting
surface in the scene. The sum represents successive “bounces” of illumination
from the original light sources () throughout the scene, until a steady state is
reached.

Figure 6: The radiosity kernel. Shown on the left is a simple configura-
tion of a diffuse emitter and a diffuse reflector. On the right is a plot of
the irradiance across the receiving patch; it is largely smooth, even with
the two polygons in close proximity, except where we cross behind the
light source, and it no longer becomes visible. In practice the distance be-
tween light source and receiver is greater, and the geometric part of the
radiosity kernel is even smoother than this.

L Le ℜLe ℜ2Le …+ + +=

ℜ

ℜ

Le
28

2.2. Solving Integral Equations
Path Tracing

We can extend the use of Monte Carlo integration techniques to this iterative solu-
tion, via the mechanism of random walks, in an approach known as path tracing.
Rather than using Monte-Carlo sampling to apply the reflection operator to the
entire scene, and then repeating that operation, a random walk is used to simulate
repeated applications of the reflection operator to successive samples of scene
illumination. A particle is probabilistically emitted from a light source in the
scene, and then “traced” through the scene, being reflected at appropriate points
by scene surfaces. At each successive bounce, either the new direction of the parti-
cle is chosen according to a probability distribution that matches the shape of the
reflectance function for that surface, or the path is terminated and the particle is
“absorbed” by the surface. This process can be thought of as simulating the paths
of large numbers of photons through the scene.

Finite Element Methods

Another approach to the problem is the use of the finite element method. Rather
than concentrating on the propagation of light particles through the scene, this
method tries to solve for the light emitted by the scene’s surfaces. It works by
breaking the domain up into a finite number of zones called elements, each hav-
ing its own, local set of basis functions. The illumination problem then becomes a
problem of stating the relationship between each individual element and the
other elements in the scene, and deriving from that the light emitted over each
element.

While the finite element method can be applied to the full rendering equa-
tion (Equation 1), it is more natural to apply it to the radiosity equation
(Equation 2). Once the scene has been discretized, the radiosity equation becomes
a simple linear system,

(10)

where is a vector of radiosities per element, is a vector of emittances, and is
a matrix, whose effect is analogous to that of the reflection operator . (If there is
more than one basis function per element, these will be tensors.) This system of
equations is usually solved in a similar way to Figure 9; by repeated multiplica-
tions of the initial radiosity estimate by .

ρ

b e Rb+=

b e R
ℜ

e I R+()
29

Chapter 2. Previous Work on the Radiosity Problem
2.2.4. Global Illumination Methods

There are a wide variety of global illumination methods that can be applied to
solving the radiosity problem. They vary in what quadrature methods they use,
how they store any intermediate results, and what they output; either a view-
dependent image, or a (usually) view-independent mesh. I will try to span the
possible approaches with a review of the most salient papers.

Stateless Ray-Tracing

A purely stateless path-tracing method, such as stochastic ray-tracing [Kaji86,
Lang94] proceeds as described above; photons are propagated through the envi-
ronment, eventually reaching the view point. (For efficiency reasons, direct light-
ing is often treated as a special case, and path tracing used to estimate only the
indirect illumination.) Where the reflection function is highly directional, i.e.,
specular, good results can be achieved with a moderate number of samples. When
the reflection function is such that the entire hemisphere above any surface “hit-
point” must be sampled evenly, a much larger number of samples is needed to
achieve the same level of accuracy.

This approach produces very noisy results on diffuse scenes (see Figure 7).
(Of course, as mentioned, it performs very well on specular scenes, for which
finite-element based radiosity techniques do just as poorly.) The noise can be
decreased by increasing the number of photons emitted, but only slowly; this is
known as the law of diminishing returns of Monte-Carlo sampling.

State of the art path-tracing methods use several different sampling strate-
gies, each targeted towards a particular aspect of the global illumination problem,
and combine them in ways that are provably good [Veac94, Veac95]. These meth-
ods do improve results for the middle ground of semi-diffuse scenes measurably,
but pure diffuse scenes still suffer from noise. (Again, see Figure 7.)

Finite-Element Methods

As discussed previously, finite element methods work directly on the mesh of the
input scene. The input scene is polygonized if it is not already, and then subdi-
vided into a number of discrete surface elements. The problem of radiosity trans-
fer between these elements is then treated similarly to other radiative transfer
problems; the interactions between elements, known as form factors, are found,
and, given an initial set of emittances and reflectivities for each element, used to
iteratively propagate energy though the environment until the solution reaches a
steady state. These methods are particularly effective when the radiosity function
30

2.2. Solving Integral Equations
varies only slowly across each element, as is often the case in diffuse environ-
ments.

Figure 7: Global Illumination methods for the Cornell box scene. Top,
three ray-tracing methods; (a) stochastic ray-tracing, (b) bi-directional
ray-tracing, and (c) diffuse sample caching (Radiance). Bottom, hierar-
chical radiosity with (d) the Haar basis, (e) the Haar basis and a smooth-
ing pass, and (f) a linear basis.

The radiosity methods each took several seconds to render the
scene, sample caching fifteen seconds, stochastic ray-tracing twenty
seconds, and bidirectional ray-tracing a minute.

(d) (e) (f)

(a) (b) (c)
31

Chapter 2. Previous Work on the Radiosity Problem
Sample Caching Methods

Pure Monte Carlo methods suffer because they do not take advantage of the
coherence in the radiosity function; illumination in a purely diffuse scene tends to
vary only slowly across surfaces, as a direct consequence of the incoming radi-
ance integral covering the entire visible hemisphere for any point on the surface.
Ward takes advantage of this by using diffuse sample caching in his Radiance
program. Whenever an expensive diffuse illumination sample is calculated, it is
stored in a volumetric spatial data structure (an octree). If another sample is
needed from a point nearby on the same surface, the sample is simply reused,
with appropriate filtering.

Another technique that uses sample caching is the “photon map” [Jens96].
Whereas Radiance calculates and reuses diffuse samples on demand, as rays are
traced out from the view-point, the photon map works in the other direction. It
uses a path-tracing approach in which as usual power-carrying particles are emit-
ted from each light source, and tracked through the scene until they are absorbed,
but then stores their position and incident direction in a spatial data structure.
(The genesis of such photon-tracing methods is a paper on simulating the particle
model of light by Pattanaik and Mudur [Patt92].) In a second, image producing
pass, when a ray traced from the eye hits a diffuse surface, nearby “photons” are
filtered to estimate the local irradiance of the surface. The technique has the
advantage that it is extremely flexible, and good at producing caustic effects. Its
major drawback is that a large number of photons must be emitted to build up the
map, and there is little way of telling a priori exactly how many will be sufficient
to produce a desired image.

Mesh-Based Monte Carlo Methods

Rather than caching particles in a volumetric data structure, it is possible to store
the results of random walks in a surface-based data structure. Heckbert takes just
this approach with his “adaptive radiosity textures” [Heck90]. Photons are traced
from light sources, and, when they hit a diffuse surface, accumulated in texture
maps. These maps are adaptively subdivided when their resolution is insufficient.

Another such method is density estimation [Shir95, Walt97b]. This tech-
nique extends the sample caching methods in order to generate view-independ-
ent global illumination solutions; the output is a traditional surface mesh with
vertex radiosities. It proceeds much like the photon map, but adds a phase, called
the “density-estimation” phase, where the stored photons are used to construct an
approximate irradiance function for each surface. This irradiance function is then
used to construct the output mesh via Delauney triangulation.
32

2.2. Solving Integral Equations
Finally, finite-element methods have been adapted to use Monte-Carlo
path tracing to calculate diffuse light transport [Shir91, Neum95]. This is similar
to the photon map and radiosity texture approach, but, instead of the samples
being stored in a spatial data structure or texture map, they are used to estimate
the diffuse illumination of elements in the input mesh. One of the great advan-
tages of this approach is the robustness of path-tracing in the face of large, com-
plex scenes. The chief drawback of such Monte Carlo radiosity methods is the
introduction of noise; it tends to produce a dappled effect on what would other-
wise be smooth surfaces. Also, the method requires that scenes be pre-meshed a-
priori to a reasonably fine resolution, often incurring more geometry storage than
strictly necessary, and posing the difficult question of what resolution to use for
the mesh. Some work has been done on driving mesh adaption by maintaining a
“preview” mesh at finer resolution than the result mesh, and using the preview to
decide where further subdivision is necessary [Tobl97].

Shirley has shown that, under certain assumptions, if a given scene is
divided up into elements, evaluating their diffuse illumination via Monte-Carlo
path tracing requires rays to be cast [Shir92]. It is generally accepted that the
cost of a ray-tracing query is , leading to a total time complexity of

 for naive ray-tracing based methods.

Summary

A summary of the various methods is shown in Table 1.

Method Quadrature. State Fixed View

Stochastic Ray-Tracing Monte Carlo None Yes
Bi-Directional Path Tracing Monte Carlo None Yes
Diffuse Sample Caching Monte Carlo Sample Cache Yes
Photon Maps Monte Carlo Sample Cache Yes
Adaptive Radiosity Textures Monte Carlo Adap. Texture No
Density Estimation Monte Carlo Mesh No
Random Walk Radiosity QMC Finite Element No
Galerkin Radiosity Galerkin Finite Element No
Importance-based Radiosity Galerkin Finite Element Yes

Table 1: A Global Illumination Taxonomy.

n
O n()

O nlog()
O n nlog()
33

Chapter 2. Previous Work on the Radiosity Problem
2.2.5. Finite-Element vs. Monte Carlo Methods

For low to medium complexity scenes, the various finite element methods pro-
duce the best results for diffuse scenes. For more complex scenes, Monte Carlo
methods have proven faster: Ward’s sample caching method is currently the most
stable, fast and robust method for such scenes.

We might reasonably ask, what is the point in further research into finite-element
methods, given that they only solve for diffuse light transport? For a start, Monte
Carlo-based techniques have their drawbacks as well:

• They are noisy, especially when the scene is animated

• They are not as adaptive as Finite Element Methods.

• Of the various methods, only density estimation produces illuminated scene
geometry, as opposed to a single image. (Although Ward’s method does
cache diffuse illumination samples between runs, so that calculations are
reused between viewpoints.)

The Achilles heel of radiosity methods is their time complexity, and their reliance
on the input scene to define the element mesh; arguably this overconstrains the
solution. There are a number of reasons to continue investigating finite element
methods, however:

• The hierarchical nature of state-of-the-art radiosity algorithms is appealing.

• The algorithm can be used as a pre-processing stage for a full global illumi-
nation solution. Hierarchical radiosity methods produce a set of links which
summarize the transport of light in the given environment. These links can
be used to guide sampling in a more general Monte Carlo-based renderer.

• The ability to amortize the cost of calculating diffuse illumination over the
course of animation or walkthrough is valuable.

• While not physically correct, calculating static diffuse illumination and then
adding specular stuff reflections during a post-pass can produce highly real-
istic images, as evidenced by the output of the commercial Lightscape ren-
derer [Auto].

Currently, radiosity methods have a strong niche in medium-complexity virtual
worlds, for games and architectural walkthroughs. The complexity of these envi-
ronments is limited by the need for interactive rendering rates, so the poor per-
formance of radiosity methods on more complex scenes is irrelevant. However,
this will not always be the case. The work contained in this dissertation was pri-
34

2.3. An Introduction to Finite-Element Radiosity
marily motivated by the observation that, unless the dependence on input geome-
try of finite element methods could be overcome, the method would most likely
be written off as a historical curiosity as scene complexities continued to rise. At
the very least, radiosity must be able to compete with caching ray-tracing’s com-
plexity and robustness.

2.3. An Introduction to Finite-Element Radiosity

The finite-element radiosity algorithm is the most commonly used algorithm for
simulating diffuse interreflection [Cohe93]. It subdivides surfaces in the environ-
ment into a mesh of elements, and then sets up and solves a large system of linear
equations in order to compute the radiosity (the amount of emitted or reflected
light) at each surface point. Early radiosity algorithms used a fixed mesh of ele-
ments, and, as each element can potentially illuminate every other element, had
costs that were quadratic in the number of elements in the scene. These algo-
rithms did a poor job of exploiting the sparseness of the element-to-element inter-
action kernel; most objects are visible to only a small subset of the other objects in
the scene, and the transfer of radiosity also obeys an inverse square law, so much
of this kernel is either zero, or of small magnitude.

In this section we shall introduce the most important finite-element algo-
rithms for the radiosity problem. We start with the most commonly used radiosity
algorithm in practice, progressive radiosity.

2.3.1. Progressive Radiosity

All radiosity methods trace their roots from matrix radiosity, which explicitly
computes a large form factor matrix and solves several large systems of equations
[Gora84, Nish85, Cohe85]. First, the scene is discretized into patches, then form
factors between every possible pair of patches are computed. The resulting
linear system of equations is typically solved using an iterative method such as
Gauss-Seidel iteration [Stra86]. Computing the form factors is the most costly
step, as each one requires one or more visibility tests. The amount of storage
required is , which makes the method infeasible for anything other than
trivial scenes.

Because it is so expensive in time and space, matrix radiosity is mainly a
historical curiosity, though it is occasionally useful for theoretical investigations.
Its immediate successor, however, was progressive radiosity, which is probably
the most widely used, and certainly the most robust, finite-element radiosity
method. This technique progressively refines an image by computing the matrix

n n×

n2

O n2()
35

Chapter 2. Previous Work on the Radiosity Problem
and the solution incrementally [Cohe88]. It iteratively “shoots” light from the
brightest light sources and reflective surfaces, computing just one column of the
form-factor matrix at a time. This is a variant of Southwell’s relaxation technique
for solving linear systems [Gort93a, Shaw53]. Although this relaxation technique
has been largely superseded by other iterative techniques in the numerical meth-
ods literature [Barr94], it has proven useful for radiosity simulations, because it
reduces the amount of form-factor storage needed to . The technique also
has the great advantage that the illumination that will make the greatest differ-
ence the final image is calculated first, starting with direct lighting—see Figure 8
for an example of the results. To make this possible, a per-patch record of the
amount of unshot radiosity left in the scene must be kept, but this results in only
an addition storage.

Progressive radiosity is usually used in conjunction with substructuring,
which introduces a two-level hierarchy to the mesh; the coarser patches shoot
light to a finer set of elements [Cohe86]. The elements are subdivided adaptively
in regions of high radiosity gradient, such as shadow boundaries. Substructuring
is generally regarded as being very desirable since it helps capture fine detail illu-
mination, such as sharp shadow boundaries, without any consequent penalty in
terms of the number of shooting patches to be dealt with.

If shooting steps are used, the time cost of progressive radiosity is
. In practice the number of shooting steps is smaller than the total number

of patches, so . Still, the method is usually significantly superlinear in the
number of elements .

2.3.2. Hierarchical Radiosity

The most significant theoretical modification of the original matrix radiosity algo-
rithm is the hierarchical radiosity algorithm [Hanr91, Cohe93, Sill94b]. This takes
advantage of the sparseness of the interaction kernel by employing techniques
similar to the n-body algorithm used in gravitational simulations [Appe85, Barn86,
Gree87]. By treating interactions between distant objects at a coarser level than
those between nearby objects, the hierarchical radiosity algorithm reduces the
cost from quadratic to linear in the number of elements used.

These methods employ multilevel meshes to represent the radiosity func-
tion, and allow inter-patch interactions to take place between arbitrary levels of
the mesh hierarchy [Gort93b, Stol96, Schr96]. Thus, unlike previous methods,
hierarchical radiosity does not use a fixed mesh, but a mesh that is adaptive in res-
olution to the other surfaces “viewing” it. When reflecting light to a distant sur-

O n()

O n()

s
O snv()

s n<
n

36

2.3. An Introduction to Finite-Element Radiosity
Figure 8: Shooting steps. Left: radiosity, right: unshot radiosity.

3 iterations

34 iterations

66 iterations

100 iterations
37

Chapter 2. Previous Work on the Radiosity Problem
face, a given surface is meshed coarsely, but when reflecting to a nearby surface, it
is meshed more finely.

The commonly used adaptive mesh representation is the quad-tree; this is
used to represent each input polygon in the scene. Figure 9 shows how nodes in
various levels of a quad-tree mesh interact with the rest of a simple scene. Each
transfer of energy between two different nodes in the quad-tree is represented by
a data structure called a transport link, which contains some representation of the
fraction of radiosity transferred, and some estimate of the error in that representa-
tion.

Hierarchical radiosity has a cost linear in the number of final solution ele-
ments, . Unfortunately, because an initial light transport link from each polygon
to every other polygon must be computed, the cost is also quadratic in the
number of input polygons, . The cost is thus .

Hierarchical radiosity can be regarded as a specific instance of a more gen-
eral class of wavelet radiosity algorithms, although it was originally developed
without reference to wavelet techniques. Whereas the original HR algorithm
assume the radiosity was constant across each mesh element, Various basis func-
tions can be used to represent the radiosity across an element.

While hierarchical radiosity was inspired by the original n-body algorithm
of Appel, and is similar in spirit to its widely-used successor in the astrophysics
community, the Barnes-Hut algorithm, the difference in application area has lead
it in different directions. (The parallel class of algorithms in the physical simula-
tion community are referred to as “treecodes”.) Chiefly, the difference is due to
the presence of occlusion in the illumination problem. In the radiosity problem,
we must deal with any occluding objects between two interacting mesh elements,
and also with tangential occlusion; a surface, by its nature, emits radiosity above
the tangent plane only. Not only does this introduce discontinuities into the inter-
action kernel, but evaluating possible occlusion is an expensive operation; much
more so than evaluating either the forces of gravitational attraction or indeed the
rest of the rendering equation. The upside of occlusion is that it promotes sparse-
ness in the kernel. The number of radiosity interactions in, say, an office building,
will be fewer than the equivalent gravitational configuration, due to the various
offices being largely compartmentalised.

n

k O k2 n+()
38

2.3. An Introduction to Finite-Element Radiosity
Figure 9: Hierarchical Radiosity. The transfer of radiosity takes place be-
tween several different levels of the mesh hierarchy. Strong light sources
and immediate neighbours contribute to an element at the finest level of
the mesh (a), medium-strength contributors to its parent element (b),
and low-strength, distant sources to its parent (c). These contributions
are summed to form the final result (d). The white arrows shown repre-
sent transport links, each of which contains an estimate of the form-fac-
tor and occlusion between the two elements it connects.

(b)(a)

(d)(c)
39

Chapter 2. Previous Work on the Radiosity Problem
2.3.3. Hierarchical Radiosity with Clustering

Classical hierarchical radiosity algorithms work well on scenes with a small
number of large polygons, but the term means they become impractical in time
and memory consumption for scenes of several hundred polygons.

To combat this problem, clustering methods for hierarchical radiosity were
developed [Chri97, Gibs96, Sill95b, Sill95a, Smit94]. These methods group the
input polygons into volume clusters, building a hierarchy above the input poly-
gons that culminates in a root cluster for the entire scene. The lower nodes in this
hierarchy are elements in quadtrees, as before, but the upper nodes are volume
clusters. These are octree or k-d tree boxes containing a set of disconnected poly-
gons with potentially varying normal vectors and reflectances. With the use of
volume clusters, we now have a complete, singly-rooted simulation hierarchy,
which requires only a single initial illumination link; thus the term in the com-
plexity vanishes. (See Figure 10.)

Several methods for handling the light incident on a cluster have been
explored. The simplest is to assume the clusters are isotropic, and thus sum the
incoming light from all directions. This approach, called beta links by Smits, turns
out to be fast, , but inaccurate. A more successful alternative is to push
the light down to the leaves of the tree whenever it is gathered across a link.
(Smits’ alpha links) [Sill95a, Smit94, Stam97a]. This raises the cost of the algorithm
to . A third alternative, proposed by Sillion and Christensen [Chri97,
Sill95b], is to represent a cluster as a point that emits and reflects light according
to a directional distribution. Both latter methods require light to be pushed down
the tree, as with alpha links. Christensen’s algorithm appears to be asymptotically
the fastest, achieving good quality results in time. Although any of these
clustering methods is significantly faster than classical hierarchical radiosity, the
need to touch all of the input polygons on each solver iteration can cause their
working set to be excessively large for complex scenes.

2.3.4. Importance-Based Radiosity

Smits first introduced the concept of importance-based radiosity methods
[Smit92]. In such methods, as well as radiosity being distributed from light
sources, a quantity known as importance is distributed from the view-point. The
refinement process then targets those elements with high radiosity and impor-
tance. In this way, the solution generated is optimised for the particular view-
point chosen. This saves considerable time over generating the standard view-

k2

k2

O k n+()

O k klog n+()

O k n+()
40

2.3. An Introduction to Finite-Element Radiosity
independent solution, at the cost of having to perform more solver iterations
whenever the viewpoint changes.

This thesis concentrates primarily on methods for producing view-inde-
pendent solutions for geometry, so we will ignore importance from here on in. It
should be noted, however, that the importance approach could be applied to the
central vector radiosity algorithm presented later, if a view dependent solution
were acceptable.

2.3.5. Linkless Radiosity

It has been observed that, particularly with wavelet radiosity, the cost of storing
transport links can be prohibitive [Will97b, Will97a]. The overhead per link goes
up as , where is the order of the wavelet algorithm used, whereas the over-

Figure 10: Hierarchical Radiosity with volume clustering. With the ad-
dition of volume clustering, interactions can also take place between
clusters of polygons rather than the individual polygons. (e) The floor
patch from (c) now interacts with the table as a whole. (f) The table clus-
ter’s incident illumination is made up of all but the closest patches and
the light sources.

(f)(e)

M
4

M

41

Chapter 2. Previous Work on the Radiosity Problem
head per element only goes up as . Worse yet, whereas elements can often be
represented with tensor product bases, with attendant savings in space and time,
the geometric kernel governing transport between elements has no such inherent
symmetry, and thus cannot.

A number of researchers have proposed methods for reducing or eliminat-
ing the storage of links in a hierarchical radiosity method [Stam98, Cuny00]. Such
algorithms usually use a modified form of the shooting algorithm, which has the
advantage that it reuses links much more rarely than the standard gather-type
algorithm for hierarchical radiosity. They then either regenerate transport links as
needed, or use a fixed-size cache to store the links; when there is no room left in
the cache, the link judged to be least likely to be reused is ejected.

There are some drawbacks to the linkless radiosity methods. There is the
increased computation time due to recalculating links, especially given the cost of
visibility calculations. Also, not keeping all the radiosity links necessary for the
final solution can reduce the utility of the algorithm. A complete list of links is an
informative data-structure about scene illumination in its own right. Without it,
there can be no final gather stage. It is also potentially useful in deciding where to
place light maps, shadow maps, and environment maps. However, linkless radi-
osity does make the memory overhead of the various wavelet methods much
more tractable; for these methods its drawbacks are easily outweighed by its ben-
efits.

The mesh-based random-walk methods of Tobler and Shirley mentioned
previously inSection 2.2.4 can be viewed as another way of avoiding explicit
transport links.

2.4. Discussion of Hierarchical Radiosity

In this section we examine some aspects of the hierarchical radiosity algorithm in
closer detail, in order to supply enough background to carry the reader through
the oncoming chapters on face cluster radiosity.

2.4.1. Link Refinement

Hierarchical radiosity is a top-down algorithm. We start with a small set of initial
links, representing light transport in the scene at the coarsest possible level, and
iteratively refine those links until our transport representation is fine enough
enough to capture the desired illumination effects. Usually, on each iteration we
decide whether to refine a given link based on whether some estimate of its
approximation error is less than a preset threshold, . In early radiosity algo-

M2

ε

42

2.4. Discussion of Hierarchical Radiosity
rithms, this error was taken to be the magnitude of the transport, or form-factor,
itself. As well as working reasonably well, this had the advantage that it was easy
to show theoretically that for any given , each element in the solution mesh
could have at most a fixed number of links, this being a necessary precondition of
the solution process. (This has also proven to be true in practice, and for
bases other than Haar; see “An Empirical Comparison of Radiosity Methods”
[Will97b], Figure 76.) This is a consequence of the total form-factor of any element
summing to unity. Ignoring discretisation error and assuming a closed scene, each
element would then have transport links associated with it.

More recent radiosity algorithms use either an estimate of the total power
carried by the link, or the error in that power, to make refinement decisions. This
has the advantage that transport links that affect the resulting solution the most
are refined first. Stamminger et al. classify the possible approaches to estimating
error into three categories: the previously-discussed form-factor approach, bound-
ing methods which establish upper and lower bounds on the transport, and sam-
pling approaches which use the variation in samples of the transport to estimate
error [Stam97b]. Surprisingly, they find that there is no great difference in result
accuracy between the different methods; most of the difference comes in imple-
mentation simplicity, robustness, and visibility handling.

When the decision is made to refine a transport link between two elements
A and B, with respectively and sub-elements, a decision must also be made
as to how to refine that link. Generally, there are three options:

• Subdivide the element A, and replace the link with links from B to the chil-
dren of A. (new links.)

• Subdivide the element B, and replace the link with links from A to the chil-
dren of B. (new links.)

• Subdivide both elements, replacing the link with links between all sub-ele-
ments. (new links.)

Typically this decision is made by comparing the relative contributions of the two
elements to the total error metric defined by the link, by comparing the projected
areas of the elements along the direction of transport, or even by just comparing
the total surface areas of the two elements. (In the area-based comparisons, the
largest element is the one to be subdivided.) The first approach has the advantage
of a better actual error estimate, the second the advantage of generality, being
independent of the error metric, and the third the advantage of robustness. In
some situations, the first two approaches can lead to infinite subdivision of one
element, with no corresponding reduction in transport error. (An area-limit below

ε

O n()

1 ε⁄

kA kB

kA

kB

kA kB×
43

Chapter 2. Previous Work on the Radiosity Problem
which no patch is subdivided is the usual approach to circumventing this prob-
lem.)

Refining the link “on both ends” is reserved for situations where it is
known for certain that both ends of the link will end up being refined, such as a
self-link between two clusters.

2.4.2. Solving the Radiosity System

To use our element hierarchy and set of links to solve for the radiosity of the leaf
elements requires two stages:

Gather

Radiosities are “gathered” across every link in the system to find the correspond-
ing irradiance on the receiving node. The per-link irradiances are summed for
each node to produce the total irradiance for that node, but this still leaves us
without a consistent representation of the radiosity over all elements.

The gather process is , where is the number of links. Assuming that
as usual the number of links is proportional to , its time complexity is .

Push-Pull

To get a consistent representation of radiosity at the leaves of the simulation, irra-
diances are summed down the hierarchy to produce a total irradiance at each leaf,
This is known as the “push” phase. This irradiance is then converted to radiosity
at the leaf elements by application of the reflection operator, and the resulting
radiosities are “pulled” back up the hierarchy, usually via an averaging operation,
to assign appropriate radiosities to coarser nodes in the hierarchy.

Because of the hierarchical nature of mesh, this approach to solving the
radiosity equation is similar in spirit to the “multigridding” approach often
employed in the numerical simulation of physical phenomena. The key feature of
multigridding is that the system is solved for progressively finer levels of detail,
with the results of each previous stage being used to initialise the next, and thus
speed convergence. (When multiple iterations are used, the finer levels can also
feed back to the coarser levels on the next iteration.) Wavelet radiosity differs in
that this process is interleaved; because the gather operation itself is a multireso-
lution one, each iteration of the algorithm solves all “levels” of the mesh simulta-
neously.

The solver is much closer to n-body and multipole methods and barnes
hut. One of the key differences is that these algorithms do not explicitly calculate

O l() l
n ε⁄ O n()
44

2.4. Discussion of Hierarchical Radiosity
or store transport links, as they are much more lightweight to calculate than light
transport, which often involves visibility computations. They also do not take
advantage of rough estimates of the importance of the transport to influence the
accuracy of the transport.

2.4.3. Interleaving Refinement and Solution

We have discussed how to refine the links that define the transport of light in our
scene, and how to solve for the radiosities in the scene. The remaining question is,
how do we mix these two actions to produce our final solution. Broadly, there are
three possibilities:

Two Stage

In a two-stage solution, we first refine the links, and then solve for the radiosities;
there is no feedback between the two stages. The links can be refined either
according to a metric that only takes into account geometric considerations, or
one that only takes into account the initial light sources in the scene. While this
approach keeps things simple, it ignores the fact that the optimal link refinement
is dependent on the final radiosity solution.

Interleaved

To create the ideal distribution of links, we need to know the radiosity solution a
priori, so that we can ensure the error in the total power carried by each link is
constant. (Put more simply, links that are formed between a bright source and a
highly reflective receiver should have less error than those between a dim source
or a less reflective receiver.) As is usually the case, this kind of inter-dependence
problem can be addressed with a multigrid method. We can interleave link refine-
ment and system solution, so that the current estimate of the radiosity solver is
used to drive link refinement, which in turn results in better radiosity estimates.

Picking an appropriate solver iteration to interleave is simple; we simply
run one iteration of the gather/push/pull process. Picking an appropriate refine-
ment iteration is a little trickier, because refinement is defined recursively. The
solution is to remove this recursion, and only allow the possibility of a particular
link being refined once per iteration.

Scheduled

A problem with the interleaved approach is that the granularities of link refine-
ment and system solution is not well matched. When considering solution
45

Chapter 2. Previous Work on the Radiosity Problem
approaches, it is vital that, in order to reduce error, we try to arrange things so
that radiosity is only ever transferred across a link after it has been refined as
much as our error criteria demands. To do otherwise is to introduce error into the
system. If the link underestimates the actual transfer, the system merely con-
verges more slowly. If it overestimates the actual transfer, however, this can intro-
duces excess radiosity into the system that in the best case will slow down
convergence, and in the worst case can prevent convergence.

This can lead to problems with the interleaved approach, where links are
not sufficiently refined before radiosity is gathered across them. An alternative is
to run refinement until all links meet some error criterion , then iterate the
gather/push/pull stage until the radiosity solution has converged, and then
repeat the whole process for a lower criterion . Typically, this process is
repeated for a fixed number of iterations, and a simple rule such as
used to set successive values of the refinement epsilon.

In some sense, this is like running the two-stage algorithm above with suc-
cessively smaller epsilon values. However, the solutions and previous transport
links are carried over from each previous cycle, so it takes much less time to con-
verge to both an appropriate level of link refinement and a radiosity solution,
than if it were being performed from scratch. After each stage, we reduce our cur-
rent value of epsilon by dividing by a term .

When used in conjunction with “lazy linking”, and , the method can
be thought of as simulating successive global bounces of radiosity. In the first
stage, we refine links according to just the light sources in the scene, and then
solve for radiosity directly transported to scene surfaces. (The lazy linking
ensures that radiosity is not transported between surfaces that were both unlit
before the stage started.) The second stage further refines the links according to
this “direct-only” radiosity solution, and then solves again, this time for the first
bounce of light. In this way, we converge to a global radiosity solution. In prac-
tice, we set so as to speed the initial stage and get feedback more quickly.

The scheduled solution method provides the best and most stable results
of the various hierarchical radiosity solvers. Some variant of it is used by most
hierarchical radiosity implementations. The chief drawback of this approach is
that there is no longer a natural stopping point to the solution. Generally, a fixed
number of iterations is chosen, and solution is stopped after that many stages.
Also, it is much more coarsely grained than the interleaved approach. Thus, the
interleaved approach can still be useful for interactive applications, because it
delivers results more quickly, and is easier to stop quickly in a consistent state.

ε0

ε1
εi 1+ εi α⁄=

α
α 1=

α 1<
46

2.4. Discussion of Hierarchical Radiosity
2.4.4. Visibility

Dealing with the cost of visibility queries is hard, due to the discontinuous nature
of occlusion, and the difficulty of characterizing the distribution of visibility dis-
continuities in a scene. As a result, many analyses of the complexity of finite ele-
ment methods simply ignore it.

Generally, an occlusion query is [Shir92]. The originally hierarchi-
cal radiosity paper showed that evaluating visibility required the casting of
rays. This is a consequence of the number of links being bounded by , and
thus being , and the fact that we usually cast a fixed number of rays per link
to evaluate its fractional visibility. (Because link refinement proceeds in a hierar-
chical fashion, the total number of links evaluated is linearly proportional to the
final number of links used to calculate transport for the scene.)

Thus the time complexity of finite-element radiosity methods including vis-
ibility testing is potentially . In practice, approaches such as
shaft culling [Hain94] and caching of shadow hits [Hain91], and the use of density
grids [Fuji86, Sill94a], can make ray-tracing queries closer to time for evalu-
ating each link transports. Still, even if they are constant time, ray-tracing queries
tend to be by far the most expensive part of evaluating the transport kernel, so
some care must be taken to optimize their use.

2.4.5. Meshing for Radiosity

Generally the input scene to a radiosity method is polygonized, and the polygons
are then split into a mesh of triangular or quadrilateral elements. There are two
methods commonly used to adapt this mesh to a radiosity solution as it
progresses.

Regular Refinement

The standard mesh-refinement technique employed in hierarchical radiosity algo-
rithms (and progressive radiosity with substructuring) is the regular refinement
of elements. For instance, a triangle can be refined into four elements by splitting
each edge at its midpoint, and retesselating these points into four subelements.
Such refinement operations on an original mesh element form a quadtree. Regular
refinement has the advantage of simplicity, and independence—any particular
element can be refined independently of another. It also makes refinement deci-
sions straightforward; if the total estimated error across the element is above a
certain threshold, we refine it. It has the disadvantage that, if an element is poorly
shaped, or not well aligned to the current radiosity solution, the same will hold

O nlog()
O n()

n ε⁄
O n()

O k klog()2 n nlog+()

O 1()
47

Chapter 2. Previous Work on the Radiosity Problem
for its subelements. Also, quadtree meshes can feature T-vertices, which lead to
interpolation problems when rendering, as in Figure 11. This can be corrected by
balancing and anchoring the mesh [Baum91]. An example of a quad-tree mesh,
and its anchored equivalent, is shown in Figure 12.

Figure 11: Shading discontinuities at a T-vertex.

Figure 12: A quad-tree mesh. Left, the original mesh. Right, the mesh af-
ter anchoring “T-vertices” to eliminate illumination discontinuities.
48

2.4. Discussion of Hierarchical Radiosity
Discontinuity Meshing

Discontinuity meshing takes adaptive methods using regular refinement a step
further by computing where shadow edges or other visibility discontinuities will
occur, and pre-splitting the mesh along such features. This can produce impres-
sive results, especially when the shadows in question are relatively sharp. Its pri-
mary drawbacks are that it can be difficult to implement robustly, and it is an
object space method, dependent on the edges in the scene. Most previous imple-
mentations of discontinuity meshing modify the mesh as a preprocess, and thus
attempt to calculate all possible discontinuities. This makes them poorly suited to
curved objects and objects with highly detailed polygonal silhouettes.

Discontinuity meshing is also best suited to surfaces that consist of a small
number of large polygons. On a highly tessellated, curved surface, a large number
of faces would have to be split along discontinuity lines.

2.4.6. Output Representations

When considering radiosity methods, it is useful to keep in mind the potential
output targets for the simulation, especially view-independent ones. As much of
the work of finding a global illumination solution as possible should be delegated
to them, as they have the following advantages:

• Their brute force lends them stability.

• They are hardware assisted in many cases.

• They are implemented solidly by many scan-line renderers.

The most common of these output representations are listed below.

Gouraud-Shaded Polygons

Any renderer has support for drawing a polygon with the colour interpolated
from colours specified at its vertices, and support for these primitives in hardware
is now commonplace. Gouraud-shaded polygons are a standard output target for
radiosity methods. The radiosity for each vertex can be calculated, and the ren-
derer will take care of interpolating these radiosity samples. This is sometimes
known as vertex lighting.

Point Light Sources

A number of attempts have been made to transform the output of a global illumi-
nation method into a set of point light sources for interactive viewing [Walt97a,
49

Chapter 2. Previous Work on the Radiosity Problem
Kell97]. The effects of global illumination can be handled by so-called virtual light
sources—lights placed so as to simulate reflected light, rather than where the
direct light sources are located. For instance, the light reflected from a blue floor
on to an object sitting on it by an overhead light could be simulated by placing a
blue virtual light source beneath the floor pointing upwards. This type of light
source is often used in computer animation, where the virtual light sources are
placed manually by a skilled lighter to simulate a complete lighting solution.

Unfortunately, most graphics hardware can only handle a small fixed
number of point light sources quickly, and this number is often too small to get
good results. One solution to this problem is to use multi-pass rendering, where
the final image is composited from multiple renderings of the scene, each of
which uses point light sources.

Shadow Maps

Shadow maps can be calculated using a hardware z-buffer, but the actual map-
ping algorithm used to render the shadows is not in most hardware systems. (An
exception is SGI’s shadowX OpenGL extension.) While shadow maps initially
only handled shadows cast by point light sources, they have been adapted in
recent years to handle area light sources as well.

Light Maps

Light maps. These are akin to texture maps, but instead store the irradiance over a
surface. They can then be blended with texture maps to produce the effect of
shadows over the surface. It is becoming common for interactive games to use
light maps to represent lighting detail. For interactivity reasons, it is essential that
the polygon count in these scenes remain low; often the graphics cards used are
heavily optimised for multi-texturing, and have significant amounts of texture
memory, so it is natural to take advantage of this. Also, until recently, most PC
graphics cards did not have onboard transformation and lighting, making it rela-
tively expensive to represent lighting detail with extra geometry.

2.5. Problems with Finite-Element Radiosity Methods

The hierarchical radiosity with clustering algorithm described in the previous sec-
tions, while capable of impressive performances with scenes of medium complex-
ity, has a number of drawbacks. We examine some of them here.

m

m

50

2.5. Problems with Finite-Element Radiosity Methods
2.5.1. Mesh Artifacts

The regular refinement employed in refining input polygons means that the ori-
entation and shape of these polygons can have a detrimental effect on interpola-
tion results, both in areas of high radiosity gradient, and in the presence of
shadows. Figure 13 demonstrates some of these problems. The key problem is
that, while we use the input geometry to directly define our finite element mesh,
it is almost never designed specifically for that purpose. This often leads to tedi-
ous and expensive geometry clean ups before an acceptable solution can be gener-
ated. (One of the most compelling arguments that can be made for Monte Carlo
path-tracing methods is that, leaving aside the noise, they are very robust in the
face of scene complexity and tricky geometrical cases.) This sensitivity to the
input scene geometry is in contrast to the use of finite-element methods in most
other fields, where the solution mesh can be generated specifically to match the
quirks of the solver being used, according to a much looser set of input con-
straints.

2.5.2. Volume Clustering Artifacts

Volume clusters assume that the incoming directional irradiance is constant
across the contents of their cluster. This can lead to blocky results, such as those
shown in Figure 14 and Figure 15, when adjacent parts of an otherwise connected
surface fall within different clusters. A major drawback of volume clustering tech-
niques is that there is no easy way to overcome this problem. While radiosity can
be interpolated across surfaces, doing so across volumes would not lead to good
results, because of the varying orientations of surfaces within the cluster. The way
we correct for those orientations, by pushing irradiance to the leaf polygons “on
the fly” whenever we gather it across a link, makes it difficult to construct a
higher-order (and thus smoother) approximation of the polygon’s irradiance.

One solution to the clustering artifacts shown here is to decrease the error
threshold until links are at the resolution of the leaf polygons, but this negates
many of the benefits of using clustering. The problem comes when the density of
our input polygons becomes much greater than the illumination density; then this
approach can become very costly.

Later, we will show how using surface-oriented clusters instead of volume-
oriented clusters allows us to define an interpolation method that mostly over-
comes these problems.
51

Chapter 2. Previous Work on the Radiosity Problem
52

2.5. Problems with Finite-Element Radiosity Methods
2.5.3. Visibility

As discussed previously, the transport kernel consists of both geometric and visi-
bility terms, and while finite elements on the whole handle the geometric term
well, they can have problems with the discontinuities introduced by sharp shad-
ows. Our perceptual sensitivity to illumination discontinuities makes shadow
handling in the final output especially important.

This is especially a problem in the radiosity method, as for transport evalu-
ation, we must bundle these two terms together. This leads to tension between the
two; in cases where there are sharp shadow discontinuities, we end up refining
heavily to capture the shadow, and light-weight basis functions (Haar, for exam-
ple) work best. In cases where illumination is smooth, more heavy-weight basis
functions—linear, quadratic or cubic—can represent the illumination with fewer
coefficients. The problem is that the ideal level of refinement or resolution for cap-
turing visibility effects is often different from that for capturing the unoccluded
irradiance.

There have been a number of approaches to ameliorating this problem.
One of the earliest was the use of “shadow masks” [Zatz93]. In this approach, vis-
ibility is calculated separately, and at a much higher resolution than unoccluded
radiosity. This results in a shadow mask, which represents occlusion across the
receiving patch, and can be post-multiplied into the radiosity function to produce
good shadows. This approach has been refined by a number of other researchers
[Slus94].

Another approach is to use what is called a “final gather” stage. The radi-
osity solution proceeds as normal, using basis functions tuned more towards the
geometric transport term, and placing less emphasis on quality of visibility. After
solution has been reached, a final solution iteration is performed in which the
solution is recalculated using the existing solution, but reevaluating visibility at

Figure 13: Effect of the underlying base mesh. The base mesh can have
a large effect on the result of the radiosity algorithm. Left: a poorly-tes-
sellated disc leads to streaking in the well-lit area. Right: the orientation
of the initial triangulation of the ground square affects the shadow cast
on it. Shown from top to bottom are the post-processed solutions, the
original solutions, and the solution meshes. In post-processing, these
meshes have been balanced and anchored before shading interpolation,
but this still leaves us with noticeable shading artifacts.
53

Chapter 2. Previous Work on the Radiosity Problem
Figure 14: Clustering Artifacts. Using volume clustering on a dense
mesh lit by three lights (a) speeds up calculations, but also leads to inter-
polation problems because of the constant cluster basis functions, as
shown in (b). Turning on gouraud shading (c) does not do a good job of
fixing this, as the mesh element size is much smaller than the cluster res-
olution. The contribution of the three lights to a volume cluster is shown
in (d).

(b)(a)

(d)(c)
54

2.5. Problems with Finite-Element Radiosity Methods
every vertex in the model, for geometric approaches, or every pixel in the final
image [Rush88, Lisc93, Chri96]. This approach can produce very nice results; its
main drawback is that it is very compute intensive, and is linear in the number of
polygons in the illuminated geometry. For large scenes, this can make it prohibi-
tively expensive [Lisc93].

2.5.4. Scenes with Detailed Surfaces

Large, highly-tessellated objects can cause problems when using hierarchical radi-
osity with volume clustering, beyond the clustering artifacts already discussed,
simply because of the sheer number of input polygons in relation to the scene’s
illumination complexity. Because the algorithm is least , when the natu-
ral level of illumination lies relatively high in the hierarchy, the push-to-leaves
part of the algorithm’s cluster gather stage becomes significant. An example of
such an object can be seen in Figure 17. This occurs even though the general n-

Figure 15: Clustering Artifacts cont. Even when the error threshold is re-
duced, the clustered solution (f) has aliasing artifacts not present in the
reference solution (e).

(f)(e)

O k klog()
55

Chapter 2. Previous Work on the Radiosity Problem
Figure 16: Clustering on a sphere. The cluster level at which light inter-
action is taking place in (a) leads to the “blocky” solution (b). When
Gouraud shading is applied (c) the result still falls short of progressive
radiosity (d). Another problem here is that usually volume clusters are
axis-aligned, and are not fixed in an object’s frame of reference. If we at-
tempt to animate the sphere by rotating it or translating it, any clustering
artifacts will stay fixed in space, rather than following the sphere.

(b)(a)

(d)(c)
56

2.6. Radiosity with Detailed Models
body finite element method has the potential to be , where is the number of
elements used in the simulation, and in such situations.

There are similar problems with memory behaviour. Because we must
push radiosity to cluster leaves to account for varying surface orientation, all
input polygons must be touched at least once on each solver iteration, and thus
the algorithm exhibits poor memory locality when . There are other consid-
erations too; a radiosity sample must be stored for all input polygons, for
instance, rather than only for the elements being used in the simulation, as we
might wish. Also, if we wish to apply some kind of gouraud-shading post-
processing, there is additional overhead in keeping track of the neighbours of all
these polygons. Finally, the large number of polygons exacerbates the clustering
artifacts mentioned previously; see Figure 18.

2.6. Radiosity with Detailed Models

The primary problem this thesis addresses is that outlined by the previous sub-
section; the application of finite element methods to radiosity scenes containing
detailed surfaces, such as scanned models, or tessellated implicit surfaces or
height fields. These objects may be geometrically simple, at least on a macroscopic
level, but the sheer number of polygons necessary to represent them defeats most
current finite element algorithms. To handle such models, we must look again at
some of the standard assumptions concerning the radiosity problem.

2.6.1. Reexamining Assumptions

Assuming that our scene contains potentially many high-resolution meshes
changes a number of our basic assumptions about the radiosity algorithm:

• A complexity of in the number of input polygons is a good result.

This is no longer acceptable when can be on the order of millions of polygons.
Ray-tracing approaches are sublinear in time; empirically they are often close to

.

• The common case is that we need to refine polygons to capture illumination
detail.

Now the common case is that the polygons in the input mesh are smaller than the
illumination detail we wish to capture. Any solution that involves evaluating the
radiosity function, especially visibility, on a per-polygon basis may well be too
expensive.

O n() n
n k«

n k«

n

O k()

k

O k
1 2⁄()
57

Chapter 2. Previous Work on the Radiosity Problem
Figure 17: Highly-detailed models. Top: The model of the ‘starship en-
terprise’ pictured is composed of 203,878 triangles. The model shown is
a medium resolution version of the original model. (Models captured by
Cyberware scanner or equivalent device can sometimes reach complex-
ity levels of the order of a million triangles.) Bottom: Such models can be
simplified by a technique that creates a multiresolution hierarchy of the
model. The simplified model shown here has 1000 triangles.
58

2.6. Radiosity with Detailed Models
• Transfer links will wind up pointing to the leaves of the element hierarchy,
i.e. the input polygons.

In our target scenes, the illumination complexity, which affects how far in the ele-
ment hierarchy the solver must descend to produce a solution, is much smaller
than the geometrical complexity, i.e., the number of surfaces in a scene. Hence,
transfer links will wind up pointing closer to the top of the hierarchy, and rarely
to the leaves of the models in question.

2.6.2. Discussion

In summary, this dissertation is concerned with the hierarchical radiosity algo-
rithm, which solves for the global transfer of diffuse illumination in a scene.
While its potential algorithmic complexity is superior to both previous radiosity

Figure 18: Clustering problems on a real scene. Note especially the gear
stick; either side of the knob belongs to a different cluster, with effects
similar to those seen in Figure 16. (From Hasenfratz et al. [Hase99].)
59

Chapter 2. Previous Work on the Radiosity Problem
methods and ray tracing methods, it is more inflexible than pure ray-tracing algo-
rithms, and the density and orientation of the polygons in the input scene can
unduly affect the output of the method. Worse yet, the time complexity of the best
current radiosity methods is at least linear in the number of input polygons; .
To compete with Monte Carlo methods for detailed scenes, it is crucial that meth-
ods be developed that are sub-linear in geometric complexity, otherwise, with
ever-increasing scene complexities seen in the computer graphics industry, radi-
osity will become restricted to a niche as an illumination method.

In tackling these problems, we will assume the input and output geometry
is composed of:

• Polygonal meshes.

• Per-face materials; diffuse reflectance, texture maps.

• Face or vertex colours.

• Texture maps for detail.

• Bump maps for detail.

• Any part of the geometry can be a light source.

All of this is similar to standard model formats such as Alias/Wavefront’s OBJ
format, 3D Studio Max’s binary format, and the research format MGF. It is also
helpful to keep in mind what our scenes are typically composed of:

• Large flat surfaces, the easiest case. Typically represented with a small
number of polygons; low complexity.

• Terrain geometry. Typically height-field meshes; medium to high complexity.

• Lighting fixtures. Low to medium complexity.

• Models (animals, objects, vehicles, etc.) Often detailed but largely connected
polygonal meshes; medium to high complexity

Any radiosity method should ideally be able to handle this entire range of com-
plexities, from small, large wall polygons, to tiny detail polygons making up a
complex model.

In the next chapter, I will show how by using flexible surface hierarchies similar
to certain model simplification hierarchies [Garl97], many of these concerns can
be addressed, increasing both the speed and the quality of the basic algorithm.
Specifically, by incorporating a data-structure similar to such multiresolution
meshes into our radiosity simulation, we can reduce the complexity of the algo-

O k()
60

2.6. Radiosity with Detailed Models
rithm to , where is the number of faces in the most simplified ver-
sion of our scene. In complex scenes, , and often, .

O s slog n+() s
s k« s n<
61

Chapter 2. Previous Work on the Radiosity Problem
62

	Chapter 2 Previous Work on the Radiosity Problem
	2.1. The Physics of Global Illumination
	2.1.1. Important Quantities
	2.1.2. The Rendering Equation
	(1)
	, (2)
	(3)
	, (4)
	(5)

	2.2. Solving Integral Equations
	2.2.1. Monte-Carlo Quadrature
	(6)

	2.2.2. Deterministic Quadrature Methods
	2.2.3. Solving The Rendering Equation
	(7)
	, (8)
	. (9)
	(10)

	2.2.4. Global Illumination Methods
	2.2.5. Finite-Element vs. Monte Carlo Methods

	2.3. An Introduction to Finite-Element Radiosity
	2.3.1. Progressive Radiosity
	2.3.2. Hierarchical Radiosity
	2.3.3. Hierarchical Radiosity with Clustering
	2.3.4. Importance-Based Radiosity
	2.3.5. Linkless Radiosity

	2.4. Discussion of Hierarchical Radiosity
	2.4.1. Link Refinement
	2.4.2. Solving the Radiosity System
	2.4.3. Interleaving Refinement and Solution
	2.4.4. Visibility
	2.4.5. Meshing for Radiosity
	2.4.6. Output Representations

	2.5. Problems with Finite-Element Radiosity Methods
	2.5.1. Mesh Artifacts
	2.5.2. Volume Clustering Artifacts
	2.5.3. Visibility
	2.5.4. Scenes with Detailed Surfaces

	2.6. Radiosity with Detailed Models
	2.6.1. Reexamining Assumptions
	2.6.2. Discussion

