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Abstract
The hierarchical radiosity algorithm solves for the global transfer of diffuse illu-
mination in a scene. While its potential algorithmic complexity is superior to both
previous radiosity methods and distributed ray tracing, for scenes containing
detailed polygonal models, or highly tessellated curved surfaces, its time per-
formance and memory consumption are less than ideal.

My thesis is that by using hierarchies similar to those of multiresolution
models, the performance of the hierarchical radiosity algorithm can be made sub-
linear in the number of input polygons, and thus make radiosity on scenes con-
taining detailed models tractable. The underlying goal of my thesis work has
been to make high-speed radiosity solutions possible with such scenes.

To achieve this goal, a new face clustering technique for automatically par-
titioning polygonal models has been developed. The face clusters produced
group adjacent triangles with similar normal vectors. They are used during radi-
osity solution to represent the light reflected by a complex object at multiple levels
of detail. Also, the radiosity method is reformulated in terms of vector irradiance.
Together, face clustering and the vector formulation of radiosity permit large sav-
ings. Excessively fine levels of detail are not accessed by the algorithm during the
bulk of the solution phase, greatly reducing its memory requirements relative to
previous methods. Consequently, the costliest steps in the simulation can be made
sub-linear in scene complexity.
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I have developed a radiosity system incorporating these ideas, and shown
that its performance is far superior to existing hierarchical radiosity algorithms, in
the domain of scenes containing complex models.
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This dissertation is dedicated to my grandfather, Rowland Harman
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C h a p t e r  1
Introduction
1.1. Computer Graphics

Computer graphics has grown at an astounding rate over the last three decades.
In the 1970s, frame-buffers capable of displaying digital images were rare and
expensive. These days it is rare that we see an image or video sequence that has
not been manipulated in some way by a computer, and computer graphics has
become ubiquitous; it underpins the most commonly used computer interfaces,
drives many of the applications, and is fundamental to almost all computer-based
entertainment.

In three-dimensional computer graphics, we are concerned with producing
an image or an animation of some 3D world, that may be either purely imaginary,
or may be trying to mimic some real-world counterpart. This process features a
number of stages:

Modelling. Geometrical representations of the scene are produced, consisting of
sets of points, faces, and other geometrical entities. These representations can be
constructed by hand, modelled mathematically, or even scanned from real-world
objects with a laser range scanner.

Animation. The various models are composed into a scene, and then (usually
individually) animated. That is, the position and motion of each object in the
scene, including the camera, is specified over time.
13



Chapter 1.  Introduction
Lighting. Lighting a scene involves the selection of reflectances, materials and
texture maps for the models in the scene, and the positioning of virtual light
sources to illuminate the scene. (The former could arguably fall under the “mod-
elling” category, but here I follow the conventions of the animation industry.)

Rendering. The rendering stage, the one I am primarily concerned with, is
responsible for taking the three dimensional scene specification produced by the
previous three stages, and producing the two dimensional representation of it as
seen by the camera. This can be separated into two sub-problems; determining
which parts of the scene correspond to which parts of the output image (perspec-
tive projection, depth sorting), and determining how scene surfaces look after the
effects of lighting and reflection have been taken into account (shading).

In photorealistic computer graphics, we attempt to model the real world, and to
produce a rendering of the result that matches the corresponding photograph of
the real world. In physically-based rendering (and indeed animation), we attempt
to reproduce the physical processes involved in this.

In what follows, we are primarily interested in the photorealistic, physi-
cally-based rendering problem, and, specifically, that part of the problem known
as global illumination.

1.2. Global Illumination

We can define global illumination simply as, the propagation of light from light
sources throughout the environment defined by our scene. This is in contrast to
local illumination, which only considers a light source, and those surfaces it lights
directly. Global illumination applies this local operation repeatedly, treating lit
surfaces as light sources in turn, allowing multiple bounces of light through the
scene and eventually to the camera. Consider Figure 1, for instance; the difference
between the globally-lit scene with shadows and the direct-lit unshadowed scene
more typically seen in interactive graphics is almost as great as the difference
between direct lighting and no lighting.

The simulation of global illumination is one of the greatest challenges of
realistic image synthesis; it requires modelling the transfer of light through the
environment being rendered, including the effects of interreflection between
objects. Currently there are two classes of methods for calculating global illumina-
tion; Monte Carlo-based and Finite Element-based. The former is usually loosely
referred to as ray tracing and the latter as radiosity. Broadly speaking, Monte-Carlo
based methods are better suited to simulating the interreflection between highly
14



1.2.  Global Illumination
Figure 1: The need for global illumination. A variant of the famous
“Cornell Box” scene is shown under several different lighting condi-
tions. (a) No lighting; flat shading only. (b) Direct lighting only; notice
the completely black ceiling and cube sides. (c) Direct lighting with
shadows. (d) A complete solution for propagated light in the box. Notice
the illuminated ceiling, and the cube’s sides are now lit by the red side
wall.

(b)(a)

(d)(c)
15



Chapter 1.  Introduction
specular (mirror-like) surfaces, and finite element methods to diffuse (matte-like)
surfaces (see Figure 2).

1.2.1. Radiosity Methods

The basic radiosity algorithm is limited to simulating scenes with diffuse surfaces;
this is both a strength and a weakness. It is a strength because any diffuse-only
global illumination solution is view independent. This means that the output of
most radiosity methods, instead of being a single image, is illuminated geometry.
This geometry can then be quickly rendered from any viewpoint, without repeat-
ing any global illumination calculations; indeed, without doing any lighting or
shading calculations at all. On the other hand, the weakness of radiosity as a glo-
bal illumination method is precisely that it ignores any specular reflection in the
scene. Such effects must be added afterwards, with a ray-tracing pass. Even then,

Figure 2: Different reflectance characteristics. Shown are polar plots of
outgoing radiance, for light incident along the white ray. Left, a specular
surface reflects light directionally, usually close to the angle of reflection.
Right, a diffuse surface reradiates light equally in all directions.
16



1.2.  Global Illumination
this does not give us a full global illumination solution, as there is no chance for
mixing specular and diffuse light bounces.

Still, radiosity methods that produce illuminated geometry are worth pur-
suing for a number of reasons. The interreflection of diffuse light is an important
phenomenon in realistic image synthesis, particularly for indoor scenes, where a
significant fraction of the light illuminating a surface comes not directly from a
light source, but indirectly, by bouncing off one or more other surfaces. Although
some ray-tracing methods that cache diffuse samples [Ward88] are currently
faster than those radiosity methods used in industry, the hierarchical nature of
state-of-the-art radiosity systems promises better performance, if only the
dependence of those systems on a scene’s geometrical complexity, as opposed to
its inherent illumination complexity, can be removed. Finally, as well as illumi-
nated geometry, many radiosity methods are capable of producing a global repre-
sentation for the light flow in a scene. This is useful both as a guide to a ray-
tracing postprocess, and as an aid to initialising more complicated Monte Carlo-
based global illumination simulations.

1.2.2. Applications

Radiosity’s areas of application include the following.

Architectural and Lighting Design

One of the major applications of radiosity methods is the prototyping of various
architectural and lighting designs. A big advantage of a general radiosity solution
is that its output is illuminated geometry, suitable for interactive walkthroughs.
Such walkthroughs can be used to gain a more realistic sense of space and light in
an architectural design before that design is actually implemented. Lighting fix-
tures can be rearranged, interior walls relocated, materials changed, and the
results evaluated.

Radiosity methods have been used extensively in these areas, from build-
ing and luminaire design to theatre lighting design; an example is shown in
Figure 3.

Virtual Sets

It is becoming commonplace to build “virtual sets” for television shows, such as
sports shows, game shows, or news broadcasts. These sets must be combined
with live footage in real-time, but a high level of visual realism can still be
17



Chapter 1.  Introduction
attained by mixing a precalculated diffuse-light solution with hardware lighting
for (view-dependent) specular effects.

3D Games

Today, convincing realism is an important factor for the success of a computer
game title. More and more games use techniques from realistic image synthesis
such as precomputed global illumination, shadow maps, as well as advanced mir-
ror and refraction effects to increase the illusion of reality. An example is shown in
Figure 4. The game level shown is reminiscent of some office scenes that have
appeared in global illumination papers, although the low polygon count and
obvious discretisation artifacts make clear its interactive nature.

Arguably, this area is a more promising one for global illumination algo-
rithms than computer animation for movies or television. The level-of-detail

Figure 3: Radiosity used for architectural and lighting design. Note the
soft lighting and the large number of light sources. (Picture from Light-
scape.)
18



1.2.  Global Illumination
trade-off in a typical piece of such computer-generated animation is tilted more
towards detail and less towards interactive rendering times, making the barrier to
entry for such algorithms much higher. This may not make sense at first, as surely,
without the need to be interactive, there is more time to amortize the cost of any
illumination algorithm. Unfortunately, it is a rule in Computer Graphics that
scene complexity expands to fill the rendering time available, and, as illumination
algorithms scale at best linearly (and usually worse than linearly) with scene com-

Figure 4: A screen-shot from the interactive 3D game, Quake. The level
shown in this picture features precomputed global illumination effects,
in spite of needing to be rendered at interactive rates in graphics hard-
ware. (Picture from ID Software.)
19



Chapter 1.  Introduction
plexity, there is little time left over for such effects, except in small, limited situa-
tions.

Sky Illumination and Outdoor Scenes

Radiosity methods can be very useful for outdoor sky illumination; the sky is
essentially a large, diffusely-emitting (blue!) light source [Daub97]. While outdoor
scenes are generally considered to feature mainly direct lighting from the sun,
contributions from the sky are still significant in any scene featuring shadows, as
is reflected light from building walls, or scenes from an overcast day. An example
is shown in Figure 5.

1.3. Contents of Dissertation

This thesis is primarily concerned with making the use of finite-element methods
for global illumination tractable for scenes containing large models. In the next
chapter, I give a brief overview of the radiosity problem, the methods commonly
used to solve it, and the hierarchical radiosity method that my work builds on.
Chapter 3 then presents the basic face cluster radiosity method. It starts with
some motivation, and presents the core of the basic algorithm; the use of face clus-
ter hierarchies, and the use of vector irradiance.

Chapter 4 presents the theoretical justification and error analysis of the
radiosity part of the algorithm. Chapter 5 presents some analysis of Garland’s
original face cluster construction algorithm, along with my modifications to it to
improve its speed and memory use, as well as the hierarchies generated, and
some examples of its use.

Details of my implementation of face cluster (and hierarchical) radiosity
are presented in Chapter 6, and in Chapter 7 I present results for several variants
on both a simple test scene, and a more realistic “museum scene”.

Finally, we round off with conclusions in Chapter 8.
20



1.3.  Contents of Dissertation
Figure 5: Radiosity used for outdoor scenes. Note that, without taking
indirect lighting into account, the areas in shadow would be completely
black. (Picture from Lightscape.)
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C h a p t e r  2
Previous Work on the
Radiosity Problem
2.1. The Physics of Global Illumination

We start by examining the physical basis for the simulation of global illumination
in a computer graphics scene; first we introduce some important physical quanti-
ties, and then present the equations that govern light transport in such a scene.

2.1.1. Important Quantities

The key quantity in the physical simulation of light is radiance. This is defined as
the amount of power radiated from a surface in a particular direction. It is meas-
ured in Watts radiated per unit area per unit solid angle, namely, .

We are primarily interested in the simulation of diffuse illumination; that
component of global illumination that is view independent. For this, the physical
quantity of radiosity is often more useful. It measures the amount of power radi-
ated from a surface over all directions, and thus is measured in Watts per unit
area, . Radiosity is usually taken to refer to the light radiated by a sur-
face. The light incident on a surface integrated over all directions is known as irra-
diance, and has the same units as radiosity.

Confusingly, the term “radiosity” is often used in computer graphics to
refer explicitly to finite-element methods for solving for the transfer of radiosity
in an environment. In fact, as we shall see, the various methods used to solve the

Watt m
2
sr⁄

Watt m
2⁄
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Chapter 2.  Previous Work on the Radiosity Problem
radiosity problem are independent of that problem, which is simply a more con-
strained version of the more general global illumination problem. A wide spec-
trum of approaches to solving this problem have been taken, from purely finite-
element methods to purely stateless Monte Carlo methods.

Both radiance and radiosity are known as radiometric quantities; they are
measured with respect to a specific wavelength, and are thus independent of the
human visual system. All radiometric quantities have corresponding photometric
ones, which are instead integrated over all possible wavelengths, weighted with
the response of the human visual system. The photometric equivalent of radiance
is luminance, and that of radiosity is illuminance. These quantities are impor-
tantly mostly when considering the transformation of radiometric quantities cal-
culated for the scene into those suitable for use on a display device; this
dissertation will largely ignore such issues. (However, see [Tumb99] for a full dis-
cussion of the issues involved.)

Appendix A has a full list of physical quantities and symbols used in this
dissertation.

2.1.2. The Rendering Equation

If we ignore participating media, and concentrate solely on the interaction of light
with scene surfaces, the global illumination problem can be summarized by the
following integral equation:

(1)

This is known as the rendering equation [Kaji86]. Basically, it states that the radi-
ance emitted from some surface point in the direction is equal to the radiance
the surface itself emits in that direction, , plus the integral over the hemisphere
of the incoming radiance that is reflected in that direction, . To be more pre-
cise:

•  is the total radiance leaving  in the direction ;

•  is the radiance directly emitted from  in the direction ;

• is the fraction of radiance incident from direction that is
reradiated in direction ;

•  is the radiance incident on  from the direction ;

•  is the angle between the surface normal at  and ;
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2.1.  The Physics of Global Illumination
•  is the hemisphere lying above the tangent plane of the surface at .

For a summary of more general global illumination models, see [Glas94].
This integral equation is known as a Fredholm equation of the second

kind, as it follows the form

, (2)

where and are fixed, and is known as the kernel. It cannot be solved analyt-
ically, except for the most trivial of cases.

If we assume that all surfaces reflect light diffusely, i.e., , the
integral over the hemisphere collapses, and we have

(3)

which, given , and , can be rewritten as the
radiosity equation:

, (4)

where

(5)

and

•  is the total radiosity at point ;

•  is the emittance at point ;

•  is the reflectance at point ;

•  is the visibility between points  and ;

•  is the geometry kernel between points  and .

This is the equation we must solve to find the global illumination of a purely dif-
fuse scene.
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Chapter 2.  Previous Work on the Radiosity Problem
2.2. Solving Integral Equations

Given that global illumination is governed by an integral equation, it makes sense
to look at the various methods for solving such equations. Unfortunately, even the
simplest global illumination scene is unsolvable analytically, and we must look to
numerical methods for solving integral equations. We start by looking at numeri-
cal techniques for solving integrals, known as quadrature methods, and then
explain how they can be applied to solve an integral equation.

2.2.1. Monte-Carlo Quadrature

Commonly, quadrature methods estimate an integral of some function by
forming a weighted sum of samples of that function:

(6)

The sample points, , are known as abscissas. In some situations they are fixed
beforehand, but in most situations, including the ones we face in computer graph-
ics, we get to pick the abscissas.

In pure Monte-Carlo integration, we assume nothing about the integrand:
the abscissas are picked randomly, and the weights are set to one. It is also pos-
sible to take advantage of some knowledge of the integrand via importance sam-
pling, where the sample points are drawn not from a uniformly distributed
random variable, but from a probability distribution that matches some
known factor of the function being integrated. For instance, if we are evaluating
the integral in Equation 1, we can choose our probability distribution according
to the section of the integral, as this part of the function is known a pri-
ori. In this approach the weights are set to .

The Monte Carlo approach is particularly effective in dealing with high
dimensional integrals, and integrals with discontinuities in the integrand, and has
the advantages of being simple to implement, and almost no memory cost. How-
ever, the convergence rate of Monte Carlo, , is poor, and is the major reason
Monte Carlo methods are associated with computationally costly calculations. It
is possible to do better convergence-wise, especially with smooth integrands. The
other chief drawback of Monte Carlo methods is that the error in their approxima-
tion presents itself as noise; in places where we expect the results of an integral to
be smooth over some domain, this can be highly distracting.
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2.2.  Solving Integral Equations
2.2.2. Deterministic Quadrature Methods

Deterministic quadrature methods work by picking some set of and so that,
if some assumption about the integrand is true, the estimate of the integral is
exact. The simplest possible such method is to assume that the integrand is con-
stant, and estimate the integral with a single sample of . More general rules
are possible, such as those given by Gaussian quadrature formulas. For sam-
ples, these rules are guaranteed to be exact for polynomials up to degree .

The disadvantage of such methods is that they do not handle discontinui-
ties well, and they suffer from dimensional explosion. If a particular rule requires

samples in one dimension, the corresponding -dimensional rule will require
 samples; this soon becomes unwieldy above three or four dimensions.

The kernel of the radiosity equation consists of one largely smooth factor,
the geometry term , and one factor that can be highly discontinuous, the visibil-
ity term . Figure 6 shows the radiosity function for a trivial scene configuration
that illustrates the effect of both terms. The tension between these two factors is
one of the reasons there are so many competing methods for simulating diffuse
illumination; Monte Carlo methods do much better with the visibility part of the
kernel, and deterministic methods with the geometrical part of the kernel. Used
inappropriately, Monte Carlo methods lead to objectionable noise in the smooth
parts of the function shown, and deterministic methods can result in the illumina-
tion discontinuity in the middle of the patch being unnaturally smeared.

2.2.3. Solving The Rendering Equation

Of course, it does not suffice to have techniques for solving the integral in
Equation 1, because that integral is cast in terms of an unknown, namely the
quantity we’re trying to find in the first place, the scene radiance function. How-
ever it is possible to restate the equation recursively, in terms of an integral opera-
tor:

(7)

This allows us to solve for  by using a generalisation of the geometric series,

, (8)
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Chapter 2.  Previous Work on the Radiosity Problem
called the Neumann series:

. (9)

This series is guaranteed to converge only if the spectral radius of is less than
one, but this is guaranteed for any reflection operator that conserves energy.

In computer graphics, this infinite sum has an obvious analog; each appli-
cation of the operator represents a single bounce of light from every emitting
surface in the scene. The sum represents successive “bounces” of illumination
from the original light sources ( ) throughout the scene, until a steady state is
reached.

Figure 6: The radiosity kernel. Shown on the left is a simple configura-
tion of a diffuse emitter and a diffuse reflector. On the right is a plot of
the irradiance across the receiving patch; it is largely smooth, even with
the two polygons in close proximity, except where we cross behind the
light source, and it no longer becomes visible. In practice the distance be-
tween light source and receiver is greater, and the geometric part of the
radiosity kernel is even smoother than this.
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2.2.  Solving Integral Equations
Path Tracing

We can extend the use of Monte Carlo integration techniques to this iterative solu-
tion, via the mechanism of random walks, in an approach known as path tracing.
Rather than using Monte-Carlo sampling to apply the reflection operator to the
entire scene, and then repeating that operation, a random walk is used to simulate
repeated applications of the reflection operator to successive samples of scene
illumination. A particle is probabilistically emitted from a light source in the
scene, and then “traced” through the scene, being reflected at appropriate points
by scene surfaces. At each successive bounce, either the new direction of the parti-
cle is chosen according to a probability distribution that matches the shape of the
reflectance function for that surface, or the path is terminated and the particle is
“absorbed” by the surface. This process can be thought of as simulating the paths
of large numbers of photons through the scene.

Finite Element Methods

Another approach to the problem is the use of the finite element method. Rather
than concentrating on the propagation of light particles through the scene, this
method tries to solve for the light emitted by the scene’s surfaces. It works by
breaking the domain up into a finite number of zones called elements, each hav-
ing its own, local set of basis functions. The illumination problem then becomes a
problem of stating the relationship between each individual element and the
other elements in the scene, and deriving from that the light emitted over each
element.

While the finite element method can be applied to the full rendering equa-
tion (Equation 1), it is more natural to apply it to the radiosity equation
(Equation 2). Once the scene has been discretized, the radiosity equation becomes
a simple linear system,

(10)

where is a vector of radiosities per element, is a vector of emittances, and is
a matrix, whose effect is analogous to that of the reflection operator . (If there is
more than one basis function per element, these will be tensors.) This system of
equations is usually solved in a similar way to Figure 9; by repeated multiplica-
tions of the initial radiosity estimate  by .

ρ

b e Rb+=

b e R
ℜ

e I R+( )
29



Chapter 2.  Previous Work on the Radiosity Problem
2.2.4. Global Illumination Methods

There are a wide variety of global illumination methods that can be applied to
solving the radiosity problem. They vary in what quadrature methods they use,
how they store any intermediate results, and what they output; either a view-
dependent image, or a (usually) view-independent mesh. I will try to span the
possible approaches with a review of the most salient papers.

Stateless Ray-Tracing

A purely stateless path-tracing method, such as stochastic ray-tracing [Kaji86,
Lang94] proceeds as described above; photons are propagated through the envi-
ronment, eventually reaching the view point. (For efficiency reasons, direct light-
ing is often treated as a special case, and path tracing used to estimate only the
indirect illumination.) Where the reflection function is highly directional, i.e.,
specular, good results can be achieved with a moderate number of samples. When
the reflection function is such that the entire hemisphere above any surface “hit-
point” must be sampled evenly, a much larger number of samples is needed to
achieve the same level of accuracy.

This approach produces very noisy results on diffuse scenes (see Figure 7).
(Of course, as mentioned, it performs very well on specular scenes, for which
finite-element based radiosity techniques do just as poorly.) The noise can be
decreased by increasing the number of photons emitted, but only slowly; this is
known as the law of diminishing returns of Monte-Carlo sampling.

State of the art path-tracing methods use several different sampling strate-
gies, each targeted towards a particular aspect of the global illumination problem,
and combine them in ways that are provably good [Veac94, Veac95]. These meth-
ods do improve results for the middle ground of semi-diffuse scenes measurably,
but pure diffuse scenes still suffer from noise. (Again, see Figure 7.)

Finite-Element Methods

As discussed previously, finite element methods work directly on the mesh of the
input scene. The input scene is polygonized if it is not already, and then subdi-
vided into a number of discrete surface elements. The problem of radiosity trans-
fer between these elements is then treated similarly to other radiative transfer
problems; the interactions between elements, known as form factors, are found,
and, given an initial set of emittances and reflectivities for each element, used to
iteratively propagate energy though the environment until the solution reaches a
steady state. These methods are particularly effective when the radiosity function
30
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varies only slowly across each element, as is often the case in diffuse environ-
ments.

Figure 7: Global Illumination methods for the Cornell box scene. Top,
three ray-tracing methods; (a) stochastic ray-tracing, (b) bi-directional
ray-tracing, and (c) diffuse sample caching (Radiance). Bottom, hierar-
chical radiosity with (d) the Haar basis, (e) the Haar basis and a smooth-
ing pass, and (f) a linear basis.

The radiosity methods each took several seconds to render the
scene, sample caching fifteen seconds, stochastic ray-tracing twenty
seconds, and bidirectional ray-tracing a minute.

(d) (e) (f)

(a) (b) (c)
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Sample Caching Methods

Pure Monte Carlo methods suffer because they do not take advantage of the
coherence in the radiosity function; illumination in a purely diffuse scene tends to
vary only slowly across surfaces, as a direct consequence of the incoming radi-
ance integral covering the entire visible hemisphere for any point on the surface.
Ward takes advantage of this by using diffuse sample caching in his Radiance
program. Whenever an expensive diffuse illumination sample is calculated, it is
stored in a volumetric spatial data structure (an octree). If another sample is
needed from a point nearby on the same surface, the sample is simply reused,
with appropriate filtering.

Another technique that uses sample caching is the “photon map” [Jens96].
Whereas Radiance calculates and reuses diffuse samples on demand, as rays are
traced out from the view-point, the photon map works in the other direction. It
uses a path-tracing approach in which as usual power-carrying particles are emit-
ted from each light source, and tracked through the scene until they are absorbed,
but then stores their position and incident direction in a spatial data structure.
(The genesis of such photon-tracing methods is a paper on simulating the particle
model of light by Pattanaik and Mudur [Patt92].) In a second, image producing
pass, when a ray traced from the eye hits a diffuse surface, nearby “photons” are
filtered to estimate the local irradiance of the surface. The technique has the
advantage that it is extremely flexible, and good at producing caustic effects. Its
major drawback is that a large number of photons must be emitted to build up the
map, and there is little way of telling a priori exactly how many will be sufficient
to produce a desired image.

Mesh-Based Monte Carlo Methods

Rather than caching particles in a volumetric data structure, it is possible to store
the results of random walks in a surface-based data structure. Heckbert takes just
this approach with his “adaptive radiosity textures” [Heck90]. Photons are traced
from light sources, and, when they hit a diffuse surface, accumulated in texture
maps. These maps are adaptively subdivided when their resolution is insufficient.

Another such method is density estimation [Shir95, Walt97b]. This tech-
nique extends the sample caching methods in order to generate view-independ-
ent global illumination solutions; the output is a traditional surface mesh with
vertex radiosities. It proceeds much like the photon map, but adds a phase, called
the “density-estimation” phase, where the stored photons are used to construct an
approximate irradiance function for each surface. This irradiance function is then
used to construct the output mesh via Delauney triangulation.
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Finally, finite-element methods have been adapted to use Monte-Carlo
path tracing to calculate diffuse light transport [Shir91, Neum95]. This is similar
to the photon map and radiosity texture approach, but, instead of the samples
being stored in a spatial data structure or texture map, they are used to estimate
the diffuse illumination of elements in the input mesh. One of the great advan-
tages of this approach is the robustness of path-tracing in the face of large, com-
plex scenes. The chief drawback of such Monte Carlo radiosity methods is the
introduction of noise; it tends to produce a dappled effect on what would other-
wise be smooth surfaces. Also, the method requires that scenes be pre-meshed a-
priori to a reasonably fine resolution, often incurring more geometry storage than
strictly necessary, and posing the difficult question of what resolution to use for
the mesh. Some work has been done on driving mesh adaption by maintaining a
“preview” mesh at finer resolution than the result mesh, and using the preview to
decide where further subdivision is necessary [Tobl97].

Shirley has shown that, under certain assumptions, if a given scene is
divided up into elements, evaluating their diffuse illumination via Monte-Carlo
path tracing requires rays to be cast [Shir92]. It is generally accepted that the
cost of a ray-tracing query is , leading to a total time complexity of

 for naive ray-tracing based methods.

Summary

A summary of the various methods is shown in Table 1.

Method Quadrature. State Fixed View

Stochastic Ray-Tracing Monte Carlo None Yes
Bi-Directional Path Tracing Monte Carlo None Yes
Diffuse Sample Caching Monte Carlo Sample Cache Yes
Photon Maps Monte Carlo Sample Cache Yes
Adaptive Radiosity Textures Monte Carlo Adap. Texture No
Density Estimation Monte Carlo Mesh No
Random Walk Radiosity QMC Finite Element No
Galerkin Radiosity Galerkin Finite Element No
Importance-based Radiosity Galerkin Finite Element Yes

Table 1: A Global Illumination Taxonomy.

n
O n( )

O nlog( )
O n nlog( )
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2.2.5. Finite-Element vs. Monte Carlo Methods

For low to medium complexity scenes, the various finite element methods pro-
duce the best results for diffuse scenes. For more complex scenes, Monte Carlo
methods have proven faster: Ward’s sample caching method is currently the most
stable, fast and robust method for such scenes.

We might reasonably ask, what is the point in further research into finite-element
methods, given that they only solve for diffuse light transport? For a start, Monte
Carlo-based techniques have their drawbacks as well:

• They are noisy, especially when the scene is animated

• They are not as adaptive as Finite Element Methods.

• Of the various methods, only density estimation produces illuminated scene
geometry, as opposed to a single image. (Although Ward’s method does
cache diffuse illumination samples between runs, so that calculations are
reused between viewpoints.)

The Achilles heel of radiosity methods is their time complexity, and their reliance
on the input scene to define the element mesh; arguably this overconstrains the
solution. There are a number of reasons to continue investigating finite element
methods, however:

• The hierarchical nature of state-of-the-art radiosity algorithms is appealing.

• The algorithm can be used as a pre-processing stage for a full global illumi-
nation solution. Hierarchical radiosity methods produce a set of links which
summarize the transport of light in the given environment. These links can
be used to guide sampling in a more general Monte Carlo-based renderer.

• The ability to amortize the cost of calculating diffuse illumination over the
course of animation or walkthrough is valuable.

• While not physically correct, calculating static diffuse illumination and then
adding specular stuff reflections during a post-pass can produce highly real-
istic images, as evidenced by the output of the commercial Lightscape ren-
derer [Auto].

Currently, radiosity methods have a strong niche in medium-complexity virtual
worlds, for games and architectural walkthroughs. The complexity of these envi-
ronments is limited by the need for interactive rendering rates, so the poor per-
formance of radiosity methods on more complex scenes is irrelevant. However,
this will not always be the case. The work contained in this dissertation was pri-
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marily motivated by the observation that, unless the dependence on input geome-
try of finite element methods could be overcome, the method would most likely
be written off as a historical curiosity as scene complexities continued to rise. At
the very least, radiosity must be able to compete with caching ray-tracing’s com-
plexity and robustness.

2.3. An Introduction to Finite-Element Radiosity

The finite-element radiosity algorithm is the most commonly used algorithm for
simulating diffuse interreflection [Cohe93]. It subdivides surfaces in the environ-
ment into a mesh of elements, and then sets up and solves a large system of linear
equations in order to compute the radiosity (the amount of emitted or reflected
light) at each surface point. Early radiosity algorithms used a fixed mesh of ele-
ments, and, as each element can potentially illuminate every other element, had
costs that were quadratic in the number of elements in the scene. These algo-
rithms did a poor job of exploiting the sparseness of the element-to-element inter-
action kernel; most objects are visible to only a small subset of the other objects in
the scene, and the transfer of radiosity also obeys an inverse square law, so much
of this kernel is either zero, or of small magnitude.

In this section we shall introduce the most important finite-element algo-
rithms for the radiosity problem. We start with the most commonly used radiosity
algorithm in practice, progressive radiosity.

2.3.1. Progressive Radiosity

All radiosity methods trace their roots from matrix radiosity, which explicitly
computes a large form factor matrix and solves several large systems of equations
[Gora84, Nish85, Cohe85]. First, the scene is discretized into patches, then form
factors between every possible pair of patches are computed. The resulting
linear system of equations is typically solved using an iterative method such as
Gauss-Seidel iteration [Stra86]. Computing the form factors is the most costly
step, as each one requires one or more visibility tests. The amount of storage
required is , which makes the method infeasible for anything other than
trivial scenes.

Because it is so expensive in time and space, matrix radiosity is mainly a
historical curiosity, though it is occasionally useful for theoretical investigations.
Its immediate successor, however, was progressive radiosity, which is probably
the most widely used, and certainly the most robust, finite-element radiosity
method. This technique progressively refines an image by computing the matrix
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Chapter 2.  Previous Work on the Radiosity Problem
and the solution incrementally [Cohe88]. It iteratively “shoots” light from the
brightest light sources and reflective surfaces, computing just one column of the
form-factor matrix at a time. This is a variant of Southwell’s relaxation technique
for solving linear systems [Gort93a, Shaw53]. Although this relaxation technique
has been largely superseded by other iterative techniques in the numerical meth-
ods literature [Barr94], it has proven useful for radiosity simulations, because it
reduces the amount of form-factor storage needed to . The technique also
has the great advantage that the illumination that will make the greatest differ-
ence the final image is calculated first, starting with direct lighting—see Figure 8
for an example of the results. To make this possible, a per-patch record of the
amount of unshot radiosity left in the scene must be kept, but this results in only
an addition  storage.

Progressive radiosity is usually used in conjunction with substructuring,
which introduces a two-level hierarchy to the mesh; the coarser patches shoot
light to a finer set of elements [Cohe86]. The elements are subdivided adaptively
in regions of high radiosity gradient, such as shadow boundaries. Substructuring
is generally regarded as being very desirable since it helps capture fine detail illu-
mination, such as sharp shadow boundaries, without any consequent penalty in
terms of the number of shooting patches to be dealt with.

If shooting steps are used, the time cost of progressive radiosity is
. In practice the number of shooting steps is smaller than the total number

of patches, so . Still, the method is usually significantly superlinear in the
number of elements .

2.3.2. Hierarchical Radiosity

The most significant theoretical modification of the original matrix radiosity algo-
rithm is the hierarchical radiosity algorithm [Hanr91, Cohe93, Sill94b]. This takes
advantage of the sparseness of the interaction kernel by employing techniques
similar to the n-body algorithm used in gravitational simulations [Appe85, Barn86,
Gree87]. By treating interactions between distant objects at a coarser level than
those between nearby objects, the hierarchical radiosity algorithm reduces the
cost from quadratic to linear in the number of elements used.

These methods employ multilevel meshes to represent the radiosity func-
tion, and allow inter-patch interactions to take place between arbitrary levels of
the mesh hierarchy [Gort93b, Stol96, Schr96]. Thus, unlike previous methods,
hierarchical radiosity does not use a fixed mesh, but a mesh that is adaptive in res-
olution to the other surfaces “viewing” it. When reflecting light to a distant sur-
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2.3.  An Introduction to Finite-Element Radiosity
Figure 8: Shooting steps. Left: radiosity, right: unshot radiosity.
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Chapter 2.  Previous Work on the Radiosity Problem
face, a given surface is meshed coarsely, but when reflecting to a nearby surface, it
is meshed more finely.

The commonly used adaptive mesh representation is the quad-tree; this is
used to represent each input polygon in the scene. Figure 9 shows how nodes in
various levels of a quad-tree mesh interact with the rest of a simple scene. Each
transfer of energy between two different nodes in the quad-tree is represented by
a data structure called a transport link, which contains some representation of the
fraction of radiosity transferred, and some estimate of the error in that representa-
tion.

Hierarchical radiosity has a cost linear in the number of final solution ele-
ments, . Unfortunately, because an initial light transport link from each polygon
to every other polygon must be computed, the cost is also quadratic in the
number of input polygons, . The cost is thus .

Hierarchical radiosity can be regarded as a specific instance of a more gen-
eral class of wavelet radiosity algorithms, although it was originally developed
without reference to wavelet techniques. Whereas the original HR algorithm
assume the radiosity was constant across each mesh element, Various basis func-
tions can be used to represent the radiosity across an element.

While hierarchical radiosity was inspired by the original n-body algorithm
of Appel, and is similar in spirit to its widely-used successor in the astrophysics
community, the Barnes-Hut algorithm, the difference in application area has lead
it in different directions. (The parallel class of algorithms in the physical simula-
tion community are referred to as “treecodes”.) Chiefly, the difference is due to
the presence of occlusion in the illumination problem. In the radiosity problem,
we must deal with any occluding objects between two interacting mesh elements,
and also with tangential occlusion; a surface, by its nature, emits radiosity above
the tangent plane only. Not only does this introduce discontinuities into the inter-
action kernel, but evaluating possible occlusion is an expensive operation; much
more so than evaluating either the forces of gravitational attraction or indeed the
rest of the rendering equation. The upside of occlusion is that it promotes sparse-
ness in the kernel. The number of radiosity interactions in, say, an office building,
will be fewer than the equivalent gravitational configuration, due to the various
offices being largely compartmentalised.
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2.3.  An Introduction to Finite-Element Radiosity
Figure 9: Hierarchical Radiosity. The transfer of radiosity takes place be-
tween several different levels of the mesh hierarchy. Strong light sources
and immediate neighbours contribute to an element at the finest level of
the mesh (a), medium-strength contributors to its parent element (b),
and low-strength, distant sources to its parent (c). These contributions
are summed to form the final result (d). The white arrows shown repre-
sent transport links, each of which contains an estimate of the form-fac-
tor and occlusion between the two elements it connects.

(b)(a)

(d)(c)
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2.3.3. Hierarchical Radiosity with Clustering

Classical hierarchical radiosity algorithms work well on scenes with a small
number of large polygons, but the term means they become impractical in time
and memory consumption for scenes of several hundred polygons.

To combat this problem, clustering methods for hierarchical radiosity were
developed [Chri97, Gibs96, Sill95b, Sill95a, Smit94]. These methods group the
input polygons into volume clusters, building a hierarchy above the input poly-
gons that culminates in a root cluster for the entire scene. The lower nodes in this
hierarchy are elements in quadtrees, as before, but the upper nodes are volume
clusters. These are octree or k-d tree boxes containing a set of disconnected poly-
gons with potentially varying normal vectors and reflectances. With the use of
volume clusters, we now have a complete, singly-rooted simulation hierarchy,
which requires only a single initial illumination link; thus the term in the com-
plexity vanishes. (See Figure 10.)

Several methods for handling the light incident on a cluster have been
explored. The simplest is to assume the clusters are isotropic, and thus sum the
incoming light from all directions. This approach, called beta links by Smits, turns
out to be fast, , but inaccurate. A more successful alternative is to push
the light down to the leaves of the tree whenever it is gathered across a link.
(Smits’ alpha links) [Sill95a, Smit94, Stam97a]. This raises the cost of the algorithm
to . A third alternative, proposed by Sillion and Christensen [Chri97,
Sill95b], is to represent a cluster as a point that emits and reflects light according
to a directional distribution. Both latter methods require light to be pushed down
the tree, as with alpha links. Christensen’s algorithm appears to be asymptotically
the fastest, achieving good quality results in time. Although any of these
clustering methods is significantly faster than classical hierarchical radiosity, the
need to touch all of the input polygons on each solver iteration can cause their
working set to be excessively large for complex scenes.

2.3.4. Importance-Based Radiosity

Smits first introduced the concept of importance-based radiosity methods
[Smit92]. In such methods, as well as radiosity being distributed from light
sources, a quantity known as importance is distributed from the view-point. The
refinement process then targets those elements with high radiosity and impor-
tance. In this way, the solution generated is optimised for the particular view-
point chosen. This saves considerable time over generating the standard view-
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2.3.  An Introduction to Finite-Element Radiosity
independent solution, at the cost of having to perform more solver iterations
whenever the viewpoint changes.

This thesis concentrates primarily on methods for producing view-inde-
pendent solutions for geometry, so we will ignore importance from here on in. It
should be noted, however, that the importance approach could be applied to the
central vector radiosity algorithm presented later, if a view dependent solution
were acceptable.

2.3.5. Linkless Radiosity

It has been observed that, particularly with wavelet radiosity, the cost of storing
transport links can be prohibitive [Will97b, Will97a]. The overhead per link goes
up as , where is the order of the wavelet algorithm used, whereas the over-

Figure 10: Hierarchical Radiosity with volume clustering. With the ad-
dition of volume clustering, interactions can also take place between
clusters of polygons rather than the individual polygons. (e) The floor
patch from (c) now interacts with the table as a whole. (f) The table clus-
ter’s incident illumination is made up of all but the closest patches and
the light sources.

(f)(e)

M
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Chapter 2.  Previous Work on the Radiosity Problem
head per element only goes up as . Worse yet, whereas elements can often be
represented with tensor product bases, with attendant savings in space and time,
the geometric kernel governing transport between elements has no such inherent
symmetry, and thus cannot.

A number of researchers have proposed methods for reducing or eliminat-
ing the storage of links in a hierarchical radiosity method [Stam98, Cuny00]. Such
algorithms usually use a modified form of the shooting algorithm, which has the
advantage that it reuses links much more rarely than the standard gather-type
algorithm for hierarchical radiosity. They then either regenerate transport links as
needed, or use a fixed-size cache to store the links; when there is no room left in
the cache, the link judged to be least likely to be reused is ejected.

There are some drawbacks to the linkless radiosity methods. There is the
increased computation time due to recalculating links, especially given the cost of
visibility calculations. Also, not keeping all the radiosity links necessary for the
final solution can reduce the utility of the algorithm. A complete list of links is an
informative data-structure about scene illumination in its own right. Without it,
there can be no final gather stage. It is also potentially useful in deciding where to
place light maps, shadow maps, and environment maps. However, linkless radi-
osity does make the memory overhead of the various wavelet methods much
more tractable; for these methods its drawbacks are easily outweighed by its ben-
efits.

The mesh-based random-walk methods of Tobler and Shirley mentioned
previously inSection 2.2.4 can be viewed as another way of avoiding explicit
transport links.

2.4. Discussion of Hierarchical Radiosity

In this section we examine some aspects of the hierarchical radiosity algorithm in
closer detail, in order to supply enough background to carry the reader through
the oncoming chapters on face cluster radiosity.

2.4.1. Link Refinement

Hierarchical radiosity is a top-down algorithm. We start with a small set of initial
links, representing light transport in the scene at the coarsest possible level, and
iteratively refine those links until our transport representation is fine enough
enough to capture the desired illumination effects. Usually, on each iteration we
decide whether to refine a given link based on whether some estimate of its
approximation error is less than a preset threshold, . In early radiosity algo-
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2.4.  Discussion of Hierarchical Radiosity
rithms, this error was taken to be the magnitude of the transport, or form-factor,
itself. As well as working reasonably well, this had the advantage that it was easy
to show theoretically that for any given , each element in the solution mesh
could have at most a fixed number of links, this being a necessary precondition of
the solution process. (This has also proven to be true in practice, and for
bases other than Haar; see “An Empirical Comparison of Radiosity Methods”
[Will97b], Figure 76.) This is a consequence of the total form-factor of any element
summing to unity. Ignoring discretisation error and assuming a closed scene, each
element would then have  transport links associated with it.

More recent radiosity algorithms use either an estimate of the total power
carried by the link, or the error in that power, to make refinement decisions. This
has the advantage that transport links that affect the resulting solution the most
are refined first. Stamminger et al. classify the possible approaches to estimating
error into three categories: the previously-discussed form-factor approach, bound-
ing methods which establish upper and lower bounds on the transport, and sam-
pling approaches which use the variation in samples of the transport to estimate
error [Stam97b]. Surprisingly, they find that there is no great difference in result
accuracy between the different methods; most of the difference comes in imple-
mentation simplicity, robustness, and visibility handling.

When the decision is made to refine a transport link between two elements
A and B, with respectively and sub-elements, a decision must also be made
as to how to refine that link. Generally, there are three options:

• Subdivide the element A, and replace the link with links from B to the chil-
dren of A. (  new links.)

• Subdivide the element B, and replace the link with links from A to the chil-
dren of B. (  new links.)

• Subdivide both elements, replacing the link with links between all sub-ele-
ments. (  new links.)

Typically this decision is made by comparing the relative contributions of the two
elements to the total error metric defined by the link, by comparing the projected
areas of the elements along the direction of transport, or even by just comparing
the total surface areas of the two elements. (In the area-based comparisons, the
largest element is the one to be subdivided.) The first approach has the advantage
of a better actual error estimate, the second the advantage of generality, being
independent of the error metric, and the third the advantage of robustness. In
some situations, the first two approaches can lead to infinite subdivision of one
element, with no corresponding reduction in transport error. (An area-limit below
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Chapter 2.  Previous Work on the Radiosity Problem
which no patch is subdivided is the usual approach to circumventing this prob-
lem.)

Refining the link “on both ends” is reserved for situations where it is
known for certain that both ends of the link will end up being refined, such as a
self-link between two clusters.

2.4.2. Solving the Radiosity System

To use our element hierarchy and set of links to solve for the radiosity of the leaf
elements requires two stages:

Gather

Radiosities are “gathered” across every link in the system to find the correspond-
ing irradiance on the receiving node. The per-link irradiances are summed for
each node to produce the total irradiance for that node, but this still leaves us
without a consistent representation of the radiosity over all elements.

The gather process is , where is the number of links. Assuming that
as usual the number of links is proportional to , its time complexity is .

Push-Pull

To get a consistent representation of radiosity at the leaves of the simulation, irra-
diances are summed down the hierarchy to produce a total irradiance at each leaf,
This is known as the “push” phase. This irradiance is then converted to radiosity
at the leaf elements by application of the reflection operator, and the resulting
radiosities are “pulled” back up the hierarchy, usually via an averaging operation,
to assign appropriate radiosities to coarser nodes in the hierarchy.

Because of the hierarchical nature of mesh, this approach to solving the
radiosity equation is similar in spirit to the “multigridding” approach often
employed in the numerical simulation of physical phenomena. The key feature of
multigridding is that the system is solved for progressively finer levels of detail,
with the results of each previous stage being used to initialise the next, and thus
speed convergence. (When multiple iterations are used, the finer levels can also
feed back to the coarser levels on the next iteration.) Wavelet radiosity differs in
that this process is interleaved; because the gather operation itself is a multireso-
lution one, each iteration of the algorithm solves all “levels” of the mesh simulta-
neously.

The solver is much closer to n-body and multipole methods and barnes
hut. One of the key differences is that these algorithms do not explicitly calculate
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2.4.  Discussion of Hierarchical Radiosity
or store transport links, as they are much more lightweight to calculate than light
transport, which often involves visibility computations. They also do not take
advantage of rough estimates of the importance of the transport to influence the
accuracy of the transport.

2.4.3. Interleaving Refinement and Solution

We have discussed how to refine the links that define the transport of light in our
scene, and how to solve for the radiosities in the scene. The remaining question is,
how do we mix these two actions to produce our final solution. Broadly, there are
three possibilities:

Two Stage

In a two-stage solution, we first refine the links, and then solve for the radiosities;
there is no feedback between the two stages. The links can be refined either
according to a metric that only takes into account geometric considerations, or
one that only takes into account the initial light sources in the scene. While this
approach keeps things simple, it ignores the fact that the optimal link refinement
is dependent on the final radiosity solution.

Interleaved

To create the ideal distribution of links, we need to know the radiosity solution a
priori, so that we can ensure the error in the total power carried by each link is
constant. (Put more simply, links that are formed between a bright source and a
highly reflective receiver should have less error than those between a dim source
or a less reflective receiver.) As is usually the case, this kind of inter-dependence
problem can be addressed with a multigrid method. We can interleave link refine-
ment and system solution, so that the current estimate of the radiosity solver is
used to drive link refinement, which in turn results in better radiosity estimates.

Picking an appropriate solver iteration to interleave is simple; we simply
run one iteration of the gather/push/pull process. Picking an appropriate refine-
ment iteration is a little trickier, because refinement is defined recursively. The
solution is to remove this recursion, and only allow the possibility of a particular
link being refined once per iteration.

Scheduled

A problem with the interleaved approach is that the granularities of link refine-
ment and system solution is not well matched. When considering solution
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approaches, it is vital that, in order to reduce error, we try to arrange things so
that radiosity is only ever transferred across a link after it has been refined as
much as our error criteria demands. To do otherwise is to introduce error into the
system. If the link underestimates the actual transfer, the system merely con-
verges more slowly. If it overestimates the actual transfer, however, this can intro-
duces excess radiosity into the system that in the best case will slow down
convergence, and in the worst case can prevent convergence.

This can lead to problems with the interleaved approach, where links are
not sufficiently refined before radiosity is gathered across them. An alternative is
to run refinement until all links meet some error criterion , then iterate the
gather/push/pull stage until the radiosity solution has converged, and then
repeat the whole process for a lower criterion . Typically, this process is
repeated for a fixed number of iterations, and a simple rule such as
used to set successive values of the refinement epsilon.

In some sense, this is like running the two-stage algorithm above with suc-
cessively smaller epsilon values. However, the solutions and previous transport
links are carried over from each previous cycle, so it takes much less time to con-
verge to both an appropriate level of link refinement and a radiosity solution,
than if it were being performed from scratch. After each stage, we reduce our cur-
rent value of epsilon by dividing by a term .

When used in conjunction with “lazy linking”, and , the method can
be thought of as simulating successive global bounces of radiosity. In the first
stage, we refine links according to just the light sources in the scene, and then
solve for radiosity directly transported to scene surfaces. (The lazy linking
ensures that radiosity is not transported between surfaces that were both unlit
before the stage started.) The second stage further refines the links according to
this “direct-only” radiosity solution, and then solves again, this time for the first
bounce of light. In this way, we converge to a global radiosity solution. In prac-
tice, we set  so as to speed the initial stage and get feedback more quickly.

The scheduled solution method provides the best and most stable results
of the various hierarchical radiosity solvers. Some variant of it is used by most
hierarchical radiosity implementations. The chief drawback of this approach is
that there is no longer a natural stopping point to the solution. Generally, a fixed
number of iterations is chosen, and solution is stopped after that many stages.
Also, it is much more coarsely grained than the interleaved approach. Thus, the
interleaved approach can still be useful for interactive applications, because it
delivers results more quickly, and is easier to stop quickly in a consistent state.
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2.4.4. Visibility

Dealing with the cost of visibility queries is hard, due to the discontinuous nature
of occlusion, and the difficulty of characterizing the distribution of visibility dis-
continuities in a scene. As a result, many analyses of the complexity of finite ele-
ment methods simply ignore it.

Generally, an occlusion query is [Shir92]. The originally hierarchi-
cal radiosity paper showed that evaluating visibility required the casting of
rays. This is a consequence of the number of links being bounded by , and
thus being , and the fact that we usually cast a fixed number of rays per link
to evaluate its fractional visibility. (Because link refinement proceeds in a hierar-
chical fashion, the total number of links evaluated is linearly proportional to the
final number of links used to calculate transport for the scene.)

Thus the time complexity of finite-element radiosity methods including vis-
ibility testing is potentially . In practice, approaches such as
shaft culling [Hain94] and caching of shadow hits [Hain91], and the use of density
grids [Fuji86, Sill94a], can make ray-tracing queries closer to time for evalu-
ating each link transports. Still, even if they are constant time, ray-tracing queries
tend to be by far the most expensive part of evaluating the transport kernel, so
some care must be taken to optimize their use.

2.4.5. Meshing for Radiosity

Generally the input scene to a radiosity method is polygonized, and the polygons
are then split into a mesh of triangular or quadrilateral elements. There are two
methods commonly used to adapt this mesh to a radiosity solution as it
progresses.

Regular Refinement

The standard mesh-refinement technique employed in hierarchical radiosity algo-
rithms (and progressive radiosity with substructuring) is the regular refinement
of elements. For instance, a triangle can be refined into four elements by splitting
each edge at its midpoint, and retesselating these points into four subelements.
Such refinement operations on an original mesh element form a quadtree. Regular
refinement has the advantage of simplicity, and independence—any particular
element can be refined independently of another. It also makes refinement deci-
sions straightforward; if the total estimated error across the element is above a
certain threshold, we refine it. It has the disadvantage that, if an element is poorly
shaped, or not well aligned to the current radiosity solution, the same will hold
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Chapter 2.  Previous Work on the Radiosity Problem
for its subelements. Also, quadtree meshes can feature T-vertices, which lead to
interpolation problems when rendering, as in Figure 11. This can be corrected by
balancing and anchoring the mesh [Baum91]. An example of a quad-tree mesh,
and its anchored equivalent, is shown in Figure 12.

Figure 11: Shading discontinuities at a T-vertex.

Figure 12: A quad-tree mesh. Left, the original mesh. Right, the mesh af-
ter anchoring “T-vertices” to eliminate illumination discontinuities.
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Discontinuity Meshing

Discontinuity meshing takes adaptive methods using regular refinement a step
further by computing where shadow edges or other visibility discontinuities will
occur, and pre-splitting the mesh along such features. This can produce impres-
sive results, especially when the shadows in question are relatively sharp. Its pri-
mary drawbacks are that it can be difficult to implement robustly, and it is an
object space method, dependent on the edges in the scene. Most previous imple-
mentations of discontinuity meshing modify the mesh as a preprocess, and thus
attempt to calculate all possible discontinuities. This makes them poorly suited to
curved objects and objects with highly detailed polygonal silhouettes.

Discontinuity meshing is also best suited to surfaces that consist of a small
number of large polygons. On a highly tessellated, curved surface, a large number
of faces would have to be split along discontinuity lines.

2.4.6. Output Representations

When considering radiosity methods, it is useful to keep in mind the potential
output targets for the simulation, especially view-independent ones. As much of
the work of finding a global illumination solution as possible should be delegated
to them, as they have the following advantages:

• Their brute force lends them stability.

• They are hardware assisted in many cases.

• They are implemented solidly by many scan-line renderers.

The most common of these output representations are listed below.

Gouraud-Shaded Polygons

Any renderer has support for drawing a polygon with the colour interpolated
from colours specified at its vertices, and support for these primitives in hardware
is now commonplace. Gouraud-shaded polygons are a standard output target for
radiosity methods. The radiosity for each vertex can be calculated, and the ren-
derer will take care of interpolating these radiosity samples. This is sometimes
known as vertex lighting.

Point Light Sources

A number of attempts have been made to transform the output of a global illumi-
nation method into a set of point light sources for interactive viewing [Walt97a,
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Kell97]. The effects of global illumination can be handled by so-called virtual light
sources—lights placed so as to simulate reflected light, rather than where the
direct light sources are located. For instance, the light reflected from a blue floor
on to an object sitting on it by an overhead light could be simulated by placing a
blue virtual light source beneath the floor pointing upwards. This type of light
source is often used in computer animation, where the virtual light sources are
placed manually by a skilled lighter to simulate a complete lighting solution.

Unfortunately, most graphics hardware can only handle a small fixed
number of point light sources quickly, and this number is often too small to get
good results. One solution to this problem is to use multi-pass rendering, where
the final image is composited from multiple renderings of the scene, each of
which uses  point light sources.

Shadow Maps

Shadow maps can be calculated using a hardware z-buffer, but the actual map-
ping algorithm used to render the shadows is not in most hardware systems. (An
exception is SGI’s shadowX OpenGL extension.) While shadow maps initially
only handled shadows cast by point light sources, they have been adapted in
recent years to handle area light sources as well.

Light Maps

Light maps. These are akin to texture maps, but instead store the irradiance over a
surface. They can then be blended with texture maps to produce the effect of
shadows over the surface. It is becoming common for interactive games to use
light maps to represent lighting detail. For interactivity reasons, it is essential that
the polygon count in these scenes remain low; often the graphics cards used are
heavily optimised for multi-texturing, and have significant amounts of texture
memory, so it is natural to take advantage of this. Also, until recently, most PC
graphics cards did not have onboard transformation and lighting, making it rela-
tively expensive to represent lighting detail with extra geometry.

2.5. Problems with Finite-Element Radiosity Methods

The hierarchical radiosity with clustering algorithm described in the previous sec-
tions, while capable of impressive performances with scenes of medium complex-
ity, has a number of drawbacks. We examine some of them here.
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2.5.1. Mesh Artifacts

The regular refinement employed in refining input polygons means that the ori-
entation and shape of these polygons can have a detrimental effect on interpola-
tion results, both in areas of high radiosity gradient, and in the presence of
shadows. Figure 13 demonstrates some of these problems. The key problem is
that, while we use the input geometry to directly define our finite element mesh,
it is almost never designed specifically for that purpose. This often leads to tedi-
ous and expensive geometry clean ups before an acceptable solution can be gener-
ated. (One of the most compelling arguments that can be made for Monte Carlo
path-tracing methods is that, leaving aside the noise, they are very robust in the
face of scene complexity and tricky geometrical cases.) This sensitivity to the
input scene geometry is in contrast to the use of finite-element methods in most
other fields, where the solution mesh can be generated specifically to match the
quirks of the solver being used, according to a much looser set of input con-
straints.

2.5.2. Volume Clustering Artifacts

Volume clusters assume that the incoming directional irradiance is constant
across the contents of their cluster. This can lead to blocky results, such as those
shown in Figure 14 and Figure 15, when adjacent parts of an otherwise connected
surface fall within different clusters. A major drawback of volume clustering tech-
niques is that there is no easy way to overcome this problem. While radiosity can
be interpolated across surfaces, doing so across volumes would not lead to good
results, because of the varying orientations of surfaces within the cluster. The way
we correct for those orientations, by pushing irradiance to the leaf polygons “on
the fly” whenever we gather it across a link, makes it difficult to construct a
higher-order (and thus smoother) approximation of the polygon’s irradiance.

One solution to the clustering artifacts shown here is to decrease the error
threshold until links are at the resolution of the leaf polygons, but this negates
many of the benefits of using clustering. The problem comes when the density of
our input polygons becomes much greater than the illumination density; then this
approach can become very costly.

Later, we will show how using surface-oriented clusters instead of volume-
oriented clusters allows us to define an interpolation method that mostly over-
comes these problems.
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2.5.3. Visibility

As discussed previously, the transport kernel consists of both geometric and visi-
bility terms, and while finite elements on the whole handle the geometric term
well, they can have problems with the discontinuities introduced by sharp shad-
ows. Our perceptual sensitivity to illumination discontinuities makes shadow
handling in the final output especially important.

This is especially a problem in the radiosity method, as for transport evalu-
ation, we must bundle these two terms together. This leads to tension between the
two; in cases where there are sharp shadow discontinuities, we end up refining
heavily to capture the shadow, and light-weight basis functions (Haar, for exam-
ple) work best. In cases where illumination is smooth, more heavy-weight basis
functions—linear, quadratic or cubic—can represent the illumination with fewer
coefficients. The problem is that the ideal level of refinement or resolution for cap-
turing visibility effects is often different from that for capturing the unoccluded
irradiance.

There have been a number of approaches to ameliorating this problem.
One of the earliest was the use of “shadow masks” [Zatz93]. In this approach, vis-
ibility is calculated separately, and at a much higher resolution than unoccluded
radiosity. This results in a shadow mask, which represents occlusion across the
receiving patch, and can be post-multiplied into the radiosity function to produce
good shadows. This approach has been refined by a number of other researchers
[Slus94].

Another approach is to use what is called a “final gather” stage. The radi-
osity solution proceeds as normal, using basis functions tuned more towards the
geometric transport term, and placing less emphasis on quality of visibility. After
solution has been reached, a final solution iteration is performed in which the
solution is recalculated using the existing solution, but reevaluating visibility at

Figure 13: Effect of the underlying base mesh. The base mesh can have
a large effect on the result of the radiosity algorithm. Left: a poorly-tes-
sellated disc leads to streaking in the well-lit area. Right: the orientation
of the initial triangulation of the ground square affects the shadow cast
on it. Shown from top to bottom are the post-processed solutions, the
original solutions, and the solution meshes. In post-processing, these
meshes have been balanced and anchored before shading interpolation,
but this still leaves us with noticeable shading artifacts.
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Figure 14: Clustering Artifacts. Using volume clustering on a dense
mesh lit by three lights (a) speeds up calculations, but also leads to inter-
polation problems because of the constant cluster basis functions, as
shown in (b). Turning on gouraud shading (c) does not do a good job of
fixing this, as the mesh element size is much smaller than the cluster res-
olution. The contribution of the three lights to a volume cluster is shown
in (d).

(b)(a)

(d)(c)
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2.5.  Problems with Finite-Element Radiosity Methods
every vertex in the model, for geometric approaches, or every pixel in the final
image [Rush88, Lisc93, Chri96]. This approach can produce very nice results; its
main drawback is that it is very compute intensive, and is linear in the number of
polygons in the illuminated geometry. For large scenes, this can make it prohibi-
tively expensive [Lisc93].

2.5.4. Scenes with Detailed Surfaces

Large, highly-tessellated objects can cause problems when using hierarchical radi-
osity with volume clustering, beyond the clustering artifacts already discussed,
simply because of the sheer number of input polygons in relation to the scene’s
illumination complexity. Because the algorithm is least , when the natu-
ral level of illumination lies relatively high in the hierarchy, the push-to-leaves
part of the algorithm’s cluster gather stage becomes significant. An example of
such an object can be seen in Figure 17. This occurs even though the general n-

Figure 15: Clustering Artifacts cont. Even when the error threshold is re-
duced, the clustered solution (f) has aliasing artifacts not present in the
reference solution (e).

(f)(e)

O k klog( )
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Figure 16: Clustering on a sphere. The cluster level at which light inter-
action is taking place in (a) leads to the “blocky” solution (b). When
Gouraud shading is applied (c) the result still falls short of progressive
radiosity (d). Another problem here is that usually volume clusters are
axis-aligned, and are not fixed in an object’s frame of reference. If we at-
tempt to animate the sphere by rotating it or translating it, any clustering
artifacts will stay fixed in space, rather than following the sphere.

(b)(a)

(d)(c)
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2.6.  Radiosity with Detailed Models
body finite element method has the potential to be , where is the number of
elements used in the simulation, and  in such situations.

There are similar problems with memory behaviour. Because we must
push radiosity to cluster leaves to account for varying surface orientation, all
input polygons must be touched at least once on each solver iteration, and thus
the algorithm exhibits poor memory locality when . There are other consid-
erations too; a radiosity sample must be stored for all input polygons, for
instance, rather than only for the elements being used in the simulation, as we
might wish. Also, if we wish to apply some kind of gouraud-shading post-
processing, there is additional overhead in keeping track of the neighbours of all
these polygons. Finally, the large number of polygons exacerbates the clustering
artifacts mentioned previously; see Figure 18.

2.6. Radiosity with Detailed Models

The primary problem this thesis addresses is that outlined by the previous sub-
section; the application of finite element methods to radiosity scenes containing
detailed surfaces, such as scanned models, or tessellated implicit surfaces or
height fields. These objects may be geometrically simple, at least on a macroscopic
level, but the sheer number of polygons necessary to represent them defeats most
current finite element algorithms. To handle such models, we must look again at
some of the standard assumptions concerning the radiosity problem.

2.6.1. Reexamining Assumptions

Assuming that our scene contains potentially many high-resolution meshes
changes a number of our basic assumptions about the radiosity algorithm:

• A complexity of  in the number of input polygons is a good result.

This is no longer acceptable when can be on the order of millions of polygons.
Ray-tracing approaches are sublinear in time; empirically they are often close to

.

• The common case is that we need to refine polygons to capture illumination
detail.

Now the common case is that the polygons in the input mesh are smaller than the
illumination detail we wish to capture. Any solution that involves evaluating the
radiosity function, especially visibility, on a per-polygon basis may well be too
expensive.

O n( ) n
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1 2⁄( )
57



Chapter 2.  Previous Work on the Radiosity Problem
Figure 17: Highly-detailed models. Top: The model of the ‘starship en-
terprise’ pictured is composed of 203,878 triangles. The model shown is
a medium resolution version of the original model. (Models captured by
Cyberware scanner or equivalent device can sometimes reach complex-
ity levels of the order of a million triangles.) Bottom: Such models can be
simplified by a technique that creates a multiresolution hierarchy of the
model. The simplified model shown here has 1000 triangles.
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2.6.  Radiosity with Detailed Models
• Transfer links will wind up pointing to the leaves of the element hierarchy,
i.e. the input polygons.

In our target scenes, the illumination complexity, which affects how far in the ele-
ment hierarchy the solver must descend to produce a solution, is much smaller
than the geometrical complexity, i.e., the number of surfaces in a scene. Hence,
transfer links will wind up pointing closer to the top of the hierarchy, and rarely
to the leaves of the models in question.

2.6.2. Discussion

In summary, this dissertation is concerned with the hierarchical radiosity algo-
rithm, which solves for the global transfer of diffuse illumination in a scene.
While its potential algorithmic complexity is superior to both previous radiosity

Figure 18: Clustering problems on a real scene. Note especially the gear
stick; either side of the knob belongs to a different cluster, with effects
similar to those seen in Figure 16. (From Hasenfratz et al. [Hase99].)
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Chapter 2.  Previous Work on the Radiosity Problem
methods and ray tracing methods, it is more inflexible than pure ray-tracing algo-
rithms, and the density and orientation of the polygons in the input scene can
unduly affect the output of the method. Worse yet, the time complexity of the best
current radiosity methods is at least linear in the number of input polygons; .
To compete with Monte Carlo methods for detailed scenes, it is crucial that meth-
ods be developed that are sub-linear in geometric complexity, otherwise, with
ever-increasing scene complexities seen in the computer graphics industry, radi-
osity will become restricted to a niche as an illumination method.

In tackling these problems, we will assume the input and output geometry
is composed of:

• Polygonal meshes.

• Per-face materials; diffuse reflectance, texture maps.

• Face or vertex colours.

• Texture maps for detail.

• Bump maps for detail.

• Any part of the geometry can be a light source.

All of this is similar to standard model formats such as Alias/Wavefront’s OBJ
format, 3D Studio Max’s binary format, and the research format MGF. It is also
helpful to keep in mind what our scenes are typically composed of:

• Large flat surfaces, the easiest case. Typically represented with a small
number of polygons; low complexity.

• Terrain geometry. Typically height-field meshes; medium to high complexity.

• Lighting fixtures. Low to medium complexity.

• Models (animals, objects, vehicles, etc.) Often detailed but largely connected
polygonal meshes; medium to high complexity

Any radiosity method should ideally be able to handle this entire range of com-
plexities, from small, large wall polygons, to tiny detail polygons making up a
complex model.

In the next chapter, I will show how by using flexible surface hierarchies similar
to certain model simplification hierarchies [Garl97], many of these concerns can
be addressed, increasing both the speed and the quality of the basic algorithm.
Specifically, by incorporating a data-structure similar to such multiresolution
meshes into our radiosity simulation, we can reduce the complexity of the algo-

O k( )
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2.6.  Radiosity with Detailed Models
rithm to , where is the number of faces in the most simplified ver-
sion of our scene. In complex scenes, , and often, .

O s slog n+( ) s
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C h a p t e r  3
Face Cluster
Radiosity
3.1. Introduction

The best hierarchical radiosity methods, using volume clustering, permit scenes
of moderate complexity (several hundred thousand input polygons) to be simu-
lated in times ranging from ten minutes to a few hours, depending on the level of
accuracy chosen for the simulation, and the geometric arrangement of the scene.
Unfortunately, current radiosity techniques, even with clustering, use excessive
memory and their speeds are not competitive with other, less realistic rendering
methods. We would like to be able to apply radiosity methods to the complex
scenes common in special effects. Such scenes routinely use objects each employ-
ing 100,000 polygons or more. We therefore seek an enhancement to the hierarchi-
cal radiosity algorithm that will permit very complex scenes—scenes with
millions of input polygons—to be economically simulated on a standard compu-
ter.

One of the greatest difficulties with existing radiosity methods is that their
memory use is at least linear in the number of input polygons. This is not a prob-
lem if the scene is small, but if the input polygons cannot fit in physical memory,
the algorithm will thrash and performance will degrade dramatically. To deal
with very complex scenes, we need methods which in practice have memory and
time cost that is sub-linear in the number of input polygons. This is possible
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Chapter 3.  Face Cluster Radiosity
because for many such scenes, the geometric detail represented by the input poly-
gons is much greater than that needed for the radiosity simulation.

In this chapter I describe the core elements of the face cluster radiosity
algorithm, a technique that achieves this goal. This algorithm grew out of research
into adapting the radiosity method to use multiresolution models. Later chapters
will deal with technical details and some of the assumptions behind the algo-
rithm, but for now, I will focus on its overall structure.

3.1.1. Overview

A preview of the technique is shown visually in Figure 19. If one of the best exist-
ing radiosity algorithms (hierarchical radiosity with volume clustering) is used on
a detailed model, a solution takes over ten minutes (Figure 19a)1. If, on the other
hand, the input geometry is simplified by cutting the number of triangles by a fac-
tor of 100, and the same algorithm is applied to the simplified model, a solution
can be calculated much more quickly (Figure 19b, 7 seconds). This is fast, but the
accuracy and visual quality are poor. The face cluster radiosity technique allows a
solution not much more expensive than this to be calculated and propagated to
the fully detailed model, yielding Figure 19d. This is much faster than the full
solution and almost as accurate.

The three main phases of the algorithm are preprocessing, solution, and
postprocessing. Preprocessing converts the scene description into a multiresolu-
tion, hierarchical model. The time cost of this is super-linear in the number of
input polygons, but preprocessing can be done on an off-line, object-by-object
basis, so its memory costs are modest and its time costs can be amortized over
multiple solutions. Next, one or more radiosity solutions are found. This is the
costliest step, in practice. The solution phase is sub-linear in cost because it
accesses only the coarsest levels of detail from the hierarchy that are necessary.
Consequently, often large portions of the hierarchy need never be paged in during
this phase, with huge physical memory savings. After solution, postprocessing
evaluates the radiosity of the finest details of the scene. This requires linear time.
The overall cost, being dominated by solution, is thus sub-linear in practice.

1. These times are highly dependent on accuracy settings, platform and implementation. The times quoted
are meant to be illustrative, though care was taken to use similar settings for each algorithm.
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3.1.  Introduction
Figure 19: Radiosity on a detailed dragon model. Face cluster radiosity
(FCR) and hierarchical radiosity with volume clustering (HRVC) algo-
rithms applied to a detailed dragon model.

(b) HRVC, 1000 triangles, 7 s(a) HRVC, 108,000 triangles, 707s

(c) Constant FCR, 108,000 triangles, 7s (d) Vector FCR, 108,000 triangles, 8s
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Chapter 3.  Face Cluster Radiosity
3.2. Outline

In this section we present the ideas which lead to the development of the face
cluster radiosity algorithm, and a rough sketch of the algorithm itself. We close
with a more thorough analysis of the complexity of the new method and its rela-
tionship to previous work on hierarchical radiosity algorithms.

3.2.1. Motivation

The current state of the art in radiosity methods, hierarchical radiosity with vol-
ume clustering [Smit94], has a complexity that depends, among other things, at
least linearly on the number of polygons in the input scene. The work presented
in this chapter has a number of motivations, but the primary motivation can be
summarised very simply:

If we increase the number of input polygons in our scene by tessel-
lating existing polygons1, it should have no impact on the speed,
memory use, or results of our radiosity simulation.

That is, we would like the performance of our radiosity algorithm to be sub-linear
in the number of input polygons. This should hold if we simply tessellate poly-
gons in the scene, but we would also like it to be largely true if we add small-scale
detail to surfaces, perhaps by perturbing the tessellations slightly, that is unlikely
to affect the broader radiosity computation. In other words, high-resolution detail
in a scene should have minimal impact on the radiosity solution time.

This motivation arose from experiments with radiosity simulations on
scenes that contained large scanned models; large enough to make the depend-
ence on input polygons of the volume clustering system a problem. The observa-
tion that most of the polygons in such models are for high resolution detail, and
don’t affect radiosity computations much, led me to investigate the use of model
simplification in radiosity. Model simplification is a process whereby the polygon
count of an existing model is reduced, while trying to keep the same approximate
shape as the original model [Heck] (see Figure 20). In particular, it lead to the use
of multiresolution models [Hopp97].

A multiresolution model allows the resolution of an existing polygonal-
mesh model to be lowered by different amounts at different points on that model.
It is possible to have one region of the model be heavily simplified, and another

1. Tessellating means replacing an existing polygon with several smaller polygons that cover the same area.
66



3.2.  Outline
region simplified almost not at all, with the intermediate regions having corre-
sponding gradations of resolution. Such models are generated by applying an
iterative simplification process to the original model, and generating a corre-
sponding tree of simplifications, with the original model’s polygons at the leaves
of the tree. Any cut through this tree gives a version of the model with a particular
resolution.

Intuitively, we can envisage using such a model to remove the unneeded
high-resolution detail of models before running our radiosity algorithm. Instead
of running our radiosity simulation on a detailed model (as in Figure 19a), we
would run it on a simplified model (Figure 19b), and then somehow apply the
results back to the original model.

A better solution would be to combine both the multiresolution model and
radiosity algorithms. By using the multiresolution hierarchies of the models
directly in the element hierarchy of the radiosity solver, we could adjust the
model resolution “on the fly” to match that needed by the radiosity algorithm.
Apart from being more flexible, this would ensure that no manual selection of
simplification level was necessary. This is vital, because it is difficult to guess a
priori where the models can be simplified, as these decisions are best made using
global information. To do a good job, we would need the results of the radiosity
simulation we are trying to run.

Figure 20: Progressively simplified models of a DC10 aircraft.

500 polygons 110 polygons2320 polygons
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Chapter 3.  Face Cluster Radiosity
Traditionally, below the level of the input polygons we add refinements to
those polygons to capture any illumination detail that is at a higher resolution
than those polygons, as shown in Figure 21. If we envisage a radiosity hierarchy
where the root of the hierarchy represents the entire scene, and the input poly-
gons lie at some particular level in the hierarchy, refinements can be represented
by nodes below that line in the hierarchy.

In the same way, Figure 22 shows how in turn we can use simplification to
reduce the resolution of the scene above the input polygons; conceptually, these
simplifications make up the nodes above the input polygons in the hierarchy. This
also has the benefit of improving our representation of the scene at such levels.
Volume clusters, which are traditionally used to represent versions of the scene
coarser than the input polygons, are designed to approximate a cloud of uncon-
nected polygons. For the connected, largely smooth surfaces that occur in many
models, surface simplification provides a better and more natural approximation.

The particular multiresolution model format we use in our algorithm, as
discussed in the next section, is called a face cluster hierarchy. Figure 23 outlines
how these face clusters fit into a traditional hierarchical radiosity with volume
clustering algorithm. As indicated, they help bridge the gap between the surface

Figure 21: Refinement of polygonal elements in the detail hierarchy

Input
polygons

High resolution elements

Root: entire scene
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3.2.  Outline
representation of polygons, which are contiguous and have a single orientation,
and the representation of volume clusters, which is best at modelling a collection
of scattered, disconnected surfaces. Face cluster nodes are intended to model a
contiguous, connected chunk of the surface, which is assumed to be largely co-
planar, but to have varying surface normals.

With both a vanilla hierarchy, Figure 23 (a), and with volume clustering
(b), the solver must descend to at least the level of the input polygons. This level
gets ever further away from the root (as increases) as the detail of the scene
is increased. That is, as we arbitrarily tessellate the scene, the solver must do more
work. Once face clusters are introduced in (c), this is no longer the case; the solver
must only descend as far as the leaves of the solution hierarchy, which remain at a
constant level regardless of the tessellation of the underlying models. This has the
further advantage that we need not store radiosity coefficients for all input poly-
gons — only for those face cluster nodes within the solution hierarchy. In a simu-
lation where a detailed model can be safely approximated for the purposes of
radiosity computation by a much simpler model, this provides tremendous mem-
ory savings.

Figure 22: Simplification of polygonal elements in the detail hierarchy
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Chapter 3.  Face Cluster Radiosity
Figure 23: Adding face clusters to the hierarchy. The original polygon-
only solution hierarchy (a) can be augmented with in turn (b) volume
clusters and (c) face clusters.
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3.2.2. Hierarchy Analysis

Figure 24 is a schematic comparison of variants of hierarchical radiosity on a
scene with two large polygons A and B in close proximity, and eight small poly-
gons C-J, more distant. Simple hierarchical radiosity (a) yields a forest of
quadtrees. Polygons A and B are subdivided and some of their children are
linked. The large number of links between the small input polygons C-J makes the
algorithm inefficient. Figure 24b shows hierarchical radiosity with volume clus-
tering. If cluster Q is sufficiently small and distant from cluster P then a single link
between them suffices. Since a cluster can illuminate itself, a self link on Q is nec-
essary as well. The algorithm is still slow because it is necessary to push light
down to polygons C-J.

Face Cluster Radiosity. We propose that volume clusters be replaced by mul-
tiresolution models for all groups of input polygons that represent a surface. The
use of such models allows pushing of light to the leaves to be avoided, and they
often provide a better fit to the original surfaces than volume clusters. The partic-
ular multiresolution representation that we use, face clustering, groups adjacent
faces that have similar normals, and thus can approximate largely planar surfaces
well.

With this scheme, the data structures for elements coarser than and finer
than the input polygons are more similar, since both face clustering and quadtree
refinement yield a contiguous piece of surface with a normal. Hierarchical radios-
ity is now free to subdivide below the level of the input polygons and to “unsub-
divide” above this level. This reduces the hitherto inordinate role of the input
polygons, permitting hierarchical radiosity to represent light transport at more
natural levels of detail, and to operate more efficiently in complex scenes.

The use of multiresolution models improves the accuracy of our represen-
tations and permits our algorithm to avoid touching the lowest portions of the
hierarchy during iterations. In Figure 24c we see how a tree of simplified models
is built above the input polygons. The tree nodes below T and above C-J are now
face clusters, not volume clusters, while the highest levels of the tree, above con-
nected objects, are volume clusters. Note that the subtree below T can be paged
out during simulation, saving time and memory.

3.2.3. Previous Work

The use of simplified models in radiosity has previously been proposed. Rush-
meier et al. demonstrated the feasibility of the concept, but their method
employed manually-constructed simplified models, making it impractical for
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Figure 24: Three approaches to hierarchical radiosity
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3.3.  Building Surface Hierarchies
complex scenes [Rush93]. Greger et al. showed how a radiosity simulation of a
simple scene could be applied to a more detailed version of that same scene by
using an irradiance volume [Greg98]. Both these methods require the user to judge
the level of pre-simulation simplification; simplification and simulation are two
separate steps, whereas in our algorithm, the level of simplification is driven by
the radiosity simulation. That is, the simulation picks the level of simplification
appropriate to each transfer of radiosity between solution elements, and multiple
levels of simplification exist during the solution.

3.3. Building Surface Hierarchies

3.3.1. Multiresolution Surface Hierarchies

Recent work from the area of surface simplification provided a starting point for
our research into radiosity using multiresolution models. Iterative edge contrac-
tion, one of the currently popular simplification techniques, can be used to con-
struct a hierarchy of progressively larger vertex neighbourhoods on the surface.
Each edge contraction collapses the two vertices at either end of the edge to a sin-
gle, new vertex. The hierarchy is created by treating the endpoints as the children
of this new vertex. These vertex hierarchies have been used primarily for view-
dependent refinement of models for real-time rendering [Hopp97, Xia96, Lueb97].

In the original version of the algorithm presented in this dissertation, I
used vertex hierarchies directly, as implied by the preceeding section. This some-
times proved problematic, because vertex nodes don’t have a well defined area
and normal. (These properties are easier to establish for face hierarchies than for
vertex hierarchies.)

To address this problem, the initial algorithm treated vertices in the simpli-
fication hierarchy as faces on the dual graph of the model. That is, conceptually the
polygonal mesh was assumed to define the Voronoi diagram of the actual surface
used by the radiosity simulation. Both the area and the normal for each vertex
were constructed from its surrounding faces; the dual was never explicitly
formed.

This approach still had problems, not least of which was that the radiosity
solution was being performed on what amounted to a smoothed version of the
original model, which made the treatment of creases and sharp edges on the
model problematic. Also, without explicitly constructing the dual graph, a step
which would have been prohibitive in cost, the vertex nodes did not have a well-
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defined extent. This made calculating form-factors and good visibility estimates
difficult.

At this point the following critical insight presented itself: a more robust
approach to the problem would be to use the original faces of the model in the
radiosity solution, and instead have the simplification algorithm work on the dual
graph of the model.

To meet the need for such an algorithm, Garland developed face cluster hier-
archies [Garl99], a dual form of the quadric-based simplification algorithm of Gar-
land and Heckbert [Garl97]. (It is also closely related to the “superfaces”
simplification algorithm of Kalvin and Taylor [Kalv96].) Rather than iteratively
merging pairs of vertices to directly simplify the mesh, the algorithm iteratively
merges groups of topologically connected faces, which we refer to as face clusters,
thereby partitioning the original mesh (see Figure 25). This process does not
change the original geometry of the surface in any way; it merely groups surface
polygons into progressively larger clusters. These merge operations can be used
to create a multiresolution hierarchy in the same manner as edge collapses; an
example is shown in Figure 26. The resulting face cluster hierarchy has the property
that any cut across the hierarchy gives a particular partitioning or clustering of
the original model. Figure 27 shows an example hierarchy, and the corresponding
clusters on the model for several different cuts.

In Garland and Heckbert’s original paper [Garl97], quadric functions of
position, , are used to represent the set of planes associated with
a vertex node, and can be used to find the best-fit point to those planes. When we
are working in the dual space, we instead use quadric functions of the face nor-
mal, , to represent the set of vertices in a cluster node, and to find
the best-fit plane to those points. Because of this, it can be shown that by applying
the quadric error approach to the dual problem, face clusters can be made to pre-
serve planarity where possible, in the same way that vertex simplification tries to
preserve shape.

3.3.2. The Face Clustering Algorithm

Much of the material described in the next three sub sections is summarised from
Garland’s work on surface simplification. Further details can be found in chapter
8 of his dissertation, “Quadric-based Polygonal Surface Simplification” [Garl99].
Further discussion and refinement of the face cluster algorithm can be found in
Chapter 5.

vTAv 2bTv c+ +
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3.3.  Building Surface Hierarchies
Figure 25: Face clusters. Each
face cluster is created by merg-
ing two other adjacent face
clusters. The several levels of
the hierarchy are shown here
for a small, curved mesh. At
bottom, there are six surface
regions, which are iteratively
merged pairwise, until we are
left with only a single cluster
covering the entire surface, at
top. This is the root of the clus-
ter hierarchy.

Note how the cluster
regions largely follow the cur-
vature of the surface.
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Chapter 3.  Face Cluster Radiosity
Our aim is to automatically construct a hierarchy of surface regions for
every connected surface component. Each region must consist of a connected set
of faces. We begin by forming the dual graph of the input mesh. Every face of the
surface is mapped to a node in the dual graph, and two dual nodes are connected
by an edge if the corresponding faces are adjacent on the surface. For the moment,
we will assume that the surface is a manifold with boundary; in other words,
every surface edge has at most 2 adjacent faces. We will also assume that all input
polygons have been triangulated.

In the dual graph, an edge collapse corresponds to merging two face clus-
ters together. Figure 28 illustrates a simple example. On the left is a mesh where
each dual node corresponds to a single face; in other words, each face is its own
cluster. After collapsing a single dual edge, the two darkened triangles have been
merged into a single cluster.

To construct a complete hierarchy, we use a simple greedy procedure to
iteratively collapse dual edges. We assign a “cost” to each dual edge and itera-
tively collapse the edge of least cost. After each collapse, we update the costs of
the surrounding edges. At each iteration, we have constructed a partition of the
surface into disjoint sets of connected faces. This is in contrast to simplification,

Figure 26: Building a Face Cluster Hierarchy.
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3.3.  Building Surface Hierarchies
Figure 27: An example face cluster hierarchy. Left: several different clus-
terings of a cow model. Each cluster has a different colour, and the
number of clusters increases from top to bottom. Right: the correspond-
ing cut through the cow’s face cluster hierarchy is shown in red.
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Chapter 3.  Face Cluster Radiosity
where at each iteration we would have constructed an approximate surface. Face
clustering an object with f faces costs  time and  memory.

3.3.3. Dual Edge Cost Metric

Each dual edge corresponds to a set of faces, namely the faces associated with its
endpoints, and a set of points determined by the vertices of these
faces. We begin by fitting a least squares optimal plane through this set of points
using the standard technique of principal component analysis (PCA) [Joll86]. We
construct the covariance matrix

(11)

The three eigenvectors of the matrix CV determine a local frame with as the ori-
gin. The eigenvector corresponding to the smallest eigenvalue is the normal of the
optimal plane, and the remaining eigenvectors define a frame for parameterizing
this plane. Given this optimal plane, we assign a cost

(12)

to every dual edge. In addition, we use this plane to compute an oriented bound-
ing box for the cluster.

Figure 28: One edge of the dual graph (solid lines) is collapsed. The fac-
es corresponding to its endpoints (darkened) are merged into a single
face cluster.
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3.3.  Building Surface Hierarchies
The first, and most important, error term measures the planarity of the
cluster, and is defined to be the average squared distance of all the points in the
cluster to the optimal plane

(13)

Following the quadric error metric of Garland and Heckbert [Garl98], we can
compactly represent this sum using quadrics as

(14)

where

(15)

(16)

Each dual node has an associated fit quadric which requires ten coefficients to
represent the symmetric 3x3 matrix , the 3-vectors , and the scalar . It is
important to note that the covariance matrix can be extracted directly from this
quadric: .

Minimizing the planarity term will naturally tend to merge clusters
which are collectively nearly planar. However, a surface may locally fold back on
itself; it will seem nearly planar, but the normal of the plane will not be a good fit
for the surface normals in the region. Therefore, we add an additional error term
which measures the area-averaged deviation of the plane normal from the sur-
face normals

(17)

where and are the area and unit normal, respectively, of a face in the clus-
ter. Again, we can represent this error term using a quadric by rewriting

 as  where

(18)
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Chapter 3.  Face Cluster Radiosity
Every dual node has two associated quadrics, a fit quadric and an orientation
quadric. Whenever we merge two nodes, we add their corresponding quadrics
together to form the quadrics for the resulting node.

3.3.4. Compact Shape Bias

If planarity is our only clustering criterion, then the combination of the error
terms and performs well. However, for our radiosity application, we
would also like the regions to have a compact shape; a compact region is one
which is as nearly circular as possible. Following Kalvin and Taylor [Kalv96], we
define the compactness of a region to be the ratio of its squared perimeter to its
area. Larger values of  correspond to less compact (more irregular) regions.

For a given dual edge, the clusters associated with its endpoints will have
compactness and . If is the compactness of the resulting merged cluster,
we define the shape penalty as:

(19)

This penalizes clusters where the compactness worsens and rewards clusters
where the compactness improves. Figure 29 illustrates the effect of the shape bias.
With the shape bias disabled (a), the clusters tend to follow the features of the
model but may have non-compact shapes. The long strips stretching down the
forehead and the nose are a good example. In contrast, when using the shape bias
(b), the clusters still reflect the form of the surface, but they have a much more
compact shape.

3.3.5. A Face Cluster Node

Each node in our face cluster hierarchy is a representation of an approximately co-
planar region on the mesh. It acts as a container for a set of connected faces (see
Figure 30). Once we have constructed the hierarchy, we must address the ques-
tion of what representative surface properties to store for each node within it, in
addition to the pointers to the two child face clusters that partition it. A balance
must be struck between the amount of useful information we store, and the
amount of memory or disk space the hierarchy will occupy.

As discussed, for each node i in the face cluster hierarchy, we calculate an
oriented bounding box for the faces it contains using principal component analy-
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3.4.  The Face Cluster Radiosity Algorithm
sis [Joll86]. For each node, we store this, in addition to the sum of the area-
weighted normals of those faces:

(20)

for each face belonging to the cluster. As we will show in Section 3.4 and in
more detail in Chapter 4, this is a useful approximation of the reflective qualities
of the faces within the node.

3.4. The Face Cluster Radiosity Algorithm

In this section we describe our algorithm for simulating radiosity on multiresolu-
tion models that use face clustering. We show how the standard radiosity equa-

Figure 29: Partitions of the venus head, each with 8000 clusters

(a) No shape bias (b) With shape bias
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Chapter 3.  Face Cluster Radiosity
tions can be modified to better suit the use of these hierarchies, starting with the
standard formulas governing diffuse interreflection [Cohe93].

3.4.1. Standard Radiosity Derivation

The radiosity of surface i is the outgoing power per unit area due to emission
or reflection. It equals emittance plus reflectance times the sum of contribu-
tions from other surfaces j,

. (21)

Here is the form factor, the fraction of light leaving surface j that arrives at sur-
face i,

, (22)

and is the area of element i, and are the polar angles, is the distance
between points on elements i and j, and is the visibility between those points: 1
if visible and 0 if occluded.

Figure 30: A face cluster. For our purposes, a face cluster is defined by
a group of connected faces , with an enclosing oriented bounding box

, and an area-weighted normal, .
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3.4.  The Face Cluster Radiosity Algorithm
To solve the above system of equations, our method, like most hierarchical
radiosity algorithms, repeatedly gathers light from all other elements j to update
the radiosity of element i. This is equivalent to one iteration of Jacobi’s method for
solving linear systems. Multiplying the equation above by , we get an equation
whose terms have units of power (area times radiosity):

(23)

The irradiance is the incident power per unit area. Calculating it exactly is typi-
cally intractable, so we approximate it using the point-to-point approximation of
the form factor [Cohe93],

(24)

where bold symbols denote vectors, , is a unit normal to sur-
face i, and is the unit direction vector from i to j. We have written the dot prod-
ucts in matrix notation because we will shortly be exploiting the associativity of
matrix multiplication to rewrite this formula.

3.4.2. Vector-based Radiosity

The classical radiosity method assumes piecewise constant (Haar) basis functions
and planar surfaces. In a hierarchy, the children are coplanar with the parent. For
the purposes of projecting radiosities up and down the tree, radiosities are scalar
quantities. If this method is applied to a multiresolution model, it causes curved
or bumpy portions of the model to be shaded a flat colour, leading to a faceted
appearance that hides the geometric detail (Figure 19c). This is similar to the step-
function effect in constant-basis radiosity, but applying a post-process smoothing
step at the leaves is no longer sufficient to cover up these discontinuities.

We now adapt the radiosity method to multiresolution models that use
face clustering. Consider the light transfer from one cluster to another (Figure 31).
We let j be an element in the source cluster and i be an element in the receiver
cluster. If we assume that all (i,j) pairs are inter-visible and that the sources are
close together and far from the receiver, then , , , and are independent
of  and , and we can approximate the irradiance from a single cluster as:

, (25)
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Chapter 3.  Face Cluster Radiosity
where is the average distance vector. Using Equation 19 we can then rewrite the
transfer in terms of two vector quantities. We find that:

, (26)

where the irradiance vector  is defined as

, (27)

with

, (28)

and being the sum area normal of the receiving cluster. (The irradiance vector
has also been employed by Arvo [Arvo94].)

Figure 31: The transfer of radiosity between two clusters of faces. An in-
dividual face in the source cluster F radiates energy towards an indi-
vidual face  in the receiving cluster G.
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3.4.  The Face Cluster Radiosity Algorithm
The power vector  is defined as:

. (29)

If the source cluster has constant radiosity across its constituent faces, we can
simply write:

, (30)

where  is the sum area normal of the source cluster.
The irradiance vector is parallel to , and is at a maximum when the power

vector is also parallel to ; it points towards the source cluster. Recording this
information, rather than the scalar irradiance to the average plane of the receiver,
allows coarse variations in the irradiance as a function of orientation to be mod-
elled. This eliminates most of the faceting effects of Figure 19c, as seen in
Figure 19d.

We employ the power vector to permit non-planar clusters to approximate
their outgoing power compactly and quickly. The magnitude of the vector
approximates the total power leaving the cluster, and the direction of the vector
indicates the hemisphere toward which most of the energy is directed (Figure 32).

Figure 32: The power vector. The radiosity emitted by the surfaces on
the left is approximated by the elemental surface on the right, whose di-
rection is the power-weighted sum normal.
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Chapter 3.  Face Cluster Radiosity
When calculating the illumination of a cluster by one or more other clusters, we
transform each power vector into the corresponding irradiance vector via
Equation 27, and sum the resulting irradiance vectors.

Push Pull

These formulas are generalizations of the standard radiosity equations. In the case
of coplanar clusters, they reduce to the familiar hierarchical radiosity push-pull
formulas. In the general case, for the push operation, we find that

, (31)

where is the sum of the irradiance vectors incident directly on the child.
For the pull operation, there are two alternatives. We can operate directly on the
power vector, so that

, (32)

or we can instead operate on cluster radiosities, with

, (33)

and reconstruct the power vector with , as in Equation 30.
The former has the advantage of elegance, and the ability to better match the chief
direction of radiance of a cluster whose radiosity varies considerably over its sur-
face. The latter has the advantage that it is more amenable to error analysis and
the construction of bounds, as we shall see in Chapter 4.

Transfer Coefficients

To model the transfer of radiosity, instead of a single transfer coefficient, we store
a transfer vector , which allows us to apply Equation 27. Where we are working
directly with power vectors, as in Equation 32, we can write

, (34)
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3.4.  The Face Cluster Radiosity Algorithm
and we have . Where we are working with source radiosi-
ties, we can instead use

, (35)

and . Currently, this latter approach is more desirable, as we have a sup-
porting error analysis for it. The former may eventually be preferable if a match-
ing analysis can be found.

Generally, it is easiest to estimate by generating fixed sample points
across both the source and receiver clusters, and taking

(36)

where each is calculated using , the vector from sample point i on the source
to sample point i on the receiver. These samples can also be used for determining
bounds on the transfer, and thus an estimate of the error in the transfer, which can
be used to drive refinement [Gibs96, Lisc94]. However, I have developed a more
accurate and robust approach that relies on conservative bounds for a cluster’s
projected area in a given direction. An in-depth treatment of this error estimate
will be presented in Section 4.4.

Leaf Radiosities

Finally, at the leaves of the hierarchy, where we must transform the accumulated
irradiance vectors into radiosity, we apply the equation

. (37)

Again, we can reconstruct a leaf’s power vector from this by application of
Equation 301.

This treatment of vector-based radiosity transfer assumes a monochromatic
world. It can easily be extended to the familiar RGB colour model; we simply
maintain and or separately for each colour channel, and operate on each

1. In Section 4.4.5 we will show how to trivially rewrite Equation 37 to take account of interreflection within
the leaf cluster.
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Chapter 3.  Face Cluster Radiosity
pair independently. Note that the transport vector, , is still wavelength inde-
pendent.

3.4.3. Algorithm Description

There are three types of nodes in the hierarchy used by our algorithm. At the top,
volume clusters contain all unconnected parts of the scene. In the middle, face
clusters contain connected surface meshes. At the bottom, there are polygonal ele-
ments, and refinements of those elements. In our implementation, all of these
nodes use a common object-oriented interface to communicate with each other.
Usually much of each face cluster hierarchy remains unused; only those face clus-
ters at the top of the tree are paged in during the solution phase.

Radiosity using vector-based transfer proceeds in much the same manner
as the irradiance/radiosity method first popularised by [Gers94], and outlined in
Figure 33. In Gershbein’s method, irradiance is gathered to each node in the hier-
archy, and then pushed down to the leaves, whereupon it is converted to radiosity
by the application of reflectance and emittance operators, and pulled back up the
hierarchy. In our algorithm, the irradiance vector, rather than scalar, is pushed to
the solution leaves, and either the power vector or scalar radiosity is pulled back
up the hierarchy. (Here “solution leaves” refers to the lowest level of cluster or
face refinement in the hierarchy, not the input polygons.) Below is an outline of
the algorithm.

Preprocessing

Face cluster hierarchies are generated for the input models. These hierarchies are
dependent only on the geometry of the models, and can be reused over multiple
instantiations of each model. This process is done off-line, and typically only
once, whenever a new model is acquired.

Initialisation

The scene description is read in. Hierarchical radiosity elements are then created
for all root face cluster nodes in the scene (there are typically a small number per
model), and these are volume clustered to complete the initial element hierarchy.

Solution

The solver proceeds according to the pseudocode in Listing 1. The refine proce-
dure follows that outlined in [Cohe93]. When a face cluster element needs to be
subdivided, its two child elements are created using position and sum area nor-

m
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3.4.  The Face Cluster Radiosity Algorithm
mal information retrieved from the cluster file on disk. When the input polygons
are reached, the children become Haar elements, and refinement proceeds as in a
standard hierarchical radiosity algorithm. Storage for irradiance vectors and other
such element information is only required for those face cluster nodes actually
being used by the solver. The solver runs in time and space sublinear in .

Post Processing

After the solution algorithm has terminated, the radiosity solution is propagated
to the leaves of the model by applying the irradiance vectors at the leaves of the
transport tree to all their descendents (e.g., node T of Figure 24c). This final proc-

Figure 33: Schematic of the Hierarchical Radiosity Cycle. The current set
of element radiosities are gathered across transfer links to find the corre-
sponding irradiances at different levels of the solution hierarchy. These
irradiances are then pushed to the leaves of the hierarchy to find the sum
irradiance there, transformed to radiosities by application of the reflec-
tion operator at each leaf, and then pulled back up the hierarchy to calcu-
late the average radiosity at each level of detail.
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Chapter 3.  Face Cluster Radiosity
ess is , but is typically insignificant compared to the solution time. The radi-
osities of the vertices of the models in the scene are then written out to disk.

3.4.4. Examples

Detailed results of the face cluster radiosity algorithm will be presented in
Chapter 7. In the meantime, here are some informal examples of the algorithm in
action. Figure 34 shows results for a simple scene similar to that of Figure 14. In

solve(tree root)
while (not converged)

gather(root)
pushpull(root, 0)

refine(root, )

gather(element i)

foreach (child c of i)
gather(c)

pushpull(element i, vector )

//  is irradiance on i from parent

if (i is a leaf)
// convert irradiance to power

else

// push irradiance, pull power
foreach (child c of i)

pushpull(c, )

Listing 1: Pseudo-code for the Face Cluster Radiosity algorithm
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3.5.  Discussion
this scene, however, the surface is bumpy, containing 13,000 triangles. Whereas
volume clustering takes four minutes to calculate the illumination of the surface,
face cluster radiosity takes just over a second. The use of surface-based clusters
also helps avoid the artifacts present in the volume clustering solution. These
dark patches are caused when the crest of a particular bump belongs to a volume
cluster that lies above the cluster containing the rest of the bump. This crest clus-
ter then shadows the cluster underneath, causing the rest of the bump to be
underlit. Face clusters explicitly follow the shape of the mesh, avoiding this kind
of overlap problem.

Figure 35 shows how a clustered object can also be used as a light source; a
tessellated torus is used to illuminate a bumpy surface. Ray tracing methods such
as Radiance have particular problems with such large distributed light sources;
they must distribute samples over the light source whenever its contribution is
being calculated, which requires some knowledge of its geometry. A common
approach is to simply sample over the bounding box of the light, which in the
case of the torus would result in a large number of samples missing the light
source.

Finally, Figure 36 shows a scene containing a bust lit from two different
directions, along with details of the illumination transfer.

3.5. Discussion

3.5.1. Strengths and Weaknesses

Our algorithm gives the greatest benefit for finely tessellated objects. For more
intricate, space-filling objects such as trees, we rely on volume clustering to pro-
vide a good simulation. This is because of the limitation in our algorithm that
each topologically connected surface has its own face cluster tree. For instance, a
pile of pebbles might need a separate tree for each pebble, if those pebbles were
modelled separately. While we currently aggregate disconnected components by
using volume clustering, better methods for tightly packed components such as
the pebble pile are an avenue for future research.

From any given viewpoint, some of the input polygons in a scene contain-
ing large models can be invisibly small. Arguably a similar picture from that
viewpoint could be generated using a much simpler scene. However, this ignores
the possibility of using an output mesh in a walk-through, where we might wish
to pass much closer to some of the models in the scene. Also, it is tedious to man-
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Chapter 3.  Face Cluster Radiosity
Figure 34: Face-cluster radiosity on a bumpy surface. In (a) face-cluster-
ing handles bumpy surfaces as well as a flat mesh. (b) shows the corre-
sponding clusters. This solution took under two seconds to generate. As
reference, we have both (c), the results of running Radiance (288s) and
(d), volume clustering (260s) on the same scene.

(a) (b)

(c) (d)
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3.5.  Discussion
Figure 35: A highly tessellated, curved light source. The light source is
a torus containing 8,200 polygons. Top left; face cluster radiosity took 28
seconds to calculate this (view-independent) solution. In contrast, vol-
ume clustering (top right) took well over an hour to calculate the corre-
sponding image, and Radiance (bottom-right) took five hours. A
solution for a flat surface is shown for comparison purposes, bottom
right.
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Chapter 3.  Face Cluster Radiosity
Figure 36: The bust of Beethoven. The bust is lit from overhead by a
white light, and from above and to the left by a blue light. Shown are (a)
the results of FCR, (b) the corresponding face clusters, (c) reflection off
the red carpet onto Ludwig’s back, (d) the contribution of nearby patch-
es to one of the back clusters.
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3.5.  Discussion
ually preprocess a scene in a view-dependent manner to optimise radiosity simu-
lations. Ultimately, we wish the radiosity simulation to be as independent of the
model resolution chosen for viewing as possible.

3.5.2. Memory Locality

Radiosity computations are traditionally extremely memory intensive. Because of
this, the memory locality of a radiosity algorithm is a critical aspect of its perform-
ance, albeit one that is often ignored. For instance, progressive radiosity is well
known for its good total memory use; in many cases it is better than that of hierar-
chical radiosity methods. However, it has very poor locality; each iteration of the
algorithm is essentially a linear sweep through several large vectors. Hierarchical
radiosity has much better locality, in the sense that each solution iteration, which
requires a tree-traversal of the data set, accomplishes much more than the equiva-
lent progressive iteration, resulting in significantly fewer iterations to generate a
solution.

This has interesting implications in terms of which algorithm is the speedi-
est. For scenes where both progressive and hierarchical radiosity can fit their com-
putations into physical memory, hierarchical radiosity is quickest. However, if the
scene becomes large enough, the hierarchy will no longer fit in physical memory,
and progressive radiosity becomes the quicker algorithm. Finally, when the scene
is so large that both algorithms must be accommodated by virtual memory, the
superior locality of hierarchical radiosity makes it again quicker than the progres-
sive algorithm; in other words, hierarchical radiosity thrashes better than progres-
sive radiosity.

Face cluster radiosity inherits the good data structure locality from the
hierarchical radiosity algorithm. To take advantage of this, face cluster files are
written in breadth-first order, so we get correspondingly good memory locality.
(These files are simply memory-mapped for use by the solver.) FCR also has the
added advantage of much smaller active memory use; it is almost always the case
that only the first small section of each face cluster file is used during solution.

3.5.3. Surface Material Maps

The visual complexity of a scene is often enhanced by the application of various
types of surface maps to the original models. Most of these are handled naturally
by our algorithm. Texture maps can be pre-sampled at the leaves and filtered over
the vertex or face cluster hierarchy as described in [Gers94]. A similar approach
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Chapter 3.  Face Cluster Radiosity
can be taken to emittance maps, although the quantity pre calculated for the hier-
archy needs to be an emittance vector, similar to the power vector.

In particular, our approach extends well to the use of displacement maps.
Displacement mapping is a useful tool for adding geometric complexity to simple
models. For instance in Pharr et al. [Phar97] a highly complex scene of 5 million
primitives is constructed from a number of simpler source primitives, each con-
taining on the order of 10,000 polygons, by applying displacement maps. Dis-
placement-mapped objects are characterized by highly tessellated surfaces with a
high degree of planar coherence, but widely varying normals. In such cases it is
possible to approximate the irradiance of large areas of the model with a single
link, applying the irradiance vector to the local surfaces only at the time of the
final render. Similarly, having the irradiance vector available makes applying
bump maps [Blin78] to surfaces trivial.

3.5.4. Animated Models

The face cluster hierarchies generated by the method outlined here can be reused
over different scenes, and even over successive frames of an animation, provided
the models they are generated from do not change. Of course, this is not always
the case, especially when a model takes the part of a central character in the ani-
mation, rather than a part of the static backdrop. It can be shown that rigid body
transformations and uniform scaling do not affect the construction of the hierar-
chy; hierarchies would not have to be rebuilt for model animations featuring only
such transformations.

However, deformations [Barr84, Gudu90], commonly used to bend and
reshape models on-the-fly in a non-linear manner, can and do affect the hierarchy.
In such cases, a new face hierarchy would have to be generated for the model for
each frame in the animation in which it is deformed, thus undoing some of the
benefit of my algorithm. (It should be noted that standard volume clustering has
to rebuild the entire hierarchy for each new frame regardless, although arguably
the same hierarchy pre-calculation techniques outlined here could be applied to
volume clustering also.) Deformations result in only incremental changes to a
model’s geometry from scene to scene, though, so we would hope that a local
pass could refit the hierarchy at each step of the animation, without the cost of
rebuilding it from scratch.

3.6. Summary

We can summarise the steps in the face cluster radiosity algorithm as follows:
96



3.6.  Summary
• We construct a face cluster hierarchy file for each new model acquired. (Time
and space super-linear in . As we shall see in Section 5.6, this is in practice
linear in .)

• We create a scene from these models.

• The radiosity program reads in the scene description, and adds the root face
cluster nodes to a volume cluster hierarchy. (Time and space linear in ,
where  is the number of disconnected surfaces in the scene.)

• The gather/push-pull/refine solver is run. (Sub-linear in .)

• The radiosity solution is propagated to the polygonal leaves of all models,
and written to disk. (Linear in .)

As usual,  is the number of polygons in the input scene.
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C h a p t e r  4
Analysis
In this chapter we will analyse the vector radiosity approach presented in
Section 3.4 in more detail. We will look more closely at the role the sum-area nor-
mal plays in face cluster radiosity, and investigate its relationship to more conven-
tional measures of the projected area of a cluster. We will also develop methods
for bounding the transfer of radiosity between two face clusters.

4.1. Sources of Error in Face Cluster Radiosity

I will start by examining possible sources of error in vector radiosity; any approx-
imations made in the method are only acceptable if we have a reliable way of
detecting the error in these approximations. As we shall see, it turns out the pro-
jected area of a cluster plays a crucial part in such approximations. I will intro-
duce some useful definitions for later sections, and end with an example to
illustrate some of the concepts involved.

4.1.1. Recap

In vector radiosity, we are trying to approximate the transfer of radiosity between
the individual elements in two clusters of faces, as depicted in Figure 37, with a
single cluster-to-cluster transfer. We assume the faces within a cluster are all part
of one, manifold surface.
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Chapter 4.  Analysis
As discussed in Section 3.4.2, we wish to calculate quickly

. (38)

We do this by making the vector radiosity approximation:

(39)

For each face cluster we have a bounding box, oriented such that the z axis is the
normal of the best-fit plane to the faces within the cluster, and we also store the
sum area-weighted normal, ,

, (40)

where is the area-weighted normal of face in the cluster. The area-
weighted average face normal of the cluster is then , and its projected area in

Figure 37: Radiosity transfer between clusters of faces.
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4.1.  Sources of Error in Face Cluster Radiosity
that direction is . Note that, although is roughly perpendicular to the best-fit
plane, it is rarely exactly so.

Finally, we also have the total surface area  of the cluster:

. (41)

Given this setup, we can state the sources of error in our approximation to the
radiosity transfer between face clusters as follows:

• The assumption that the direction vector  is constant.

• The assumption that .

• That any self-shadowing within the face clusters is ignored.

• That the occlusion between the two clusters is assumed to be constant.

4.1.2. The Face Cluster Approximation

We are essentially representing the surface within a face cluster by its area-sum
normal , a directed surface element. That is, we are representing a diffusely
reflecting curved surface with a single planar Lambertian reflector. If our assump-
tions about the distance of the cluster from the light sources illuminating it hold
up, then when viewed from the direction of , our approximation is close to per-
fect. However, from side on, the approximation is not so good. Whereas the
apparent size of a single planar element goes to zero as our viewing angle tends to
90 degrees from , the apparent size of our curved surface does not. In the worst
case of a spherical surface, the apparent size will not change no matter where we
view it from.

The worst case for this error is generally at the top level cluster, which con-
tains the entire (connected) surface mesh. The planarity metric of the face cluster-
ing algorithm takes account of the orientation of faces, and heavily penalises any
surface that is curved, so if we descend a few levels in the face cluster hierarchy,
the surface will be split into face clusters that are more planar. As long as we
detect this source of error, and force subdivision in areas where it is excessive, we
can be sure our algorithm will produce a reasonable approximate answer to the
global illumination problem.
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Chapter 4.  Analysis
4.1.3. The Importance of Projected Area

If we multiply the element-to-element radiosity transfer equation, Equation 38,
by the area of the receiver, we get the received power on element from element

, which can be written as

, (42)

where again . This received power depends on three quantities: the pro-
jected areas of the source and destination clusters along , and a scalar term that
accounts for falloff with distance. When we try to use this equation to approxi-
mate more complex situations (cluster-to-cluster interactions, for instance), we
must be aware of how accurate our approximations to each of these quantities are.
Generally this is easy with the distance term, but more difficult to do with pro-
jected area terms.

The differences in apparent size between the actual face cluster and our
representation of it discussed above can be more accurately viewed as represent-
ing an error in our approximation to the actual projected area of the cluster. We
are representing the projected area of a face cluster as , and we must be
able to decide when this approximation is a bad one in order to force subdivision
and improve the approximation. Ideally, this requires bounding the projected area
of the cluster in a particular direction . Stamminger et al. have shown how this
can be done for simple objects that are capable of providing a cone of normals, but
for face clusters we require a more general solution [Stam97c].

4.1.4. Notation

We will be using the mathematical notation shown in Table 2 for this chapter.
There is also a summary of useful physical quantities in Appendix A.

4.1.5. Projected Area Definitions

We define the visible projected area (VPA) of a cluster  as

, (43)

where is the subset of the surface points in P that are visible from the direc-
tion . This is the quantity that we must try to approximate for our transfer cal-
culations.
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4.1.  Sources of Error in Face Cluster Radiosity
We also define the non-negative unoccluded projected area (NUPA) of the cluster in
the direction  as

. (44)

This is simply the projected area over all of , rather than just the visible regions,
. Because occlusion only ever reduces the amount of surface visible in the clus-

ter, .

Finally, we define the signed unoccluded projected area (SUPA) of a cluster as

. (45)

For this estimate, we find the sum-area normal vector of the cluster, , and use
its clipped dot product with the direction vector to calculate projected area.
This is the equivalent of treating the cluster as a flat surface, and is the primary
approximation we employed in Section 3.4.

As an illustration of how these methods work, Figure 38 shows a number of
example surfaces split into regions. These projected area of each region may be
counted differently by each projected area method. For instance, the VPA will
count each region where the surface is facing forwards once, and thus only region
5 is ignored. The NUPA can overcount the forward-facing projected area of some
regions, for example region 4, because it ignores visibility. The SUPA can under-
count some regions, such as region 11, because the back-facing area in those
regions cancels out the forward-facing area.

4.1.6. Visibility Definitions

In our discussions of the role of occlusion in radiosity transfer, it is helpful to
establish the following terms:

Symbol Meaning

Maximum of x and 0

Upper bound on x

Lower bound on x

Average value of x:

The interval of x: .

Table 2: Mathematical definitions
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Chapter 4.  Analysis
Figure 38: When calculating the projected area of the above surfaces in
the viewing direction, the VPA, NUPA and SUPA count the regions dif-
ferently, as shown in the table.

(a)

(c) (d)

(b)

10

11

12

13

1

2

7

8

3 4 5

6

9

Surface Region VPA NUPA SUPA

(a) 1 1 1 1
(b) 2, 6 1 1 1

3 1 1 0
4 1 2 1
5 0 1 0

(c) 7, 8 1 1 1
9 1 2 1

(d) 10, 11 1 1 1
12 1 2 1
13 1 1 0
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4.1.  Sources of Error in Face Cluster Radiosity
• Tangential visibility: whether a surface is occluded by its tangential plane.
This is usually addressed by clipping the projected area calculation of sur-
face elements to zero.

• Intra-cluster visibility: local visibility or shadowing; a surface element is shad-
owed by other parts of the surface within the face cluster.

• Inter-cluster visibility: global visibility or shadowing; the surface element is
shadowed by some other surface outside the face cluster.

• Macro-scale self-shadowing: the shadowing is on a scale comparable to the sur-
face. For instance, a convex surface where one side shadows the other, or a
concave surface where the “lip” of the surface shadows part of the “bowl”.

• Micro-scale self-shadowing: self-shadowing that occurs on a scale much
smaller than the surface. Consider small bumps and notches on the surface.
This is the kind of self-shadowing that must be taken into account when
computing new BDRFs.

4.1.7. Discussion

An example will illustrate a number of points about dealing with clusters of sur-
faces. Consider the two-dimensional cluster shown in Figure 39, a simple saw-
tooth surface. In considering the transfer of radiosity between it and a putative
source, we must calculate the visible projected surface area of the cluster as seen
from that source. From directly above, i.e., source a, this will be , where is
the number of teeth in the surface, and is the area of one side of a tooth. From
side-on, source c, it will be zero, as only the right-most face is visible, and it is fac-
ing away from c. From source b, which lies in the same direction as the left slope
of each saw “tooth”, the visible projected area is simply .

Traditional volume clustering algorithms deal with such a situation by
summing the projected area of each polygon within the cluster in the direction of

. I.e., they find the NUPA of the cluster, . This has two drawbacks; it
requires traversing every polygon within the cluster, and it ignores occlusion of
polygons by each other within the cluster. If this intra-cluster occlusion is ignored,
the projected area in direction c will be calculated as , rather than zero.
This is a large error, and gets worse as increases. For a largely flat but crinkled
surface, it can lead to badly overestimating the amount of radiosity received or
radiated from the cluster horizontally.

Some researchers have proposed accounting for intra-cluster occlusion by
calculating an isotropic estimate of it. This is done by a Monte-Carlo sampling of
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Chapter 4.  Analysis
the visibility over different points and directions within the cluster to find an
average visibility estimate, . This may not help much in the case of directional
clusters. In the example in Figure 39, such an estimate, being isotropic, would
result in underestimating the projected area in direction a, and would still overes-
timate the projected area in direction c.

It is also possible to calculate an occlusion factor on a per-link basis, in the
direction of the link, in the same way that the projected area in the direction of the
link is calculated. A number of rays are cast in the direction from points evenly
distributed through the cluster; the visibility factor is taken to be the average
visibility value of these rays. While this improves the estimate markedly, it is
expensive, and, in the case of surfaces, it still leads to errors. In the sawtooth case,
the average visibility in the vertical direction is , even though all of the
surface is visible in that direction, because at least half of the samples will fall
behind the surface.

I would argue that, for clusters containing surface meshes, the location of a
surface and the visibility of points on that surface are too tightly coupled to be
separable in a well-behaved way. There is simply too much coherence in the struc-
ture of the surface, and alternative techniques are needed. Ideally we should be
sampling visibility from points on the surface contained by the cluster, but track-
ing such points will either be memory or time-intensive.

The vector radiosity approach we introduced in Section 3.4 approximates
the projected area by storing the sum of area-weighted normals of each polygon

Figure 39: A sawtooth surface. The surface is potentially lit by light
sources a, b and c, and has the sum-area normal vector .
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4.1.  Sources of Error in Face Cluster Radiosity
in the cluster as , and calculating the projected area of the cluster as .
Thus it uses the SUPA estimate of projected area. This reduces the calculation time
to a single dot-product, but seemingly also ignores visibility, and is only an esti-
mate.

So, what is the error in approximating the sawtooth surface with a single
sum-area normal vector, ? Obviously, from straight above (source a), the calcula-
tion has no error. From side-on (source c), it calculates the projected area as zero,
which in this particular case is correct. Also, from an angle from the vertical
smaller than the pitch of the surface’s “teeth”, there is no self-shadowing taking
place, and once again returns the correct result. Once the angle increases
past this, self-shadowing starts to occur, as in Figure 40, and to be accurate we
must calculate the visible projected area, the VPA, of the surface, taking into
account self-occlusion. We might expect that at this point our sum-area normal
approximation would fail.

Surprisingly, this is not the case. It is possible to show with some simple
algebra that, regardless of the pitch of the teeth in such a sawtooth surface, its pro-
jected area in a direction , taking into account self-shadowing, is exactly

. Thus our estimate of the total projected area of the cluster has turned out
to be a much better estimate of the area taking occlusion into account, than the
original calculation we were trying to approximate. In this case, the VPA = SUPA.

Figure 40: Self-shadowing on the saw-tooth surface. Surprisingly,
gives the correct projected area, even taking into account the

surface self-shadowing illustrated here.
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Chapter 4.  Analysis
This result seems almost too good to be true, and unfortunately, in most
cases it is. Consider Figure 41, which contains an almost identical surface, but one
whose side-on projected area is , and not zero as our approximation would
predict. It is still the case that the sum-area normal gives a much more accurate
estimate of the projected area of the cluster than performing the complete sum,
however; the SUPA is a much better approximation to the VPA than the NUPA.

It is also the case that this property does not necessarily hold for weighted
area-normal sums. If we instead consider a reflective surface vector,

, then things work as before if the reflectivity of the surfaces is con-
stant. In Figure 42 we see a surface where one side of each tooth is considerably
brighter than the other. For this surface, underestimates the visible projected
reflective area from source a, and overestimates it from b.

Our observation raises some interesting questions; what other surfaces
might our estimate do a good job on, and under what conditions? It seems that in
some situations the sum-area normal can be used to generate an excellent approx-
imation to the visible projected area of a cluster containing a relatively flat sur-
face. But we must formalize this observation for it to be useful.

In Section 4.3.2 I will outline the conditions under which this observation
holds. I will also show how the error of the approximation can be quantified in
Section 4.2, firstly by proving that the estimate is almost always a lower

Figure 41: Sawtooth surface with non-zero side area. does not give
the correct projected area in the direction of c.
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4.1.  Sources of Error in Face Cluster Radiosity
bound on the actual projected area of the cluster, and then by showing how a con-
servative upper bound can be constructed.

4.1.8. Cancellation

It might seem intuitively that representing a sum of irradiances by a single irradi-
ance vector could lead to cancellation. Consider Figure 43, for instance: if we
naively sum the irradiance vectors from light sources b and d, the light from d will
cancel out the light from b, and the point P shown on the surface will be incor-
rectly illuminated. However this is only a problem if we fail to clip to some con-
sistent plane when calculating . (If we did not have to take into account
tangential visibility when calculating the illumination from a light source, then
we could indeed just use the vector sum with no error.) To avoid this problem,
whenever we gather power across a link, we must clip the resulting irradiance to
the corresponding ; the same is also true when we push or pull irradiance, as in
Section 3.4.2.

Even with clipping, it may seem at first glance that light sources can cancel
each other out. If we consider light sources a and c in Figure 43, being opposite
each other and close to the horizon, it looks as though their horizontal compo-
nents cancel out when we sum their irradiance vectors. In fact there is no cancella-
tion; this is a standard vector sum. The confusion arises because is implicitly
measuring irradiance with respect to the plane of the surface, so the horizontal
components of the irradiances from a and c are irrelevant to the scalar irradiance.
Therefore, there is no cancellation problem with our method.

Figure 42: Sawtooth surface with varying reflectance. If we use a reflect-
ance-weighted vector , the estimate fails.
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Chapter 4.  Analysis
4.2. Bounding the Projected Area of a Cluster

Estimating the actual projected area of a face cluster is a crucial operation in our
algorithm. In this section we examine how we can construct bounds on this quan-
tity, such that it can be evaluated in constant time. We start by ignoring visibility,
so we are trying to bound the NUPA.

4.2.1. A Lower Bound

Finding a lower bound to the projected area is straightforward. We can use the
inequality,

, (46)

to show that, if , then

. (47)

That is, our approximation to the projected area of a cluster is provably a conserv-
ative lower bound on the actual projected area: .

Figure 43: Avoiding cancellation in vector irradiance.

S
a

b

c

d

P

a b+( )+ a( )+ b( )++≤

S Sii∑=

S m⋅( )+ Si m⋅( )+i∑≤

SUPA NUPA≤
110



4.2.  Bounding the Projected Area of a Cluster
Proof

Obviously given Equation 46 we have:

(48)

4.2.2. An Upper Bound

Using Equation 46 it is possible to show that:

if , and  where , then

. (49)

That is, say we sample the projected area of a cluster in a number of different
directions . Then, if we can write as a linear combination with positive coef-
ficients of some subset of the vectors, using the same coefficients to interpolate
the corresponding projected area samples gives us an upper bound on the pro-
jected area in the direction of . Figure 44 illustrates how this works in two
dimensions.

Figure 44: Finding an upper bound from projected area samples.
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Chapter 4.  Analysis
Neither of these two bounds assume that the surfaces are connected, and
thus they can both be applied to volume clusters as well as face clusters.

Proof

We can prove Equation 49 through the following steps:

Implications

If we sample the projected area of a cluster over a number of directions, we can
calculate an upper bound on the projected area in an arbitrary direction by inter-
polating from the three surrounding sampled directions. This estimate will be bet-
ter the closer to the sampled directions the required direction is, and of course
exact if it matches one of the samples1.

Thus the total projected area of a face cluster can be bounded, as long as we
have at least four samples of its projected area in different directions. (The mini-
mal set of samples corresponds to the vertices of the minimal polytope, a tetrahe-
dron.) The fit of the upper bound depends on the sample directions chosen, and
the number of samples; obviously the more samples, the better the coverage and
resulting bound. Also, if the surface is largely oriented in a particular direction,
sampling primarily in that direction will provide better results than sampling in
random directions.

One of the simplest collections of directions corresponds to a box, with the
projected area sampled in the direction of each of the (six) faces of the box. Inter-

1. I speculate that this technique is approximating the real surface with a polyhedral convex hull.
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4.3.  Intra-cluster Visibility
estingly, if the box in question is a bounding box for the cluster, the six projected-
area samples are in most cases bounded by the side areas of the box. There is an
important exception; in some cases the fact that we ignore occlusion in the pro-
jected area sample can cause it to be larger than the corresponding side area of the
box.

A good choice for the basis vectors is the set of axes of the tightest-fit ori-
ented bounding box (OBB) enclosing the cluster. The tightest-fit OBB minimises
the side areas of the box, and as the side areas are in turn bounds on the projected
area, we are in some sense minimising our upper bounds.

4.3. Intra-cluster Visibility

We now consider the visible projected area of a surface, namely, how to calculate
the projected area taking into account intra-cluster visibility. We’ll start with some
simple illustrative examples.

4.3.1. Self-Shadowing

Radiosity papers commonly ignore self-shadowing by the surfaces under consid-
eration. Even the way the familiar form-factor equation accounts for tangential
visibility, by the clamping of both cosine factors to zero, is usually implicit. (Con-
sider the standard radiosity equation in Equation 22; it is not explicitly stated that
we do not let the cosine factors become negative.) This has partly been because
the radiosity method has its roots in the consideration of radiosity transfer
between two planar polygons, which inherently have no self-shadowing other
than tangential. Because face clusters contain curved surfaces which may self-
shadow, we must pay closer attention to this phenomenon.

For mostly planar surfaces, self shadowing is restricted to the micro scale:
small folds or bumps in the surface that shadow correspondingly minor parts of
the surrounding area. Figure 45 shows an example. There can also be macro-scale
self-shadowing: more major silhouette-type shadowing when the surface is
curved, as shown in Figure 46, where up to half the surface can be shadowed by
the other half, even though the surface itself is relatively smooth.

Interestingly, as discussed in Section 4.1, our sum-area normal approxima-
tion works well where micro-scale self-shadowing is involved; in some cases it
can actually help account for small-scale self-shadowing. An example of this can
be seen in Figure 45. Using the projected area calculated from accounts for the
self-shadowing in the small fold shown reasonably well. If we clipped on a per
element basis when calculating the projected area of the cluster, we would over-

S
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Chapter 4.  Analysis
count contributions from the fold in the surface, and our total projected area in the
vertical direction would be .

The way a surface shadows itself is highly correlated with the geometry of
the surface itself, and thus its projected area. We need to be able to take it into
account, preferably without accessing the detailed geometry of the cluster. (If we
don’t maintain a constant cost overhead in calculating it, we will lose the effi-
ciency of our algorithm.) Ideally we would like to extend our bounds of a clus-
ter’s projected area to bounds on the same area, taking into account self-
shadowing. The remainder of this section is thus devoted to the analysis of the
visible projected area.

Figure 45: Micro-scale self shadowing.

Figure 46: Macro-scale self shadowing.
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4.3.  Intra-cluster Visibility
4.3.2. The Visible-Projected-Area Sum Rule

We have observed that in some cases, the sum-area normal approximation to the
projected area of P is a surprisingly good approximation to the visible projected
area. But we need to be clearer about under what conditions this is so. Fortu-
nately, we can construct a rule that allows us to do this. Let us start with the two-
dimensional case. The visible-projected-area rule for two dimensions is as follows:

Consider an open path, for which we have defined a top and bottom
side; only the top side is considered visible. Consider also the two
parallel lines passing through either end point of the path, in direc-
tion . We claim that, for the section of the path that falls between
these two end-point lines, the visible projected area in direction is
exactly equal to the dot product of and the sum of area normals

. That is, . Further, we claim that for any remainder
of the path lying outside those two lines, the dot product of and
the sum of area normals is exactly zero.

Figure 47 illustrates some examples of this rule.

Derivation

There are a number of ways to derive this result. The simplest for purposes of
explanation is as follows. We divide the path P into slabs pointing in direction ,
such that each slab has a consistent number of path segments intersecting it. (See,
for example, Figure 47a-c.) We then connect the two end points of the path with a
line r, creating a closed path Q. We then observe that:

• For any slab, the projected area of a path segment that intersects it is either
the positive or negative width of the slab, depending on the orientation of
the path segment with respect to .

• The sum projected area in direction of the closed path Q within any slab
will add to zero. (This is analogous to the famous winding number principle
used to test for the interior of a closed path.)

• The projected area of the path P plus that of the line r within each slab is
equal to that of the path Q, namely zero.

• Within the end-point lines, the projected area of r within each slab is the
width of the slab; outside it is zero.
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Chapter 4.  Analysis
Thus, for all the slabs that lie between the path end points, the visible projected
area of P in direction  is equal to , where .

For all slabs that lie outside the path end-point lines, this sum is zero. For
these slabs,  obviously underestimates the visible projected area.

A condition on this rule is that the path must not self-intersect. If it does,
any path loops cancel themselves out, and visible area can be missed. This is illus-
trated in Figure 48, where using the sum surface vector results in an estimated

Figure 47: Estimating visible projected areas. In (a) the entire curve falls
within the end-point lines, and the estimate is correct. In
(b), as gets more side-on, most of the curve still falls within the lines,
but the VPA of the top peak of the curve is incorrectly estimated as zero.
(c) Shows the worst case; the end-point lines are coincident, and the vis-
ible projected area of the curve is wrongly estimated as zero. (d) Shows
how this rule applies to curves, where the estimate is rather than a
discrete sum.
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4.3.  Intra-cluster Visibility
projected area of 0; instead the loop in the central slab should contribute a positive
amount of area.

4.3.3. Extension to Three Dimensions

This result can be extended to three dimensions; what was a path becomes a sur-
face, and the end points of the path are now the boundary of that surface. We can
state the new rule as follows:

Consider an oriented manifold surface with a single closed bound-
ary path. Extend the path in the direction , sweeping out an infi-
nitely-long volume , and thus sectioning the surface into two
parts. Then the visible projected area of the surface inside the vol-
ume is in most cases correctly calculated as , where is
the sum area normal of the surface lying within the volume.

, where is the sum area normal of the surface lying out-
side the volume, is always zero.

See Figure 49 for an example. Again, this usually has the same consequence as the
two dimensional rule: .

There is an important exception to the first part of this rule, hence the qual-
ifiers above. In three dimensions, it is possible for a section of the surface to over-
lap the rest of the surface without a corresponding back-facing section to cancel
out the occluded area. Figure 50 shows some examples of how this can happen.

Figure 48: The VPA rule does not hold for paths that self-intersect.
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Chapter 4.  Analysis
Figure 49: Visible Projected Area Rule in 3D. The surface P shown is a
hemisphere. When projected in the direction , only the blue region of
the surface (to the right), which lies within the open boundary of P
swept in that direction, is calculated correctly by the SUPA. The external
orange region’s VPA is incorrectly estimated as zero. As tends to the
horizontal, the SUPA underestimates the true VPA more and more.

Figure 50: Exceptional cases for the 3D VPA rule. In the examples above
the surface overlaps itself in region (2), and the projected surface area in
that region will be counted twice, leading to a situation where

. Fortunately such situations aren’t common (see text).
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4.3.  Intra-cluster Visibility
These situations seem to occur rarely in practice. For the models and clus-
tering techniques used in the course of this thesis, the SUPA has proven a good
lower bound. (See Section 4.5.5 for empirical data.) When such overcounting situ-
ations do occur, they tend to be for only a small part of the surface, and are often
balanced out by undercounting elsewhere.

I surmise, but have not yet proved, that such exceptions cannot happen
when the boundary contour is convex. Regardless, it almost always seems to be
the case that overlaps correspond to severe concavities in the boundary curve. As
our cluster cost metric seeks to produce well-shaped clusters by minimizing
boundary length (Section 3.3.4, Section 5.4.3), it in some sense tries to avoid such
situations. In general, the clusters in face cluster hierarchies contain surfaces that
are compact and largely concave.

The VPA rule can also be extended to a manifold surface with holes; the
accurate calculations will take place for those parts of the surface that are both
inside the volume swept out by the boundary contour, and outside the volumes
swept out by the hole contours.

4.3.4. Winding Numbers and Boundary Paths

We can be more precise about the conditions under which the SUPA fails as a
lower bound on the VPA. In three dimensions it is possible for the projected
boundary contour of the surface in direction to have a winding number greater
than one for some regions. It turns out that these regions correspond exactly to
possible SUPA/VPA bound violations: Note that each of the overcount regions in
Figure 50 has a winding number of two with respect to the boundary path of the
surface.

We can explain this observation as follows. Firstly, we define the winding
number of a contour  with respect to a point  as:

(50)

Figure 51 shows some examples of different curves and their corresponding
winding numbers. We observe that for any connected region that does not cross
the contour, all points within will have the same winding number. Thus it makes
sense to talk of the winding number of such a region with respect to the contour

.
Consider the silhouette of a surface projected in direction . The area

within the silhouette is precisely the VPA of the surface. Now, we project the sur-
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Chapter 4.  Analysis
face’s boundary contour(s) in direction . This projected boundary path must of
course lie within the silhouette.

These projected contours will section the silhouette into a set of regions ,
each of area , such that . That is, a set of regions such
that all points in region have the same winding number with respect to the pro-
jected boundary curve, . Then, using a trivial application of Stoke’s theorem to
convert the area integral of the surface sections within each region to the corre-
sponding path integral, we find that

. (51)

The total area of the silhouette is just .
As a consequence, if the surface is closed, and there is no boundary path,

there is just one region of winding number 0, and . If , then
we have . If there are regions for which , which is only possible
if the projected boundary path self-intersects, as in Figure 51c, it is possible to
have .

An interesting way of looking at the SUPA approximation is:

For a given direction , we are approximating the boundary of the
projection of the surface by the projection of the boundary of the surface.

Figure 51: The winding number of a contour. Points inside the projected
boundary contour have a winding number of 1, as in (a), and points out-
side have a winding number of 0, as in (b). When the boundary self-in-
tersects, it is possible to get a winding number greater than 1, as in (c).
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4.3.  Intra-cluster Visibility
That is, we approximate the area within the boundary of the 2D projected surface,
its silhouette, by using the area of the projected boundary of the 3D surface1. It is
possible for areas of the surface to lie outside the boundary path, if it is suffi-
ciently curved; then the SUPA underestimates the VPA. For a flat surface, how-
ever, the two are always equal, and .

4.3.5. Implications of the Rule

The visible projected area rule has the following important consequences for face
clusters:

• is not only a lower bound on the unoccluded projected area of the
face cluster, it is almost always a lower bound on the visible projected area of the
face cluster, except in some uncommon situations where the surface crosses
over itself.

• For flat surfaces with mainly micro-level occlusion, using to esti-
mate the visible projected area often gives good results.

• The rule means that micro-level self-shadowing is handled well, and macro-
level shadowing less well, especially when the surface is highly convex. The
worst case comes when the surface is closed, and thus .

4.3.6. The Bounding Box

Our upper bound from Section 4.2.1 is a bound on the unoccluded projected area.
As occlusion only ever reduces the amount of projected area visible, it does serve
as an upper bound on the VPA. However, when there is a lot of concave self-shad-
owing (as in Figure 39), it can fit poorly.

As Stamminger et al. have observed [Stam97c], the projected area of the
bounding box of a general cluster is an upper bound on the visible projected area
of the entire cluster. To take advantage of its potential superiority in instances of
high occlusion, we can combine both bounds. If our directional samples of the
projected area correspond with the axes of each cluster’s oriented bounding box,
we can take

, (52)

1. Note that the SUPA is in turn just an approximation of this, albeit an exact one when the path does not self-
intersect.

SUPA VPA=
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where is defined as in Equation 49, and is the corresponding side-area of
the bounding box. Using in Equation 49 gives us a tighter upper bound on
the VPA.

4.3.7. Bounds on the Visible Projected Area

In summary, we have now established bounds on the visible projected area of
a cluster , as:

(53)

and

(54)

where are calculated from as in Section 4.2.2. We have also shown that usu-
ally

, (55)

namely, the bounds on the UPA presented in the previous section are often
bounds on the VPA.

4.4. Bounding The Radiosity Transfer

A consequence of the hierarchical formulation of the radiosity problem is that for
every transfer of radiosity between two parts of the scene that we calculate, we
must also calculate an error value that measures the error in the approximation.
This error value is used to drive the refinement process.

4.4.1. Choosing an Error Metric

When we evaluate the error in the transfer of radiosity, we must chose some met-
ric with which to do so. Typically we define the norm of a function  as

. (56)

In a radiosity simulation, we are typically measuring the error between our radi-
osity estimate for a surface, , and the actual radiosity at each point on the sur-
face, . The choice of an error metric affects both how we calculate our error
measure for , and how we combine the radiosity errors of the child nodes in
order to calculate the error of their parent. The relevant expressions for both are
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4.4.  Bounding The Radiosity Transfer
shown in Table 3 for the standard norms (following Lischinski et al. [Lisc94], sec-
tion 4). In all cases, the error measure is bounded above by an expression of the
range of bounds on .

Stamminger et al. undertook a study of the results produced by the use of differ-
ent error metrics in a radiosity algorithm [Stam97b], and concluded that the
and metrics produced much the same results, and both were better than .
They also found that and treat non-conservative bounds better than .
The factor in the norm is often taken to be the maximum side length of the
polygon being treated; it has been shown that this can be better suited to account-
ing for the error over long, thin polygons than the straight area-weighted error
measure.

Lischinski et al. quote Delves and Mohamed as saying that a cheap, good,
occasionally inaccurate error bound often leads to better results than conservative
bounds [Lisc94]. This has been borne out in my own experience with bounded
radiosity [Will93]. Finding a conservative bound is not enough; it must be shown
that as the solution is refined, bounds become more accurate. (We will demon-
strate empirically the quality of our bounds in Section 4.5.)

The approach to measuring error used in this work is to use the area-
weighted irradiance (often referred to as BFA in the literature), following the prac-
tice of a number of recent hierarchical radiosity papers. Thus the rest of this sec-
tion will assume the  error norm.

4.4.2. Bounding the Transfer

We can use the bounds we have established on the projected area of a cluster to
help bound the transfer of radiosity between two clusters. The bounds give us

Norm Error Measure Parent Error Calculation

The maximum of the chil-
dren’s errors

Sum the children’s errors

Take the root-mean-
square of the children’s
errors

Table 3: Error Norms
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Chapter 4.  Analysis
both an estimate for the radiosity transfer to use in the simulation, and an error
term for the transfer, to use in refining the solution.

The derivation is as follows. The total flux received from a source cluster
by a differential element  on a destination cluster  is (see Figure 52):

(57)

Assume that the source cluster’s radiosity is bounded by eve-
rywhere on its surface. We then wish to formulate an error metric that measures
how much error our various approximations are introducing. If we have bounds
on the irradiance at every point on the destination cluster, then we can use some

norm as a measure of the error in the transfer. As mentioned previously, I use
the norm for this purpose, which corresponds to the BFA error metric of tradi-
tional hierarchical radiosity, i.e., the error in the total flux (power) received by
the destination element. We can then write the flux using interval arithmetic
[Moor66, Snyd92, Duff92] as follows:

, (58)

where  is the geometry term between the two clusters,

(59)

Figure 52: Vector radiosity transfer. Radiosity is transferred between
differential surface elements on two face clusters,  and .
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4.4.  Bounding The Radiosity Transfer
Thus the total error in the flux can be written as

, (60)

and the error due to the geometry factor, i.e., the face cluster approximation, as:

(61)

If we were to store bounds on the source cluster’s radiosity, we could likewise cal-
culate the error in  due to , , at the cost of added memory use.

We calculate the geometric error when creating a link, and store it with
that link. We then take its product with on each iteration, and use the result to
decide whether to refine the link.

We can use interval arithmetic to rewrite as the product of the
bounds on the two projected-area calculations, first rewriting it in discretized
form:

(62)

where

, (63)

and is the visible projected area of cluster in direction , and
that of cluster in the opposite direction. The term accounts for all occlu-
sion that takes place between the two clusters, but is not caused directly by either
one, represents any self-occlusion by cluster , and does the same
for cluster .

While we have a way of calculating strict bounds on and
for a single direction (from Section 4.3.7), we do not have an analytical way to
do this for a range of directions, . (In this case we are interested in the bounds
over the range of directions between the two clusters.) We can instead use the
standard Monte-Carlo solution to the problem of estimating these bounds by
using an appropriate number of samples of [Lisc94]; this seems to work well.
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Chapter 4.  Analysis
4.4.3. Refinement

Given that the bounds on the transfer indicate we should subdivide, which of the
source and destination clusters should we pick to subdivide? One way to solve
this problem is to decide which cluster contributes most to the error in . If we
have a function , and it is separable so that , the
amount of error due to and , respectively, is and . If we
ignore the error due to , then, and define

(64)

and vice versa, then the geometric error due to the source is

(65)

and vice versa. We then choose the cluster with the largest error to subdivide.
This approach is somewhat more accurate than the traditional “choose the

patch with the largest projected area”. It has the advantage that it is more likely to
subdivide a cluster that has a small projected area in the direction of the transfer
but a large relative error. In particular, it promotes the subdivision of clusters on
the silhouette of an object.

4.4.4. Interreflection

We must consider the special case of a radiosity transfer link between a face clus-
ter and itself, the so-called “self-link”. This link measures internal reflection. Tra-
ditionally this is calculated by using the same process as a link between two
separate clusters. This tends to fail badly for clusters containing any kind of
coherent surface. Interreflection is closely tied to self-shadowing, so we can hope
to use the bounds on the visible projected area to help.

Most hierarchical radiosity methods ignore micro-scale interreflection.
They do this because in its standard form, hierarchical radiosity is a top-down
algorithm, in that solution starts at the coarsest representation of the scene, and
proceeds to more detailed scene representations as judged necessary; a process
known as refinement.

A problem with this approach is that it is hard to estimate the interreflec-
tion of a cluster successfully. One approach is to take the amount of form-factor
“left over” from 1 after interactions with external nodes are taken into account as
an upper bound on the amount of internal interreflection. If the external interac-

E
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4.4.  Bounding The Radiosity Transfer
tions are small (and this can easily be the case — consider any surface illuminated
solely by a small but powerful light source), this can badly overestimate the
amount of internal interreflection.

With our visible projected area bounds, we can hope to do better. If we con-
sider a large sphere enclosing a cluster, as in Figure 53, then the total form-factor
from that cluster to the sphere should account for all possible external interactions
the cluster could have. The total internal form-factor is then simply the remainder
of this from 1. This is as above, only now we are accounting for all possible exter-
nal interactions, and not just those that actually exist.

Thus we can write the internal form-factor of cluster  as

(66)

Figure 53: Calculating the external form factor. The projected area of
cluster in direction is integrated over the enclosing sphere hav-
ing surface area .
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Chapter 4.  Analysis
and, if the cluster has projected area  in direction , we have

, (67)

where  is the visible external area of , and is defined as

(68)

It is a straight-forward exercise in integration to use Equation 67 to show that:

• For a planar cluster, , and thus . This gives us
, and hence .

• For a cluster that radiates evenly in all directions (for instance, a sphere),
(where is the cross-sectional area1), , and

thus again .

Both of these are as we expect: neither surface features any self-shadowing and
thus interreflection.

We can use our lower bound on the visible projected area, , to establish
an upper bound on the internal form-factor. We find that, similar to the planar
case, , , and thus

. (69)

If the cluster contains a completely flat surface, and
as we might expect.

For the lower bound, it is possible to show that, for three orthogonal vec-
tors spanning an octant of , and with corresponding projected area sam-
ples , the integral of the projected area over that octant is:

. (70)

1. The cross-sectional area of a sphere is ; its total surface area is .

A θ( ) θ

FΩ P←
AP

vis

AΩ
---------=

AP
vis

P

AP
vis A θ( )

πr 2
------------r 2 ωd

Ω∫=

1
π
--- A θ( ) θcos φd

0

2π
∫ θd

π–

π
∫=

A θ( ) AP θcos( )+= AP
vis

AP=
FΩ P← AP AΩ⁄= FP P→ 0=

A θ( ) AX= AX AP
vis

4AX AP= =

πr 2 4πr 2

FP P→ 0=

SP m⋅( )+

A θ( ) SP n̂θ⋅( )+= AP
vis S=

FP P← 1
SP

AP
-----------–=

P SP AP= FP P← 0=

x0…2 ℜ3

D0…2

Aoctant
vis π

4
--- D0 D1 D2+ +( )=
128



4.4.  Bounding The Radiosity Transfer
Thus, for our standard complete set of six directional samples, the integral over
the sphere is

. (71)

If our cluster contains the usual worst-case sphere, Equation 70 will over-estimate
the total surface area as rather than , i.e., , leading to a negative
lower bound on the internal form-factor; thus we must be careful to clip to

, so that:

. (72)

Using more samples per cluster would help reduce the overestimated visible sur-
face area, but at the cost of added memory. (As our clusters are constructed to be
as planar as possible, we think the existing error is acceptable.)

Proof of Equation 70

Assume without loss of generality that our orthogonal sample directions are the
x, y and z axes, and that our area samples in those directions are a, b and c respec-
tively. Then

, (73)

and

(74)
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Chapter 4.  Analysis
4.4.5. Interreflection of Leaf Clusters

In previous radiosity methods, the total element area was used to calculate a leaf
element’s radiosity from the incident power, in a calculation similar to
Equation 37. This works well when the leaf solution elements are always planar.
However, problems arise when they are not, and internal interreflection occurs.
Previous methods always descended to the input polygons, so that this was not a
problem, but in face cluster radiosity our leaf solution elements can be face clus-
ters.

Consider the cluster shown in Figure 54, which consists of a small exter-
nally-visible region, , and a larger internal region. Externally, it seems the
cluster should act as a small flat element of area . On the other hand, we can
let the total area of the cluster become arbitrarily large without affecting , by
increasing the internal area, and thus decreasing our estimate of the cluster’s radi-
osity. This seems counter intuitive, and leads to the question of how we can recon-
cile such a situation with the constant radiosity assumption that leads us to divide
by total area.

Figure 54: A cluster with a small externally visible region.
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4.5.  Empirical Projected Area Results
The answer is that the difference between our intuition and the calcula-
tions we are performing is that we are ignoring potential internal interreflection.
To account for this, we must use the internal form-factor of the previous section to
write

. (75)

(We will ignore emittance for the moment.) Solving for  gives us

(76)

and adding back in emittance gives a new form of Equation 37,

, (77)

which satisfies our intuition. The radiosity of the example cluster will be calcu-
lated relative to its visible external area, and increasing the internal area of the
cluster will have no effect on its radiosity.

Thus, to take into account internal interreflection, we substitute the equiva-
lent cluster external area, , for . We only do this at the leaf clusters, when
calculating the leaf radiosities, because for any other cluster, any interreflection is
taken care of by transfer links between its children. Self-links are thus unneces-
sary for face clusters.

4.5. Empirical Projected Area Results

To test the goodness of fit of our bounds, we ran tests on a number of polygonal
models that had been face clustered. Results for two of these objects, a teacup and
a pipe fitting (Figure 55) are presented here.
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Chapter 4.  Analysis
4.5.1. Hierarchy Bounds Errors

For every cluster in the face cluster hierarchy of a model, a large number of direc-
tions distributed evenly over the directional sphere were sampled. For each direc-
tion, the actual (unoccluded) projected area, and the upper and lower bounds on
the projected area were calculated. I then calculated the root-mean-square error of
the bounds over all directions, as a fraction of the total surface area of the cluster.
Figure 56 shows the results plotted for both objects against the node depth. (That
is, the depth of the node in the hierarchy.) As we would hope, the error over all
directions decreases with depth for both objects. This trend is somewhat noisier in
the case of the coarser cup model.

Figure 57 shows the results of plotting the error in the lower bound only
(that due to our sum-area normal calculation.) This shows that our clusters are
getting flatter and thus our bounds are getting tighter as we descend in the hierar-
chy. Of the lower and upper bounds, the lower seems to provide a better fit to the
actual projected area, which provides some justification for only using the sum-
area normal in the actual radiosity calculations. Note that the error shown here is
the error between the unoccluded projected area and our lower bound; the error
in the bound’s representation of the visible projected area is at most this, and pos-
sibly smaller.

Figure 55: The two objects for which we tested projected area estima-
tions. Left, a teacup, with 1000 polygons. Right, a pipe fitting, with
11,000 polygons.
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4.5.  Empirical Projected Area Results
Figure 56: Performance of bounds over the entire face cluster hierarchy.
The root cluster is at level zero, and the leaves are at the highest levels.
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Chapter 4.  Analysis
Figure 57: Error in the lower bound on the projected area. Top: for the
cup mode the initially high relative error decreases with depth in the hi-
erarchy. Bottom: for the pipes model, even at the highest levels of the hi-
erarchy the lower bound for some clusters is exact.
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4.5.  Empirical Projected Area Results
4.5.2. Cluster Error Bounds

I also looked at the performance of the bounds over several individual cluster
nodes, two from each model. Figure 58 shows the relevant clusters from the cup
model, and Figure 59 shows the clusters from the pipes model. The bounds can be
shown relative to the direction from the cluster by plotting them against , the
cosine of the angle between the direction and the “up” direction of the bounding
box. Thus at we are looking at the cluster from directly overhead, at ,
we are looking at the cluster from side-on, and at from the rear. Again, we
measure the error in the bounds as the difference between our upper and lower
bounds, relative to the total surface area of the cluster.

Figure 60 shows the results for the cup clusters, and Figure 61 the results
for the pipes clusters. In both cases, while the error curve is large for the less
directional clusters, for the smaller clusters it flattens out considerably. We would
expect that, as we get deeper in the hierarchy, projected areas for will go to
zero, as the clusters get flatter.

Figure 58: Two clusters from the cup model. The cluster on the left cor-
responds to the bottom of the cup, and lies three levels deep in the hier-
archy. The cluster on the right is the immediate parent of that cluster, and
is considerably less planar in character.
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Chapter 4.  Analysis
Figure 62 shows how the upper and lower bounds behave as the cluster
gets flatter. The lower bound tends to be accurate both immediately in front of
and behind the cluster, and most inaccurate “side-on” to the cluster, around

, where its assumption that the cluster is perfectly flat proves false. The
upper bound, on the other hand, has greatest error outside this side-on region,
although its error also goes to zero (though not nearly as quickly) at the front, side
and back ( , and ) of the cluster, because this is aligned with
our VPA sample directions. Thus, luckily, the regions of error for both estimates
cancel out to some extent.

4.5.3. Projected Area Functions

While graphing these results makes it easier to directly compare the various pro-
jected area estimates, for a more intuitive idea of what is happening, we can plot
the various estimates in three dimensions as , that is, the projected area
over the sphere of all directions. For the “cup bottom” cluster, Figure 63 shows
such plots for the actual projected area of the cluster, as well as our bounds for
that area. The actual projected area function extends mainly downwards, with a

Figure 59: Two clusters from the pipes model. On the left, a smaller, flat
cluster from level five of the hierarchy, and on the right, a larger cluster
from level three.
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4.5.  Empirical Projected Area Results
little ring around the horizontal, and an indentation at the top where the projected
area goes to zero as we move directly behind the surface. The lower bound is a
simple cosine lobe in the direction of the cluster, while we can see that the upper
bound consists of one large lobe in the direction of the cluster, with four much
smaller lobes corresponding to the side areas of the cluster. The sixth lobe, corre-
sponding to the sixth area sample, is non-existent, due to the zero projected area
behind this cluster. The final image in the sequence shows how closely the two
bounds enclose the actual projected area in this case.

Figure 64 shows the same results for the larger, decidedly non-planar clus-
ter which covers part of the side of the cup as well. While the upper bound is
much looser for this cluster, indicating the need for further subdivision, note that
the lower bound still gives a surprisingly good fit to the function.

Figure 60: Error in the bounds for the cup clusters.

Figure 61: Error in the bounds for the pipes model’s clusters.
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Chapter 4.  Analysis
4.5.4. Upper Bound Strategies

I investigated how my preferred strategy of finding an upper bound for a clus-
ter’s projected area, by interpolating projected area samples from the axes of its
OBB, compared to two other possible strategies. Firstly, we could take samples
along the axes of an axis-aligned bounding box; this saves us having to transform
the sample direction into the coordinate system of the OBB. Comparing to this
strategy is also a good measure of how important picking “good” sample direc-
tions is. Secondly, we could follow the approach of previous researchers, and use
the projection of the bounding box itself as an upper bound on the projected area
of its contents [Stam97c].

Figure 65 compares these approaches for the two clusters from the pipes
model. For the large cluster, both sampled approaches clearly outperform the pro-
jected bounding box approach, and the oriented sample approach is marginally
better than the axis-aligned one. For the small, more planar cluster, the oriented
sample strategy does much better than the axis-aligned one; picking good sample
directions becomes more important for such a highly directional cluster. The pro-
jected bounding box approach deals particularly badly with angles “behind” the
small cluster, because it takes no account of face orientation.

4.5.5. The SUPA as a lower bound on the VPA

There were a number of reasons given in section Section 4.3.3 as to why the
signed unoccluded projected area, SUPA, should only rarely overestimate the vis-
ible projected area, VPA. However, we would like to show some empirical sup-

Figure 62: Upper and lower bound error for the small pipes cluster. The
errors in the two bounds offset each other for largely flat clusters.
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4.5.  Empirical Projected Area Results
Figure 63: Projected area as a function of direction, cup bottom. From
left to right we see the actual projected area of the cluster, the sum-area
normal estimate of the area, and the sampled estimate. The last image
shows all three functions together, illustrating how they nest correctly.
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Chapter 4.  Analysis
Figure 64: Projected area as a function of direction, cup side. The cup
side approximates a flat surface less well, and hence the fit of the lower
bound in particular is looser than that for the cup bottom.
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4.5.  Empirical Projected Area Results
Figure 65: Different approaches to finding the upper bound. Top, errors
for the small pipes cluster, and bottom, errors for the large pipes cluster.
Using sampled projected areas along the axes of the oriented bounding
box of the cluster gives better results than using samples on an axis-
aligned bounding box, or the projected area of the oriented box.
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Chapter 4.  Analysis
port for these observations. To this end, we can test a number of models and their
associated cluster hierarchies in the hope of finding the following:

• How often the SUPA fails to be a lower bound on the VPA. (We will refer to
this as a bounds exception.)

• By how much it fails. Even if it only happens occasionally, if the SUPA is
sometimes wildly wrong, its value as a lower bound estimate is much
reduced. If it is close to the VPA even in situations where the bound is vio-
lated, however, its value is high.

• What kind of situations it fails in.

Unfortunately, accurately finding the visible projected area is more difficult than
for the various other projected area metrics. We could employ analytic methods to
calculate the silhouette of the cluster from a particular direction exactly. However,
doing this for a large number of direction samples, and for potentially every clus-
ter in a real model with a large number of faces, could take weeks of computation
time. We must strike a balance between the accuracy of our VPA calculation, and
the ability to test a large number of clusters for potential SUPA bounds violations.

I chose to use sampling to estimate the VPA, as follows. For each face in the
cluster, a single ray was traced from the face’s centre in direction . If the ray did
not hit another face in that cluster, the face’s projected area was added into the
total. This approach is not ideal, as the resulting estimate of the VPA can underes-
timate the actual VPA, due to a face being counted as totally occluded when it is
partially unoccluded. Thus when we test the SUPA against this estimate, there is a
chance the SUPA will be larger than the VPA due to error in the estimate, rather
than because it is actually larger than the VPA. Again, this is a compromise
between total running time and accuracy in measuring errors in our lower bound;
as it stands, each model test required the casting of over 1.5 billion rays, and a
number of hours to run.

Using this technique I measured , namely, the dif-
ference between the SUPA and VPA as a fraction of the cluster’s total surface area,
over a large number of directions1, for every cluster in a number of models.
Whenever this number was positive, a bounds exception was registered, and the
direction and cluster involved were logged. Also, the maximum for each clus-
ter, , was logged.

The results for three models, each containing 100,000 polygons, are shown
in Table 4. (The models can be seen in Figure 79.) Because some number of the

1. 484 directions distributed evenly over the sphere.

m

∆x SUPA VPA–( ) A⁄=

∆x
∆xmax
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4.6.  Summary
positive values of will be occurring because of inaccuracies in the VPA esti-
mate, and because we are more concerned with larger violations, exception
counts are shown for a number of thresholds. Overall the results are as we might
hope: a very small number of exceptions for each model, and none of these partic-
ularly large. The Buddha model suffers from the most exceptions, and the Isis
model the least. This makes some sense, as the Buddha has a number of holes and
areas of sharp curvature, whereas the Isis is reasonably smooth, and has no holes.
No model has more than 0.2% exceptions where , that is, where the error
is more than one hundredth of the cluster’s surface area.

The average maximum exception is also shown, along with the largest
such maximum. Clusters with less than 16 faces were ignored for the purposes of
calculating the largest maximum, as clusters with so few faces suffer from consid-
erable error in the VPA estimate. These largest maxima tend to be reasonable close
to the average. Overall, we can conclude that bounds exceptions, when they do
occur, are acceptably small.

Finally, one such bounds exception, from the Buddha model, is shown in
Figure 66. Almost all exceptions examined where some error is obvious show this
general pattern.

4.6. Summary

In this chapter we have analysed the calculation of radiosity transfer between face
clusters, and derived useful bounds and error estimates for our technique. Our
bounds are almost always conservative (that is, not violated), and in practice we
have found our bounds to be tighter than those previously published. Due to the
visible projected area rule, using the sum-area normal vector in our radiosity
calculations can give surprisingly good results. Recapping:

• A good estimate of a cluster’s visible projected area, the VPA, is critical to my
algorithm.

Model

Percentage of Bounds Exceptions Avg. Max.

Buddha 0.52% 0.44% 0.20% 0.0043 0.066
Dragon 0.38% 0.32% 0.14% 0.0034 0.087
Isis 0.24% 0.18% 0.05% 0.0015 0.068

Table 4: Statistics for lower bound exceptions: .
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Chapter 4.  Analysis
• , which I call the signed unoccluded projected area, or SUPA, is an
approximate lower bound on the VPA.

• In my algorithm, this bound is rarely violated, because of the tendency of
face clusters to be flat and well-shaped.

• The lower bound may only be violated when a cluster’s projected boundary
has regions with a winding number greater than one.

• As an upper bound, we can sample the non-negative unoccluded projected
area, the NUPA, in six axial directions corresponding to the bounding box,
and interpolate these samples. This bound is conservative.

Both bounds are constant time to evaluate in the number of polygons a cluster
contains. They rely on preprocessing of a cluster, which

• for the lower bound is constant time to calculate from its children.

Figure 66: An example of one of the larger SUPA/VPA bounds viola-
tions from the Buddha model. The surface spur marked on the left is ob-
scured in the rotated view shown on the right, but is still counted in the
SUPA, leading to an exception. (An orthographic projection was used
for both pictures.)

m S∑⋅( )+
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4.6.  Summary
• for the upper bound is linear in the number of polygons in the cluster—no
worse than the requirement for the calculation of bounding box extents.
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C h a p t e r  5
Improving the Face
Cluster Construction
Algorithm
5.1. Introduction

In this chapter I explore ways to improve the performance and quality of the orig-
inal face clustering algorithm presented in Section 3.3, and in Garland’s disserta-
tion [Garl99]. The face clustering algorithm is a vital part of the radiosity
algorithm described in this thesis. For our goal of handling complex scenes on a
standard workstation to be achieved, it is imperative that we be able to produce
the face cluster hierarchies required by the radiosity algorithm on such a worksta-
tion. To achieve this goal, I have reimplemented Garland’s original face clustering
algorithm, and made a number of changes to improve both general quality and
performance, as well as suitability for use with radiosity. The resulting implemen-
tation seems similar in speed to the “oconv” octree builder of Radiance [Warda].

I will begin by discussing the various improvements that can be made to
the algorithm, present some performance results, and conclude by discussing
some other work on clustering strategies for polygonal models.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.2. Speed

5.2.1. Evaluating Running Time

We start by evaluating the running time of Garland’s cluster algorithm. We split
this time into two operations, both of which can be carried out independently;
construction of the actual hierarchy, and calculation of bounding box extents. In
the following sections we shall show how these results can be improved.

Face Cluster Hierarchy Construction

The results of profiling the face cluster algorithm described in Chapter 3 for a
large, 100,000 polygon model, are shown in Table 5. Only four routines contribute
significant computational cost; all the others contribute less than 1% each to the
overall running time.

By far the most time spent in the algorithm is on the Jacobi eigensolver routine
used to calculate the principle components of each cluster [Pres92]. This routine,
the simplest possible for the problem, uses Jacobi transformations to find the
eigenvectors of the covariance matrix of the cluster. (As discussed earlier, these
components are used both to estimate the flatness of the cluster, and to provide an
orientation for the bounding box of the cluster.) Obviously this routine is a natural
candidate for optimization.

Bounding Box and Side Area Calculation

After the cluster hierarchy has been constructed, we must also calculate the actual
extents of the bounding boxes corresponding to each node in the hierarchy. For
each cluster, a simple hierarchy traversal is performed to find the corresponding
leaf polygons, and the vertices of these polygons used to calculate its extents. This

Time Pctg. Routine Description

9.2s 55% Jacobi Find eigenvectors for PCA
4.8s 30% FindCost Calculate cost term for a dual edge
1s 6% MergeEdgeLists Merge the dual edge lists of two clusters
0.6s 4% InitFromFace Create initial leaf cluster
0.7s 5% - All other routines
16.3s 100%

Table 5: Profiling Garland’s face cluster algorithm
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5.2.  Speed
is an operation in time, where is the height of the hierarchy, and is the
number of cluster nodes. ( is when the hierarchy is balanced, and

 in the worst case.)
For use with vector radiosity, we must also calculate the projected area of

the cluster in each direction corresponding to a face of the box. This can be done at
the same time as the iterative bounding operation, and adds an overhead of
approximately 30% over just bounding box calculation.

The times taken to calculate the bounding boxes for two cluster hierarchies
are shown in Table 6. Also shown is the actual height of the hierarchies, and the
height of each hierarchy if it were balanced.

At first glance, it seems as if the bounding box calculation is a much more
significant part than the actual hierarchy calculation of the overall time cost of cre-
ating a cluster hierarchy suitable for radiosity. These times show the bounding
box calculations taking over twice as long as cluster creation in the case of the
whale model. However, this need not be the case. The hierarchies produced by
the original clustering algorithm can be extremely unbalanced; in the case of the
results above, by balancing the hierarchies we could gain potential speed-ups of
20 and 30 times respectively. This would also have a positive effect on any query-
based algorithm that might use face clusters, such as ray-tracing or collision
detection, as these also have  complexity.

If the poor balance of these hierarchies were solely a result of the need to
constrain clusters to be flat, there is not much we could do to improve the situa-
tion without seriously diluting the effect of our cost metric. Luckily, this is not the
case. Much of the imbalance is due to highly tessellated flat regions in each
model, where the cost metric approaches zero, and provides little guidance as to
which clustering operation to perform first. In such situations the heap-based
algorithm clusters faces in order, often in the most unbalanced way possible. (This
is the reason the much smoother whale model is less balanced than the bumpier
dragon model; see Figure 79 for both models.) As we shall see later, we can

Model
Bounding
Box Time

Cluster
Nodes

Tree
Height

Balanced
Height

Dragon 17.1s 102,264 342 17
Whale 41.44s 101,812 506 17

Table 6: Garland’s hierarchy: results for bounding box and side area
calculation for two models.

O hn( ) h n
h O nlog( )

O n2( )
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Chapter 5.  Improving the Face Cluster Construction Algorithm
exploit this by altering our cost metric to produce more balanced hierarchies, and
reduce drastically the time taken to calculate bounding boxes.

5.2.2. Speeding up Principle Component Analysis

A first approach to eliminating the bottleneck of principle component analysis in
the cluster creation algorithm is speeding up the eigensolver at its heart. There are
a number of more sophisticated algorithms for the eigenvalue/eigenvector prob-
lem than the Jacobi eigensolver, which was originally chosen for simplicity of
implementation. Techniques based on QR iteration with shifting work well for
medium size matrices, and for large matrices, divide-and-conquer works best
[Demm97, Golu89].

Unfortunately, these algorithms are more efficient the larger the problem
size, and our problem size is extremely small; matrices. For such a small
problem size, it turns out that brute-force Jacobi iteration is as fast as we can rea-
sonably expect, and has the advantage of being more stable than the other rou-
tines [Demm97]. This is illustrated in Table 7, which shows the average
performance of several eigensolvers over a number of random box-shaped co-
variance matrices on a Pentium II-class processor. Jacobi takes 60% of the time of
the QR shift-based algorithm, where both are hard-coded for matrices, and
both are an order of magnitude faster than a general SVD routine used for the
same purpose.

As a result, it appears we cannot reasonably expect to speed up the eigensolver
routine itself.

5.2.3. Eliminating PCA for Flat Clusters

An alternative to reducing the time taken by the PCA algorithm is to instead
reduce the number of such computations needed. The PCA algorithm has two
uses in the face cluster algorithm; determining the best fit plane of the cluster, and

Clocks Routine

218,347 Generalised SVD
14,102 QR-Shift
8,395 Jacobi

Table 7: Average performance for various eigenvalue solvers.

3 3×

3 3×
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5.2.  Speed
determining directions for the bounding box. We will examine its application to
the bounding box further in Section 5.3.

An alternative to calculating the best fit plane of the cluster is to instead
use the sum-area normal, , to determine the orientation of the cluster, and use
that in our error metric. This has two advantages. Firstly, it is much easier to cal-
culate, and secondly, it is much more stable than the PCA routine for calculating
orientations (see Figure 67).

The disadvantage of using the sum-area normal is that, as clusters become
less flat, the quality of the approximation to the best-fit plane falls off, and the esti-
mate of the flatness of the cluster suffers. However, for such clusters we can revert
to using the PCA algorithm. A good metric for deciding when to do so is to com-
pare the length of the sum-area normal vector, namely, the projected area of the
cluster in that direction, against the total area. This approaches one as the cluster

Figure 67: Determining cluster orientation. On the left is a cylinder clus-
tered using PCA to determine the orientation of clusters. On the right are
clusters created by using the sum area normal for this purpose. When
clusters are reasonably flat, as in this case, doing so leads to more stable
results than using PCA.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
becomes completely flat, and zero as the cluster’s surface becomes closed. I have
had good results with using

(78)

as a test for whether to use instead of the principle component to determine the
cluster’s orientation. The impact on running time is shown in Table 8. The cost of
the PCA analysis is much reduced, and in general the performance of the algo-
rithm is at least twice as fast.

5.2.4. The Impact of Balance on Running Time

At first glance, it would appear that the balance of the hierarchy would not have
an effect on the running time of the clustering algorithm. As described by Gar-
land, the clustering and edge-collapse algorithms have a complexity of ;
there are merge operations, and each such operation requires updating the
heap, an  operation [Garl99].

However, on closer examination I have found that balance can have a con-
siderable impact on the running time by affecting the degree of clusters in the
model. Each face cluster node is connected to its immediate neighbours by dual
edges, representing potential clusterings. The degree of a cluster node corre-
sponds to the number of these dual edges. Whenever two clusters are merged, we
must merge their dual edge lists (a constant time operation), and visit all of the
edges in the new list, updating their corresponding costs in the heap. So the cost
of a merge operation is , where is the number of dual edges in the new
cluster.

If the algorithm is producing a balanced hierarchy, the number of dual
edges belonging to any given cluster is approximately equal, and constant. Thus

Time Pctg. Routine Description

4.5s 58% FindCost Calculate cost term for a dual edge
1s 14% Jacobi Find eigenvectors for PCA
1s 11% MergeEdgeLists Merge the dual edge lists of two clusters
0.6 7% InitFromFace Create initial leaf cluster
1s 10% - All other routines
7.8s 100%

Table 8: Profiling the new face cluster algorithm
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5.3.  Calculating Oriented Bounding Boxes
can be assumed to be constant, and Garland’s analysis of for a merge
operation holds. In the worst case, however, polygons are iteratively collected
into a single large cluster, and this assumption is no longer true. Figure 68 shows
this effect. As a consequence, performance suffers. In fact, for a planar regular
grid, the accumulation cluster can have dual edges incident on it in the
worst case. As a result, merge operations are , and the algorithm as a
whole is rather than . We can expect similar worst-case
behaviour for manifold surfaces.

The impact of this on clustering time is illustrated in Figure 69, which
shows the time taken to cluster flat triangular meshes of varying sizes. (An exam-
ple mesh is shown in Figure 70.) The results for both a constant-cost clustering
metric, which results in an almost completely unbalanced hierarchy, and an area-
based metric, which results in an almost completely balanced hierarchy, are
shown. The reason for the differing performance is clearly illustrated in Figure 71,
which shows the respective maximum dual edge adjacencies for the two metrics.

(I speculate that this is also the reason for the running-time jump for the
Turbine model in figure 6.4 of Garland’s dissertation [Garl99]. The turbine con-
tains a number of highly tessellated flat surfaces; when the algorithm starts to
simplify them, it seems probable that this will lead to vertices of extremely high
degree. I have observed similar effects on smaller flat models.)

This result provides further motivation for altering the cluster algorithm to
produce more balanced hierarchies. We will discuss how this can be accom-
plished in Section 5.4.1.

5.3. Calculating Oriented Bounding Boxes

In Garland’s original method, the orientation of the bounding box is calculated by
performing principal component analysis, and the extents of the box by iterating
over each point contained in each cluster node. We shall briefly examine both of
these approaches.

5.3.1. The Need for Robust Extent Calculations

Iterating over every face in a cluster for each cluster in order to calculate the
extents of its bounding box is costly. In the best case (the hierarchy is balanced) it
is ; in the worst, . A much cheaper approach that has been used
elsewhere would be to calculate the extents from just the vertices that define the
bounding boxes of its two child clusters, rather than every point in the cluster.
This reduces bounding time to a constant per cluster, and overall time to .

d O nlog( )

O n( )
O n nlog( )

O n3 2/ nlog( ) O n nlog( )

O n nlog( ) O n2( )

O n( )
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Chapter 5.  Improving the Face Cluster Construction Algorithm
Figure 68: Hierarchy balance affecting dual-edge degree. On the left, in
an unbalanced hierarchy, one large cluster slowly absorbs all other clus-
ters (from top to bottom.) On the right, a balanced hierarchy leads to
roughly similar-sized clusters as merging proceeds from smaller clusters
(top) to larger ones (bottom).

A balanced hierarchy leads to a small, approximately constant
number of dual edges per cluster (arrows, bottom-right), while in an
unbalanced one, a single large cluster is adjacent to many small ones,
leading to a non-constant dual edge count (arrows, bottom-left).

unbalanced balanced
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5.3.  Calculating Oriented Bounding Boxes
Unfortunately, in such an algorithm a little bit of error is potentially intro-
duced in each bounding operation, typically making the parent cluster larger than
it really has to be. Worse, the error accumulates up the tree, so that nodes near the
root have very sloppy bounds. This effect is especially bad for the large models
(and consequently large hierarchies) we must deal with. As the radiosity algo-
rithm is most sensitive to error at the top of the hierarchy, due to its top-down
refinement approach, any error, and especially any cumulative error, is unaccept-
able.

Any approximation algorithm we do choose to speed up bounding box cal-
culation must be carefully designed to avoid cumulative approximation error.

5.3.2. Picking Bounding Box Orientations

A major problem for the use of face cluster hierarchies in radiosity simulations is
that principle component analysis can fail to produce a reasonable bounding box

Figure 69: The effect of hierarchy balance on clustering time. An unbal-
anced hierarchy can make clustering very slow.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
in degenerate cases. While it handles objects with three differently-sized major
axes well, if any two of these axes are close to equal, the algorithm becomes unsta-
ble. Worse yet, these are cases that occur commonly in radiosity scenes.

The problem with the principle component approach is that it is in essence
fitting an ellipsoid to a cloud of points, and then taking that ellipsoid’s principal
axes as those of the oriented bounding box for the cluster. The worse case for this
approach is a cube, where there is no preferred direction at all for the fit ellipsoid
(the best fit being a sphere), resulting in an essentially random orientation for the
bounding box. Because the algorithm used to calculate the eigenvectors of the
covariance matrix is iterative, it is difficult to predict what this orientation will be.

While cubical objects don’t occur often in practice, their two-dimensional
equivalent, meshes in a rectangular shape, do. This leads to poor bounding boxes,
as in Figure 72.

In some applications this is not critical. However, in radiosity the quality of
our transfer approximations, and in particular the quality of our visibility calcula-
tions, is highly dependent on the tightness of the bounding boxes. Consider a
floor in a square room; if the bounding box for the entire floor is oriented at 45
degrees to the floor, much of it will lie outside the walls of the room. Visibility
tests against this bounding box will show the floor is partially occluded, even

Figure 70: An example flat mesh of 800 faces.
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5.3.  Calculating Oriented Bounding Boxes
though in reality it is not occluded at all. Such problems lead to poor refinement
decisions and unnecessary work on the part of the radiosity algorithm.

It is possible to calculate the optimal minimal-volume bounding box for a
cloud of points in 3D, but this takes time [ORo85']. (Principal component
analysis is , and of course, we get it largely for free due to needing it also for
our cost metric calculations.) This is far too expensive for our situation and geom-
etry size.

A hybrid approach is to use PCA to establish a single principal axis, and
then, after projecting all vertices onto a plane perpendicular to that axis, use a
simpler algorithm to find the minimum-area enclosing rectangle (MER). The cost
of finding the MER is for finding the two-dimensional convex hull, and

for finding the rectangle using a rotating callipers-type algorithm [Tous83].
(Briefly; it can be shown that a minimum-area enclosing rectangle must have one
side coincident with an edge of the hull of the point set being enclosed. We can
thus iterate through all such rectangles in linear time, and pick the one with the

Figure 71: Dual edge degree increases when creating unbalanced hier-
archies.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
smallest area.) In practice we can merge hulls as we ascend the hierarchy, rather
than creating a new one each time; the cost of merging two hulls is .

This approach works particularly well for flat clusters. For larger, non-flat
clusters, the smallest-length component is no longer the most stable orientation
feature of the cluster, and just using PCA works as well or better than this hybrid
approach. Luckily, this meshes well with the approach to eliminating the need for
PCA on flat clusters described in Section 5.2.3. For clusters meeting the condition
of Equation 78, the vector is used both to define a fit plane for the cluster, and
to define the “flattest” axis of the bounding box, with the minimal-area enclosing
rectangle algorithm used to find the remaining two axes. For all other clusters,
PCA is used both for the fit plane, and to define the orientation of the bounding
box. This approach works well, especially because it limits application of the MER
algorithm to those clusters that genuinely need it for stability, and saves on the
expense of PCA at the same time.

5.4. The Cost Metric

Garland’s original cost metric, as outlined in Equation 12, sums three penalty
terms to form the total cost of merging two clusters. These per-dual edge costs are
then used to decide which two clusters to merge next.

Figure 72: Badly oriented bounding boxes. From left to right we see the
first three levels of subdivision of a square but curved surface. Because
the clusters are close to symmetrically shaped, their bounding boxes
have essentially random directions in the plane.
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5.4.  The Cost Metric
This formulation suffers from a couple of problems. The first is that,
because the cost terms are added, they can wind up interfering with each other in
some situations. For instance, the original face cluster radiosity paper used
weights on the three terms of , , and for some
models, in an attempt to get the directional term to have the desired effect
[Will99]. On further investigation, it turned out that the directional and shape
costs interfered with each other—turning on the shape metric pretty much
destroyed the effect of the direction metric.

Another problem is that the three cost terms have different units. is the
variance of the cluster's points in one dimension, so it has units of area. Scaling
the model by a factor will lead to scaling of all associated fit costs by . The

term measures the variance of cluster normals from some average normal.
This varies from 0, when all normals point in the same direction, to 1, when the
normals are distributed randomly over the sphere of directions. Thus it is unitless.
Finally, is also unitless, and varies from 0 (when two elongated clusters are
merged into a fatter, more rounded one) to 1. Unlike the directional term, how-
ever, it tends to usually fall around 0.5, when no improvement to shape is made.

Thus, scaling the model can lead to different ratios of the cost terms, and
thus different clustering behaviour, a situation we would like to avoid. We would
also like to avoid the situation where the size of one term prevents the others from
taking effect. To do this, I propose a modified cost metric:

(79)

This metric works by taking as the base cost and scaling it according to the
penalty terms and , which we will define to be 1 when both terms
should have no effect, and to rise above 1 for clusters deemed “bad” by both
terms.

5.4.1. Addressing Balance

As discussed previously, Garland’s original metric does not produce particularly
balanced hierarchies. In the case of flat sections of a mesh, moreover, goes to
zero everywhere, and we get extremely unbalanced hierarchies.

There is a simple fix to this problem. If we consider a flat mesh made up of
evenly-sized polygons for the moment, a cost metric that would produce a bal-
anced cluster hierarchy for such a mesh is just the surface area of the cluster. Such
a metric ensures that clusters are merged evenly in order from small to large, pro-
ducing a balanced hierarchy.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
Of course, this approach only works if all leaf elements are approximately
the same size. However, empirically this is the case for most detailed models.
Also, where it is not the case, it usually suits the radiosity algorithm better to have
approximately equal-area clusters, as this ensures that the depth of hierarchy that
must be descended to reach a certain level of accuracy is relatively constant.

We must combine this fix for flat meshes with the usual metric in such
a way that the changeover from curved surfaces, where the standard fit metric
should predominate, to flat surfaces, where the area-based metric should predom-
inate, is smooth. The approach I use is to combine them as follows:

(80)

Here the constant controls the mix of the two metrics. As the variance of the
points (roughly speaking, the height of the cluster squared) drops below times
its surface area (again, roughly, the cross-sectional area), balance of the hierarchy
starts to take precedence over the flatness of clusters. Note that and
both have units of distance squared. Figure 73 shows the effects of this new fit
term on hierarchy balance.

5.4.2. The Directional Term

The calculation of Garland’s term is expensive, especially in terms of mem-
ory use, which it doubles. Also, its attempts to minimise variation in normals is
not so well suited to our radiosity method. We are generally happy to have large
amounts of micro-scale normal variation, as long as the surface is relatively flat,
and does not fold over on the macro scale. A cluster can meet both of these condi-
tions, and still be heavily penalised by Garland’s variance-of-normals term,
because of small bumps on the surface.

An alternative is to use the ratio of the projected area in the direction of the
area-weighted normal to the total area of the cluster as a measure of how much it
folds over. (This is just .) In the case of a completely flat cluster this is one;
as the cluster folds over and the projected areas on each side of the fold cancel out,
it drops, reaching zero in the case of a completely closed surface. We can thus
define the penalty term of the previous section as

. (81)

The major advantage of this is that, while it gives similar results to the original
, as seen in Figure 74, there is no required additional storage cost, as we must
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5.4.  The Cost Metric
already track the area and sum area normal of each cluster. This can lead to space
savings of almost 40% over Garland’s original method, and can make the differ-
ence between being able to cluster the dragon model in under a minute on a
128MB laptop, and having to wait half an hour for results while it thrashes heav-
ily.).

Figure 73: Enforcing hierarchy balance. Top: a dragon model clustered
using, from left, the original cost metric, and the modified metric for two
values of . Bottom: the corresponding cluster hierarchies.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.4.3. The Shape Term

In tests I found that the difference between using the of the cluster (the ratio of
squared perimeter to area) and Garland’s more complicated term seemed
to be minimal; see Figure 75, for instance. The term works better with the scal-
ing penalty approach outlined above; we can define the shape penalty simply as:

(82)

Again, this is one for a perfectly circular cluster, the most compact shape possible,
and increases as the cluster’s shape moves away from that ideal.

Figure 74: The directional term. Top to bottom: the first level of the clus-
ter hierarchy for successively thinner ellipsoids. Left, the original
metric based on normal quadrics. Right, the new metric based solely on
projected area.

Ideally, we would like this first split in the hierarchy to divide
the ellipsoid cleanly into top and bottom halves. For this particular
example, we see that the new metric is no worse (and arguably a little
better) than the original metric.
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5.4.  The Cost Metric
Figure 75: Effect of the shape term. Top to bottom: progressively coarser
clusterings of three flat meshes. Left, no shape term; middle, the new
term; right, Garland’s .Eshape
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.4.4. A New Cost Metric

Putting it all together, we can write the complete cost term as:

(83)

which can be rewritten more simply as

(84)

where as usual, . (We can drop the because the cost term is
scale independent.) The term controls the mix between balancing the hierarchy
and obeying the metric; it should be set to some small value (I use 0.0001) for
good results.

This metric has proven to be simple and robust, and much less sensitive to
the effects of conflicting purposes for the metric. For instance, even if an area-
weighted term is added to Garland’s original “summed” metric, its effect on bal-
ance is easily overwhelmed by the and terms. The approach of scal-
ing the basic cost, , by penalty terms, suffers much less from this.

Finally, while trying to construct a cost metric capable of guiding face clus-
ter creation according to some notion of “goodness”, it is tempting to engage in
micro management, adding a succession of terms. One must be careful about this;
the face cluster algorithm is a greedy algorithm, and trying to get subtle effects via
the relatively blunt tool of the cost metric can be a frustrating exercise. Keeping
the metric simple and straightforward seems the best approach.

5.5. Time and Space Trade-Offs

The cluster files for complex models can be large. For instance, the geometry of
the whale model shown earlier in this chapter requires 3MB of storage (1.1 MB
compressed). Its corresponding binary cluster file (which includes the geometry
as well as the face clusters) is 15MB (9MB compressed.) While these files can be
compressed for storage, they must be uncompressed for use by the radiosity sim-
ulation. This is not really a problem for moderate numbers of cluster files given
the current cost of hard disk space; approximately US$5/GB for IDE disks. How-
ever, while I make an effort to limit the amount of cluster overhead for my partic-
ular application, radiosity, it would be nice to have a method for reducing the size
of these files in situations where either we wanted to store more information per
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5.5.  Time and Space Trade-Offs
cluster, or many (different) models must be used. Also, there are some situations
in which we must traverse the entire face cluster hierarchy; in such cases, overly
large files can lead to long disk read times, and problems with thrashing.

We look at two possible approaches to trading off cluster file size in return
for more computation time: increasing the branching factor of the hierarchy, and
truncating the hierarchy.

5.5.1. Picking a Branching Factor

The standard face cluster hierarchy is a binary tree; it has a branching factor of
. It is relatively simple to recast this hierarchy as one with a larger branch-

ing factor; would give us a quadtree, and an octree. This can lead to
space savings, but we must analyse the corresponding impact on performance.

Let us briefly recap the situation where we wish to build a hierarchy with a
branching factor of above leaf polygons. The total number of internal nodes
(and thus clusters) will be

. (85)

The height of the corresponding balanced hierarchy is

, (86)

and that of the corresponding unbalanced hierarchy is .
Ignoring storage for leaf nodes, which remains constant, the storage

required by our hierarchy is , where is the internal
node storage (e.g., a bounding box for a bounding volume hierarchy), and
is the storage size of a pointer. The query time for each node is simply ,
where is the time taken to test a single node—we must test each of a node’s

 children1. Thus the worst-case query time is

, (87)

1. For a bounding volume hierarchy we must test each child because there is a chance more than one child
will match.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
and the best-case time is

. (88)

In the case of the face cluster hierarchy used by the radiosity algorithm, is
an order of magnitude larger than , so we approach space savings of

over a binary tree. Thus, a quadtree will take the space of the orig-
inal binary tree, and an octree the space, ignoring the storage for leaf faces.
These are considerable space savings, and they increase with .

The drawback to a higher branching factor is slower spatial-data structure
queries. It is often assumed that a randomly-built hierarchy has height ,
and thus is on average close to being balanced. We will assume that here, espe-
cially as we have a specific term to promote balance in our cost equation. (See
Section 5.6 for empirical evidence that our hierarchies are always close to the bal-
anced case.) In such a case, it is that determines query performance.
Figure 76 shows the -dependent term of . For quadtrees and higher, the
cost increases close to linearly with . Interestingly, quadtrees have the same
query cost as binary trees, and a hierarchy with a branching factor of three has a
slightly lower cost1.

This analysis assumes we have built a hierarchy with branching factor
from scratch, guaranteeing that every internal node except one has children.
However, constructing an algorithm that directly produces such a face cluster
hierarchy is challenging. We would have track all possible -way grouping oper-
ations on adjacent nodes, rather than using simple bi-directional links. For a node
with neighbours, there would be possible groupings.
For example, for and , we would need to represent (and calculate
the cost of) 20 potential groupings rather than 6. Also, if we start from a triangular
mesh, for the initial leaf nodes , and many internal nodes would have only

 children, with .
In general it is simpler to recast the binary hierarchy produced by the orig-

inal algorithm into one with a higher branching factor. In doing so, we must
maintain the structure of the original hierarchy, so that only groups of adjacent
nodes are produced. If this is not done, we could have clusters containing discon-
nected surface areas, violating the assumptions of the face cluster hierarchy.

1. A three-way hierarchy is only 5% faster in this situation. In general binary trees work better because of the
extra cost of three way group-selection or comparison operations. A binary comparison requires fewer
gates to implement that a trinary one.
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5.5.  Time and Space Trade-Offs
In practice this leads to the requirement that a node and its children in the
transformed tree correspond to the root node and leaf nodes of a valid subtree of
the original binary hierarchy. This restriction can produce a number of internal
nodes that have less than children, with two consequences: potentially wasted
pointer space on one hand, but fewer nodes to test against on the other.

I will not go into details here, but it can be shown that:

• the smallest possible number of children in such a tree is ;

• any completely balanced or completely unbalanced tree can be transformed
into one where all but one of the internal nodes have the full set of chil-
dren;

• in the worst case, it is possible for all internal nodes in the new hierarchy to
have  children;

Figure 76: The -dependent factor in the query cost for a balanced spa-
tial data structure with a branching factor of .
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Chapter 5.  Improving the Face Cluster Construction Algorithm
• the maximum height of such a worst-case tree is , and the
number of internal nodes is 1.

The consequences of this are that the best-case storage and performance are the
same as for our original analysis, but in the worst case performance and pointer
storage costs of the transformed tree match that of the original binary tree. How-
ever, the total internal node storage is reduced by a factor of , so we still save
some space with a higher branching factor. For , whereas we were origi-
nally guaranteed to reduce our internal node storage to of its original size,
with the transformed tree this is just the best case, with the worst case being .

In summary, by increasing the branching factor we can decrease the stor-
age needed for face clusters, ignoring pointer storage, to at worst of that
required by the original binary hierarchy. This can increase the query time of the
face cluster data structure by a factor of up to . However, this is impor-
tant only if we are using the data structure for visibility queries, or proximity or
collision detection. In my current implementation of face cluster radiosity, the
data structure is only used for hierarchical radiosity, and a nested grid data struc-
ture is used for visibility queries. Thus the only performance consideration is that
of the radiosity algorithm, which we will look at next. For face cluster applica-
tions which are primarily query-based, there is no performance drawback and
considerable space savings to be had by recasting the hierarchy as a quadtree.
Higher branching factors are possible, but the space savings become progres-
sively smaller and performance is impacted; finding the ideal branching factor
would require further experiment or analysis.

5.5.2. The Impact of Branching Factor on Radiosity

For the face cluster radiosity algorithm, we must examine the impact of the
branching factor on the following stages of the radiosity algorithm (see
Section 2.4.2).

Gather

The cost of the gather operation in radiosity depends solely on the number of
transport links currently existing in the simulation. This number depends on the
refinement epsilon, , as well as the quantization of surfaces—how we discretize
them, and how we organize them into a hierarchy. The branching factor affects

1. Briefly, the smallest binary tree corresponding to this worst case contains a left subtree that is unbalanced
and has b’ leaf nodes, and a right subtree that has b/2 leaf nodes. Larger such trees can be produced by
repeating this base tree.
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5.5.  Time and Space Trade-Offs
the set of possible links between hierarchical surface regions. Larger branching
factors correspond to a smaller set of possible links, that cover the possible trans-
port space more coarsely. If there is some theoretically optimal number of trans-
port links that exactly meets the desired refinement threshold, the imposition
of any hierarchy leads to approximation error; we still meet the threshold, but it
requires links, where . The larger the branching factor, the larger the
approximation error, and thus .

Unfortunately, given the wide range of transport schemes, and the depend-
ence of transport error on the current state of the radiosity solution in the popular
brightness-weighted schemes, the relation of these quantities is hard to analyse
except in trivial, unrealistic cases. We can make the following simplistic analysis,
however.

Assume that all nodes have an equal number of links pointing to them
(Section 2.4.1). We will compare a hierarchy with branching factor to one
with branching factor 2, when both have the same leaf nodes. From
Equation 85 the binary hierarchy must have more nodes
than the hierarchy with higher branching factor. For each of these nodes, the cor-
responding links must be pushed down to the first descendent node that has a
counterpart in the non-binary hierarchy. This must result in the generation of at
least one new link, and at most new links, for each of the links to be pushed
down. Thus we can conclude that, assuming a constant refinement and the
same scene, the links formed in a hierarchy with branching factor will have the
following relation to the number of links formed in a binary hierarchy:

. (89)

This increase in the number of links, and consequently link storage and gather
time, quickly approaches a factor of two for branching factors of eight and higher.

Push-Pull

The cost of a push-pull operation for an internal node is linear in the branching
factor. (We must push irradiance down to children, and then average their radi-
osities during the pull phase.) We can write this cost as . For each leaf there is
an additional constant cost in transforming irradiance into radiosity, . This
gives us a total cost for a push-pull operation over the solution hierarchy of
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Chapter 5.  Improving the Face Cluster Construction Algorithm
. In the balanced and unbalanced cases, where almost all nodes have
 children, we have

, (90)

and in the worst case mentioned above, where all nodes have children, we find

. (91)

Thus by increasing the branching factor, we can decrease the cost for the internal
nodes, by a maximum factor of 2. The cost for a binary tree is ,
and for an octree it lies between  and .

We can conclude that for face cluster radiosity, increasing the branching factor
would decrease cluster memory use, and speed up the push-pull section of the
radiosity algorithm, but likely increase transport link memory use, and slow
down the gather section of the algorithm. My feeling is that a low branching fac-
tor at the top of the hierarchy is important, as accuracy at the top of the hierarchy
is crucial to any top-down algorithm. This hypothesis needs to be tested empiri-
cally, however. In the meantime, it seems that increasing the branching factor to at
least four is an experiment well worth pursuing, especially considering that pre-
vious hierarchical radiosity algorithms typically have branching factors of four or
more, and that face cluster storage is typically much greater than link storage. An
alternative to increasing the branching factor of the hierarchy everywhere might
be to do so at lower levels of the hierarchy only, leaving the higher levels with the
original low branching factor.

5.5.3. Truncating the Hierarchy

One of the particular problems with large cluster files for the radiosity application
is that typically a large portion of the cluster file goes unused. This is especially
the case with models containing large flat areas; a single cluster representing the
flat area suffices for the radiosity simulation, and the only use for the rest of the
hierarchy in that area is for the final push-to-leaves step.

A useful way to take advantage of this is to truncate the face cluster file,
and thus the hierarchy. The cluster file can be organised so that the leaf nodes
belonging to any given cluster are numbered consecutively. Thus if we store face
ranges with each cluster, it is possible to go directly to the leaf polygons enclosed
by that cluster without traversing the hierarchy below it. Because the cluster file is
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5.5.  Time and Space Trade-Offs
generally stored in a reverse-log format, where clusters occur in reverse order
from the order in which they were generated, it is possible to simply eliminate all
nodes below a certain cut through the hierarchy by discarding all nodes after a
certain point in the file.

The result is a trade-off between memory or disk space and speed. If the
radiosity algorithm needs to descend beyond the cut at which the rest of the hier-
archy has been removed, it will incur a speed hit as it must switch directly to
using the leaf polygons in the simulation. The truncation can also be viewed as a
form of lossy compression of the hierarchy. Because the cluster file is written out
in order of clustering, the first clusters to be discarded are those most likely to be
largely flat, and thus ideal candidates to be discarded.

For technical details on how this truncation can be carried out, see
Section 6.2.3.

5.5.4. Out of Core Face Clustering

Unfortunately the face cluster algorithm has poor performance when the model
being clustered will not fit in main memory. Because the algorithm starts by creat-
ing dual edges between all adjacent faces, its memory consumption is greatest
during initialisation, when it must access the entire model. Finding adjacency
relationships between faces for such large models is also an expensive operation.
These problems are similar to those faced by geometric simplification methods
based on edge contractions when models grow too large.

One solution that has been presented for geometric simplification is to use
a variant of Rossignac and Borrel’s vertex decimation [Ross93, Lind00]. In vertex
decimation, we place a grid around the model, and then collapse all model verti-
ces in one cell to a single vertex, discarding all triangles that become degenerate.
(That is, all triangles that have two or more vertices lying in the same cell.) We can
adapt this algorithm to the dual-space face-clustering algorithm, by adding all tri-
angles in the same cell to a single face cluster. The algorithm is outlined in
Listing 2.

This approach has the advantage that, like the out-of-core simplification
algorithm, the memory use is determined completely by the grid size used, and
thus can be constrained to match the available in-core memory. Moreover, it gen-
erates the appropriate initial set of dual edges as part of the triangle addition step;
there is no separate, triangle adjacency-finding algorithm needed.

The main disadvantage of this approach is that it is no longer strictly guar-
anteed that the surface within a cluster is a manifold connected surface, although
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Chapter 5.  Improving the Face Cluster Construction Algorithm
it is the usual case. (This is the corresponding problem to the way Rossignac and
Borrel-style vertex decimation can produce a non-manifold output surface from
manifold input.)

The other disadvantage is that we limit the depth of the face cluster hierar-
chy. At the leaf clusters corresponding to the original grid cells, we go directly
from a cluster to all the faces contained in that cluster. However, this is similar to
the approach outlined in Section 5.5.3, where we deliberately truncate the hierar-
chy to save space. In fact, the approach outlined there is needed to handle such a
cluster hierarchy, where a cluster can contain more than two leaf faces.

OutOfCoreCluster()
{

Engrid(); // place grid around model

foreach (cell in grid)
initialise a cluster quadric

foreach (triangle in model)
find cell coordinate of triangle’s centre
add triangle to that cell’s cluster, updating quadric

find cell coordinate for each vertex
foreach (edge with endpoints in different cells)

add dual edge between those cells
if not already present

Initialise(dualEdges); // find error term for each edge
FaceCluster(dualEdges); // add edges to heap and

// cluster as usual.
}

Listing 2: Out-of-core face clustering. Each grid cell is treated as a clus-
ter. The process of adding triangles to cells also identifies neighbour re-
lations between those clusters.
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5.6.  Performance of Face Clustering
5.6. Performance of Face Clustering

In this section I will give some results for the modified face cluster algorithm pre-
sented in this chapter, for the kinds of polygonal models I’m most interested in
being able to handle well with radiosity algorithms. Figure 79 shows sixteen such
models, ranging in complexity from a few thousand polygons (the cup and ellip-
soid) to over one million (the buddha).

Figure 77 shows log-log plots for both memory and time use by the cluster
algorithm. The models in both graphs fall along a line of slope 1, suggesting both
are roughly . In the case of memory consumption, this is expected. In the
case of time consumption, we expect best case performance, and get it
for this range of models. (For large numbers, looks much the same as

on any plot.) Crucially, the time results are always close to this best-case, as
opposed to the worst-case performance that would be represented
by a line of slope .

The reason for this good performance is shown in Figure 78, which shows
the average and maximum dual-edge degree during the clustering process for
each model. The average degree always falls between 4 and 6 edges, which is con-
sistent with the lowest curve of Figure 71, and thus the assumption about the
dual-edge degree being constant that underlies the theoretical best-case
performance of the algorithm are satisfied. The maximum degree is a measure of
the largest cluster boundary. It is particularly high in the case of the buddha; I
speculate that this is because of its planar base remaining as one cluster until rela-
tively high in the cluster.

Finally, free source code implementing the face cluster algorithm is availa-
ble on the internet, at http://www.cs.cmu.edu/~ajw/thesis-code/. As well as its
use in radiosity, this code should prove valuable for other spatial data structure-
oriented algorithms that need to be able to handle large detailed models well,
such as collision detection or ray-tracing.

5.7. Comparison to Other Techniques

5.7.1. Hierarchies of Oriented Bounding Boxes

Hierarchies of oriented bounding boxes have proven useful in other contexts
besides radiosity, in particular for query-based operations on spatial data struc-
tures, such as collision detection [Ball81]. Barequet et al. present the BOXTREE
data structure, which is essentially a hierarchy of oriented bounding boxes, con-
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Chapter 5.  Improving the Face Cluster Construction Algorithm
Figure 77: Performance of the new face cluster hierarchy creation algo-
rithm for a variety of models.
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5.7.  Comparison to Other Techniques
structed top-down [Bare96]. They also discuss several methods for both creating
the hierarchy and picking appropriate bounding boxes. They conclude that the
minimal-component pie-slice works better than oriented bounding boxes for their
test models. I suspect that this is because:

• Their box-tree hierarchies calculate bounding boxes for the leaves of the
hierarchy, i.e., the original triangles of the model. In this case, the advantage
of a triangularly-shaped bounding volume is obvious.

• The triangular shape is more oriented than a box; this could lead to fewer
stability problems and more accurate PCA directions for their strategy of
using child bounding boxes to form the covariance matrix.

Pie slices also take slightly more storage than oriented bounding boxes (8 floating
point numbers plus a rotation, as opposed to 6 floats plus a rotation.)

The BoxTree paper also presents results showing that, as we might expect,
the strategy of using PCA to select one direction rather than all directions of the
bounding box can lead to better performance.

Figure 78: Variance in dual-vertex degree for a variety of models.
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Chapter 5.  Improving the Face Cluster Construction Algorithm
5.7.2. Volume Clustering for Radiosity

There are a number of different approaches to clustering in radiosity. Hasenfratz
et al. have studied a number of the data structures and strategies used in volume

Figure 79: Test models. Shown are a selection of models of varying com-
plexity. The new face cluster algorithm was run on each model and test
results collected.
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5.7.  Comparison to Other Techniques
clustering [Hase99]. They classify clustering approaches by data structure used,
and type of construction algorithm. Data structures are classified as either regular
structures, such as octrees or -d trees, that recursively subdivide space, or
bounding volume hierarchies, which adapt to object geometry using optimization
criteria. Construction algorithms are classified as either top-down (the simplest)
or bottom-up. Within this schema, the face clustering algorithm is most closely
related to bounding volume hierarchies, as it tries to adapt to object geometry,
and it uses a bottom-up construction algorithm.

Face clusters have some of the advantages of both kinds of data-structure.
Their speed of construction is similar to regular subdivision-based data struc-
tures, such as octrees, however their bounding boxes are of much higher quality.
Their adaptiveness to geometry is similar to that of bounding volume hierarchies,
but they do not suffer from overlapping clusters or mixing of surfaces in single
clusters, because they are constrained to share only connected geometry.

The authors pay some attention to why cluster overlap in bottom-up clus-
ter constructions is a problem. It leads to situations where scattered elements of a
surface end up in different clusters, leading to disturbing visual artifacts. The face
cluster algorithm, because it always merges topologically adjacent surface clus-
ters, avoids this problem.

The bottom-up construction of face clusters means the algorithm is more
complex to implement than simple top-down clustering methods, because adja-
cency relationships must be tracked. However, the constant-time nature of the
quadrics used to evaluate the goodness of potential clusterings, and the use of a
greedy iterative clustering routine, means it is much faster than most volume
clustering methods that are trying to optimize for some feature of the hierarchy.
These methods tend to be quadratic in the number of input surfaces, whereas face
clustering is close to linear.

Finally, Figure 80 compares the time taken for face clustering and volume
clustering two of the models from Figure 79; the dragon and whale models. The
volume clustering method used is one of the simplest (and fastest) possible: the
tightest-fit octree. It proceeds by recursively subdividing a subset of the model
into eight octants, and placing a cluster around each octant. Polygons in the
model that are larger than the size of an octant are kept at the same level as the
cluster being processed.

As can be seen, the two algorithms have roughly the same asymptotic com-
plexity. The face cluster algorithm has a larger constant, but as a hierarchy need
only be generated once per model, rather than on a per-scene basis, its amortised
clustering time may well be smaller in many situations.

k

177



Chapter 5.  Improving the Face Cluster Construction Algorithm
5.8. Summary

In this chapter I have analysed the performance of the previous face cluster crea-
tion algorithm, in particular showing how hierarchy balance can have an adverse

Figure 80: Speed comparison to simple volume clustering. Top: the time
taken to volume cluster and face cluster two models, for a number of dif-
ferent resolutions of each model, generated by Garland’s simplification
algorithm. Bottom: the ratios of these times. The volume-clustering
method used is the fastest possible; tightest-fit octree.

Face clustering takes around 2.5 times as long as face clustering,
a figure that stays steady with increasing model size. This is a good
result considering that the face cluster algorithm is trying to optimize
the hierarchy according to flatness and shape criteria, whereas the vol-
ume clustering method is simply partitioning space.
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5.8.  Summary
effect on the construction algorithm, and presented a new algorithm that per-
forms considerably better. The algorithm is based on a new cost metric, which

• produces more balanced hierarchies;

• is simpler and cheaper to evaluate, with quality comparable or better than
the previous metric.

I have also modified the algorithm, resulting in

• faster bounding box calculations, by avoiding principle component analysis
for flat clusters;

• better (tighter) bounding boxes for flat clusters, by using a minimal-area
bounding rectangle algorithm.

Finally, I have provided results for the new algorithm for a wide range of models,
showing that its running time is close to linear in the number of input polygons,
and reasonably independent of model geometry. I have also compared face clus-
ter hierarchies to other hierarchies of oriented bounding boxes, as well as those
types of hierarchy commonly used in radiosity.
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C h a p t e r  6
Implementation
Details
The algorithms described in the previous chapters have been implemented in a
radiosity code base I call “radiator”. In this section I will discuss some of the more
interesting implementation details of my system. We start with a basic overview
of the component parts of the system, and then in turn look at details of the face
cluster system, and the radiosity system built on top of it.

6.1. System Architecture

The basic architecture of the face-cluster radiosity system is shown in Figure 81.
All components share a common library, “gcl”, which provides rendering and
scene-graph services, scene-file handling, and other basic graphics utilities. In
particular the library has support for multiresolution models as one of its scene-
file types—both the geometry-simplification edge-collapse models, and the geom-
etry-aggregation face-cluster models. Both types of model share the same basic
multiresolution data structure. (Indeed, both kinds of model can be merged into a
meta model containing basic geometry, a vertex hierarchy, and a cluster hierar-
chy.)

An original base model file can be processed and an ascii log-format cluster
hierarchy output by the “make-fch” utility. (File formats supported include
AutoDesk’s 3DS, Cyberware’s PLY, MGF, and the ascii Wavefront OBJ format.)
The gcl library can then translate this file into a convenient memory-mappable
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Chapter 6.  Implementation Details
binary format. (An ascii format is used for the initial cluster file both for flexibility
and because it can be moved between machines with different byte orders,
whereas the binary format cannot.)

The radiosity system, “radiator”, uses gcl to read scene descriptions that
reference such models. (These descriptions describe the scene hierarchy with
embedded geometric transforms and material properties.) Where necessary, it cre-
ates radiosity elements from face clusters on demand. (See Section 6.3.5.) Once it
has calculated a radiosity solution, it writes out the corresponding solution mesh
with vertex colours. If no input polygon refinement has taken place for a particu-
lar scene model, only a list of vertex colours needs to be written out; the geometry
of the model stays as is.

These view-independent solution meshes can then be viewed with
“slview”, and images generated from various vantage points. They can also be

Figure 81: Interaction between various components of the radiosity sys-
tem.
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6.2.  Face Clusters: Algorithms and Data Structures
fed to an animation program for generating fly-throughs. The entire system is
available on-line at http://www.cs.cmu.edu/~ajw/thesis-code/.

6.2. Face Clusters: Algorithms and Data Structures

In this section we describe generic face cluster algorithms and data structures. In
the next section we will specialise them for radiosity.

6.2.1. A Clustered Model

A clustered model is stored using a number of contiguous arrays, as in Listing 3.
The base model is stored in the points and faces arrays, containing a list of
vertices and indexes into that list for each model triangle respectively. Other
attributes such as vertex or face colours or texture coordinates can also be stored,
but we will consider only geometry here.

The face clusters themselves are stored in the clusters array. Only inter-
nal nodes are stored; there are no clusters corresponding to the model’s faces, in
the interest of saving storage space. Each cluster stores information about its
bounding box, sum area normal, and two child IDs, as we shall see in the next sec-
tion.

If there are total faces in the model, then there are a total possible number
of face clusters, assuming that the model is completely connected and thus
there is only one root node. This is not always the case, however, as each separate

struct ClusteredModel array length
{

PointList points; v
FaceList faces; f
ClusterList clusters; f - r
IndexList rootClusters; r
ActiveList clustersActive; 2f - r

};

Listing 3: A face-clustered model’s data structure.

f
f 1–
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Chapter 6.  Implementation Details
connected surface component corresponds to a single hierarchy, and a model may
contain more than one such component. In the more general case, if there are
root nodes, then there are face clusters. The rootClusters array holds the
IDs of all root clusters in the model.

It is convenient to assign a universal ID to all nodes in the cluster hierarchy,
both faces and face clusters, as follows. The faces are numbered to ,
according to their occurrence in the faces array, and the clusters from upwards,
according to their order of creation by the clustering program. This numbering
corresponds to a so-called log format; it is the order we get if we start at the model
leaves and write each clustering operation to a log file as we successively merge
clusters. This numbering has the following advantages:

• The child IDs of any cluster are always smaller than its own ID. This means
that by iterating linearly through the IDs we can accomplish a preorder (for-
wards) or postorder (backwards) traversal of the hierarchy, as illustrated in
Listing 41. Many common operations on the cluster hierarchy can be imple-
mented in this way.

• We can detect when we are at a leaf by checking the child ID of a particular
cluster. If it is less than , the child is a leaf, and the index of the correspond-
ing face in the faces array is just the child ID.

The resulting set up is shown in Figure 82. The face clusters are generally stored
in order of their ID in the clusters array, to make it easy to map between the ID
and their position in the array. To make truncation of the hierarchy easier, we can
store them in reverse order, so that discarding clusters below a certain point in the
hierarchy is simply a matter of shortening the cluster array.

Finally, the last field, clustersActive , is used by visualisation software
to track a cut through the cluster hierarchy to be displayed. Any such cut is guar-
anteed to completely cover the model’s surface without redundancy; we are
merely varying the number and size of clusters used to do so. The field holds
mark bits corresponding to every ID in the cluster hierarchy. The clusters or faces
in the current cut have their mark bits set, and the rest are clear. The cut can be
moved lower in the hierarchy (and thus the number of active clusters increased)
by doing a preorder traversal, and marking the children of any currently active
cluster. Likewise, the active cut can be moved higher by doing a postorder traver-

1. These are not strict pre and postorder traversals, as the traversal does not visit child and parent nodes in
consecutive order; it is only guaranteed that the parent will be visited before the children and vice-versa.
For most purposes this suffices, however.

r
f r–
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6.2.  Face Clusters: Algorithms and Data Structures
sal, and marking any cluster whose children are both currently active1. An illus-
tration of the latter is shown in Listing 4.

Generally, this field is unused (and unallocated) by the radiosity simula-
tion.

Figure 82: The cluster hierarchy data structure. In (a) we see an array of
root indices, one for each connected submesh. Each root index point-

ing into the cluster array, which contains the clusters written in log for-
mat, from the original model faces to the last cluster. There are leaf
faces, and total clusters. As shown in (b), we don’t store clus-
ters for the leaf faces, and if we want to truncate the hierarchy, we can
optionally store only the top  clusters.

1. This is similar to the approach taken by Hoppe in his method for view-dependent refinement using pro-
gressive meshes [Hopp97].
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Chapter 6.  Implementation Details
6.2.2. The Face Cluster Data Structure

To represent the oriented bounding box of the cluster we need to store both an ori-
entation, and minimum and maximum bounds of the cluster in each of the three
directions of that orientation. The orientation can be represented by an rota-
tion, i.e., a matrix. We can save space over the nine floats required to store a
full rotation matrix (or more correctly, the six floats required to store the symmet-
ric matrix) by storing it as a quaternion, which requires only four floats. (As a
comparison, RAPID [Gott96] also uses quaternions, though they store a centroid
and the three dimensions of the OBB instead of three min/max pairs). The algo-

// a preorder traversal: from the leaves to the root nodes
for (i = 0; i < maxID; i++)

VisitNode(i);

// a postorder traversal, checking for cluster type
for (i = maxID - 1; i >= 0; i--)

if (i < faces.NumItems())
VisitFaceNode(faces[i]);

else
VisitClusterNode(Cluster(i));

// adapting the active hierarchy cut upwards
for (i = 0; (activeClusters > targetClusters) && i < maxID; i++)
{

if (clustersActive[Cluster(i).child[0]]
&& clustersActive[Cluster(i).child[1]])

{
// if both children are active, deactivate them and
// active the parent

clustersActive[Cluster(i).child[0]] = 0;
clustersActive[Cluster(i).child[1]] = 0;
clustersActive[i] = 1;
activeClusters--;

}
}

Listing 4: Traversing the face cluster hierarchy. The Cluster() func-
tion maps an ID to the appropriate cluster in the clusters array.

ℜ3

3 3×
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6.2.  Face Clusters: Algorithms and Data Structures
rithm for converting the three principle axes to a quaternion and back [Shoe85]
has proved to be very stable. Thus it requires a total of 10 floating point numbers
to store the oriented bounding box.

Storing the side areas of the cluster, which we need to construct our upper
bounds on projected area, requires a further six floats. It is tempting to use instead
the side-areas of the bounding box, which are easily available from the OBB min
and max fields, and as discussed previously are in turn an upper bound on the
cluster side-areas. A compromise, which I use, is to store the more accurate sam-
pled side-areas as 8-bit fixed-point fractions of the side-areas of the bounding
boxes. Of course, when converting the fractional area to the 8-bit representation,
the fraction must be rounded up so as to maintain our upper bound.

The face cluster data structure is shown in Listing 5. Further space savings
could be possible by using Deering’s normal encoding technique in conjunction
with a projected-area scale factor to represent the sum area normal. Such com-
pression must be approached with caution given how heavily we rely on the sum
area normal [Deer95].

We can write the total memory use of the face cluster hierarchy data structures as:
totalMem = (66 * clusters + 12 * faces + 12 * vertices) bytes

If we assume there is only one root cluster, and thus clusters, and that, as in
the limit case for a manifold, there are twice as many faces as vertices, we have:

struct FaceCluster bytes
{

Int child[2]; // two child cluster IDs  (8)
Quaternion axesQuat; // orientation of the OBB  (16)
Point min; // min point in OBB coord system  (12)
Point max; // max point in OBB coord system  (12)
Vector areaNormal; // sum area normal  (12)
Float totArea; // total surface area  (4)
Byte sideArea[6]; // side area fractions  (6)

};

Listing 5: The face cluster data structure. The storage in bytes of each
field is shown in brackets. The total structure requires 66 bytes.

f 1–
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totalMem = (84f - 66) bytes

Thus on average we incur an overhead of 84 bytes per face, assuming we store the
full hierarchy.

6.2.3. Reordering the Hierarchy

We can reorder the faces in any face cluster model to have the property that, for
any cluster in the hierarchy, all its corresponding faces occur in sequential order.
This is easily accomplished by a pre-order traversal of the hierarchy in which
faces are added to a new face list in the order in which they are encountered. This
has the following benefits:

• It improves the locality of face storage, because faces belonging to the same
cluster are always guaranteed to be stored contiguously.

• It makes it easier to locate the faces corresponding to a particular cluster.
Rather than recursively descending the hierarchy to find these faces, we
descend only the left-most and right-most child paths, as in Listing 6, and
can then perform any operation over the faces via a simple for loop. Indeed,
if we are willing to add an overhead of two indices to each cluster, we can
get the corresponding range of IDs directly.

• It makes it possible to handle truncation of the hierarchy cleanly. If we wish
to modify the hierarchy to remove all clusters below ID , we simply iterate
through the remaining clusters, and replace all indices smaller than with
their corresponding left ID or right ID. Again, see Listing 6.

To test the benefits of hierarchy reordering and truncation, a simple radiosity sim-
ulation was run using different versions of the clustered 1,000,000 triangle “bud-
dha” model from Figure 79. All file caches were cleared before each run1, and the
results of five runs averaged together for each version. The results are presented
in Table 9. Shown are the total size of the face-clustered model, the time taken for
radiosity solution, the time for the final post-processing pass (which touches all
faces of the model), and the total wall-clock time for the radiosity algorithm. For
the original clustered model, the wall-clock time is much longer than the total
measured solution and post-processing time (47s compared to 6.5s), indicative of
the heavy disk activity taking place. Both the reordered cluster hierarchies do not
suffer from this problem; the final post-processing pass becomes a simple ordered

1. Under Linux this is most easily achieved by unmounting and then remounting the partition the cluster file
resides on.

ic
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step through the faces array. The truncated hierarchy not only takes only 3 MB of
extra storage over the 18.5 MB base model, but saves a little on post processing

VisitClusterFaces(Int clusID)
{

leftFaceID = rightFaceID = clusID;

while (!IsFace(leftFaceID))
leftFaceID = Cluster(leftFaceID).child[0];

while (!IsFace(rightFaceID))
rightFaceID = Cluster(rightFaceID).child[1];

for (i = leftFaceID; i <= rightFaceID; i++)
PerformFaceAction(i);

}

PostOrderAction(Int i, Int truncID)
{

if (Cluster(i).child[0] < truncID)
Cluster(i).child[0] =

Cluster(clus.child[0]).child[0];

if (clus.child[1] < truncID)
Cluster(i).child[1] =

Cluster(clus.child[1]).child[1];
}

Listing 6: Visiting the faces in a cluster with a reordered hierarchy, and
truncating the hierarchy.

Type of Scene Size Soln. Post. W/C

Base model 18.5 MB
Original clustered model 87 MB 4s 2.5s 47s
Reordered 87 MB 4s 1.8s 8.7s
Reordered and truncated 21.4 MB 4s 0.9s 8.0s

Table 9: The effect of reordering face clusters.
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time, because the distance to the end of the cluster hierarchy from the radiosity
solution leaf nodes is smaller.

6.3. Radiosity Implementation

In this section we will look at some of the specifics of the face cluster radiosity sys-
tem built for this thesis.

6.3.1. Volume Clustering

To build volume clusters, I followed the methods described in [Gibs96, Sill95a].
An octree that encloses the scene is created, and scene polygons are placed within
that octree according to their size and position. This is the “tightest-fit octree”
method referred to by Hasenfratz et al. [Hase99]; see that paper for alternative
volume clustering algorithms. In my experience this method provides acceptable
quality, and is very fast. Because I don’t also use the volume cluster data structure
for visibility testing, the advantages of more sophisticated schemes summarized
by Hasenfratz et al. are not so important.

6.3.2. Visibility Testing

Visibility is sampled using ray-tracing; the spatial data structure used for acceler-
ation is a nested grid data structure [Fuji86, Jeva89]. Traditionally, of the ray-trac-
ing optimising schemes, grid-traversal is amongst the fastest, if not the fastest
algorithms for ray-casting against a scene with many similar-sized primitives.
When the scene contains primitives with widely disparate sizes, however, this
approach suffers from the so-called “teapot in a stadium” problem. A single uni-
form-density grid cannot efficiently cover all primitive sizes, leading to many
primitives in some cells.

To solve this problem, we can instead create a number of nested grids, each
adapted to a particular primitive size. To build such nested grids, within each grid
primitives are sorted into cells, and, depending on their local density and size,
become candidates for insertion into a subgrid. The grids rely on lazy evalua-
tion—this sorting process only takes place when a ray hits the grid in question.
Thus if no rays hit a subgrid, the primitives within it are never processed, saving
considerable pre-processing time. However, this optimization is not so important
for most radiosity solutions, where the scene tends to be completely and evenly
sampled.
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6.3.  Radiosity Implementation
Fractional visibility is used during simulation, but the visibility can be
resampled at higher resolution during the final push-to-leaves step. This is dis-
cussed further in Section 6.3.7. The visibility data-structure is usually built from
the input polygons only; it ignores subdivided input polygons and face clusters.

6.3.3. Approximate Visibility

While the nested grid scheme is highly efficient, even for large models, for very
complex scenes the ray-casting part of the algorithm ends up being carried out at
a much higher resolution than the finite-element part of the algorithm. This can
result in the occlusion-testing data-structures dominating the time and memory
cost of the algorithm.

Ideally, we would like to incorporate some kind of multiresolution visibil-
ity algorithm, taking advantage of the face-cluster hierarchies to test visibility
against coarser resolutions of the model when our accuracy requirements are not
high. This is an interesting area of research, but outside the scope of this thesis.

A simpler approach I currently employ is to use the face cluster hierarchies
to construct an approximate occlusion data-structure for the scene. This can be
seen as a combination of using the cluster hierarchy to test visibility, as per Sillion
[Sill95a], and the voxel-based opacity grids of Christensen and Gibson [Chri95,
Gibs95]. It can be summarized as follows:

• adapt the complexity of each cluster hierarchy to a user-specified fraction
of the total number of clusters. This is achieved by starting at the root clus-
ters, and expanding the active cluster list until it covers the required number
of clusters, as in Listing 4;

• add the bounding boxes of these clusters to the nested grid data structure;

• ray-trace against the bounding boxes for the purposes of occlusion testing,
optionally using the projected area estimates to determine fractional opac-
ity1.

There is one minor adjustment needed to make this approach work well. To avoid
self-occlusion by clusters, we ignore a cluster for the purpose of occlusion testing
when either the start or end point of a shadow test ray falls within it. (Recall that
intra-cluster occlusion is subsumed into the visible projected area estimates of
Chapter 4.)

1. The probability of a ray hitting a surface is proportional to its visible projected area in the direction of the
ray [Gold87]. Thus a fractional visibility or albedo estimate for a cluster’s bounding box can be obtained
by taking the ratio of the bounding box’s projected area to that of the surface it contains.

f v
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The major disadvantage of this approach is that another parameter must be
set for the rendering process. Generally, the smaller epsilon is chosen to be, the
larger should be. It is desirable that the clusters used for visibility testing be
smaller than those used in the radiosity solution.

This approach can lead to considerable speed and memory savings for
large models. See Section 7.4 for an example.

6.3.4. Transport Calculation and Refinement

In face cluster radiosity we must handle a number of different types of light trans-
fer; radiosity exchange between face clusters, standard planar elements, and vol-
ume clusters. This can lead to problems in choosing an error metric that is
consistent for all transfers. To handle these in a common framework we use sam-
pling across the receiver to estimate the error in the transfer at the same time as
we estimate the transfer itself. We use the norm to measure error, i.e., the BFA-
weighted refinement discussed in [Smit94].

The basic “link” data structure representing radiosity transport between
two elements is shown in Listing 7. The pseudo code shown in Listing 8 illus-
trates how the error and the transport vector can be calculated for a link, given
a number of sample points over each element. For face clusters, the minimum and
maximum projected areas are calculated as described in Chapter 4. For an input
polygon or refinement thereof, the upper and lower bounds are both just the pro-
jected area of the polygon. For a volume cluster, the upper bound is established
by summing the upper bounds of all the root face clusters or polygons it contains,
and the lower bound is taken to be zero.

Given the transport error, we must also decide whether the corresponding
transport link should be refined or not by comparing it to a refinement epsilon.
For links that are partly occluded, the refinement epsilon is reduced to encourage
subdivision at shadow boundaries. (The refinement epsilon controls link subdivi-
sion; links with transport error greater than this are split.) Pseudo code for the
resulting refinement oracle is given in Listing 9.

The algorithm presented chooses which end of the transport link to subdi-
vide by comparing the total surface areas of the elements at either end. This has
the advantage of simplicity and robustness, but we can do better with a bit more
calculation. Listing 10 gives pseudo code corresponding to the approach outlined
in Section 4.4.3. Here, the fraction of the estimated error due to each element is
calculated, and the element contributing the most error is subdivided.

f v

L1

m

192



6.3.  Radiosity Implementation
6.3.5. Face Cluster Solution Elements

The data structure for a generic, non radiosity-specific face cluster was presented
in Section 6.2.2. For those clusters used in the radiosity solution, we must in addi-
tion store radiosities and other extra information. Because typically the number of
clusters used as radiosity elements is much smaller than the total number of clus-
ters, it makes sense to save time by storing some face cluster attributes trans-
formed into world space coordinates, rather than performing these
transformations on the fly. The radiosity element data structure is shown in
Listing 11.

The use of vector instead of scalar irradiance means that, compared to the
storage required for a face in standard hierarchical radiosity, we store 9 real num-
bers per hierarchical element instead of 3, and 3 reals per link instead of 1.
Although the face cluster hierarchical elements are more expensive than standard
Haar elements, they are in general more lightweight than volume cluster ele-
ments, which require 8 child pointers in our implementation, and much more
lightweight than storing a general radiance distribution.

6.3.6. Irradiance Vector Interpolation

One of the great advantages that face clusters have over volume clusters is that
they are intrinsically surface-based. This means that it is much easier to interpo-
late irradiance values across the cluster. In volume-based clusters, there is no

struct VecLink
{

Element from, to; // can be patches, face or volume
// clusters

Vector m; // transport vector

Float error; //  from § 4.4.2

Float visibility; // average visibility between
// the two elements

}

Listing 7: The vector radiosity transport data structure.

m
GD S←〈 〉
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Chapter 6.  Implementation Details
VecLink::CalcTransport()
{

m = 0;
factor.InitBounds(-infinity, infinity);

// find samples over the upper face of each cluster’s
// bounding box
p1 = from.CreateSamples(numSamples);
p2 = to.CreateSamples(numSamples);

for (i = 0; i < numSamples; i++)
{

r = p1[i] - p2[i];

rLen = len(r);
if (rLen > 0.0)
{

r /= rLen;
m2Len = pi * sqr(rLen) + from.area;

l1 = from.MinProjArea(-r);
l2 = to.MinProjArea(r);
factor.UpdateBounds(l1 * l2 / m2Len);

u1 = from.MaxProjArea(-r);
u2 = to.MaxProjArea(r);
factor.UpdateBounds(u1 * u2 / m2Len);

m += 0.5 * (l1 + u1) * r / m2Len;
}

}

m *= visibility / numSamples;
error = factor.Range();

linkViable = (len(m) > 0.0 || error > 0.0);
}

Listing 8: Calculating link transport and error. We must calculate an es-
timate of the transport vector , and the error in the transferred power.
Only if both are zero should we ignore this link for the purposes of fur-
ther refinement (linkViable ).

m
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6.3.  Radiosity Implementation
notion of a largely co-planar, contiguous surface, and interpolation leads to prob-
lems with visibility, and requires deciding which reference planes to use for sam-
pling irradiance. (Greger and Shirley’s “irradiance volume” approach is one
solution to this, albeit an expensive one [Greg98].)

A useful strategy in dealing with inter-cluster irradiance discontinuities is
as follows:

• On the final solution pass, resample the point irradiance at the corners of
each face cluster, rather than once over the entire cluster.

• During the push-to-leaves phase, interpolate the irradiance vectors for the
cluster a leaf polygon falls within in order to find the irradiance at its verti-
ces.

RefChoice VecLink::RefineOracle()
{

w = abs(1.0 - 2 * visibility) * (1.0 - visEps) + visEps;

// compare error in power (radiosity * error) to epsilon

if (error * from.B < w * )

return(SubdivideNone);

if (to == from)
return(SubdivideBoth);

if (to.area > from.area)
if (to.area < minRefinementArea)

return(SubdivideNone);
else

return(SubdivideTo);
else

if (from.area < minRefinementArea)
return(SubdivideNone);

else
return(SubdivideFrom);

}

Listing 9: RefineOracle: deciding how to refine cluster links given the
transport error and average visibility.

ε
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Chapter 6.  Implementation Details
RefChoice VecLink::FindClusterToSubdivide()
{

pa1.InitBounds(-infinity, infinity);
pa2.InitBounds(-infinity, infinity);
p1 = from.CreateSamples(numSamples);
p2 = to.CreateSamples(numSamples);

r = normalised(from.centre - to.centre);
s1 = from.MaxProjArea(-r);
s2 = to.MaxProjArea(r);

for (i = 0; i < numSamples; i++)
{

r = to.centre - p1[i];
rLen = len(r);
if (rLen > 0.0)
{

r *= s2 / (rLen * (pi * sqr(rLen) + to.area));

pa1.UpdateBounds(from.MinProjArea(r));
pa2.UpdateBounds(from.MaxProjArea(r));

}

r = from.centre - p2[i];
rLen = len(r);
if (rLen > 0.0)
{

r *= s1 / (rLen * (pi * sqr(rLen) + from.area));

pa1.UpdateBounds(to.MinProjArea(r));
pa2.UpdateBounds(to.MaxProjArea(r));

}
}

if (pa1.Range() < pa2.Range())
return(SubdivideTo);

else
return(SubdivideFrom);

}

Listing 10: Choosing which cluster to subdivide by estimating the error
contributed by each to the transport.
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6.3.  Radiosity Implementation
This process is illustrated by Figure 83, and the dramatic results it can have in
some situations are shown in Figure 84.

We can use the midpoint of each of the four edges of the cluster’s bounding
box that are parallel to the sum area normal to sample vector irradiance. Unfortu-
nately, this is not necessarily the best place to sample visibility. If clusters lie on a
concave surface, and their bounding boxes overlap, it is possible for a sample
point to lie beneath the adjacent cluster. This problem can be largely overcome by
insetting the sample points from the edge of the bounding box by a small amount.
However, this leads to a further problem: interpolation overshoot. When we use
our irradiance vector samples to reconstruct the vector irradiance at a point on the
cluster, we may have to extrapolate if such a point lies outside the samples, which
is a possibility now that we have inset them from the edges of the cluster. If the
nearest sample is small in magnitude, or zero, this can lead to negative irradi-
ances.

struct RadFaceCluster : Element
{

Int fci; // ID of corresponding face cluster
ModelInfo* info; // associated model’s information

// copies of face cluster items in world-space coordinates

Vector areaNormal; // sum area normal
Float sideArea[6]; // for VPA upper bound
Float totArea; // total surface area
Float maxVisArea; // max externally visible area

Element *child[2]; // solution child elements
Colour B; // cluster radiosity
IrradVec R; // vector irradiance: § 3.4.2

};

Listing 11: A radiosity face cluster solution element. The ModelInfo
structure contains auxiliary information about the model containing this
element, such as a pointer to its cluster data structures (see Listing 3 ),
and its position and orientation in the scene. Thus a single model can be
instantiated at multiple points in the scene. An IrradVec contains a
vector for each of the colour channels represented.
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Chapter 6.  Implementation Details
A simple way to overcome this is to only inset the visibility samples, and
treat them as if they were collocated with the irradiance samples at the edge of the
cluster. This leads to small errors in visibility interpolation, but avoids overshoot.

6.3.7. Post-solution Refinement

It is often the case that some post-solution refinement is carried out after the radi-
osity solver has finished. This can range from Gouraud-shading the mesh to an
image space “final gather” (Section 2.5.3) to resampling the visibility more accu-
rately [Gibs95]. The motivation in all cases is that the eye is more sensitive to
shadow and shading discontinuities than we can account for with linear radios-
ity-centred metrics, and thus it makes sense to refine such features in the solution
before display. While an image-space final gather has its place, it imposes an
expensive cost for each viewpoint generated. Instead, I have adapted some of

Figure 83: Irradiance vector interpolation. The irradiance vector at any
surface point within the cluster is interpolated from samples at the cor-
ners of the cluster.

E0
E1

E2
E3

Lerp(Ei)
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6.3.  Radiosity Implementation
Gibson’s ideas on post-solution refinement for face cluster radiosity. Whereas
Gibson re-evaluates visibility at the input polygon level, for the type of scenes
considered in this thesis, this becomes prohibitively expensive.

There are a number of alternative post-processing solutions that can be
applied.

• The minimal approach: we use the irradiance vector at each leaf cluster to
colour all of its constituent faces. This can work well if visibility does not
vary much, and surfaces are rough enough that vector irradiance discontinu-
ities between clusters are masked.

• The irradiance-interpolation approach. We re-evaluate the vector irradiance
at all corners of each leaf cluster, and use vector interpolation to colour its
constituent faces, as above. This requires reevaluating all transport links at

Figure 84: Vector interpolation. On the left, using a constant irradiance
vector across each cluster leads to a blocky effect, reminiscent of the
Haar basis. On the right, interpolating the irradiance vector across each
cluster leads to a smoother result. The level of refinement for both pic-
tures is the same.
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Chapter 6.  Implementation Details
the leaves, which can be expensive. A link pointing to a node relatively high
up in the hierarchy must be re-evaluated at each leaf element it contains.
Still, this is a reasonably robust approach.

• The irradiance-interpolation-everywhere approach. We perform vector irra-
diance interpolation at all face cluster nodes throughout the hierarchy. Irra-
diance vector samples at any given node are calculated by interpolating the
parent’s samples, and adding in resampled vector irradiance for the set of
links pointing to the node, similar to the push phase of the familiar push/
pull algorithm. This is less robust, but much faster.

• Finally, we can optionally subdivide all solution leaf elements a further
levels before doing our final visibility-resampling pass. This achieves some
of the benefits of Gibson’s resampling-at-vertices approach, in that shadow
resolution is markedly improved, without the cost of descending all the way
to the input polygons.

Typically I use the first or third approach. In my experience the vector irradiance
interpolation post-process typically takes 50% of the solution time, when it is per-
formed throughout the hierarchy rather than just at the leaves. The extra solution
quality makes this cost is almost always worth it.

m
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C h a p t e r  7
Results
I have compared face cluster radiosity to my own implementations of progressive
radiosity, and hierarchical radiosity with volume clustering, all of which are han-
dled by a program I call “Radiator”. My implementation of volume clustering fol-
lows those of Bekaert and Christensen [Chri95, Beka]. I also compared my results
to Greg Ward’s “Radiance” package [Ward94, Warda], a ray-tracing-based ren-
derer which uses diffuse sample caching to perform radiosity calculations
quickly. It is the most sophisticated of the various monte carlo-based sample-cach-
ing renderers, with respect to diffuse illumination. Finally, to validate my own
implementation of hierarchical radiosity, I also used “RenderPark” for some
experiments [Beka]. RenderPark is a freely available global-illumination renderer
that, amongst other things, performs volume-clustering radiosity with the M2
wavelet basis.

Both the radiosity packages were set to use three gather iterations for hier-
archical radiosity, and Radiance was likewise set to calculate to three diffuse
bounces of light. The approximate visibility strategy discussed in Section 6.3.3
was not used, both to provide a fairer comparison to the other methods and so it
would not obscure the effects of using face clusters as finite elements. (See, how-
ever, Section 7.4.) Other settings used for the various renderers, along with the
steps necessary to produce consistent output amongst them, are outlined in
Appendix B.
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7.1. Simple Reflectance Tests

I carried out a number of experiments using variations of a simple scene contain-
ing three test patches; see Figure 851. This was done to test that small-scale inter-
reflection was being handled consistently, and as a validation test amongst the
three renderers. We would obviously like to ensure that face-cluster radiosity pro-
duces the same results as other global illumination methods.

7.1.1. Flat Test Patches

We start by using a single, flat quadrilateral for the test patch. The main purpose
of this test is to show that all three renderers produce consistent results, and that
the irradiance vector-based face cluster method produces the same results as ordi-
nary, scalar radiosity. The results are shown in Figure 86. As we can see, all
images look nearly identical. The Radiance picture suffers from noise artifacts,

1. All results were collected on a Dell Precision Workstation 610 with a 450MHz PIII processor and 256MB of
main memory, running RedHat Linux 6.1.

Figure 85: The reflectance test scene. Three patches corresponding to the
primary colours reflect light from a long horizontal overhead luminaire
onto a grey rear wall.
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7.1.  Simple Reflectance Tests
giving the rear wall a dappled look, especially near where the plane of the test
patches intersects the rear wall. However, it has high-quality shadows.The two
Radiator methods produce good strong diffuse reflections, although the shadows
cast by the patch are a little softer than the Radiance solution. The RenderPark
picture is probably the cleanest of the three, its M2 basis being well suited to this
scene. We can conclude that all methods produce consistent results for this simple
test.

Figure 86: The flat patch scene. RenderPark does the best in terms of
quality and speed. The face cluster method takes twice as long as the
volume clustering methods due to the extra overhead of the irradiance
vector. Radiance does the worst in terms of time and quality.

(c)

Radiance (172s)RenderPark (4s)

Radiator FCR (10s)Radiator VC (5s)
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Chapter 7.  Results
Radiance takes by far the longest of the methods, but this is partly because
it has to ray-trace the final image, and it has the advantage that, as we shall see, its
rendering time doesn’t rise much with added scene complexity. Face-cluster radi-
osity takes twice as long as the two volume-clustering methods, because of the
extra overhead of using irradiance vectors.

7.1.2. Bumpy Test Patches

The second test exchanged the flat patches for displacement-mapped sawtooth
surfaces; these are the three-dimensional equivalent of the surfaces in Figure 39;
an example is shown in Figure 87. Each bumpy surface contains 8,000 polygons.
For diffuse light transfer, these patches are practically equivalent to the previous
flat patches; solving the radiosity problem for this scene should ideally be no
more complicated than the flat-patch scene. The results are shown in Figure 88.

The most interesting result here is that the two volume clustering methods
are very slow on this seemingly innocuous scene. As we shall see in the next test,
their poor times are not due to the polygon count. The reason is the geometry of
the bumpy patch. Because the volume clustering methods use the total projected

Figure 87: The sawtooth surface used in the “bumpy” test scene.
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7.1.  Simple Reflectance Tests
area (NUPA) in a particular direction to estimate radiosity transfer, rather than the
total visible projected area (VPA), they can heavily overestimate the transfer paral-
lel to the patch. (In effect they count each bump in a cluster as contributing energy
to adjacent clusters, rather than just the bumps at either end.)

This results in over subdivision of the patch in an attempt to find the
amount of radiosity it reflects to itself, and the consequent poor rendering time
performance. On the other hand, the bounded visible projected area estimates
introduced in Section 4.3 prevents face cluster radiosity from suffering from this

Figure 88: The bumpy patch scene. The volume clustering methods are
very slow on this scene. Radiance is fast, but the rear-wall reflection is
somewhat splotchy. Face cluster radiosity is even faster.

Radiance (284s)RenderPark (4823s)

Radiator FCR (30s)Radiator VC (1710s)
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Chapter 7.  Results
kind of problem; they correctly estimate the side area of the bumpy patch clusters,
requiring fewer interreflection links.

For these images, each program was run such that approximately equal
quality resulted. If we had normalised on speed instead, HRVC and Radiance
would have looked much worse.

We conclude from this test that the higher quality approximations being
made by the face cluster radiosity algorithm permit it to represent light transport
using a shallower tree than HRVC, saving significant time and memory.

7.1.3. Whale Test Patches

As a final stress test, the medium-resolution displacement-mapped patches were
replaced with high-resolution whale models, each containing 100,000 polygons.
The whales provide more realistic objects, being very much the kind of model
used in a high quality scene, while the test setup still allows us to check that col-
our bleeding is still occurring properly, and for consistent results between render-
ers. Figure 89 shows the results for both a simplified, 1,000 polygon of the original
model, and the full, detailed model. Figure 90 shows a close-up of the whales of
the face cluster radiosity solution.

While the simulation times for face cluster radiosity and the two hierarchi-
cal radiosity with volume clustering methods are similar for the simplified, low-
detail whales, the times diverge dramatically for the more complex scene, even
though both were run with the same refinement epsilon as for the simpler scene,
and both produce similar results. Face cluster radiosity takes hardly any more
time at all to deal with the complex model, while RenderPark in particular suffers
from a twenty times increase in solution time. (Most of the increase in the render-
ing time for face cluster radiosity can be attributed to the greater expense of visi-
bility queries for such a large scene.

Radiance does well with the full resolution whales compared both to the
simplified whale scene and the previous bumpy-patch scene; its rendering time
increases by about half. Its under-fin shadows are the best of the methods,
although the softer shadows start to get a little noisy. The linear basis functions of
RenderPark have some problems with the shadows in this scene; inter-patch dis-
continuities are obvious in several places.

The statistics for the renderers are shown below in Table 10, including the
preprocessing time for the Radiance and FCR methods. (With Radiance you must
build an on-disk octree of the scene before running the actual renderer, using the
program oconv.) Interestingly, this preprocessing time is roughly the same for both
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7.1.  Simple Reflectance Tests
Figure 89: The test patch whales. These magnificent creatures of the
deep gracefully reflect light onto both the rear wall and the floor. Left:
Results using a simplified 1,000 polygon whale model. Right: Results for
the full scene; each whale contains 100,000 polygons.

Radiance (248s) Radiance (378s)

RenderPark (125s)

FCR (113s)

RenderPark (2702s)

FCR (127s)
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Chapter 7.  Results
methods; though the face-clustering time is shown as one third of the octree-
building time, this is because the whale’s cluster hierarchy is reused across the
three instances of the whale in the scene.

7.2. The Museum Scene

For a more general test of renderer performance, I designed an indoor scene more
typical of those seen in the radiosity literature. The scene contains a number of
high resolution scanned models, a polygonized implicit surface (the podium),
and a displacement-mapped surface (the floor). These models range in complex-

Figure 90: A whale close-up from the FCR solution.

Simple whale Complex whale

Renderer Rendering Preproc. Rendering Preproc.

Radiator Vol. Clustering 111s 953s
RenderPark 125s 2702s
Radiance 248s 1.5s 378s 76s
Face Cluster Radiosity 113s 0.2s 127s 25s

Table 10: Rendering times for the Test Whale scene.
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7.3.  Empirical Complexity
ity from 4,140 polygons to 100,000 polygons. For the lighting design, there are
three overhead spotlights illuminating in turn, the Isis statue, the Buddha statue,
and the table. The Venus head is illuminated by a floor-mounted red spotlight.

The scene is available in the MGF format [Wardb] in a number of different
resolutions from the web page http://www.cs.cmu.edu/~ajw/thesis/museum-
scene/.

7.3. Empirical Complexity

Using the quadric-based surface simplification method [Garl97], I applied all ren-
derers to versions of the museum scene with varying polygon counts, to demon-
strate the effect of using ever more detailed models on these algorithms1. Because
the Radiator algorithms share the same code base, we can be reasonably sure that
any differences in results are not due to any variance in code optimization or
approaches to, for example, visibility testing or geometrical representation. I also
performed the same tests using Radiance and Renderpark, to verify my results
against well-known external code bases.

While previous experiments have investigated the effect of increasing the
lighting or geometric complexity of a scene on radiosity algorithms [Will97b], this
experiment shows the effect of increasing model complexity in a scene with fixed
geometric layout. While exact error comparisons between the solutions are not
available due to the difficulty of generating a reference solution, I took care to use
similar parameter settings for all three methods. The most complex version of the
scene in this experiment was generated by simplifying all large models to 100,000
polygons, and creating multiresolution models from the results. Ten “complexi-
ties” of the scene were then generated by simplifying each model to have pol-
ygons, where was the number of polygons in the highest resolution of the
model, and scene had . This produced ten scenes with polygon counts
ranging from 7,400 polygons to 546,000 polygons. Table 11 shows the time it took
to generate the associated face cluster hierarchies for the highest complexity level,
and the size of each file.

Figure 91 shows the results of running the two volume clustering methods
on this scene. Interestingly, they both have very poor, super-linear performance in
time; this is much worse than the performance we would hope to see. This
occurs for similar reasons as their poor performance in the “bumpy” test patch
scene; the flat but bumpy stone floor in the original scene leads to over refinement

1. All results were collected on a Dell Precision Workstation 610 with a 450MHz PIII processor and 512MB of
main memory, running RedHat Linux 6.1.
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Chapter 7.  Results
due to overestimates of the side areas of floor clusters, especially with the red
spot-light spilling directly onto it. Figure 92 shows images of the resulting scenes.

To give in some senses a fairer comparison of these methods with face clus-
ter radiosity and Radiance, I reran them on a version of the scene without the
detailed stone floor. It was instead replaced with a flat mesh, having the same
number of polygons as the original floor in each scene. This gave performance
results much closer to those expected for hierarchical radiosity with volume clus-
tering, but it should be noted that in the following results both face cluster radios-
ity and Radiance are solving a more difficult scene.

To give an idea of the image quality produced by the various methods,
Figure 93 and Figure 94 show images for the lowest and highest resolution scenes
respectively.

Figure 95 shows a graph of solution time for Radiance, volume clustering,
and face clustering. (RenderPark was omitted because its solution times were so
much larger; on the order of hours.) Notably, the time cost of the face cluster radi-
osity algorithm stays approximately constant, while the other methods have costs
that are linear (volume clustering) and sub-linear (Radiance) in the number of
input polygons. As suggested in Figure 96, this is because after a certain point,
fine levels of detail of the face cluster hierarchy are never accessed, in spite of the
increasing polygon count. .

The most important conclusions we can draw from this test are

• unlike previous finite-element methods, face cluster radiosity is sublinear in
the number of input polygons;

Model Polygons Clustering Time

Buddha 100,000 25.3s
Isis 100,000 25.5s
Dragon 100,000 25s
Venus 100,000 25s
Pedestal (under Venus) 24,000 5.7s
Candlestick x 2 4,150 1s
Floor 100,000 18s
Picture x 2 7,400 1.63s
Total 547,100 127.13

Table 11: Face Cluster Hierarchy Generation
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• beyond a certain point (200,000 polygons in this case) its solution time is
independent of the number of input polygons;

• volume clustering methods can do poorly on flat but bumpy surfaces, due to
over-refinement;

• Radiance is also sublinear in the number of input polygons, although it does
not level off so quickly, and has a higher constant than face cluster radiosity.

Figure 91: Volume clustering on the museum scene. The bad perform-
ance of volume clustering methods on the stone floor is illustrated by the
much better performance of the methods when the floor is replaced by
a single, flat polygon. In general, RenderPark takes much longer to
render the scene than Radiator’s Haar-based volume clustering, even
though its results are not as good. (See Figure 92.)
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Chapter 7.  Results
Figure 92: Images for the volume clustering methods, medium scene
complexity (140,000 polygons). Rendering times are drastically reduced
by replacing the detailed stone floor (top) with a flat one (bottom).

Note that overall Radiator gives better results than RenderPark
for this scene. It is possible to get higher quality output from Render-
Park, but doing would raise the already large rendering time.

RenderPark, M2 basis (5500s)Radiator, Haar (760s)

RenderPark, M2 basis (3042s)Radiator, Haar (207s)
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7.3.  Empirical Complexity
Figure 93: Images for the lowest scene complexity level for the four
methods. This scene contains 7,400 polygons.

Radiator, face clustering

RenderParkRadiator, volume clustering

Radiance
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Figure 94: Images for the highest scene complexity level. This scene con-
tains 546,000 polygons. Face clustering and Radiance both produce the
best results.

Radiator, face clustering

RenderPark (medium)Radiator, volume clustering

Radiance
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7.3.  Empirical Complexity
Figure 95: Rendering times for Radiance, volume clustering, and face
clustering. While Radiance is initially expensive, its sub-linear perform-
ance means it can handle large scenes as well as smaller ones. Volume
clustering is rendering a simpler scene than the other two methods, be-
cause of its quadratic behaviour with a non-flat floor. Its performance is
linear, and thus eventually it will be more expensive than radiance. Face
clustering, on the other hand, has close to the ideal flat performance after
200,000 polygons, and is much faster than the other two methods. It pro-
duces better results than volume clustering, and comparable results to
Radiance.
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Chapter 7.  Results
Figure 96: Rendering time for face cluster radiosity. Top: The rendering
time increases until around 200,000 polygons, and then levels out. Bot-
tom: initially Haar elements predominate in the final solution. These are
gradually replaced by face clusters until a steady state is reached around
200,000 polygons.
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7.3.  Empirical Complexity
Figure 97: Memory results. All methods demonstrate sub-linear memo-
ry complexity. The volume clustering methods and radiance have very
similar memory consumption. Bottom: Much of the memory use in face
cluster radiosity is attributable to the data-structures necessary for oc-
clusion testing via ray-tracing
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7.4. A Highly Complex Museum Scene

As a final stress test of the radiosity, I ran face cluster radiosity on the museum
with the full resolution version of each model. The full scene contains over 3.3
million polygons. The resulting illuminated mesh is shown in Figure 98, and
some statistics for the corresponding radiosity run given in Table 12.

For this scene, the approximate visibility strategy outlined in Section 6.3.3
was used, primarily as a memory-saving device. Without its use, the ray-tracing
data structures alone took up some 330 MB of memory. By using the face cluster
hierarchy to provide approximate visibility, this was reduced to under 40 MB1.

In some senses this is an unrealistic scene; the models it contains are far
more detailed than needed for most viewpoints, except for extreme close-ups.
However, it does illustrate the freedom face cluster radiosity gives us with respect
to model size. No other finite-element radiosity method is capable of rendering
this scene without requiring an unrealistically large amount of CPU time and
especially memory. Previously, only parallelised radiosity methods have been
able to deal with scenes this large.

The extra detail in this scene can be important. Figure 99 shows two close-
ups of the Buddha statue in the scene—one from the complexity scene discussed
in the last section, and one from the full-size scene. The full-size statue clearly
shows extra detail over the simplified one, which looks like a smoothed version of
the original. In some cases, and for some camera angles, this detail can be impor-
tant.

Figure 100 shows a close-up of the Dragon model in the full-size scene.
This picture is useful because it illustrates some of the limitations in the method;
the model is small enough that its lighting is relatively coarse compared to the
larger models. In particular, there are obvious discontinuities at shadow bounda-
ries, most particularly on the hump of the dragon. The worst artifact is the outer
claw on the hind leg, where the cluster has been incorrectly treated as entirely in
shadow. In general, incorrect shadow resolution is most often responsible for any
artifacts in output from the face cluster radiosity algorithm.

These artifacts can be eliminated by lowering the refinement epsilon to a
suitable level, at the expense of increased rendering time. However, this will also
increase the accuracy of all other parts of the solution scene, even if this accuracy
is unnecessary—this is a limitation of having one global epsilon value controlling
the accuracy throughout the scene. For a particular animation containing both
longshots and extreme close-ups, using the camera path to set epsilon differently

1. The complexity level used was 0.1.
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7.3.  Empirical Complexity
Figure 98: The highly complex museum scene. This scene contains 3.3
million polygons. The solution took 216 seconds. A final pass with vec-
tor irradiance interpolation took a further 105 seconds. (See Table 12.)
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in different parts of the scene, or the application of importance-based radiosity
concepts [Smit92], may help reduce solution times significantly.

The results shown here use a final pass in which the irradiance vector to
each cluster is resampled at four points, and then interpolated between those
points (Section 6.3.6). While this process typically adds 50% to the total rendering
time, it can be worthwhile where illumination is changing rapidly, especially on a

After Time Polygons
Face
Clusters

Transport
links Memory

Initial linking 0 s 142 92 1 32 MB
Iteration 1 120 s 11658 8478 74510 39.2 MB
Solution 216 s 11,670 8,666 120,345 41 MB
Mesh Colouring,
including VRI

321 s 11,670 8,666 120,345 41 MB

Table 12: Statistics for the big scene. The memory use includes ray-tracing data
structures (a constant 32MB) and radiosity data structures only, ignoring

geometry overhead. There were 33 volume clusters in this scene.

Figure 99: Close-ups of the Buddha for a 100,000 polygon model (left),
and the full 1,000,000 polygon model (right).
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smooth surface. Figure 101 shows the effects of this process on the front of the Isis
model, where it makes a noticeable improvement.

The polygon counts and face clustering times for each of these models are
shown in Table 13. The preprocess of building face cluster hierarchies for each
model in the Museum scene took a total of 436 seconds, and no model took more
than 150MB of memory to process (and that only for the million-polygon model.)
As pointed out previously, this cost can be heavily amortized; the same models
can be reused over multiple scenes and radiosity simulations.

Finally, Figure 102 illustrates the difference global illumination makes to
this scene. The floor from the full museum scene radiosity solution is shown,
together with another solution with all objects removed except for the table and
the lights, for comparison purposes. The latter essentially shows the floor with
direct illumination only. Notice how in the full solution the reflected light from
the walls “fills in” the unlit areas of the floor, and under the table. Also, there is a
yellowish area in the upper left of the full solution where light spills off the bud-
dha statue onto the floor.

Figure 100: A close-up of the Dragon model from the museum scene.
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Figure 101: The effect of vector irradiance interpolation on the museum
scene. Shown is a close-up of the Isis statue both with (left) and without
(right) interpolation.

Model Polygons
Clustering
Time Disk Use

Disk Use
(Truncated)

Buddha 1,085,634 148s 158 MB 30 MB
Isis 375,736 47s 55 MB 11 MB
Dragon 869,928 109s 127 MB 24 MB
Venus 268,714 34s 39 MB 8.2 MB
Pedestal 24,000 5.7s 3.4 MB 744 kB
Candlestick x 2 4,150 1s 621 kB 132 kB
Floor 717,602 87s 104 MB 22 MB
Picture x 2 7,400 1.6s 1.1 MB 246 kB
Total 3,357,310 436s 488.2 MB 96.7 MB

Table 13: Face cluster generation for the full scene
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Figure 102: The effects of including diffuse global illumination. Shown
are the stone floor from the museum scene with direct lighting only, top,
and the complete radiosity solution for the floor, bottom.
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C h a p t e r  8
Conclusions
The simulation of global illumination is an important tool in generating realistic
images. It is challenging because the illumination in an environment is interde-
pendent; the light reflected by any object in the scene potentially depends on the
light reflected by all other objects in the scene.

Finite element-based radiosity methods solve for the global illumination of
a scene containing diffuse (matte-like) surfaces. They are useful because their out-
put is view-independent illuminated geometry, which can be re-rendered from
any viewpoint, without repeating the global illumination calculations.

8.1. Contributions

In this dissertation, I have described a method for performing radiosity calcula-
tions on scenes containing large, detailed models. I call this method face cluster
radiosity. It can result in large performance gains when model detail is greater than
the natural element size needed to solve for scene radiosities. Because it uses sur-
face-based clusters, it avoids a number of potential artifacts possible with the pre-
viously-used volume-based clustering algorithm. In particular, irradiance can be
interpolated across the cluster in a natural way. Thus solution quality is also
improved.

My algorithm is capable of performing the most time-consuming part of
the radiosity simulation, solving for element radiosities, in a time sub-linear in the
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number of input polygons. This compares favourably to the complexity of
the previous best algorithm, hierarchical radiosity with volume clustering. In par-
ticular, after a certain point, arbitrary tessellation of the input scene does not affect
the solution time. That is, in the limit, the complexity of the solution phase of the
new algorithm is constant time.

The algorithm does rely on a preprocessing phase which is , but
this cost is a per-model one that can be amortized over a number of different
model instantiations and scenes. The complexity of the post processing phase
during which mesh vertices are actually coloured must of course be , but the
constant is quite small.

My algorithm has three essential components.

• The use of a surface-oriented face cluster hierarchy. These hierarchies can
be pre-calculated on a per-model basis. The hierarchies can be built with a
variant of Garland & Heckbert’s quadric-based simplification algorithm, one
that works on the geometric dual of the model in question. This has the
advantage that it optimizes for the production of flat clusters.

• Radiosity calculations based on vector irradiance, rather than scalar irradi-
ance. This allows us to avoid the push-to-leaves phase normally associated
with radiosity clusters, while still modelling the effect of the variation in sur-
face normal during the final model-colouring stage. This saves considerably
on memory use and time, as unnecessary model detail need never be paged
in.

• Bounds on the projected area of a cluster of connected polygonal faces. I
have established constant-time methods for finding relatively tight upper
and lower bounds for the projected area of a face cluster. This is a crucial step
in accounting for the error introduced by the vector radiosity approximation,
and thus driving refinement of clusters to the point where this error is
acceptable.

Together, they make it possible to calculate radiosity solutions for scenes that
were not tractable with previous methods, on a modest-sized personal computer.
They also make radiosity on such scenes much faster than the best existing ray-
tracing approach, which uses diffuse-sample caching. It is possible, for example,
to compute a radiosity solution for a scene of three million polygons in four min-
utes on a 450 MHz Pentium processor with 160 MB of memory. The improve-
ments to the radiosity algorithm presented here will help make it more usable in
industry for applications such as architectural CAD, movie special effects, and

k klog

O k klog( )

O k( )
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video games, especially as the number of polygons used to represent model and
scene detail continues to climb.

Finally, I have also

• Modified Garland’s original face cluster creation algorithm to be robust in
the presence of flat mesh regions, produce more balanced hierarchies, and
run in essentially linear time. The new implementation, make-fch, can cluster
a million polygon model in under three minutes.

• Implemented the face cluster radiosity algorithm within the context of my
radiosity program Radiator. This program also handles most previous radios-
ity algorithms, and has a visual front-end for demonstration purposes.

Together these programs make up more than 80,000 lines of C++ code. The code
and associated documentation is freely available for research or production use
from the web site http://www.cs.cmu.edu/~ajw/thesis-code/.

8.2. Future Directions

There are a number of ways to extend the method presented in this dissertation.
The following avenues of research show particular promise.

Higher-order irradiance vector representations

The irradiance vector plays a prominent part in face cluster radiosity. However, it
is to vector radiosity what the Haar basis is to scalar radiosity; a constant quantity
averaged over the finite element in question. Thus there exists the opportunity to
exploit smoothness in the radiosity transport kernel by generalising vector irradi-
ance to tensor representations of various ranks. This could also make interpolat-
ing vector irradiance unnecessary, though experience with wavelet bases in the
scalar domain indicates this may be unlikely.

Glossy Illumination

Any work on radiosity methods is almost compelled to mention extensions to
handle specular or more realistically glossy reflection, although this is rarely car-
ried out. In our case, however, the work described in Chapter 4 holds some prom-
ise. In the face cluster radiosity algorithm, we are essentially modelling a
collection of small, connected diffuse surface elements with a single larger ele-
ment. If our lower and upper bounds could be generalised to surfaces with more
general radiance distributions, there exists the possibility that the same could be
227
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done with non-diffuse surface elements. The results could be invaluable in either
controlling a glossy global illumination algorithm, or determining “good” sam-
pling directions for a Monte Carlo-based algorithm.

Better Visibility Approximations

Currently fractional visibility is used during the radiosity simulation, and (when
interpolation is used) area-to-point visibility is interpolated for the final output
pass. This relatively coarse approach to sampling visibility could be usefully
refined by employing higher-order approximations.

Also, in this dissertation, visibility sampling has been carried out by using
a nested grid representation of the original scene. This can result in large amounts
of memory being used to store the grids. Although we can employ a form of
approximate visibility to reduce memory and time requirements, we must pick a
single approximation level, and this must be more complex than the radiosity
solution, to avoid self-shadowing problems. Thus the resolution of our visibility
queries is often much greater than strictly required, especially when sampling vis-
ibility over the larger finite elements in the scene.

An interesting alternative currently under investigation is to use the face
cluster hierarchy to enable multiresolution visibility queries. Queries would have
some notion of the region over which visibility was being sampled, and we would
only descend as far down the cluster hierarchy, which acts as a bounding box
hierarchy, as needed to properly cover this region. Moreover, the projected area of
a face cluster, which I have investigated heavily in the course of this thesis, is inti-
mately related to the probability of a ray hitting the surface within that cluster.

Previous algorithms proposed to speed up visibility sampling for radiosity
have used density grids to avoid ray-casting against the original scene geometry,
but such visibility estimates are isotropic. For instance, a long flat surface will take
on the width of the grid’s cell size. By taking advantage of the various projected
visible area estimates we have for face clusters, we can avoid this isotropy.

Handling disconnected topology

The algorithm presented in this dissertation performs best on connected surfaces.
It attempts to exploit the coherence such surfaces present. Groups of disconnected
surfaces are handled by using the volume clustering approach much used by pre-
vious hierarchical radiosity algorithms. More could be done to bridge the gap
between these two representations. When we have a number of disconnected sur-
faces which are similarly oriented, and do not overlap much, we could use the
same approach as for face clusters with little loss of accuracy. When we have a
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number of randomly oriented surfaces, with significant shadowing occurring, we
should fall back to a more volume-oriented approach, but it is possible we can
still produce constant-time projected-area bounds by using a sample interpolation
method similar to that presented in Chapter 4. Identifying these situations and
exploiting them is an avenue for further research.

Visual Masking of Bumpy Surfaces

While working with face cluster radiosity, I have observed that when a surface
contains many bumps and ridges, and consequently the scalar irradiance of the
surface is changing rapidly, errors in the radiosity field are much less noticeable. It
seems plausible that the visual masking techniques of Ferwerda et al. could be
used to add a “masking” weight to each cluster [Ferw97]. Clusters with small
weights could then be refined less than smoother clusters.

Illumination Maps

One of the most exciting possible further directions of this research is the adap-
tion of the algorithm to produce an irradiance vector map. The output of the solu-
tion algorithm, before the final post-processing stage, essentially partitions the
geometry into a set of regions, each with a number of (possibly interpolated) irra-
diance vectors representing the illumination of that region. We can refer to this set
of (disjoint) regions as the irradiance vector map.

This map could then be used to render illuminated geometry quickly and
efficiently, as the viewpoint changes, taking into account specular reflection. Ren-
dering each frame would only require evaluating the local illumination, and only
for a single direction. It has the great advantage that this re-rendering would be
independent of the number of light sources in the scene. This kind of vector-based
shading also lends itself well to some of the more recent graphics hardware
[Heid99, Kaut99].

This would not result in a complete global illumination solution, as specu-
lar reflections are limited to the final stage of any illumination path. Moreover,
approximating the incoming light as uni-directional may be unrealistic where
specular BRDFs are involved; a small number of the most significant transport
links may have to be used instead. However, such an approach may be able to
match the quality of the radiosity/ray-traced post-process algorithms commonly
in use for architectural global illumination solutions.
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Indirect output primitives

Currently, the focus of the algorithm has been the output of illuminated geome-
try: a (possibly refined) version of the input scene, together with vertex colours.
Interesting alternatives include the generation of shadow maps and environment
maps or virtual light sources. Commodity graphics hardware is starting to sup-
port these primitives, and at some point it will become reasonable to essentially
perform the final pass of the radiosity algorithm in hardware.
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A p p e n d i x A
Definitions
Symbol Meaning Units

Radiosity

Emittance

Irradiance

Radiant Energy

, Power, flux

Radiance: power incident on a unit sur-
face area per solid angle.
Radiant Intensity: watts per solid angle.
Most often used to deal with point
sources.

Radiance leaving surface point  in the
direction of point .

Radiance incident at surface point
from point .

Area-weighted normal:

Table 14: Physical Quantities

b Watt m
2⁄

e Watt m
2⁄

E Watt m
2⁄

Q Joule

P Φ Watt

L Watt m
2
sr⁄

I Watt sr⁄

L x y→( ) x

y

L x y←( ) x

y

S n Ad
S∫ m2
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Symbol Meaning

Maximum of x and 0

Upper bound on x

Lower bound on x

Average value of x:

The interval of x: .

Table 15: Mathematical definitions

x( )+

x

x

x[ ] x x+( ) 2⁄

x〈 〉 x x,[ ]
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A p p e n d i x B
Renderer Settings
B.1. Renderer Settings

One of the greatest difficulties in comparing the results from the three pieces of
rendering software used was ensuring consistent units between the three. My
own radiosity code is focused purely on the physical simulation of radiosity prop-
agation. Thus both input light sources and output are specified in terms of radios-
ity ( ).

To convert from radiometric quantities to photometric quantities, we must
generally convert from Watts to candela. The candela is defined as being 1/683 of
a Watt for the flux emitted in a certain direction by a line source at the wavelength
of 555nm. Generally, to convert a tristimulus colour from watts to candela, we
must multiply by the candela value corresponding to the reference white point
we’ve chosen for our colour system. For the colour system adopted by the MGF
standard, this is CIE illuminant E (which has a chromaticity of ( , ), and a
luminance value of 179.0  [Wysz82].

To convert from irradiance to radiance, we divide by ; this is the effective
solid angle a lambertian source radiates over.

Watt m2⁄

1 3⁄ 1 3⁄
Candela Watt⁄

π
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B.1.1. Radiance

Somewhat unsurprisingly, radiance does its calculations in terms of radiance
( ). Thus, when we convert our scene files to radiance format, we sim-
ply divide the light source emittances by .

To achieve good results for the simulation of diffuse interreflection by radi-
ance, I used the following options:

rpict ...
        -ps 1 -pt .04 -dp 2048 -ar 32 -ms 0.025
        -ds .1 -dj .65 -dt .05 -dc .75 -dr 3 -sj 1 -st .01
        -ab 2 -aa .15 -ad 256 -as 0 -av 0 0 0
        -lr 12 -lw .0005

The most pertinent settings are -ab a, which sets the maximum number of ambi-
ent bounces a performed, and -av r g b, which sets the “ambient” light factor for
surfaces after those a bounces. The rest of the settings follow the defaults pro-
duced by the “rad” program front-end to radiance with a quality setting of high.

Radiance outputs picture files with pixel values also in radiance. To pro-
duce a image comparable to the other two renderers, I used the following com-
mand line:

pfilt -1 -e 3.14159 $1:r.pic | ra_ppm -g 1 > $1:r.ppm

This converts the radiance values to irradiance, and avoids Radiance’s perceptual
algorithms (-1), and gamma correction (-g 1).

A modification to the Radiance code base is necessary to accommodate the
large size of the “test whale” and “museum” scenes; the constant MAXOBJBLK in
src/common/object.h must be increased to at least 10,000. I also modified the
code to track memory usage.

B.1.2. RenderPark

As input, renderpark takes scene files in the MGF format [Wardb]. This measures
the intensity of diffuse light sources in terms of luminosity ( ), the photo-
metric correspondent to radiosity. To produce such files from our internal scene
format, we must convert our RGB colours to the CIE (x,y,Y) colour space, and
multiply our emittances by .

Internally, RenderPark carries out its calculations in units of luminance.
When it creates its output meshes, it remaps the intensity of colours using the CIE

Watt m2sr⁄
π

lm m2⁄

179.0 π⁄
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definition of lightness, , which is proportional to the cube root of its luminance.
I modified the RenderPark code (color.c:RadianceToRGB) to skip this stage, and
instead map the luminance to emittance by multiplying by .

The command line arguments used for RenderPark were as follows:

        -radiance-method Galerkin
        -gr-no-lazy-linking
        -gr-clustering
        -gr-hierarchical
        -gr-no-importance
        -gr-no-ambient
        -gr-link-error-threshold 5e-5
        -iterations 3

B.1.3. Radiator

For both volume clustering and face cluster radiosity, the refinement epsilon was
set to , via the -ferr flag. Face cluster radiosity is selected via the -

fcr flag, and hierarchical radiosity with volume clustering with -hier . Running
radiator with no arguments gives a full list of options.

The complexity experiments did not use the approximate visibility method
discussed in Section 6.3.3, to avoid confusing the performance gains due to the
radiosity method with any gains made by the use of approximate visibility. Radi-
ator can be forced to use the approximate visibility method by adding the flag
-flrtComp , where .

L
*

π 179.0⁄

ε 3e 5–=

s s fv=
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