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ABSTRACT
As the Internet grows in size, it becomes crucial to understand how
the speeds of links in the network must improve in order to sustain
the pressure of new end-nodes being added each day. Although the
speeds of links in the core and at the edges roughly improve accord-
ing to Moore’s law, this improvement alone might not be enough.
Indeed, the structure of the Internet graph and routing in the net-
work might necessitate much faster improvements in the speeds of
key links in the network.

In this paper, using a combination of analysis and extensive sim-
ulations, we show that the worst congestion in the Internet in fact
scales poorly with the network size (n1+Ω(1), where n is the num-
ber of nodes), when shortest-path routing is used. We also show,
somewhat surprisingly, that policy-based routing does not exac-
erbate the maximum congestion when compared to shortest-path
routing.

Our results show that it is crucial to identify ways to alleviate this
congestion to avoid some links from being perpetually congested.
To this end, we show that the congestion scaling properties of the
Internet graph can be improved dramatically by introducing mod-
erate amounts of redundancy in the graph in terms of parallel edges
between pairs of adjacent nodes.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design

General Terms
Design, Performance

Keywords
power-law distribution, congestion, shortest path routing, policy
routing

1. INTRODUCTION
The Internet grows in size every day. As time progresses, more

end-hosts are added to the edge of the network. Correspondingly,
to accommodate these new end-hosts, ISPs add more routers and

.

links. History has shown that the addition of these links maintains
the power law properties of the Internet topology [9]. The addition
of new end-hosts places a greater load on the network as a whole.
Fortunately, the improvement of network technology, operates over
the same time period. We expect the network links at the edge
and core of the network to improve by a similar performance factor
as the growth of traffic over time, since they both typically follow
similar Moore’s Law-like technology trends.

Unfortunately, due to the topology of the network and behavior
of Internet routing, the increase in load may be different on differ-
ent links. As a result, it may be necessary for the speed of some
hot-spot links in the network to improve much more quickly than
others. If this is true, then these parts of the network are likely
to eventually become bottlenecks and the network has poor scal-
ing properties. In such a situation, we would either need to adjust
the routing behavior, remove the power law nature of the topology
or accept that end-to-end network performance of the network will
not improve as rapidly as individual links. If, on the other hand,
the worst congestion scales well with the network size then we can
expect the network to continue to operate as it does now.

In this paper, we use a combination of analysis and simulation to
address this issue of how the maximum congestion in the Internet
scales with the network size. In our analysis, we employ simple
combinatorial/probabilistic arguments to give bounds on the max-
imum congestion in a model of network evolution based on Pref-
erential Connectivity [7] and a simple model of traffic in which a
unit amount of flow between every pair of nodes is routed along
the shortest path between them. We complement these analytical
results with a large set of detailed simulations for computing the
congestion on the links in the network, based both on real and on
synthetically generated AS-level topologies. Through our simula-
tions, we also investigate the impact of several key factors on the
worst congestion in the network. These include:

1. The routing algorithm employed by the nodes in the network:
BGP policy-driven routing (which we refer to as policy rout-
ing) vs. shortest-path routing,

2. Sophisticated models of communication between nodes,
modeling realistic traffic demands and factoring in the higher
popularity of a few nodes in the network over the others, and,

3. Alternate degree distributions, e.g., exponential distribution
and power law trees evolving from Preferential Connectivity.

The key contribution of our paper is to show that the maximum
congestion in the Internet scales poorly with the growing size of the
Internet graph. Specifically, the maximum congestion for shortest
path routing is at least as bad as n1+Ω(1), with the exponent de-
pending on the exponent of the power law degree distribution of



the graph1. Our simulations show that policy routing in the AS
graph results in roughly the same maximum congestion as shortest
path routing, but certainly not worse. When more realistic, non-
uniform traffic models are considered, the congestion scaling prop-
erties of power law graphs worsen substantially. We also show that
in terms of the maximum congestion, power law trees are consider-
ably worse than power law graphs. In contrast, graphs with expo-
nential degree distribution have very good congestion properties.

Another key contribution of our paper is the discussion of simple
guidelines that result in a dramatic improvement in the congestion
scaling properties of the Internet graph. We show that when parallel
links are added between adjacent nodes in the network according
to simple functions of their degrees (e.g., the minimum of the two
degrees), the maximum congestion in the resulting graph scales lin-
early.

The rest of the paper is structured as follows. We discuss related
work in Section 2. In Section 3, we formalize our analytical ap-
proach and discuss our simulation set-up. The analysis is presented
in Section 4. Section 5 presents the results from our simulations.
In Section 6, we discuss the implications of our results on network
design. Finally, in Section 7, we conclude the paper.

2. RELATED WORK
In the past, there have been several research efforts aimed at

studying the properties of large-scale, Internet-like graphs. Of
these, one class of studies has proposed various models of graph
evolution that result in a power law degree distribution. Notable
examples include the power law random graph model of Aiello et.
al. [3], the bicriteria optimization model of Fabrikant et. al. [8] and
the Preferential Connectivity model of Barabasi and Albert [7, 5].
Another class of studies in this category [9, 17, 19] is aimed at ana-
lyzing the properties of power law graphs. However, most of these
are based on inferences drawn from measurements of real data.
Other efforts [14, 20, 19] have used these inferences to construct
realistic generators for Internet-like graphs. Our theoretical analy-
sis is based on the Preferential Connectivity model of Barabasi and
Albert [7]. Our simulations use topologies generated synthetically
using Inet-3.0 [20].

The problem of characterizing congestion in graphs, and specif-
ically designing routing schemes that minimize congestion, has
been studied widely in approximation and online algorithms. The
worst congestion in a graph is inversely related to the maximum
concurrent flow that can be achieved in the graph while obeying
unit edge capacities. The latter is, in turn, related to a quantity
called the cut ratio of the graph. Aumann et. al. [6] characterize the
relationship between maximum concurrent flow and cut ratio2 and
Okamura et. al. [16] give bounds on the cut ratio for special graphs.
Algorithmic approaches to the problem (see [12, 13] for a survey)
use a multi-commodity flow relaxation of the problem to find a
fractional routing with good congestion properties. Although fairly
good approximation factors have been achieved for the problem,
most of these are not distributed, involve a lot of book-keeping, or
involve solving large linear programs, which makes them imprac-
tical from the point of view of routing on the Internet. Therefore,

1There is some disagreement about whether a power law correctly
models the degree distribution of the Internet graph. However, it
is widely agreed that the distribution is heavy-tailed. While our
main results (specifically, simulation results) focus on power law
distributions, we believe that they hold equally well for other such
heavy-tailed distributions (e.g. Weibull).
2The maximum concurrent flow that can be achieved in a graph is
always within a factor of O(log n) of the cut ratio, where n is the
number of nodes.

we choose the approach of analyzing the congestion achieved from
using widely implemented routing schemes such as shortest path or
BGP-policy based routing.

Perhaps the work that bears closest resemblance to ours is that of
Mihail et. al. [11]. Using arguments from max-flow min-cut the-
ory, their paper shows that graphs obeying power law degree distri-
bution have good expansion properties, in that they allow routing
with O(n log2 n) congestion, which is close to the optimal value
of O(n log n) achieved by regular expanders. In addition, based
on simulations run over Inet-generated topologies, the paper con-
cludes that the congestion in power law graphs scales almost as
O(n log2 n), even when shortest path routing is used. The paper
also shows that policy routing results in worse congestion.

Our work is different from [11] in several key aspects, a few of
which we identify below. First, the theoretical analysis in [11] does
not restrict the routing to shortest path and, in fact, assumes an op-
timal routing algorithm that minimizes congestion. We show that,
in fact when shortest path routing is employed, power law graphs
exhibit poor scaling properties in terms of congestion. The max-
imum congestion scales as n1+Ω(1). We confirm this via detailed
simulation experiments. In addition, our simulations also show that
policy routing does not worsen the maximum congestion in the net-
work contrary to the conclusion in [11]. The evaluations of policy
routing and shortest path routing in [11] only consider graphs with
a small number of nodes, approximately 10,000 nodes for policy
routing graphs (due to the dependence on real AS graphs) and only
23,000 for the shortest path routing graphs. Our simulations, on the
other hand, consider graphs of up to 50000 nodes. Finally, we also
consider the impact of different traffic workloads and deployments
of parallel links on the scaling properties of the network.

3. METHODOLOGY
We use combinatorial/probabilistic arguments over a simple

model of the network combined with extensive simulations to un-
derstand the congestion properties of the Internet graph. In what
follows, we first give a precise formulation of the problem, lay-
ing out the key questions we seek to address via analysis. We also
describe the set-up for the simulations we use to corroborate and
extend our analytical arguments.

3.1 Problem Statement
Let G = (V, E) be an unweighted graph, representing the Inter-

net AS-AS graph, with |V | = n. Let dv denote the total degree of
a vertex v in G. We are given three key aspects pertaining to the
graph G: the degree distribution of the graph, the routing algorithm
used by the nodes in the graph to communicate with each other and
the traffic demand matrix determining the amount of traffic between
pairs of nodes in the graphs. We give precise definitions of these
three aspects, in turn, below.

In our paper we will mostly be concerned with graphs having a
power law degree distribution, defined below.

DEFINITION 1. We say that an unweighted graph G has a
power law degree distribution with exponent α, if for all integers d,
the number of nodes v with dv ≥ d is proportional to d−α.

Similarly, graphs with exponential degree distribution are those
in which the number of nodes v with dv ≥ d is proportional to
e−βd, for all integers d. Henceforth, we will refer to such graphs
as power law graphs and exponential graphs respectively.

Let S denote a routing scheme on the graph with Su,v represent-
ing the path for routing traffic between nodes u and v. We consider
two different routing schemes in this paper:

1. Shortest Path Routing: In this scheme, the route between
nodes u and v is given by the shortest path between the two



nodes in the graph G. When there are multiple shortest paths,
we consider the maximum degree of nodes along the paths
and pick the one with the highest maximum degree. This tie-
breaking rule is reflective of the typical policies employed in
the Internet—higher degree nodes are typically much larger
and much more well-provisioned providers than lower de-
gree nodes and are in general used as the primary connection
by stub networks. While we report results only for the above
tie-breaking rule, our results also hold, qualitatively, for the
other tie-breaking schemes such as random choice and favor-
ing lower degree nodes3.

2. Policy Routing: In this scheme, traffic between nodes u

and v is routed according to BGP-policy. We classify edges
as peering edges or customer-provider edges (that is, one of
the ASes is a provider of the other). Typically, ASes in the
Internet only provide transit for traffic destined to their cus-
tomers, if any. This implies that no AS will carry traffic from
its peer to another of its peers or to its provider. Similarly,
no AS will carry traffic from one of its providers to one of
its peers or to its provider. These rules together give rise
to “valley-free” routing, in which each path contains a se-
quence of customer to provider edges, followed by at most
one peering edge, followed by provider to customer edges.
For a detailed description of the mechanism, the reader is
referred to [18].

A traffic vector τ is a vector containing
�
n
2 � non-negative terms,

with the term corresponding to (u, v) signifying the amount of
traffic between the nodes u and v. The congestion on an edge e

due to traffic vector τ and routing scheme S is given by the sum
of the total amount of traffic that uses the edge e: Cτ,S(e) =�

(u,v):e∈Su,v
τ (u, v).

We define the edge congestion due to traffic vector τ and routing
scheme S to be the maximum congestion on any edge in the graph:

EDGE-CONGESTIONτ,S(G) = max
e∈E

Cτ,S(e)

In this paper, we are interested in quantifying the congestion in a
graph with power law degree distribution, for shortest path and pol-
icy routing schemes, due to various different traffic vectors. Specif-
ically, we consider the following three traffic vectors:

1. Any-2-any: This corresponds to the all 1s traffic vector,
with a unit traffic between every pair of nodes.

2. Leaf-2-leaf: In order to define this model, we classify nodes
in the graph as stubs and carriers. Stubs are nodes that do
not have any customers. In other words, consider directing
all customer-provider edges in the graph from the customer
to the provider. Peering edges are considered to be bidirected
edges. Then, vertices with no incoming edges (correspond-
ing to ASes with no customers) are called stubs or leaves in
the graph. In this model, there is a unit of traffic between
every pair of stubs in the graph.

3. Clout: This model is motivated by the fact that “well-
placed” sources, that is, sources that have a high degree and
are connected to high degree neighbors, are likely to send
larger amounts of traffic than other sources. Accordingly, in
this case, τ(u,v) = f(du, cu), where u and v are stubs, cu

is the average degree of the neighbors of u and f is an in-
creasing function. As in the previous case, there is no traffic

3Please refer to [4] for details.

between nodes that are not stubs. In this paper, we only use
the function τ(u,v) = f(du, cu) = ducu for stubs u, v.

3.2 Simulation Set-up
Our simulations serve two purposes: (1) to corroborate our the-

oretical results, and, (2) to characterize the congestion in more re-
alistic network models than those considered in our analysis.

Our simulations are run on two different sets of graphs. The first
set of graphs contains maps of the Internet AS topology collected
at 6 month intervals between Nov. 1997 and April 2002, avail-
able at [2]. The number of nodes in any graph in this set is at most
13000, the maximum corresponding to the April 2002 set. The sec-
ond set of graphs contains synthetic power law graphs generated by
Inet-3.0 [20]. In this set, we generate graphs of sizes varying from
n = 4000 to 50000 nodes. In all our simulations, for any metric
of interest, for each n, we generate 5 slightly different graphs of n

nodes4 and report the average of the metric on the 5 graphs.
As pointed out in Section 3.1, in order to implement the leaf-2-

leaf and clout models of communication, we need to identify stubs
in the network (note that these might have a degree greater than
1). Additionally, in order to implement policy routing, we need
to classify edges as peering or non-peering edges. In order to do
so, for the real AS graphs, we employ the relationship inference
algorithms of Gao [10] to label the edges of the graphs as peering
or customer-provider edges. These algorithms use global BGP ta-
bles [1] to infer relationships between nodes. Then, we use these
relationships to identify stubs (as nodes that are not providers of
any other node). Henceforth, we shall refer to the real AS graphs as
accurately labeled real graphs (ALRs). Labeling edges and identi-
fying stubs in the synthetic graphs of Inet is more tricky since we
do not have the corresponding BGP information. We will refer to
synthetic graphs, labeled using the algorithms described below, as
heuristically labeled synthetic graphs (HLSs). We use different al-
gorithms for classifying nodes (this is key to implementing leaf-to-
leaf communication) and edges (this is key to implementing policy
routing in synthetic graphs). We discuss each in turn below.

Stub Identification
Here is how we identify stubs in synthetic graphs: For any edge
e = (v1, v2), we assign v1 to be the provider of v2 whenever
degree(v1) ≥ degree(v2). Notice that we do not explicitly iden-
tify peering edges (although edges between nodes of identical de-
gree will be bidirectional). We then identify stubs in graphs labeled
as above.

We test the accuracy of this stub-identification algorithm on real
AS graphs by comparing the labels produced by our algorithm to
the true labels of ALRs, and compute the fraction of false positives
and false negatives5 in these. The results (see Figure 1(a)) show
that our simple algorithm has very low error rate. Notice that the
inference algorithms of Gao [10] have some error intrinsically and
hence some of the labels on the ALRs might actually be inaccurate.

Edge Classification
Although for the purpose of classifying nodes, we simply consider
all edges in the graph to be customer-provider edges, this simple
scheme is not useful for the purposes of edge classification – it
results in a significant error on the maximum congestion in real
graphs employing policy routing. In order to improve the accuracy
of labeling edges, we resort to machine learning algorithms.
4By varying the random seed used by the Inet graph generator.
5False positives are nodes that are identified as stubs by the algo-
rithm, but are not stubs in the ALR. False negatives are stubs in the
ALR that are not identifies as stubs by the algorithm.
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Figure 1: Accuracy of heuristics: The graph on the left shows the accuracy of our simple stub identification algorithm. The graph
on the right shows the error in the maximum congestion due to our machine-learning based edge-classification algorithm.

Employing a good machine learning algorithm for the classifica-
tion proves to be a tough task, because there is a huge bias towards
customer-provider edges in the graphs (roughly 95% of the edges
are customer-provider edges). We use the 3-Nearest Neighbor [15]
algorithm for classifying edges as peering or non-peering: each
edge in the unlabeled graph is classified as a peering edge if among
the three edges most similar to it in the labeled graph, at least two
are peering edges. Similarity between edges is judged based on the
degrees of their respective end points and neighboring vertices. We
measure the accuracy of the procedure by applying it to real graphs
and then comparing the classification with true labels.

Our machine learning algorithm gives only 20% accuracy on
peering edges and about 95% accuracy on customer-provider
edges. However, for the purposes of computing the worst conges-
tion in the graph, this low accuracy of labeling is in fact enough.
Indeed, as shown in Figure 1(b), labeling real graphs using our al-
gorithm results in an error of less than 10% in the worst congestion
(while employing policy routing) in comparison with the conges-
tion computed on ALRs. More importantly, the growth in conges-
tion is identical in the two cases.

We also report simulation results for congestion in power law
trees and exponential topologies. A comparison of the former with
power law graphs gives an insight into the significance of density
of edges in the graph. The latter model is interesting because most
generative models for power law topologies result in exponential
distributions in the “fringe” cases. Our tree topologies evolve ac-
cording to the Preferential Connectivity model [7]. To generate
exponential degree distributions, we modify Inet-3.0 to generate
an exponential degree distribution first and then add edges in Inet’s
usual way. For a given n, the exponent β for the exponential graphs
on n nodes is chosen such that the total number of edges in the ex-
ponential graph is very close to that of the corresponding power
law graph on n nodes6 . Note that due to a lack of real data for ex-
ponential graphs, we do not have a good way of labeling edges and
nodes in them. We do not perform experiments with policy routing
or the leaf-2-leaf and clout traffic models for them.

4. ANALYTICAL RESULTS
In this section, we show that the expected maximum edge con-

gestion in a power law graph grows as Ω(n1+ 1
α ) with n, when we

route a unit flow between all pairs of vertices over the shortest path
between them.

6We perform heuristic hill-climbing to estimate the value of the
exponent β that minimizes error in the number of edges.

We consider the Preferential Connectivity Generative Model of
Barabasi and Albert [7]. For completeness, we give a brief de-
scription of the model. The Preferential Connectivity model is as
follows: We use a fixed constant parameter k. We start with a com-
plete graph on k+1 nodes. We call this set of nodes the core of the
graph. Let the graph at time i be denoted Gi. At time step i + 1,
one node is added to the network. This node picks k nodes at ran-

dom and connects to them. Each vertex v has a probability di
v

Di of
getting picked, where di

v is the degree of the vertex at time i, and
Di is the total degree of all nodes at time i.

At the end of n steps, with k = 3, this process is known to
generate a power law degree distribution. We will use the fact that
in a power law graph with exponent α > 1, the maximum degree
node has degree n1/α.

In order to show a lower bound on the congestion of a power
law graph, our plan is roughly as follows. We consider the edge
between the two highest degree nodes in the core—s1 and s2. Call
this edge e∗. Then for every vertex v in the graph, we consider the
shortest path tree Tv rooted at vertex v. We show that Ω(n) such
trees contain the edge e∗. Moreover, in a constant fraction of such
trees, there are at least Ω(n

1
α ) nodes in the subtree rooted at edge

e∗.
This gives us the lower bound in the following way: the routes

taken by each connection are precisely those defined by the above
shortest path trees; thus the congestion on any edge is the sum of
congestions on the edge in these shortest path trees. Now the con-
gestion on edge e∗ in the trees defined above is at least Ω(n

1
α ), and

there are Ω(n) such trees, thus the total congestion on edge e∗ is at

least Ω(n1+ 1
α ). Note that e∗ is not necessarily the most congested

edge in the graph, so the maximum congestion could be even worse
than Ω(n1+ 1

α ). We get the following theorem:

THEOREM 1. The expected value of the maximum edge conges-
tion in a power law graph with exponent α grows as Ω(n1+ 1

α ) with
n, when we route a unit flow between all pairs of vertices over the
shortest path between them.

We begin with a technical lemma. In the following, the distance
between two nodes refers to the number of hops in the shortest path
between the two nodes. We will assume that α > 1.

LEMMA 1. Let r be the maximum integer for which at least n
2

vertices lie at a distance r+1 or beyond from s1. Then, Ω(n) nodes
lie within distance r − 1 of every node in the core of the graph. In
particular, for any node in the core, Ω(n) nodes lie at a distance
exactly r − 1 from it.



PROOF. We prove that at least Ω(n) nodes lie within a distance
r− 2 of s1. Then, since all vertices in the core are neighbors of s1,
these Ω(n) nodes lie within a distance r − 1 of any vertex in the
core of the graph. We begin by showing that at least Ω(n) nodes lie
within a distance r of s1, and then extend this to nodes at distance
r − 1 and r − 2. Let level i denote the set of nodes at distance
exactly i from s1.

Remove from the graph all vertices that are at level r + 2 or
higher. The remaining graph has at least n

2
vertices, by the defini-

tion of r. Now, assume that there are at least n
10

vertices at level
r + 1, otherwise, we already have > 2n

5
nodes in levels 0 through

r.
Now, let the number of nodes at level r be x. All the nodes in

level r + 1 in the residual graph are connected to nodes in level
r. So, their number is at most the size of the neighbor set of level
r. Now, in the best possible case, the nodes in level r could be
the highest degree nodes in the graph. In this case, the minimum
degree of any node in level r is given by y with ny−α = x. We get

y =
�

n
x � 1

α .
Now, the size of the neighborhood of level r is at most the total

degree of nodes in the level. This is given by� n
1
α

y

zαnz
−α−1

dz =
αn

α − 1 � y
1−α − n

1
α
−1 �

=
αn

1
α

α − 1
(x1− 1

α − 1)

This quantity is at least n
10

by our assumption above. Thus we

get that x = βn, where β =
�

1
10

(1 − 1
α
) � α

α−1 . This is a constant
fraction of n.

Now, we can apply the same technique to compute the number
of nodes at level r − 1 and then, r − 2. We get that the number

of nodes at level r − 2 is at least
�
βα(1 − 1

α
) �

α

(α−1)2 n, with β as
given above.

Let r be the distance defined by the above lemma. Let Vr denote
the set of nodes that are within distance r − 1 of every node in the
core of the graph. By lemma 1, we have |Vr| = Ω(n). Now, the
proof of the theorem has two parts. The first shows that many trees
Tv corresponding to v ∈ Vr contain the edge e∗.

LEMMA 2. The expected number of shortest path trees Tv, cor-
responding to leaf nodes v ∈ Vr that contain the edge e∗ is Ω(n).

PROOF. Consider the tree Tv for some node v ∈ Vr. This is
essentially a breadth first tree starting from v. If s1 and s2 are at
the same level in the tree, then the edge e∗ is not contained in the
tree. On the other hand, if the nodes are at different depths in this
tree, let s1 be closer to v without loss of generality. In this case,
one shortest path from v to s2 is via s1 and since we break ties
in favor of paths with high degree nodes, Tv will contain this path
via s1. This implies that e∗ is contained in the tree. Thus, trees
containing e∗ correspond to those v that are not equidistant from
s1 and s2. We claim that there are Ω(n) nodes v ∈ Vr that are
not equidistant from s1 and s2. This combined with the fact that
a constant fraction of the nodes are leaf nodes implies the result.
The latter is immediate from the definition of a power law degree
distribution. We now prove the claim.

First, observe that if we pick a random node in the graph, then
conditioned on the fact that this node lies at a distance d − 1, d

or d + 1 from s2, there is at most a constant probability that this
node lies at distance d from s2. This is because using an argument
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Figure 2: Fraction of shortest path trees that do not contain the
edge e∗.

congruent to that in lemma 1, we can show that the number of nodes
at distance d − 1 from s2 is a constant fraction of the number of
nodes at distance d.

Now, consider the nodes at distance r − 1 from s1. These are at
least Ω(n) in number (lemma 1) and lie in Vr. Given that a node
v is picked from this set, v is at a distance r − 2, r − 1 or r from
s2. Thus by the above argument, the probability that this node lies
at distance r − 1 from s2 is at most a constant. Thus Ω(n) nodes
in this set are not at distance r − 1 from s2 and we are done.

Next we prove that in any tree Tv corresponding to a leaf v ∈ Vr

containing e∗, e∗ has a high congestion.

LEMMA 3. Let Tv be a shortest path tree, corresponding to a
leaf node v ∈ Vr, that contains the edge e∗. Then the expected
congestion on edge e∗ in this tree is Ω(n1/α).

PROOF. Without loss of generality, let s1 be closer to v than s2.
We will show that the degree of s2 in Tv is Ω(n1/α). This will
imply the result.

Let d be the distance between v and s2. Note that d ≤ r − 1.
First we show that Ω(n) nodes lie at depth d + 1 or beyond in the
tree. To see this, note that the number of nodes at depth less than
r − 1 is at most the number of nodes within distance r − 1 from
s1.7 The remaining nodes, that are at least ( 1

2
− β)n by lemma 1,

where β =
�

1
10

(1 − 1
α
) � α

α−1 , lie at depth d + 1 or beyond.
Now, the neighbors of s2 are at hops d − 1, d or d + 1 in the

tree Tv . Consider removing all edges incident on s2 except for e∗.
Then, the neighbors of s2 that are on level d − 1 or d of the tree,
remain at the same level, whereas those that are at level d + 1 may
move farther from v.

Now, let us consider putting the edges incident on s2 back into
the graph conditioned on the fact that s2 should stay at level d in
the tree. This means that any node that is at level d − 1 or beyond
can connect to s2. Among these nodes, consider those that entered
the graph after step n

2
. By doing so, we are only ignoring a constant

fraction of nodes uniformly from the graph.
Among the remaining nodes on levels d − 1 and beyond, the

probability that these nodes formed an edge with s2 at the time
they entered the graph lies between n

1
α
−1 and (n

2
)

1
α
−1 < 2n

1
α
−1,

because the size of the graph varies between n
2

and n nodes. Thus,
the probability that any such node connects to s2 is within a factor

7This is easily seen to be the case by the definition of r and lemma 1
when r ≤ 4, because v is a leaf. Moreover, our simulations show
that r ≤ 4 for all values of n.
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Figure 3: Congestion on edge e∗ in a random shortest path tree:
This figure plots the ratio of degrees of s1 and s2 in the graph
to their degrees in a random shortest path tree.

of less than 2 of the probability for any other node. Now as men-
tioned above, the number of nodes at level d + 1 and beyond is
at least some constant, say γ, times the number of nodes in levels
d− 1 and d. Consequently, the expected number of nodes in levels
d + 1 and beyond that connect to s2 is at least a constant fraction
(around γ

2
) of the expected number of nodes in levels d − 1 and d

that connect to s2. This is a constant fraction of the total degree of
s2, which is Ω(n

1
α ). Thus we get the result.

4.1 Experimental Support
In this section, we report results from experiments conducted

to validate that the theoretical results obtained above hold not just
for the Preferential Connectivity Model, but also for Internet-like
graphs generated by Inet-3.0.

Unfortunately, the graphs generated by Inet-3.0, have different
values of α for different n. This is consistent with the observed
behavior of the Internet, that α decreases with time. (We discuss
this in further detail in the following section). In order to validate
our theoretical results and observe the asymptotic behavior of con-
gestion for a fixed value of α, we modify the Inet-3.0 code, for
the purposes of this section, so that it always uses a fixed value of
α = 1.23, instead of recalculating it for every value of n. Each
reported value is an average over multiple runs of the simulation,
corresponding to different random seeds used for generating the
graphs.

Figure 2 plots the fraction of nodes that are equidistant from s1

and s2. Note that this fraction always lies below 0.4 and is consis-
tent with our result in lemma 2 that at least a constant fraction of
the trees, n

2
in this case, contain the edge e∗.

Figure 3 compares the degrees of the two highest degree nodes
in the graph to their corresponding degrees in the shortest path tree
corresponding to some random node v. We find that the ratio of the
two degrees for s1 is consistently above 0.9. Similarly, the ratio of
the two degrees for s2 is always above 0.8 and increasing. This is
consistent with the findings of lemma 3.

Finally, we plot the maximum congestion in graphs generated by
Inet-3.0, as a function of the number of nodes in the graph, in Fig-
ure 4. Note that the maximum congestion scales roughly as n1.8,
which is exactly n1+1/α for the given value of α. This corroborates
our finding in Theorem 1.

5. SIMULATION RESULTS
In this section, we present the results from our simulation study

over Inet-generated graphs. Henceforth, we shall use the graphs
generated by Inet 3.0 as is, that is, we do not alter the way Inet
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Figure 4: Maximum congestion as a function of n, in Inet-3.0
generated graphs, with α = 1.23. The figure also plots four
other functions to aid comparison – n1.4, n1.6, n1.8, n2.

chooses α to depend on n. (Recall that, in contrast, the simulation
results in the previous section use the modified Inet 3.0 code which
employs the same value of α for all n. We do not show results for
such graphs.) In what follows, we first show results for shortest-
path routing, followed by policy-based routing. In both cases, we
first present results for the any-2-any communication model, then
for the leaf-2-leaf model and finally for the clout model.

5.1 Shortest-Path Routing
Figure 5(a) shows the maximum congestion in power law graphs

generated by Inet-3.0 as a function of the number of nodes. We
use the any-2-any model of communication here. From the trend
in the graph, it is clear that the maximum congestion in Internet-
like graphs scales worse that n1+Ω(1). Notice also that the slope
of the maximum congestion curve is slightly increasing. This may
be explained as follows. As mentioned earlier, Inet-3.0 chooses
the exponent of the power law degree distribution as a function of
the number of nodes n: α = at + b, where t = 1

s
log n

n0
, a =

−0.00324, b = 1.223, s = 0.0281 and n0 = 3037.8 Notice that
the absolute value of α decreases as n increases, and so, as our
lower bound of Ω(n1+1/α) suggests, the slope of the function on
a log-log plot should steadily increase. In fact around n = 28000,
α becomes less than 1 and at this point we expect the curve to
scale roughly as n2, which is the worst possible rate of growth of
congestion.

The figure also shows the maximum congestion in power law
trees and exponential graphs. The power law trees we generate,
have the exponent α between 1.66 and 1.8, the value increasing
with the number of nodes in the tree. These exponents are signif-
icantly higher than those of the corresponding power law graphs.
Notice that the edge congestion on power law trees grows much
faster as compared to graphs which is expected since trees have
much fewer edges. Our lower bound on the maximum congestion,
which holds equally well for trees satisfying power law degree dis-
tributions, predicts the slope of the curve for trees to be at least 1.5,
which is consistent with the above graph.

On the other hand, we notice that edge congestion in exponen-
tial graphs is much smaller compared to power law graphs. In
fact, edge congestion in exponential graphs has a less than linear
growth (i.e., scales as O(n)). This could be explained intuitively
as follows: Recall that for each n, we choose the exponent β of the
exponential distribution so as to match the total number of edges of
the corresponding n-node power law graph. Because the power law

8a, b and s are empirically determined constants. n0 is the number
of ASes in the Internet in November 1997.
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Figure 6: Edge congestion with shortest path routing and leaf-2-leaf communication
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Figure 7: Edge congestion with shortest path routing and clout model of communication

distribution has a heavier tail compared to the exponential distribu-
tion, the latter has more edges incident on low degree nodes. Con-
sequently, low degree vertices in an exponential graph are better
connected to other low degree vertices. Edges incident on low de-
gree nodes “absorb” a large amount of congestion leading to lower
congestion on edges incident on high degree nodes. As n increases
the degree distribution becomes more and more even, resulting in a
very slow increase in congestion.

In Figure 5(b), we show the congestion across all links in a power
law graph for varying numbers of nodes. Notice that at higher num-
bers of nodes, the distribution of congestion becomes more and
more uneven.

The corresponding set of graphs for the leaf-2-leaf communica-
tion model is shown in Figure 6. The worst congestion is consis-

tently about 0.8 times the worst congestion for the any-2-any model
(not explicitly shown in the graph). The congestion across all the
edges, plotted in Figure 6(b), also displays a similar trend as for the
any-2-any model – the distribution becomes more uneven as the
number of nodes increases.

The results for the clout model are more interesting with the re-
sulting maximum congestion in the graph scaling much worse than
before. Indeed, as Figure 7(a) shows, the maximum congestion
scales worse than n5. This is because the total traffic in the graph
also grows roughly as O(n4). Again, as with the any-2-any model,
the smaller absolute values of α in the graphs generated by Inet-3.0
for larger values of n is a plausible explanation for the increasing
slope of the curve.

The graph of the congestion across all edges in this model, shown
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Figure 8: Maximum Edge congestion with policy-based routing in HLSs
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Figure 9: Comparison of edge congestion for shortest path and policy based routing in the any-2-any model

in Figure 7(b), is equally interesting. Compared to Figure 6(b) of
the leaf-2-leaf model, Figure 7(b) looks very different. Visual in-
spection of the two figures reveals that the unevenness in conges-
tion is much more pronounced in the clout model of communica-
tion. To summarize, the non-uniform traffic demand distribution in
the Internet only seems to exacerbate the already poor congestion
scaling of the Internet.

5.2 Policy-Based Routing
Figure 8 shows the maximum edge congestion for the three com-

munication models when policy based routing is used. For the any-
2-any and leaf-2-leaf models, shown in Figure 8(a), the maximum
edge congestion scales almost identically to that for shortest path
routing (compared with Figure 5(a) and 6(a)). However, somewhat
surprisingly, for the clout model, congestion under policy based
routing scales only as n3 compared to over n5 for shortest-path
routing.

Figure 9(a) compares maximum congestion obtained for policy
routing to that for shortest path routing. Notice that the two curves
are almost overlapping, although policy routing seems to be slightly
worse when the graph is small and gets better as the graph grows
larger. This observation can be explained as follows: policy routing
disallows certain paths from being used and could thus, in general,
force connections to be routed over longer paths. This would in-
crease the overall traffic in the network leading to higher conges-
tion, especially for smaller numbers of nodes. However, as the size
of the graph grows, there are more and more shortest paths avail-
able. As a result, the constraints placed by policy-based routing
might not have any significant impact on the path lengths in the
graph. In fact, at higher numbers of nodes, policy routing could
provide better congestion properties, albeit only marginally differ-

ent, than shortest path routing. This is because while shortest path
routing always picks paths that go over high degree nodes, a frac-
tion of these paths might not be allowed by policy routing as they
could involve more than one peering edge. In this case, policy rout-
ing moves traffic away from the hot-spots, thereby, partially allevi-
ating the problem.

In order to verify that the above observation is not just an ar-
tifact of our machine learning-based labeling algorithms, we plot
the same curves for ALRs in Figure 9(b). These display exactly
the same trend—policy routing starts out being worse than shortest
path, but gets marginally better as n increases. To summarize, pol-
icy routing does not worsen the congestion in Internet like graphs,
contrary to what common intuition might suggest. In fact, policy
routing might perform marginally better than shortest path rout-
ing.

6. DISCUSSION
Our analytical and simulation results have shown that the power

law nature of the Internet graph causes the maximum congestion
in the network to scale rather poorly – Ω(n1+Ω(1)). As mentioned
in Section 1, this implies that as the Internet grows in its size, the
uniform scaling in the capacities of all links in the Internet graph
according to Moore’s Law, might not be enough to sustain the in-
creasing congestion in the graph. Our results show that the high
degree nodes, which are typically in the core of the Internet, will
get congested more quickly over time than the edges. In such a
situation, to enhance the scaling properties of the network, it might
become necessary to either change the routing algorithm employed
by the nodes or alter the macroscopic structure of the graph. We
address the latter issue in this section.
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6.1 Adding Parallel Network Links
In this section, we examine ways in which additional links can

be placed in the network, so as to contain the effect of bad scaling
of the maximum congestion. Specifically, we consider the model
in which each link can be replaced by multiple links (between the
same pair of nodes) that can share the traffic load9. Ideally, we
would like to provide sufficient parallel links between a pair of
nodes, so that the total congestion on the corresponding edge di-
vided equally among these parallel links, even in the worst case,
grows at about the same rate as the size of the network. The num-
ber of parallel links between a pair of nodes may need to change as
the network grows to achieve this goal. Notice that this change does
alter the degree-structure of the graph, but the alteration is only due
to increased connectivity between already adjacent nodes10 . This
does not require new edges between nodes that were not adjacent
before.

In some ways, the network already incorporates this concept of
parallel links. For example, the power law structure of the AS graph
only considers the adjacency of ASes: the link between Sprint and
AT&T, for instance, is modelled by a single edge. However, in the
real world the Sprint and AT&T ASes are connected to each other
in a large number of places around the world. However, not much is
known about the degree of such connectivity in the Internet today.

In order to guide the addition of parallel edges between adjacent
nodes, we first observe that there is clear correlation between the
average degree and edge congestion. Figure 10 plots the congestion
of each edge against the average degree of the nodes on which it is
incident, for shortest path routing on an Inet generated graph of
30000 nodes. The form of communication used here is any-2-any.
The figure shows that edges incident on high degree nodes have
much higher congestion than those incident on lower degree nodes.
This suggests that a good choice for the number of parallel links
substituting any edge in the graph, could depend on the degrees of
nodes which an edge connects.

We examine several ways of adding parallel links based on the
above observation. In particular, we let the number of links be-
tween two nodes be some function of the degrees of the two nodes
and we consider the following functions: (1) sum of degrees of the
two nodes, (2) product of the degrees of the two nodes, (3) maxi-
mum of the two degrees and, (4) minimum of the two degrees. For

9For results on alternate methods of alleviating congestion, please
refer to a full version of this paper [4].

10Note that the routing is still done based on the original degrees of
nodes.
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Figure 11: Maximum relative congestion for shortest path rout-
ing, any-2-any model, when parallel links are added to the
graph using the sum, product and max functions.

each of these functions, we compute the maximum relative conges-
tion, that is, the maximum over all edges, of the congestion on the
edge divided by the number of parallel links corresponding to each
edge. In what follows, we show simulation results about how the
maximum relative congestion scales for shortest path routing on
power law graphs within the any-2-any model of communication.

The results are shown in Figure 11. Notice that, surprisingly,
when parallel links are added according to any of the above four
functions the maximum relative congestion in the graph scales lin-
early. This implies that adding parallelism in the edges of Internet-
like graphs according to the above simple functions is enough to
ensure that the scaling of link capacities in the Internet according
to Moore’s law can maintain uniform levels of congestion in the
network and avoid any potential hot-spots.

7. SUMMARY
In this paper, we addressed the question of how the worst conges-

tion in Internet-like graphs scales with the graph size. Using a com-
bination of analytical arguments and simulations studies, we show
that the maximum congestion scales poorly in Internet-like power
law graphs. Our simulation results show that the non-uniform de-
mand distribution between nodes only exacerbates the congestion
scaling. However, we find, surprisingly, that policy routing may not
worsen the congestion scaling on power law graphs and might, in
fact, be marginally better when compared to shortest-path routing.

Our results show that, with the current trend of the growth of the
Internet, some locations in the network might eventually become
perpetual hot-spots. Fortunately, however, there is an intuitively
simple fix to this problem. Adding parallel links between adjacent
nodes in the graph according to simple functions of their degrees
will help the maximum congestion in the graph scale linearly. In
this case, it might not be necessary for some links in the graph to
grow in capacity at a faster rate than the others.
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