
Smoke Sheets with Arbitrary Reconnection for Filament-based Simulation

Alfred Barnat∗ Nancy S. Pollard†

Figure 1: A smoke plume simulated using our method (left). Fluid motion is simulated using vortex filaments (center) and the smoke surface
is tracked using a triangle mesh (right).

Abstract

Smoke is one of the core phenomena which fluid simulation tech-
niques in computer graphics have attempted to capture. Its behav-
ior is well understood mathematically, and accurate smoke simula-
tion can greatly enhance the realism of computer generated effects.
Though much of the work related smoke simulation thus far has
used Eulerian grid-based representations of fluid velocity, a tech-
nique has recently been developed which represents velocity using
a sparse set of vortex filaments. This has the advantage of provid-
ing an easily understandable and controllable model for fluid veloc-
ity, but is computationally expensive because each filament affects
the fluid velocity over the entire simulation space. We build upon
previous work which merges adjacent rings of filaments in order
to minimize the total number of filaments by allowing filaments
to form structures other than rings and allowing arbitrary reconnec-
tion. To complement this technique, we also introduce a method for
smoke rendering designed to minimize the number of sample points
without introducing excessive diffusion or blurring. This rendering
technique advects a mesh representation of the smoke surface, thus
effectively preserving the appearance of thin sheets and curls.

1 Introduction

The majority of smoke simulation methods take an Eulerian ap-
proach to the problem [Tan and Yang 2009; Fedkiw et al. 2001;
Stam 1999]. As the fluid which drives the smoke’s behavior, air,
occupies the entire volume of the simulation space, the character-
istic space filling grid or mesh of an Eulerian discretization is a
natural choice of basis. One of the major advantages of grid-based
methods lies in their ability to construct and preserve a divergence
free flow through the use of a robust projection step. However,
grid-based simulators remain unable to capture fine-scale vortices
smaller than the mesh resolution, leading to inherent diffusion of
the fluid velocity.

Lagrangian, particle-based simulations offer an alternative. Rather

∗e-mail: abarnat@cs.cmu.edu
†e-mail: nsp@cs.cmu.edu

than discretizing the equations of motion into a grid of static cells,
they instead associate mass and velocity with moving particles
[Stam and Fiume 1995]. Though features can be defined anywhere
in the simulation space, rather than only at fixed grid cells, the gran-
ularity of the simulation is still limited by the particle density. Fur-
thermore, global optimizations, such as the divergence-eliminating
projection step, are difficult to perform on a dynamic set of particles
[Cummins and Rudman 1999].

Vortex filaments offer a compromise between these two techniques
[Angelidis et al. 2006; Pinkall et al. 2007; Weißmann and Pinkall
2010]. Though Lagrangian in nature, they define the fluid velocity
through a series of filaments of vorticity rather than through par-
ticles of momentum. This obviates the need for a projection op-
eration, since any vorticity field defines a divergence-free velocity
field. Additionally, as a Hamiltonian system, these filament-based
simulations are inherently energy preserving.

This method differs from traditional momentum-based particle and
grid simulations in that each element of the basis, a vortex filament,
contributes velocity to the entire simulation space rather than just a
localized region. This means that there is no boundary to the simu-
lation, and thus no related artifacts. However, it increases the com-
putational complexity of the simulation, since each vortex filament
is advected by the combined velocity contributions of all other fila-
ments, and makes the simulation of object boundaries significantly
more complex [Weißmann and Pinkall 2010].

Despite these shortcomings, vortex filaments offer a compelling al-
ternative to grid or particle based simulations. Only a small number
of filaments are required to produce a visually compelling anima-
tion, since the sheets of vorticity that form as a fluid is disturbed
naturally tend to roll up into filament-like structures. Furthermore,
the sparsity of this representation allows the unique possibility of
precise artistic control over the very basis of the simulation itself,
rather than through more traditional high-level interfaces [Ange-
lidis et al. 2006].

We extend previous work on vortex filaments by relaxing the re-
quirement that filaments exist only as a set of distinct, closed loops,
and taking advantage of the additional flexibility to support arbi-

trary reconnection. We further develop a set of heuristics designed
to preserve physical plausibility while minimizing the number of
vortex filaments present in the simulation.

To complement this technique, we introduce a method for smoke
rendering designed to minimize the number of velocity calculations
to be performed at each timestep. By simulating sheets of smoke
instead of individual disconnected particles, we are able to vastly
reduce the number of points being advected. We apply a method
similar to what we use for filament reconnection to control split-
ting and reconnection of edges both within and between sheets. By
varying the density of particles across each smoke sheet, we are
able to preserve fine details while maintaining an overall low parti-
cle count.

2 Background

Much of the work in fluid simulation for computer graphics over the
past decade is based on Stam’s Stable Fluids technique [1999], with
the addition of vorticity confinement [Fedkiw et al. 2001] in order
to counteract velocity dissipation. For general information on simu-
lated fluids in graphics, we refer the reader to a recent survey paper
and the references therein [Tan and Yang 2009]. Though well suited
for confined environments, these techniques require prior knowl-
edge and careful planning for application in open environments, as
the entire fluid domain must be discretized. Furthermore, simula-
tion detail is limited by the predetermined grid spacing, preventing
the creation of small-scale vortical flows, and leading to the diffu-
sion of velocity and density values over time.

Smoothed Particle Hydrodynamics (SPH) offers an alternative,
where fluid state is associated with mobile particles instead of static
grid coordinates [Desbrun and paule Gascuel 1996; Stam and Fi-
ume 1995]. By representing the fluid domain as a collection of dis-
crete particles, this and other Lagrangian methods avoid the need to
predetermine and discretize the region of space in which the simula-
tion will take space. However, SPH is best suited for the simulation
of a fluid which is mobile within a larger space, such as water sur-
rounded by air (in which case the air is often assumed to exert no
force on the water, and is simply not simulated).

Localized regions of vorticity have long been recognized as impor-
tant features for the believability of a fluid simulation. A variety
of vorticity-preserving techniques have been developed to help en-
sure that these regions do not dissipate unnaturally quickly due to
velocity diffusion [Fedkiw et al. 2001; Selle et al. 2005; Narain
et al. 2008]. Simplical Fluids [Elcott et al. 2007] offers a mesh-
based technique which preserves vorticity by construction. How-
ever, even here the ability to resolve these important structures of
vorticity remains limited by the sampling resolution of the simula-
tion. Vorticity particle formulations offer an alternative analogous
to SPH [Selle et al. 2005; Chatelain et al. 2008]. However, similar
difficulties arise in their use to drive smoke motion.

Angelidis and Neyret pioneered the use of vortex filaments as a sim-
ulation primitive [Angelidis and Neyret 2005]. Since filaments of
vorticity naturally form in a turbulent flow, a sparse basis is suffi-
cient to approximate complex fluid motion. Doubly discrete smoke
ring flow further developed a means to accurately model self-
advection of discretized polygonal filaments [Pinkall et al. 2007],
and Weißman et al. introduced a physically motivated criteria for
vortex reconnection and hairpin removal [2010]. These techniques
generally simulate only ring-structured vortical flows.

The most direct means of simulating smoke is to store density val-
ues throughout the fluid domain, usually at the same grid coordi-
nates as the fluid velocity [Fedkiw et al. 2001]. However, this lim-
its the minimum size of fluid features to the grid spacing, and can

cause aliasing artifacts if this spacing is too large. Smoke parti-
cles can simulate fine-scale detail, but dissipate quickly [Krger and
Westermann 2005]. Funck et al. use implied connectivity infor-
mation to render smoke using sheets of geometry with a particle
at each vertex [2008]. Alternatively, geometry can be constructed
dynamically at each frame by joining adjacent streams of particles
[Park et al. 2010]. However, neither of these methods modify parti-
cle placements or densities once they have been spawned.

3 Contribution

We develop a method of filament reconnection which preserves
physical plausibility while allowing for the maximum number of
filament reconnections. Our approach is motivated both visually
and by the desire to preserve fluid energy.

Rather than enforcing ring-shaped structures of vorticity, we allow
arbitrary reconnection between filaments of varying strength, re-
sulting an a directed graph of vortex filaments. In addition to en-
abling greater flexibility in reconnections, this also makes it possi-
ble to obtain a ratio of filaments to vertices greater than 1:1.

Furthermore, we explore the use of a triangle mesh with adaptive
vertex spacing for smoke surface tracking. We use similar criteria
to those of our vortex reconnection technique to control the vertex
spacing within this mesh, enabling both dynamic re-meshing within
a single layer, and arbitrary reconnection between multiple layers of
smoke.

4 Method

Though they are intended to complement each other, our vortex-
filament based simulation and mesh based smoke tracking and ren-
dering system work independently. Our smoke renderer requires
only that each vertex is advected according to the fluid simulation.

4.1 Filament-based Fluid Simulation

Our fluid simulator is based on the smoothed filament model of
Weißmann and Pinkall [2009]. Though they suggest the use of
doubly discrete smoke ring flow [Pinkall et al. 2007] to capture
more accurate filament self-advection, for simplicity and in order
to support non-ring shaped filaments, we instead opt to use only the
induced velocity formula derived using the Biot-Savart law,

u(0) = (γi · γj)

||γi||2√
a2+||γi||2

− ||γj ||2√
a2+||γj ||2

a2||γj − γi||2 + ||γi × γj ||2
||γj × γi|| (1)

[Weißmann and Pinkall 2009]. Here, γi and γj are the starting and
ending points of the filament, and a is its smoothing radius. In order
to obtain u(x), simply replace γi with γi − x.

4.1.1 Filament Splitting

For each vortex filament, we maintain a target segment length
equivalent to its smoothing radius. Though our simulator tracks
each filament’s radius individually and is technically capable of
handling filaments of multiple radii simultaneously, we spawn fila-
ments with only a single constant smoothing radius.

Splitting is straightforward. We simply split a filament segment
whenever its length exceeds its radius. The new vertex is inserted
at a point which is equidistant to the two end points of the segment,
but offset slightly according to the average direction of all filaments
previously attached to these two endpoints. In order to facilitate

Figure 2: Without reconnection, thick bundles of vortex filaments form (left). With reconnection, the simulation contains 1
3

the number of
filaments, though a small amount of viscosity is introduced (right).

this computation, we track a tangent value for each vertex in the
filament graph, which is updated automatically as needed.

The tangent is computed as an average of the directions of each fil-
ament attached to the vertex, weighted by their strengths. We store
both negative and positive filament strengths, though it is worth not-
ing that a filament of strength Γ from vertex γi to γj is equivalent
to a filament of strength −Γ from vertex γj to γi. We do not nor-
malize these tangents after averaging their values, as we use their
magnitude when computing filament midpoints during splitting as
a measure of agreement on the vorticity direction at each vertex.
Vertex radii are computed analogously, and aggregate strength val-
ues are computed by summing each filament’s direction multiplied
by its strength and taking the length of the resulting vector.

τ =

∑
diΓi∑
Γi

(2)

r =

∑
riΓi∑
Γi

(3)

Γ = ||
∑

diΓi|| (4)

, where τ , r, and Γ are the vertex tangent, radius, and aggregate
strength, and di, Γi, and ri are filament directions, strengths, and
radii.

We determine the offset between the physical midpoint of a vortex
filament and the point at which we insert the splitting vertex inde-
pendently based on the tangents of the two endpoints and average
the results. The midpoint is computed as if the filament is an arc,
with our previously computed tangents at the end points (figure 3),

c = γ1 − γ0 (5)
ν = −τ0 × c× c (6)

γm =
1

2
||τ0|| ||c||ν̂ tan

arccos(max(τ0
||τ0||

· c
||c|| , 0)

2
(7)

γi γjc

ντi
τj

Figure 3: When splitting a vortex filament with vertices γi and
γj , we place the midpoint as if on an arc with tangents τi and τi
at the vertices. Here, the midpoint will be placed along the ray ν
between the line segment c (connecting the vertices) and the arc
itself, scaled by the magnitudes of the tangents, which reflects the
level of agreement between all filaments attached to each vertex.

. We cap the size of the arc at half of a full circle, in order to
prevent the midpoint from being located more than half the length
of the filament segment away from its physical center (since we
are splitting the filament, this will be half of its radius), and we
further scale the offset between the physical filament center and the
center of this arc by the magnitude of the tangent. The procedure
is analogous for the second endpoint, except that the tangent and
filament directions must be negated.

The actual splitting operation replaces the original filament with
two new filaments of half the original strength, connected from the
first vertex through the newly created midpoint vertex to the second
vertex.

4.1.2 Filament Reconnection

We perform vortex filament reconnection by merging nearby ver-
tices in the vorticity graph, and adjusting the filaments attached
to these vertices accordingly. In order to help preserve realism,
we have developed several additional constraints controlling when
reconnection occurs, beyond simply requiring the vertices to be
within half a radius of each other. When determining whether or
not to join two vertices, we also consider their relative tangents and

the angle between their tangents and their relative offset.

The first observation behind these criteria is that, while reconnec-
tions occurring along a filament cause relatively little change in
overall velocity, reconnections between multiple filaments, espe-
cially when these are two opposing filaments running parallel to
each other, can be much more visible. In order to prevent this, we
multiply the maximum distance at which the vertices γi, and γj can
be merged by the factor,

||τi|| ||τj ||

√∣∣∣∣ (τ̂i · (γj − γi))(τ̂j · (γj − γi))||γj − γi||2

∣∣∣∣
+ (1− ||τi|| ||τj ||) (8)

. This reduces the maximum radius for merges when the offset
between the vertices under consideration is perpendicular to either
of their tangents, weighted by the magnitude of their tangents.

We also directly enforce a maximum angle between any two fila-
ments being joined, so that passing perpendicular filaments do not
immediately merge. This angle is computed as follows,

arccos |τi · τj | ||τi|| ||τj || (9)

. Once again, we modulate the angle by the magnitudes of the ver-
tex tangents, so that vertices without a predominant vorticity direc-
tion are not arbitrarily prevented from reconnecting.

We compute the merged vertex location by taking an average of the
positions of the two original vertices, weighted by their aggregate
strength. If there is no vortex filament between the vertices to be
merged, reconnection is straightforward. All filaments which were
previously connected to the original vertex become connected to
the new one, and any filaments which become coincident due to
the merge are combined by adding their strengths. If there was a
filament between the two vertices being merged, we must first re-
distribute its vorticity to the surrounding filaments. We redistribute
the strength of the filament to be eliminated to all filaments which
will be attached to the merged vertex, weighted by the dot prod-
uct between the eliminated filament’s direction and the remaining
filaments’ new directions.

Both this procedure and the the merging that may occur between
two filaments which become coincident due to a reconnection may
lead to the loss of some vorticity. Though this prevents the simu-
lation from being perfectly energy preserving, we found the total
amount of lost energy to be negligible, and the effect is consistent
with a fluid of low, but nonzero viscosity. In the simulation shown
in figure 2, approximately 20% of the vortex energy is lost over the
course of the 1,800 timestep, 30 second simulation.

The reconnection phase is sufficiently robust that in all simulations
(except that shown in figure 2, for comparison purposes), we seed
low strength vortex rings at every timestep. They simply merge
instantly, producing a smaller number of high strength rings leaving
the source.

4.2 Smoke Sheets

At its core, our smoke representation simply consists of an indexed
triangle mesh, with smoke density values stored at each vertex. The
mesh is seeded from an emitter, which is initially constructed as a
ring of vertex pairs, one locked in place, and one freely moving,
stitched together in a cylindrical configuration (figure 4). As the
freely moving vertices are advected by the smoke, our system will
begin splitting triangle edges in order to prevent their lengths from
exceeding a predefined limit. This causes the smoke to be drawn

θ
nv

lt

Figure 5: We treat each face in the smoke sheet as a thin layer with
thickness t approaching zero. As we already know the absorption
of the sheet when viewed from the normal direction n, all we need
is the ratio l

t
= | csc θ| = 1

|n·v| .

out of the emitter as a single sheet of triangles joined at common
vertices (figure 4).

As with the vortex filaments, we also occasionally merge vertices in
the smoke mesh in order to prevent the vertex density in an area of
constriction, or where multiple smoke sheets fold over each other,
from becoming unnecessarily high. However, as any change to the
smoke mesh is immediately visible, we place additional restrictions
on when this may take place.

4.2.1 Density and Rendering

We store smoke density values at each vertex, representing the total
absorbency for all the smoke to be drawn due to the vertex. Since
the density is distributed over the area of all triangles connected to
each vertex, the absorbance at each point within these triangles will
decrease as the area of the triangles attached to a vertex increases.
We define a density per unit area value for each vertex as follows:

3d∑
ai

(10)

, where d is the total density stored at the vertex, and ai is the area
of each face.

Since we are rendering an arbitrary collection of triangles, each ver-
tex does not necessarily have a well defined surface normal. In-
stead, we adjust for the angle of incidence between the viewing
direction and the normal of each triangle independently, and use
the sum of their contributions to determine an absorbance value at
each vertex. We then interpolate these absorbance values between
vertices during rendering.

We will first consider the case of a single triangle with absorbance
α per unit area and normal n, viewed from the direction v. We as-
sume that the smoke density is distributed within a thin layer which,
when viewed head-on, will have absorption α. Stated differently,
this layer has an absorbance of α

t
l for a ray which travels l dis-

tance through the layer, and a thickness of t (figure 5). Thus, when
viewed from an angle θ, the absorbance will be α

t
t sec θ, or simply

α sec θ =
α

|n · v| (11)

.

Thus, by distributing the density from a single vertex over its con-
nected faces and summing the absorption for each face from direc-
tion v, we obtain the following formula for the total absorption at
the vertex,

3d∑
ai|ni · v|

(12)

. For the final rendering step, we interpolate this absorption value
across each triangle using an OpenGL shader, and compute the pro-
portion of background light to be absorbed, the alpha value, of each
pixel as follows,

exp(−α) (13)

Figure 4: The smoke source begins as a pair of coincident rings of vertices, one fixed and one advected with the fluid, which are connected
to form a cylindrical mesh as they are drawn apart. Once the initial vertices become far enough apart, our triangle splitting procedure begins
to insert additional vertices into the mesh, allowing a sheet of smoke to form.

Figure 6: We remove sharp angles due to our mesh discretization
(left) using a Laplacian smoothing technique (right).

, where α is the interpolated absorbance from the viewing direction
at the pixel. Since we are rendering non-reflective black smoke, the
triangle ordering is unimportant.

In order to improve the appearance of sheet boundaries and folds,
we also optionally apply laplacian smoothing to the vertices in the
smoke mesh before rendering each frame (figure 6). This is done by
using the weighted average of neighbor vertex location in the place
of each vertex location. We weight by the inverse of the vertex cov-
erage, as we found that this produced smoother edges. Without this
weighting, vertices on an edge or fold with more internal neighbors
may be pulled further toward the interior of the mesh than other
nearby vertices, negating the overall smoothing effect.

4.2.2 Triangle Splitting

Like vortex filaments, triangle edges are split whenever any of their
edge lengths exceeds a user-defined threshold, Sd. However, we
also split triangle edges when the angle between the velocities at
each vertex exceeds a second user-defined threshold, Sθ . This is to
ensure that the triangle mesh can properly track the natural smoke
curvature as it curls around a vortex filament. On the rare occasion
that a smoke sheet actually intersects a vortex filament, however,
this could lead to a potentially unbounded vertex density, so we do
not split an edge if its length is less than a third threshold, Sm.
In total, we select an edge for splitting if either of the following
conditions are met:

||γj − γi|| > Sd (14)

u(γi) · u(γj)

||u(γi)|| ||u(γj)||
< cosSθ and ||γj − γi|| > Sm (15)

, where γi is the position of vertex i and u(γi) is the velocity at it’s
location.

To split the edge, we simply insert a new vertex γm and split each
triangle containing the vertices γi and γj into one triangle contain-
ing γi and γm, and a second containing γm and γj . We then place
the new vertex at the average of the positions of all vertices it is
connected to, weighted by the inverse of their coverage.

Our concept of vertex coverage is derived from the idea that a ver-
tex in an approximately flat sheet of geometry will normally be sur-
rounded on all sides by triangles which are located near the tangent
plane of that vertex. Thus, the sum of all angles which the vertex is
part of will be approximately 360◦. Our coverage value is simply
the sum of all angles which a vertex is part of, divided by 360◦.
It provides a rough estimate of the configuration of local geome-
try surrounding the vertex. If the vertex is on the edge of a sheet,
it’s coverage will be near 1

2
. If it is in a single sheet, the coverage

will be near 1, and if it is part of a more complex configuration, the
coverage may be higher.

By using the coverage to help determine the splitting vertex loca-
tion, we can place it near locations in which additional geomet-
ric information is more useful, such as near the edge of a sheet.
This also allows us to place vertices based on the location of all
surrounding vertices without significantly eroding sheet edges. It
would be possible to prevent erosion by simply placing splitting
vertices at the center of the edge they are splitting. However, this
would also cause unnatural creeping and folding when splitting
curved regions, as the splitting vertex could be located significantly
closer to the local center of curvature than surrounding vertices.

The final step in triangle splitting is to redistribute vertex density.
This procedure is described in detail in section 4.2.4, as it is com-
mon to both splitting and joining. Briefly, we attempt to ensure that
the density per unit area remains constant in all existing vertices.
As the insertion of the splitting vertex will nearly always reduce the
area of triangles connected to the surrounding vertices, maintaining
a constant density per unit area in these vertices will generate some
excess density, which we store in the new vertex.

4.2.3 Triangle Reconnection

As with filament reconnection, we perform triangle reconnection
by merging adjacent vertices in the smoke mesh. Once again, the
basic requirement is that the distance between the vertices is at most
half of the splitting distance, and we have developed several addi-
tional constraints to help preserve mesh detail under certain circum-
stances.

Figure 7: An adaptive splitting and reconnection distance (right) generates significantly smoother smoke and preserves fine details better
than than a constant distance (left), despite using just over 2

3
the number of total triangles.

Figure 8: Without the additional constraints in equations 15, 16,
and 17, detail is lost in the constricting column in the center, as
well as the curl under the plume (left). With these additions, detail
is preserved in these areas at the expense of vertex density in flatter
areas of the plume (right). (The splitting distance used in the left
simulation is slightly longer in order to achieve similar total vertex
counts.)

We again multiply the maximum reconnection distance by a factor,
guaranteed to be less than 1, which is designed to help preserve
edge detail and locally increase the density of vertices in directions
perpendicular to the fluid flow. This factor is more easily discussed
as two separate components.

The first, responsible for preserving edges, is simply the ratio of
coverage between the vertex with lesser coverage and the vertex
with greater coverage. When both vertices have similar coverage,
for instance if they are both part of a flat sheet-like region, then
this factor will have no effect. However, if one vertex is part of the
border of a sheet and the other is not, for instance, the maximum
reconnection distance will be roughly cut in half.

The second factor is similar to the factor we apply to the filament

reconnection distance. It is designed to allow reconnection freely
along the direction of the velocity field, but reduce the reconnection
distance perpendicular to it:√∣∣∣∣ (u(γi) · (γj − γi))(u(γj) · (γj − γi))

||u(γi)|| ||u(γj)|| ||γj − γi||2

∣∣∣∣ (16)

(figure 8).

Finally, we add a second constraint to maintain consistency with
that expressed in equation 15:

u(γi) · u(γj)

||u(γi)|| ||u(γj)||
> cos

1

2
Sθ and |γj − γi| <

1

2
Sm (17)

. In general, while a reconnection constraint need not be mirrored
in the splitting constraints, all splitting constraints must be mirrored
with similar reconnection constraints, so that a vertex is not recon-
nected immediately after being split.

Once a pair of vertices is selected for reconnection, we begin by
computing the location of the new, reconnected vertex. We do this
by averaging the old locations, weighted by their respective ratios
of areas to coverage. This will tend to place the new vertex such that
it is surrounded by a roughly even area on all sides, while placing it
somewhat closer to areas of low coverage.

Before moving triangles from the old vertices to the new vertex,
we determine the maximum change in surface normal between all
effected triangles due to the reconnection. As significant changes
in surface normal may produce significant changes in effective ab-
sorption from the viewing direction, we do not perform the recon-
nection if the angle between the old and new surface normals of
any triangles are beyond a user-defined threshold. This does reduce
reconnections between parallel sheets of smoke, but also noticeably
reduces popping artifacts due to surface normal changes.

If this test passes, the reconnection is performed by removing any
triangles which contain both old vertices, as they would become

degenerate, and swapping each old vertex for the new reconnected
vertex in the remaining triangles. As with splitting, we must now
redistribute the vertex densities, this time seeding the pool of extra
density with the density from the two vertices being joined.

Overall, we found that using a varying mesh density improved re-
sults while allowing the use of a slightly larger maximum trian-
gle splitting distance. In figure 7, the simulation with a dynamic
splitting distance yields noticeably better results despite using 29%
fewer triangles.

4.2.4 Density Redistribution

When we split or reconnect triangles, we must redistribute the den-
sity among the vertices adjacent to the modified vertex in order to
maintain consistent absorbance values, or density per unit area. In
each case, we first attempt to maintain the ratio of density to area
in all adjacent vertices, and place the remaining density in the new
vertex.

We begin by storing the ratio of density to area in each vertex prior
to the splitting. We adjust the density in each neighbor vertex to
match the old ratio, and keep track of the total difference in density.
In the case of splitting, this will usually leave excess density, but
in the case of reconnection, this will usually require extra density.
With reconnections, however, we also add all the density from the
two merged vertices to this pool.

If the value of the excess density pool is positive, we simply store
it in the new vertex. If there is a shortage of density, we store no
density in the new vertex, and remove density from all other vertices
proportional to their current total density.

We distribute density in this manner in order to avoid heuristically
precomputing the density that should be stored in the new vertex.
In the case of reconnection in particular, it is not straightforward to
compute this value. If the reconnection occurs within a flat sheet,
the average ratio of density to area, weighted in the same manner
as the average position, should be maintained from the original two
vertices. However, when sections from different layers of smoke
merge, the new ratio of density to area should be approximately
the sum of the old ratios, in order to maintain the same absorbance
when viewed from above.

The one constant between these cases is that all vertices not being
merged should maintain the same absorption, and thus the same
ratio of density to area. By simply enforcing this constraint, recon-
nections both within and between sheets are handled appropriately.

5 Results

Our vortex filament reconnection method is able to preserve accu-
rate simulation results while significantly reducing the number of
simulated filaments. In figure 2, we compare the results of other-
wise identical simulations with and without reconnection (recon-
nection is still allowed between adjacent vertices in both cases).
Without reconnection, the 1,800 frame simulation completes in 851
seconds, and results in 4,866 filaments and vertices. With recon-
nection, the simulation takes only 102 seconds (just under 1

3
of real

time), and results in only 1518 filaments and 1391 vertices.

To enable a fair comparison, in the simulation of figure 2, we spawn
one filament ring every 0.6 seconds, so that the number of rings
leaving the jet is identical both with and without reconnection.
However, in all other simulation, we spawn a weaker ring at every
timestep, and allow our reconnection technique to merge it with the
nearby ring from previous timesteps. Since we weight the recon-
nected vertex location by strength, the ring will eventually leave the

source despite the reconnections, and a new one will begin forming.

Our smoke tracking and rendering method is able to produce high
quality results, accurately tracking thin sheets of smoke using a lim-
ited number of mesh vertices (figure 1). We achieve results of sim-
ilar quality to those demonstrated by Weißmann and Pinkall [2010]
while using less than 1

10
of the tracking locations.

Our results in figure 7 demonstrate the effectiveness of our trian-
gle splitting and reconnection criteria. Despite having significantly
more artifacts in regions of sheet reconnection, and losing detail in
the central smoke column where it becomes constricted, the left-
hand simulation with a fixed splitting and reconnection radius uses
29,449 smoke vertices, while the simulation with our criteria uses
only 21,008. (We increase the maximum reconnection range in the
second simulation, as otherwise it would inevitably end up with
more vertices.)

The additional complexity of our dynamic vertex density criteria
do, however, add some computational overhead, requiring 876 sec-
onds to complete the 900 frame animation, as opposed to 631 with
a constant density. This is most likely due to the need to expand
the search for reconnections beyond the closest available vertex,
since the closest vertex may fail our additional criteria while an-
other more distant one that still falls within the maximum recon-
nection range will pass.

6 Discussion

In this paper, we introduce both an extension to existing vortex fil-
ament based fluid simulation methods, as well as a smoke tracking
and rendering system designed to minimize the number of points
to be advected, and thus the number of velocity computations to be
performed. Our simulation is able to retain a high degree of phys-
ical accuracy while significantly reducing the total number of fila-
ments through reconnection, and our smoke representation and ad-
vection method is able to preserve thin sheet-like formations with-
out dissipation using far fewer points of advection than would be
required to achieve a similar result with a purely particle-based
method.

Though our smoke representation preserves details without signifi-
cant dissipation, an area of future work might be to explore adding
some degree of simulated dissipation to the final rendered result.
Indeed, few rendering techniques for smoke take as direct an ap-
proach as our own, which simply draws the smoke mesh, and in-
stead perform a significant amount of post processing to produce
the final result. This might give the smoke spawned early in a sim-
ulation a more natural appearance, and allow sheets which have
become close enough to begin reconnecting to smoothly blend into
each other as they merge.

Beyond this, it would certainly be worthwhile to explore volumetric
rendering of our smoke mesh. By allowing each triangle to define a
smoothed region of smoke, whose shape is controlled by the local
mesh geometry, we might extend this technique to support incor-
poration with existing photorealistic rendering systems including
support of global illumination models.

Regarding our vortex reconnection model, though we have shown
that a visually inspired approach to reconnection can lead to plau-
sible results, we might extend this further by minimizing the total
change in velocity due to each reconnection. While still allowing
for arbitrary reconnections, one might be able to construct a con-
straint that finds all edge pairs which can be reconnected with a
net velocity change less that some maximum, and then proceeds
to place the reconnected vertex such that it minimizes this change.
Splitting vertices accurately, however, would remain more prob-

Figure 9: The progression of a high resolution simulated smoke surface. The last frame of this sequences uses 92830 vertices in the smoke
mesh.

lematic, as an velocity change minimizing approach would simply
preserve the original straight shape.

Both filament-based fluids and mesh-based smoke have the po-
tential to enable styles and effects which are not well supported
by other simulation and rendering techniques. These techniques
may have the greatest potential in real-time applications, where low
complexity is more important than photo realism, as each degrades
well in quality with reduced complexity. The greatest advantage
of each of these methods is that computational complexity depends
directly on the number of features currently being simulated, and
not the total capacity of the simulation environment.

References

ANGELIDIS, A., AND NEYRET, F. 2005. Simulation of smoke
based on vortex filament primitives. In Symposium on Computer
Animation, SCA 2005, July, 2005, ACM Press, Los Angeles, Cal-
ifornia, Etats-Unis, ACM-SIGGRAPH/EG, 87–96.

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In Symposium
on Computer Animation, SCA 06, September, 2006, Eurograph-
ics, Vienne, Autriche, C. O’sullivan and F. H. Pighin, Eds.,
ACM-SIGGRAPH/EG, 25–32.

CHATELAIN, P., CURIONI, A., BERGDORF, M., ROSSINELLI, D.,
ANDREONI, W., AND KOUMOUTSAKOS, P. 2008. Billion vor-
tex particle direct numerical simulations of aircraft wakes. Com-
puter Methods in Applied Mechanics and Engineering 197, 13-
16, 1296 – 1304.

CUMMINS, S. J., AND RUDMAN, M. 1999. An sph projection
method. Journal of Computational Physics 152, 2, 584 – 607.

DESBRUN, M., AND PAULE GASCUEL, M. 1996. Smoothed par-
ticles: A new paradigm for animating highly deformable bod-
ies. In In Computer Animation and Simulation 96 (Proceedings
of EG Workshop on Animation and Simulation, Springer-Verlag,
61–76.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial flu-
ids. ACM Trans. Graph. 26 (January).

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’01, 15–22.

KRGER, J., AND WESTERMANN, R. 2005. Gpu simulation and
rendering of volumetric effects for computer games and virtual
environments. In IN PROCEEDINGS, Eurographics, 685–693.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and procedu-
ral synthesis. ACM Trans. Graph. 27 (December), 166:1–166:8.

PARK, J., SEOL, Y., CORDIER, F., AND NOH, J. 2010. A smoke
visualization model for capturing surface-like features. Com-
puter Graphics Forum 29, 2352–2362.

PINKALL, U., SPRINGBORN, B., AND WEISSMANN, S. 2007.
A new doubly discrete analogue of smoke ring flow and the real
time simulation of fluid flow. Journal of Physics A-mathematical
and Theoretical 40, 12563–12576.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. ACM Trans-
actions on Graphics 24, 910–914.

STAM, J., AND FIUME, E. 1995. Depicting fire and other gaseous
phenomena using diffusion processes. 129–136.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, SIGGRAPH ’99, 121–128.

TAN, J., AND YANG, X. 2009. Physically-based fluid animation:
A survey. Science in China Series F-Information Sciences 52, 5,
723–740.

VON FUNCK, W., WEINKAUF, T., THEISEL, H., AND SEIDEL,
H.-P. 2008. Smoke surfaces: An interactive flow visualization
technique inspired by real-world flow experiments. IEEE Trans-
actions on Visualization and Computer Graphics 14, 1396–1403.

WEISSMANN, S., AND PINKALL, U. 2009. Real-time interactive
simulation of smoke using discrete integrable vortex filaments.
In VRIPHYS, 1–10.

WEISSMANN, S., AND PINKALL, U. 2010. Filament-based smoke
with vortex shedding and variational reconnection. ACM Trans.
Graph. 29 (July), 115:1–115:12.

