Sufficient Correctness and Homeostasisin Open Resour ce Coalitions:
How Much Can You Trust Your Software System?

Mary Shaw
Ingtitute for Software Research, International
School of Computer Science
Carnegie Méellon University
Pittsburgh Pa 15213
+1 412 268 2589
mary.shaw@cs.cmu.edu

SYNOPSIS

Proving system correctness is tough.

It can fail, or succeed, or just bluff.

When the parts come and go
Y ou may never quite know...

Can you tell when just “good” is enough?
ABSTRACT
Widespread use of the Internet enables a new class of soft-
ware architectures: dynamically formed, task-specific, coa-
litions of distributed autonomous resources. The resources
may be information, calculation, communication, control,
or services. Unlike traditional software systems, which are
at least nominally under control of the developer, these
coalitions are formed from independently managed net-
work-based resources, and the creator of a coalition lacks
direct control over the incorporated resources. Reasoning
about these architectures will differ significantly from rea-
soning about traditional architectures because resource
coalitions experience higher uncertainty about component
behavior and lower connector reliability. The traditional
notion of correctness will give way to an application-
relative notion of sufficient correctness for the intended
use, and the traditional a priori means of validating correct-
ness will give way to architectural provisions for reacting
to abnormal behavior through software homeostasis.

Keywords. Open resource coalition, sufficient correctness,
software homeostasis, fault tolerance

1 INTRODUCTION

The Internet has become a transforming technology, pro-
viding information and communication to a conmunity that
is orders of magnitude larger than it could have been just a

few years ago. The critical elements of this transformation
are communication connectivity, cross-platform delivery,
rich resource availability, intelligibility to people who are
not computer specialists, and a base for commerce. Thisis
changing the ways we can create systems from parts,
especially suitable architectures for such systems.

The recent exponential expansion of the Internet, especially
the cross-platform access enabled by the World-Wide Web,
opens a fundamentally new set of software development
opportunities. Unlike traditional closed-shop software de-
velopments in which the system is controlled by a single
institution and the system architecture draws on the tradi-
tional vocabulary [8], we now have a setting in which com-
putation and information processing can be carried out by
dynamically-formed, task-specific, coalitions of distributed
autonomous resources.

These resources provide information, calculation, commu-
nication, control and services. They are independently de-
veloped and independently supported; they may even be
transient. They can be composed to carry out specific tasks
selected by a user — but often the resources are not specifi-
cally aware of the way they are being used, or even whether
they are being used. Moreover, aresource may beused in a
way that isincidental or secondary to its primary purpose.

Proprietors of the resources have their own objectives and
priorities, and the selection and composition of resourcesis
likely to be done afresh for each task, as resources appear,
change and disappear. As a result, cooperating groups of
resources are better regarded as coalitions than as systems.

| previously explored general architectural considerations
for these web-based coalitions [11]. Here | turn to two
specific related questions:

Sufficient correctness: How do the coalition architecture and
the criticality of the application interact to establish the degree
of confidence a user must have in the coalition's correctness?

Software homeostasis. How can that degree of confidence be
achieved by a combination of a priori validation and dynamic
monitoring and adaptation?

2 OPEN RESOURCE COALITIONS

The information resources of the Internet include much
more than the static structured information and reusable
code that we usually think of as reusable components. The
variety of resourcesincludes:

Information: unstructured text, formatted text, databases, live
data feeds, images, maps, current status such as inventory

Calculation: reusable software components, applications that
can beinvoked remotely

Communication: messages, streaming media, synchronous
communication, agent systems, alert/notification services
Control: coordination for use of resources, registration and
subscription services

Services: secondary (processed) information, simulation,
editorial selection, evaluation, responsive experts

These resources are not functions, or files, or objects, or
filters. They can, of course, be modeled or implemented in
those terms, but to do so misses their richness. The
resources are often large and comprehensive, providing
multiple services; they may be modified independently and
without notice.

Composition of components in this setting is difficult. It's
hard to determine what assumptions each conponent
makes about its operating context, let alone whether a set of
components will interoperate well (or at al) and whether
their combined functionality is what you need. Results are
often simply exhibited through a browser, so it is often dif-
ficult to use a result from one resource as input to another
resource. Moreover, many useful resources cannot be
smoothly integrated because they make incompatible inter-
action assumptions — for example, it’s hard to integrate a
component packaged to interact via remote procedure calls
with a component packaged to interact via shared datain a
proprietary representation.

It is not realistic to expect complete specifications of a re-
source P], so techniques for creating and maintaining
coalitions must work with partial information. | previously
introduced the concept of credential to capture those prop-
erties that are established, along with the degree of confi-
dence in that information. The coalition itself must include
credentials that document expected results, including an
envelope of normal operation. As a result, analysis should
focus on fitnessto task rather than on correctness

A coalition will have a kernel in which the developer iden-
tifies resources, specifies the contributions to be obtained
from the resources, and defines how these intermediate
contributions interact to yield the result of interest. The
technical issues associated with creating resource coalitions
include creating appropriate credentials, or partial
specifications; developing techniques for integration and
automatic creation of glue code; ways of responding to the
transience and mutability of the resources; incorporation of
agent negotiations and security; and provisions for

electronic commerce[9].

This wealth of available resources is appearing at the same
time as the user community is expanding, especialy the
segment of the community with little computing expertise.
End users increasingly control their own computing di-
rectly rather than engaging software specialists. This disin-
termediation began with spreadsheets and continues with
end-user adaptation and program generators. However,
end-user control of computation is no longer limited to ap-
plication generators and spreadsheets — users now have ac-
cessto awealth of resources that are accurate, reliable, use-
ful, and expensive to varying degrees, and they need easy-
to-use means of harnessing combinations of these resources
to their individual needs. Unfortunately, current software
resources are so fragile that it’s hard for a layman or any-
one else to validate the software adequately.

3 SUFFICIENT CORRECTNESS

The "gold standard" of program quality has long been
functional correctness — a demonstration that the program
will compute what its (formal) specification claims it will
compute. When the scale of the software grows from indi-
vidual programs to complex systems that provide continu-
ing service, that gold standard is augmented with extra-
functional requirements such as performance and reliabil-
ity. The inportant aspects of system correctness are some-
times associated with the architecture [10], for example in
the use of the ACID properties (atomicity, consistency,
isolation, durahility) to eval uate data-centered repositories.

In practice, however, most of the software that most of us
use most of the time is not "correct” in any traditional
sense. Nevertheless, most of us do get useful results from
this software. Most people view this situation more with
resignation than with alarm; consider, for example, this
teaser for arecent news report

Would you spend $500 on a piece of software with more
than 63,000 potential known defects? That's the question
posed in an internal Microsoft memo regarding Windows
2000 obtained by Sm@rt Resdler. According to the
memo, Windows 2000, which makes its debut this week,
contains: More than 21,000 "postponed” bugs, a number
of which Microsoft calls "real problems;” more than
27,000 "BugBug" comments, which are ways to make
something work better or more efficiently; and overall,
more than 65,000 "potential issues" found using Microsoft
Prefix Tool — 28,000 of which could likely be "real"
problems. This news comes on the heels of many market
research firms advising their clients to hold off on up-
grading to Win2000 until the first or second service pack
has been released. Microsoft contends that all software
ships with bugs, and that Windows 2000 is the most rigor-
ously tested software in history. [3]

This product is not alone in shipping with bugs, most
commercial applications have flaws that can affect the cor-
rectness of their results, or indeed whether they deliver
results at all. Networked resources are additionally subject

to uncertainties of connectivity and communication.

Whether this situation represents potential inconvenience or
direrisk depends a great deal on the kind of application and
the environment in which it will be used. Certainly there
are applications — medical inplants and automated nuclear
safety devices, for example — for which no less than the
gold standard of correctness is acceptable. Just as surely,
there are other applications — selecting a restaurant or a
movie, for example — for which incomplete results or even
failure are of little consequence.

By recognizing the many situations in which a reasonable
chance of success (often combined with easily recognizable
failure) is sufficient assurance for practical purposes, we
open the possibility of applying forms of reasoning that are
otherwise excluded, including statistical history, user
recommendations, reputation of developers, etc. An
example of the latter is acceptance of VeriSign [12]
certificates; these authenticate the source but make no
direct commitment about the quality

As a concrete example, if | were shopping for a new car, |
would not hesitate to use a Web-based tool to search for a
car that fits my needs. However, at present | absolutely
would not entrust such a tool with US$20-30,000 and
authorization to actually purchase the car. We need a way
to decide whether a particular software system — for
example, an open resource coalition — is sufficient
trustworthy to be entrusted with the resources for a
particular task.

of failure.

| am interested here in the overall likelihood of acceptable
system behavior— the end-to-end expectation of success.
Moreover, | am interested in gaining assurance about
falible systems built from fallible parts. Improving the
quality of the individual resources is an interesting
question, but adifferent one.

The intrinsic uncertainties of resource coalitions, especialy
network performance and independent management of re-
sources, make this architecture inappropriate for the critical
systems in the upper right corner of the space. However,
the shaded area contains many examples for which
responsible risk management will find the cost of gaining
full confidence higher than the cost of failure and repair.
For such systems, we are interested in sufficient
correctness. whether the system can be trusted to do what
we intend to use it for. The result of the analysis should be
an envelope of allowable behavior that is captured in the
coalition’s credential so that it sets the standard for initial
and ongoing validation.

Sufficient correctness. The degree to which the
system devel oper aspires to establish that the system
meets its specifications, given constraints of time,
cost, and limited knowledge.

4 SOFTWARE HOMEOSTASIS

Changing the standard of quality from absolute correctness

to sufficient correctness for the task at hand allows us to

consider validation techniques that are too unreliable to use
for absolute correctness. The architecture of

Capstrophe i huck resource codlitions provides a particularly
Theac2E quidanes desicss. g00d setting to explore these possibilities
E) Pafient b ical because of the intrinsic uncertainties of both

E irlf;;:rllmm& manitorng implants the resources and the network connectivity.
5 I'm particularly interested in the strategic
2 A choices between prevention and repair.
g s eiting Generally speaking, there are two ways to
@ : ; deal with the possibility of undesirable
¥ 2;“'-}:::‘:;' _ behavior: taking advance measures to
@ i i ”““I"L_'-J ime prevent it, or noticing that it has occurred
8 S and repairing the situation. The former is
il-p-‘;'lj:r::'* T R T appropriate when the consequence of
icen- | Fiding deits ooty misbehavior is high, but it can introduce
e =B inflexibility, bureaucracy, and overhead.

Foll oversight, Elovier £ acformafion,

P opeyion Degres of Overzight

Two factors affect our sense of the significance of less-
than-correct behavior. First, we are usually less concerned
about these failures when we are confident that we'll notice
the problem and try again or perform some other remedial
action. Second, we are usually less concerned about the
failures when the consequence of the failure is small. As
the figure suggests, these two factors define a space in
which we can differentiate the significance of various sorts

wnafended ogevation

Nevertheless, classical correctness concerns
and most software validation techniques are
applied before the product isreleased, and so
they fall firmly in the prevention camp.

In the case of resource coalitions, the independence of the
resources means that they may well change while a coali-
tion is running — so there is no alternative to considering
the repair option as well as the prevention option. So in
addition to introducing informal a priori validation
methods, establishing assurances about resource coalitions

requires the coalitions themselves to incorporate means of
observing system behavior and reacting when it deviates
from the alowable envelope, or even predicting when
behavior islikely to depart the envel ope.

Homeostasis is the propensity of a system to auto-
matically restore its normal, or desired, or equilib-
rium state when something occurs to upset or dis-
turb that state. Software homeostasis as a software
system property refers to mechanisms for monitor-
ing system behavior and dynamically modifying the
systemto repair deviations from expected behavior.

Even after acoalition has been established and its adequacy
established (e.g., it initially operates within the normal
envelope), the constituent resources are subject to various
classes of uncertainty, including

Resource removed from network or moved to new URL by its
proprietor

Resource temporarily unavailable or performance poor
because of network conditions

Structure of resource changed substantially (e.g., directory
structure of web site rearranged)

Format of information delivered by resource changed
Environmental assumptions of resource changed (e.g., needs
upgrade of plugin)
Protocol for accessing resource changed (e.g., registration
now required)
Some of these uncertainties will immediately move the
coalition’s behavior out of the normal envelope; others may
persist indefinitely; still others may be early harbingers of
more serious problems.

The basic architecture of resource coalitions allows for four
classes of internal mechanisms to detect the uncertainties:

Exception mechanisms to intercept behavior outside the
normal envelope by monitoring the communication channel
Self-monitoring mechanisms that periodically run systematic
checks on the resources. If semantic information is available
in the credentials, this may include semantic consistency
Statistical techniques based on machine learning or data
mining to anticipate excursions from the envelope of normal
behavior by analyzing historical data within the envelope.

User-triggered detection
After an aberration is detected, the homeostatic
mechanisms can act to repair the problems. Some actions
can be taken silently and automatically:

React to performance degradation by locating an alternate

resource (e.g., amirror) and switching the service. Go!zilla [1]
is a stand-alone service with some of this functionality.

Notice redirects, parse enough context to verify the presence
of “we’ve moved” messages, and update the coalition’s links

Use an agent similar to Jango [2] or Computershopper [14] to
select the most effective resource at each use

Use a mediator such as the Typed Object Model server [6] to
reconcile discrepancies

Other repairs should be submitted to the user for
ratification or additional information:

Notice unexpected requests for interaction (requests to
download new upgrades or plugins, newly-introduced
registration) and either follow up on the actions after approval
or change the invocation protocol

Other problems may not be susceptible to automatic repair;
in these cases the mechanisms can bring together enough
information to make sensible error reports:

Significant change in data format
Completely dead links

Although this setting appears similar to adaptation in high-
performance and high-assurance systems, the objective
here is a bit different. Here the aspiration is satisfactory
end-to-end performance from uncertain components; there
it is high confidence for selected properties. This setting
provides greater for informal reasoning.

5 EXAMPLE: NOW AND FUTURE

Suppose you operate a food concession at local fairs and
entertainment events. You believe you can improve your
profitability if you adjust the quantities of food you order
based on weather forecasts, road construction reports, and
amount of advance visibility in news reports. You can
currently create a personal web page with links to web sites
that provide relevant information, but you must gather and
synthesize the information manually. Consider instead the
possibility of creating an open resource coalition to monitor
this dynamic information, synthesize the results, and notify
you as appropriate. The tools for creating these coalitions
(for example, extracting the information of interest from
the result of an http: query) are subject of other research
[11]. Here we consider homeostatic mechanisms that the
construction tools might include in the coalition.

1 Current and historical weather conditions: Current weather is
widely available from many sources, in many formats. For
example, the Weather Underground [13] a
http://www.wunderground.com/ provides current conditions
and forecasts for many locations. The various weather sites
regularly restructure their offerings, both by rearranging
information on the city-specific report page and by
reorganizing the page hierarchy. That is, a weather resource
can fal by delivering information that the coalition can't
interpret, or it can fail by reporting a nonexistent page. It can
aso fail transiently because of server or network problems, or
it can be reporting stale or missing information because the
weather resource’s own sources failed. Some of these failures
are transient and can be handled by waiting and retrying; some
can be handled by switching to another weather resource
whose organization and format is aso known, and some
reguire you to intervene (for example, when your primary
weather site is restructured, you should figure out the new
structure before the last of your dternate sites gets
reorganized).

2 Road construction reports: Major construction projects don’t
change as much as the weather, but their current impact on
traffic does. A general construction plan site such as
http://www.real pittsburgh.com/partners/penndot/index.html [7]
can tell you what projects are underway, but it may require
project-specific information such as the construction schedule
at http://www.libertytunnels.com/ [4] to et you know what will
be happening on the day of your event. Sites like these are not
updated as reliably as the weather, so your coalition should
monitor updates and either warn you or seek out other sources
if itis not updated.

3 News archives: Many newspapers maintain on-line archives;
some require registration or subscription. For example, the
New York Times operates a 365-day archive at
http://archives.nytimes.com/archives/ [5]. This archive can be
searched free, though full articles cost $2.50. You can, of
course, search these sites manually, but you probably want to
search several of them automatically and report statistics on the
results. Your statistics may be misleading if some of the news
sites don’t reply to queries, so your coalition should monitor its

response rates and adjust summary statistics accordingly.

6 RESEARCH OPPORTUNITIES

The Internet changes the usual assumptions about system
composition in significant ways. Open resource coalitions
offer a promising architecture for exploiting the new
opportunities. In addition to technical challenges, this
setting provides new challenges in setting expectations for
system performance and for ensuring that these
expectations are satisfied. | propose two research
challenges: exploring criteria for sufficient correctness and
implementing mechanisms for software homeostasis.

ACKNOWLEDGEMENTS

My understanding of Internet-based software systems as
coalitions of independent resources has emerged by trying
to reconcile what | thought | believed with what | saw
around me. Discussions with colleagues in the Carnegie
Mellon School of Computer Science, especially Orna Raz,
David Garlan, Bill Scherlis, and other members of the
Composable Software Group, laid the groundwork. Long
ago, Vic Vyssotsky encouraged me to think about large-
scal e software development as an activity more akin to city
planning than to product manufacture, and I'm gradually
coming to termswith theimplications of that advice.

REFERENCES

1. Aureate Media. Go!zillaMonster Downloads.
http://www.gozilla.com/, February 2000.

2. Excite. Excite Product Finder, powered by Jango.
http://www.jango.com, February, 2000.

3. Mary Jo Foley, Sm@rt Reseller. Bugfest! Win2000 has
63,000 'defects. ZDNet News. Full article at
http://www.zdnet.com/zdnn/stories/news/0,4586,2436920,00.
html, February 2000.

4. TheLiberty Tunnels Interchange Project.
http://www.libertytunnels.com/, April 2000.

5. New York Times. 365-day Archive.
http://archives.nytimes.com/archives/, February 2000.

6. John Ockerbloom. Mediating Among Diverse Data Formats.
PhD Thesis, Computer Science Department, Carnegie Mellon
University, 1998.

7. The Pittsburgh Road Report.
http://www.real pittsburgh.com/partners/penndot/, April 2000.

8. Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Engineering Discipline. Prentice Hall,
1996.

9. Mary Shaw. Truth vs Knowledge: The Difference Between
What a Component Does and What We Know It Does. Proc.
8" International Workshop on Software Specification and
Design, March 1996.

10. Mary Shaw and Paul Clements. A Field Guide to Boxology:
Preliminary Classification of Architectural Stylesfor Software
Systems. Proc COMPSAC '97: Int'l Computer Software &
Applications Conference, 1997, pp. 6-13.

11. Mary Shaw. Architectural Requirements for Computing with
Coalitions of Resources. Position paper for First Working
IFIP Conference on Software Architecture,
http://www.cs.cmu.edu/~Vit/paper_abstracts/Shaw-

Coadlitions_paper.html, 1999.

12. Verisign. Internet Trust Services. http://www.verisign.conV/,
February 2000.

13. Weather Underground. Wunderground.com (current and
forecast weather conditions) http://www.wunderground.com/

14. ZDNet. Computer Shopper.
http://www.zdnet.com/computershopper/index1.html,
February 2000.

