
A Client/Server Case Study for Software Engineering

Students

Shawn A. Butler, Ph.D. Student

Computer Science Department

School of Computer Science

Carnegie Mellon University

5000 Forbes Ave

Pittsburgh, Pennsylvania 15217

Shawnb@cs.cmu.edu

A goal of the Studio course in the Master of Software Engineering program at Carnegie

Mellon University is to bridge the gap between experience and academics. One way to

transfer experience to young software engineers is through case studies designed to focus

students on speci�c software engineering problems. This paper discusses my experience

with developing a case study to improve a student's analytical capabilities and introduce the

importance of considering maintenance and implementation issues in software design. The

case study, developed as a classroom assignment, proved an e�ective tool to teach software

engineering students that there are more things to consider than performance speci�cations.

1: Introduction

Business schools have been using case studies for years to develop a student's analytical

abilities, but they are rarely seen in software engineering courses. Case studies can also be

used to develop the analytical abilities of software engineering students. Furthermore, case

studies can help bridge the gap between the experienced software engineer and the inexpe-

rienced student who has di�culty applying what he or she has learned in the classroom.

A carefully designed case study can focus the students on speci�c software development

problems. This paper discusses my experience with developing and using a case study in

the Software Architecture course for Master of Software Engineering 1 (MSE) program at

Carnegie Mellon University. I used the case study to show that engineering analysis of soft-

ware systems in more than knowing whether the system meets performance requirements

and to teach students about middleware design. The case study gave me an opportunity

to share my experiences of developing client/server systems with students who were just

learning about client/server architectures. I also took advantage of the case study to bridge

the classroom lectures with the studio experience. The Case Study Summary and Analysis

section provides the background, a very brief summary of the case study, and design of the

case study. It concludes with some observations and student feedback about using the case

1The MSE studio course is a yearlong project with real clients that take students through the complete
software development life cycle.

1

Proceedings of the 12th Conference on Software Engineering Education and Training, 1999, pp. 156-165.



study. The Client Server Case Study section is the case study and assignment as given to

the students. Although the setting is �ctional, the system presented in the case study is

similar to real systems with which I have been involved.

2: Case Study Summary and Analysis

2.1: Background

One of the most di�cult challenges for senior software engineers is to help young software

engineers bridge the gap between academic training and experience. Many aspects of soft-

ware engineering are best learned in an applied environment. Software engineering is such a

multi-disciplined �eld that it is di�cult to teach students all aspects. For example, students

with little or no experience usually don't consider maintainability and implementation con-

straints when evaluating technically feasible alternatives. Experienced software engineers

appreciate how those constraints a�ect the �nal outcome of a large software project and

give them due consideration. Designed to help students focus on software system proper-

ties, the case study provided an opportunity to integrate two classes, the MSE Studio and

the Software Architecture class.

2.2: Academic Context

2.2.1: MSE Studio

CMU's studio program is designed to allow students to work with experienced mentors

on a real project applying many of the principles learned through their course work. As a

mentor I quickly realized that students had di�culty performing engineering analyses that

included more than performance considerations. One reason that students concentrate

on performance requirements is that these requirements are usually quanti�able, therefore

testable. It is much more di�cult to assess the maintainability of a system. Issues of

maintainability, implementation, and openess are important design criteria that students

often overlook. The case study provided a situation where these criteria posed signi�cant

design questions.

2.2.2: Architecture Class

Students in the Master of Software Engineering program at Carnegie Mellon University

are required to take the Software Architecture course. In this course, lectures are presented

on several di�erent types of architectures, one of which is client/server architecture. Pipe

and Filter, Batch Sequential, Black Board are just a few of the other architectures covered.

Almost all topics require students to read at least two background papers to have some

some familiarity with the architecture prior to the lecture. Assignments are related to

one of the lecture topics and are usually programming tasks that require implementation

or modi�cation of architectures. I presented the client/server lecture and developed the

associated assignment. Despite the fact that each student is accepted into the program with

at least two years work experience, most of the students were not familiar with client/server

architectures.



The lecture's readings, \Essential Client/Server Survival Guide"[1] and \Client Server

Architecture" [2], were speci�cally selected to familiarize the students with the basic con-

cepts behind client/server architectures and to highlight particular design issues software

engineers face when developing such architectures. During the lecture I pointed out di�er-

ences in middleware products such as message-oriented middleware, CORBA, and trans-

action processing software. In order to prepare the students for the case study analysis, I

shared some of my past experiences in designing and developing client/server systems.

2.3: Case Study Learning Objectives

2.3.1: Goals

The primary goal of using a case study was to focus students on implementation and

maintenance factors in addition to performance requirements when designing and selecting

components for a client/server architecture. A secondary goal of using the case study was to

test its usefulness as a mechanism to develop a student's software engineering skills. The as-

signment was designed to encourage students to focus on implementation and maintenance

issues. To achieve this focus, highly speci�c performance requirements were not stated, and

a number of alternatives could have met the system non-functional requirements. The �nal

learning objective was to provide students with some experience in doing the engineering

analysis and making a recommendation based on that analysis.

2.3.2: Case Study Rationale

Properly constructed case studies, which eliminate distracting details, allow students to

focus on speci�c software engineering problems. I believe they are particularly useful as

vehicles which allow senior software engineers to transfer lessons learned to others who are

less experienced. The case study gives the student experience with a simpli�ed, but realistic

problem that might be encountered after graduation.

As a mentor for the MSE studio program 2, I �nd that students have di�culty incorpo-

rating non- functional requirements into their engineering analysis of design alternatives.

This may be caused by inexperience and lack of understanding of how skill availability,

language, commercial software integration, product maturing, licensing, etc. a�ect the cost

and schedule of a particular design. For example, an inexperienced designer may consider

two designs equivalent because they both meet performance requirements, however, the

designs could have very di�erent maintenance costs. Experienced software engineers un-

derstand the signi�cance of these factors and select designs that achieve the desired balance.

Often in software development, it is di�cult to determine non-functional requirements and

even more di�cult to rank their importance. The case study was designed to direct stu-

dents' attention to a few of the factors that a software engineer might realistically encounter

in developing a client/server system. Middleware selection is an excellent mechanism for

teaching future software engineers about engineering analyses, since it is often the heart of

a system. Software Engineers have many standards and products from which to choose,

and middleware design can be one of his/her most di�cult challenges. When more than one

technically feasible solution exists, selecting the best design is often a function of weighing

non- functional system attributes, such as maintainability, or system development risks.

2Mentors provide advice and guidance on all aspects of the project



To ensure that students understood the emphasis of the case study, maintenance and imple-

mentation considerations were discussed during the lecture so students had some exposure

to them prior to completing their analysis. Also, the assignment speci�cally asked the

students to consider maintenance and implementation in the comparison of alternatives.

2.4: Case Study Summary

The following is a summary of the case study given to MSE students as a homework

assignment. The case study is divided into three sections: 1) A description of the system

and high level requirements, 2) three middleware alternatives under consideration, and 3)

assignment instructions. Students were asked to compare the three alternatives based on

the information contained in the case study.

The �rst section of the case study described a geographically distributed system requiring

high reliability for some transactions but not for all information 
ow. Additional system

requirements included capability for distributing high volumes of non-persistent broadcast

data, adequate security and data integrity, su�cient back-up and recovery, and a heteroge-

neous computing environment. Finally, the assignment required that the designed system

should be scalable and extendable.

The second section of the case study discussed three design alternatives and the student's

task was to compare and select from these three design alternatives. All alternatives were

essentially the same except for the middleware component. The student was also given the

option of creating a di�erent solution as a hybrid of the alternatives. The �rst alternative

relied on the functionality commonly found in commercial database management systems

to distribute information throughout the network. The second alternative took advantage

of the latest, but less mature, Common Object Request Broker Architecture (CORBA)

products to distribute information. The third alternative used a messaging and queuing

product as the middleware. Each alternative had di�erent strengths and weaknesses that

were not obvious in the case study narrative.

The �nal section of the case study o�ered students suggestions on how they should ap-

proach their analysis. Previous assignments in this course showed that the students greatly

bene�ted from suggestions that helped focus their e�orts in the right direction. From ex-

perience I knew that the students would �nd it very di�cult, if not impossible, to �nd

pricing information. In class I emphasized that the assignments would be graded on how

well the student supported the recommendation and not on selecting the \best" solution,

since there really wasn't a \best" solution.

Some non-functional requirements were explicitly stated in the case study while others

could be easily inferred. These requirements were prioritized so it would be easier for the

student to compare alternatives. In addition, issues related to legacy hardware and network

capacity were eliminated to provide a simpler problem and allow the students to concen-

trate on the architecture of the middleware rather than the underlying hardware.

Students were encouraged to ask questions about the system especially if they found them-

selves 
oundering in any area. I estimated that each student should not spend more than

15 hours on the assignment. As a mentor I knew that many students would have di�culty

at some point in the assignment might spend many hours pursuing irrelevant information.

The time estimate did not allow for much wasted time, so I wanted them to ask questions

early.



2.5: Outcome/Analysis of Assignment

Almost all the students recommended a hybrid design for the middleware architecture

because they focused chie
y on performance requirements. Most notably, many students

didn't consider the long term maintainability and implementation costs in their evaluations

of alternatives. Many of the analyses used a matrix to list each system requirement and

rate the alternatives relative to each other. The matrix provided a convenient way to

compare alternatives, but the analysis was not complete unless it compared implementation

and maintenance costs. Although speci�c cost data were not available, the students were

capable of comparing relative costs for each alternative.

Students had trouble organizing data, and distinguishing between useful and non-useful

information. Also, they had di�culty di�erentiating among di�erent types of middleware,

i.e., all products claimed to be able to meet the system requirements equally well. Most of

the students seemed overwhelmed with the information they collected.

Some students complained of the imbalanced e�ort among group members or, that they

had to do the research for each alternative or that their group never met. Other students

said they spent many hours in group discussions without reaching any conclusion. In the

end, most students claimed they spent 25-30 hours on the assignment rather than the 15

that I had predicted.

2.6: Student Feedback

I asked the students to provide feedback on the assignment since I was considering devel-

oping more case studies for software engineering students. The students felt the case study

was an e�ective tool for teaching software engineering students about design tradeo�s in

a client/server architecture. In follow-up discussions they said that the assignment helped

them learn more about implementation and maintenance problems in software develop-

ment. Several students included comments with the assignment. Some students asked for

a follow-up session after the semester was over so they could get feedback on how I would

have approached the case study and to give me feedback on how the assignment could be

improved. Some students also provided feedback to me while their work was in progress.

Their questions gave some insight into how they approached the engineering analysis. The

following feedback and recommendations will be incorporated into the case study for future

courses.

Several students suggested ways to improve the exercise. The most signi�cant was the sug-

gestion that the case study should be developed in two phases. In a two-phase approach,

students should �rst synthesize the case study by developing a set of system requirements

and an analysis plan. Once they provide feedback on the �rst phase they would then pro-

ceed to research and analyze the alternatives. The students felt that the feedback from

the �rst phase would help them focus on the important and relevant information for each

alternative.

Overall, the students felt that the assignment was very challenging and closely represented

the types of problems they expected to encounter upon graduation. Although they cited

several reasons for the di�culty of the assignment, the main reason seemed to be related

to the amount of information available that seemed relevant to the assignment. Each alter-

native appeared indistinguishable because students focused on performance characteristics

rather than implementation e�orts. I believe, MSE mentors could have been particularly



useful in helping students understand how customized software can lead to greater main-

tainability costs over the software system life cycle.

2.7: Analysis/Conclusion

Although the students didn't speci�cally request a solution for the case study, it would

have been constructive to provide an example of an engineering analysis for middleware.

Unfortunately, since the information contained in an engineering analysis can quickly be-

come obsolete, sample analyses used for this assignment requires review (to determine

currency) with each use of the case study. Product capabilities change very quickly. In lieu

of a written engineering analysis, follow up to the assignment should include discussion of

relevant points for inclusion in a good analysis.

As expected, dividing the alternatives within the group worked well in some cases and not as

well in others. Unfortunately, only a few students took advantage of the faculty or mentors

for additional help. Consulting with a mentor might have helped students use their time

more e�ectively, but more importantly it would have been an opportunity for the students

to consult with individuals with direct experience in the �eld. I believe future case studies

should include greater emphasis on, even require, consultation with experienced developers.

Despite the fact that students didn't address maintainability and implementation issues,

they nevertheless learned about software engineering and client/server architectures. Most

importantly they gained some experience from doing the engineering analysis and making

a recommendation based on that analysis.

Case studies may not be an appropriate teaching device for other architectural styles, such

as pipe and �lter designs, but they can certainly teach students about other software engi-

neering challenges. In particular, software quality and requirements analysis might be good

subjects for a case study. I believe that a well designed case study can challenge a student

and better prepare him/her for the types of problems they are most likely to encounter

when developing systems. It is a simple but e�ective tool for that allows software engineers

to impart their experience and wisdom to inexperienced software engineers. Finally, this

experience validated the use of the case study as teaching tool, student feedback provided

suggestions for re�nement that should be included and I suggest that such methods be used

more often in software engineering curricula.

3: Client Server Case Study

3.1: Introduction

ACME Financial is a fast growing company that owes part of its growth to several recent

acquisitions. ACME Financial now wants to consolidate the companies' information tech-

nology resources to eliminate redundancy and share information among the new companies.

The Chief Information O�cer (CIO) has oversight responsibility for the project and has

hired Client/Servers R Us to develop the architecture for the new corporate information

system. Joe Consultant of C/S R Us presented 3 client/server designs to the CIO and is

requesting the CIO to select one. The CIO is not sure which middleware design is best for

the company's goals. The CIO has asked Chris Consultant to present the advantages and

disadvantages for each of the alternatives.



3.2: Background

ACME Financial Incorporated (AF Inc.) is an investment banking company that pro-

vides an on- line service that allows their clients to access account and market information.

ACME Financial Inc. recently acquired several small and medium sized companies through-

out the country, each with their own �nancial and accounting systems. Almost all of the

companies have developed their own application software for their analysts' use in their

daily jobs, but only a few provided on-line account service. The analytical tools rely on

near-real time market data and historical market data. The CIO wants to consolidate the

�nancial and accounting information into a corporate information system that can support

decision support applications for corporate management. Naturally, since the computer

hardware is di�erent for di�erent companies, the CIO expects to upgrade the hardware

to accommodate the new Information Technology (IT) system. The CIO will select the

best analytical software as the standard software used by all company analysts. Each lo-

cal site will be expected to provide an on-line service for their customers. Customers will

be given the necessary application software to access their account information. Finally,

ACME Financial has developed special data mining software that gives them a competitive

advantage. AF Inc. o�ers their customers investment advice based on the information

derived by the data mining software. Each account manager receives the information and

then provides tailored recommendations to each customer based on their portfolio.

3.3: System Requirements

The following list of system requirements re
ects the system's relative priorities:

1. Availability: The CIO's number one priority is high availability. AF Inc. markets their

reliability and feels that most clients choose them for their dependability. The CIO wants

to maximize the system's availability. To achieve high availability, if a regional o�ce cannot

provide support then a customer must always have access to the on-line service through a

di�erent o�ce.

2. Data Integrity: The requirement for data integrity varies within the system. The most

important data are customer's transactions. It is essential that a customer's transaction is

never lost and the system must guarantee that each transaction is completed. In contrast,

data lost from the high data rate inputs, such as Reuter's and the NYSE, are easily recovered

in subsequent broadcasts so it is not critical if some data are lost during a broadcast.

3. Performance: Financial markets are highly volatile; time sensitivity of data is measured

in minutes. Millions can be lost if information is delayed getting to the analysts. The system

must be able to support information broadcast throughout the network.

4. Security: The CIO is concerned about the security of the data mining software and

the information produced by the data mining software. The Chief Executive O�cer thinks

the data mining information software provides a competitive advantage for the company.

If an unauthorized user had access to the information they could steal the data mining

applications or steal the information produced by the data mining software. In either case,

the perpetrator could make the same investment recommendations as AF Inc. account

managers. Therefore, if competitors had access to the information the results could be

�nancially devastating to the company. The CIO is concerned that a competitor could

pose as a customer and hack into the highly sensitive information through his on-line

service account.



5. Growth: The CIO envisions an incremental migration process to install the new system

due to the magnitude of the change. Also, he expects that AF Inc. will continue to

grow and acquire more companies. The CIO wants to be able to develop more application

software as new customer services are added. The CIO also wants to add more near-real

time information sources to the system.

6. Backup and Recovery: The CIO understands that the system will encounter problems

from time to time. A key factor in determining the system's success is how quickly the

system can recover from a failure. Backup and recovery must be smooth and non-disruptive.

One way to ensure that the system can easily recover from a system crash is to make sure

the data is duplicated elsewhere on the system. The corporate database is the primary

back up for each of the regional o�ces.

Each local o�ce (Northeast, Northwest, Southeast, Southwest) has accesses a regional

information hub. Local o�ces use client software to access the local application server.

These application servers access the local databases for almost all of the information needed

on a daily basis. For access to information needed less frequently the application software

should access the central database at corporate headquarters. Each regional database

has only the subset of information that is relevant for its area, whereas the corporate

headquarters maintains all of the information from each region as well as data that is

unique to corporate applications, such as additional accounting and company �nancial

information. The corporate o�ce is also responsible for the data mining software and

information. Each of the regional databases is connected with high capacity links to the

corporate database. Finally, the corporate o�ce receives information from Reuter's, NYSE,

NASDAQ, and other �nancial markets. The information 
ow 
uctuates daily from 30 40

KBps to 4 5 MBps. Twenty-�ve percent of the information is immediately broadcast to

the regional o�ces to support the on-line account service. All the information is �ltered

and stored in the database.

3.4: Architectural Alternatives

Alternative I: The Database Management System This alternative takes advantage

of the extended functionality provided by the popular relational database management

companies, such as Oracle and Sybase. All information is delivered into the system where

it is immediately stored into one of the databases. The relational database management

software is responsible for the distribution of information throughout the system. Clients

communicate with the databases through Standard Query Language (SQL). Corporate and

regional databases are kept synchronized using features supplied by the RDBMS software.

Transactions are guaranteed by using special Transaction Processing Software. The vendor-

supplied RDBMS software is responsible for back-up and recovery of all the databases. Data

security is handled at the row level within each database. This means that clients can only

receive records for which their user has permission. Existing application software may have

to be modi�ed to use SQL.

Alternative II: Common Object Request Broker Architecture (CORBA) This solution

depends on CORBA to tie together the clients and databases. CORBA is responsible for

distributing data across the system. The RDBMS software is still responsible for the back-

up and recovery, but the databases are kept synchronized using CORBA as the primary

transport mechanism for the data. Clients, application servers, and databases communicate

to each other through CORBAs transport mechanism. Existing application software would



be wrapped in IDL to communicate with other applications. Special near-real time handling

application software would send the information to each of the regional o�ces where it would

be directed to clients that subscribe to the information.

Alternative III: Message and Queuing (M&Q) The message and queuing design uses

commercial M & Q software combined with a transaction processing product to ensure

customers transactions are completed. Dec Message Queue and MQ Series are some of

the leading products for messaging and queuing software. Clients communicate to other

entities using messages. Messages are deposited in queues and the message and queuing

middleware is responsible for message distribution to the appropriate clients. The software

applications will be modi�ed to send and receive messages from queues.

3.5: Questions to Answer (Total 80 points)

As before you should discuss all of these questions with your teammates, but your �nal

write-up should be yours alone. Doing research on speci�c products for the assignment

should certainly be a team activity. The total length of the write-up should not exceed 5

pages.

1. Describe in more detail the architecture of each alternative. Some services are auto-

matically provided when a product is purchased, others must be developed to satisfy the

system requirements. You should describe what services are automatically provided by

some of the products, which services would need to be developed, and how services should

be distributed across the network. (30 points)

2. Evaluate each of the alternatives against the system requirements. Discuss the advan-

tages and disadvantages of each of the alternatives. Assume that the hardware will support

all solutions. In your analysis you might consider which alternative gives the system de-

velopers the most 
exibility, which alternative provides easiest maintenance, and which

alternative requires the least modi�cation to the current system. (30 points) 3. Prioritize

each alternative or suggest a di�erent solution if you think it superior to the 3 presented

alternatives. (20 points)

Suggestions on how to proceed:

1. There is not enough information to make an informed decision about each of the

alternatives. As a team, allot a percentage of your time to discover which products o�er

what type of services. You do not have enough time to do a complete market survey so

pick 2-3 products.

2. If you depend only on marketing information you may �nd that the alternatives are

equivalent. So you might want to go beyond the market literature in doing your research

for this assignment. 3. As you do your analysis, pay particular attention to some of the

following kinds of issues:

3. How well does the architecture support the basic system functionality requirements? b.

How much run time performance overhead does the architecture impose? c. How well will

speci�c products handle the high volume of data? d. How will each architecture handle

occasional peak loads? e. How easy is it to customize the system to new requirements?

4. In your analysis, do not consider the actual product cost. (It may be impossible to get

actual product costs anyway, so do not waste time doing so.) Evaluate cost with respect



to the amount of customized software necessary to implement each alternative, long term

maintenance, time to implement, 
exibility, etc.

5. If you don't understand something, or think something is important that hasn't been

mentioned, ask about it. My e-mail is shawnb@cs.cmu.edu . I will post clari�cations on

the class bulletin board.

References

[1] Orfali, Harkey, and Edwards. The Essential Client Server Survival Guide, 2nd edition.

Van Nostrand Reihold. Chapter 10

[2] Alex Berson. Designing Distributed Data Management Systems. Client Server Archi-

tecture McGraw-Hill. Chapter 2


