

1

1. Introduction

Software architecture is concerned with system structure—organization of the software,
assignment of responsibilities to components, and assurance that the components’ interac-
tions satisfy the system requirements [GS93, PW92]. Software developers recognize a num-
ber of distinct architectural styles. Many of these styles are defined informally and
idiosyncratically. Our purpose here is to clarify the distinctions among styles as a first step in
helping designers choose among the styles.

By

architectural style

 we mean a set of design rules that identify the kinds of components and
connectors that may be used to compose a system or subsystem, together with local or global
constraints on the way the composition is done.

Components

, including encapsulated sub-
systems, may be distinguished by the nature of their computation (e.g., whether they retain
state from one invocation to another, and if so, whether that state is available to other compo-
nents). Component types may also be distinguished by their packaging—the ways they
interact with other components. Packaging is usually implicit, which tends to hide important
properties of the components. To clarify the abstractions we isolate the definitions of these
interaction protocols in

connectors

 (e.g., processes interact via message-passing protocols;
unix filters interact via data flow through pipes). It is largely the interaction among compo-
nents, mediated by connectors, that gives different styles their distinctive characteristics.

The style of a specific system is usually established by appeal to common knowledge or intu-
ition. Architectures are usually expressed in box-and-line diagrams and informal prose, so
the styles provide drawing conventions, vocabulary, and informal constraints (e.g., limiting
topology or numbers of components of some type). Recently there has been some effort to
identify and define styles more precisely and systematically [G+94, SG96, Sh96]. A few styles
have been formalized or extensively analyzed [A+95, AG94, An91, Ni86]. Space does not per-
mit us to offer primary definitions of specific styles here.

In this paper we begin to organize and classify some of the styles that appear in software
descriptions. By doing so we aim to

•

Establish a

uniform descriptive standard

 for architectural styles—make the vocabulary
used to describe styles more precise and shareable among software architects.

•

Provide a systematic

organization to support retrieval

 of information about styles.

•

Discriminate

 among different styles—bring out significant differences that affect the
suitability of a style for various tasks; show which styles are refinements of others.

•

Set the stage for organizing advice on

selecting a style

 for a given problem.

This classification is an intermediate step toward supporting architectural design decisions.
Minimally, it will help the designer focus on important design issues by providing a checklist
of topics to consider, thereby setting expectations for elements to include in the design. Even-
tually the classification should provide guidance for recognizing which styles are important
candidates for shaping the solution.

This work shares motivation with recent work on problem frames and on patterns. Jackson’s
work on problem frames [Ja96] does for classes of problems what we are doing for classes of
solutions. Jackson distinguishes classes of problems on the basis of the kinds of information
provided and kinds of results expected. In the space of solutions, the patterns community
concentrates on documenting proven solutions, including architectural styles, in the context
of the specific kinds of problem for which each solution is useful [GoF95, CS95, Sh96]. Both

2

Jackson and the patterns community begin with observation of things that work and work
toward principled models and guidance. The present work is precisely in that spirit.

Much of computer science includes phenomena about which we do not yet have well-estab-
lished scientific truths but do have interesting observations and generalizations. Brooks has
proposed recognizing three kinds of results:

findings

 (well-established scientific truths),

obser-
vations

 (reports on actual phenomena), and

rules-of-thumb

 (generalizations, signed by an
author but perhaps not fully supported by data). His criteria for judging quality are truthful-
ness and rigor for

findings

, interestingness for

observations

, usefulness for

rules-of-thumb

, and
freshness for all three [Br88]. This paper presents observations (on discriminating among
styles) and some rules-of-thumb (guiding their use in design). We have based our classifica-
tion on an extensive set of system descriptions. The work is empirical and observational—we
try to account for the descriptions that designers actually write, as opposed to inventing
styles that may be easy to classify but are of no apparent practical import.

Section 2 presents the classification of architectural styles, using feature categories explained
in Section 3. Section 4 shows that the classification is feasible extensible by using it to elabo-
rate variants of two major styles that have appeared in the literature. Section 5 discusses the
role of style in design, including style support in architecture description languages, and pro-
vides some rules of thumb for choosing a style on the basis of the problem at hand.

2. Styles for Software Architectures

In this section we classify a set of architectural styles that have been described previously
(usually informally) in published literature. Software designers use an extensive descriptive
vocabulary to explain their system organizations. They use the vocabulary informally, almost
casually. Often a single label or graphical element is used with different meanings. Through a
rigorous classification we attempt to capture the common meanings.

Table 1 shows the resulting classification. It is not complete, but it spans much of the diver-
sity found in practice. Each row describes a style. Columns correspond to the feature catego-
ries as described in Section 3. Indented rows describe specializations of the styles in the
primary rows they follow. Because this is a multidimensional classification, it is possible for a
style to be a variant of more than one broader style; we handle this with cross-references.

We describe the styles in their pure forms, although they seldom occur that way. Real sys-
tems hybridize and amalgamate the pure styles, with the architect choosing useful aspects
from several in order to accomplish the task at hand. Our classification does not impede this
heterogeneity, but rather enhances the selection and blending process by making stylistic
properties explicit. Understanding the pure forms is helpful in understanding or explaining
the hybrids, and perhaps also in recognizing and eliminating unnecessary heterogeneity.
Indeed, the classification activity can point out common styles that are hybrids of other
styles, such as lightweight processes.

After looking through the table many readers will say, “But that’s not what

I

 mean by style
X!”. Indeed, it may not be. But it is, as far as we can tell, what

someone

else

 means. This is an
indication that different readers use style names in different ways. A primary objective of this
classification is to expose these differences and enable constructive discussion.

3

3. Classification Strategy

A system designer’s primary impression of an architecture often keys on the character of the
interactions among components. Our classification strategy reflects this. The major axes of
classification are the control and data interactions among components. We make finer dis-
criminations within these dimensions.

Our analysis of common architectural styles suggests that they are discriminated by the fol-
lowing categories of features:

•

which kinds of components and connectors are used in the style

•

how control is shared, allocated, and transferred among the components

•

how data is communicated through the system

•

how data and control interact

•

what type of reasoning is compatible with the style

These categories form the basis of a descriptive classification that shows essential similarities
and differences among styles. Features that distinguish styles also help us understand why a
particular style is an appropriate solution for one type of problem and not for another.

This classification is based on coarse-grained descriptions of properties, a technique often
used for qualitative descriptions. It allows significant, yet comprehensible, distinctions to be
made without risk of combinatorial explosion. Finer distinctions can be made, when appro-
priate, in refinements of the primary analysis; this is done for two examples in Section 4. It is
useful to think of each of these feature categories as defining one dimension of a multidimen-
sional space [La90]. A specific style then corresponds to a point in the space and a family of
styles corresponds to a subspace.

In a multidimensional space, it is possible for two subspaces to intersect. For example, light-
weight processes, which are usually thought of as a variant of communicating processes,
share a name space. Since this is added capability, they are not a specialization (i.e., subspace)
of processes. The shared name space enables data sharing, which positions lightweight pro-
cesses as a variant of shared data as well. Design with lightweight processes must therefore
recognize the problems and advantages of both parents. The overlap is reflected in Table 1.

An alternative way to distinguish styles would be through a hierarchical taxonomy [PN86].
Such taxonomies are structured as decision trees with the taxonomized population at the
leaves and discriminating questions on the interior nodes. Such taxonomies may be more
expressive than tabular classifications because they can use different discrimination criteria
at different points. However, they show similarities less well than design spaces do, because
they can describe only the families that correspond to subtrees, not families along some other
dimension (or several dimensions). Section 4 shows how we can use the additional descrip-
tive power of the design space to explore regions of it in detail.

The following sections detail each feature category.

3.1 Constituent Parts: Components and connectors

Components and connectors are the primary building blocks of architectures. A component
is a unit of software that performs some function at run-time. Examples include programs,
objects, processes, and filters. A connector is a mechanism that mediates communication,

4

coordination, or cooperation among components. Implementations of connectors are usually
distributed over many system components; often they do not correspond to discrete ele-
ments of the running system. Examples include shared representations, remote procedure
calls, message-passing protocols, data streams, and transaction streams.

We focus on the

abstractions

 used by designers in defining their architectures. In practice,
most of these elements are ultimately

implemented

 in terms of processes (as defined by the
operating system) and procedure calls (as defined by the programming language). More
abstract connectors include format conversions that allow two otherwise-incompatible com-
ponents to share data and connectors augmented by performance monitoring, authentica-
tion, or audit-trail capabilities.

The allowable kinds of components and connectors are primary discriminators among styles.
Selecting the types of constituent parts does not, however, uniquely identify the style. Con-
trol disciplines, data organizations, and the interaction of control and data all affect style dis-
tinctions. So do finer distinctions within types of components and connectors, some of which
appear in Table 1. For example, both

program

 and

transducer

 refine

process

;

procedure calls

 may
be

local

 or

remote

, and their binding may be

dynamic

 or

static

;

batch data

,

data stream

, and

con-
tinuous refresh

 are all forms of

data flow

.

A taxonomic treatment of architectural components and connectors, filling out the concep-
tual framework begun here, appears elsewhere [K+96].

Components and connectors also provide a clustering criterion for the styles in Table 1.
Members of a cluster share similar types of components and/or connectors. These clusters
are not the only ones possible; the styles could be grouped differently by choosing other fea-
tures as their organizing basis. Indeed, different groupings may be desirable, especially if
they correspond to the language of a problem description. However, the component/connec-
tor-based clusters enjoy a certain intuitive clarity, reflect how many practitioners tend to
describe styles, and mirror previous

a priori

 classification efforts [GS93].

3.2 Control issues

Control issues describe how control passes among components and how the components
work together temporally. Control issues include:

•

Topology

: What geometric form does the control flow for the system take? A pipeline
often has a

 linear

 (non-branching) or at least an

acyclic

 control topology; a main-pro-
gram-and-subroutines style features a

hierarchical

 (tree-shaped) topology; some server
systems have

star

 (hub-and-spoke) topologies; a style consisting of communicating se-
quential processes may have an

arbitrary

 topology. Some architectures specify quite
specific topologies. Within each general topology it may be useful to stipulate the di-
rection in which control flows. The topology may be static or dynamic; this is deter-
mined by the binding time of the partner as described below.

•

Synchronicity

: How dependent are the components’ actions upon each others’ control
states? In a

lockstep

 system, the state of any component implies the state of all others;
for instance, a batch sequential system’s components are in lockstep with each other,
since one doesn’t begin execution until its predecessor finishes. SIMD (same instruc-
tion, multiple data) algorithms for massively parallel machines also work in lockstep.
In

 synchronous

systems, components synchronize regularly and often, but other state
relationships are unpredictable.

 Asynchronous

 components are largely unpredictable

5

in their interaction or synchronize once in a while, while

opportunistic

 components
such as autonomous agents work completely independently from each other in paral-
lel.

Lockstep systems can be

sequential

 or

parallel

, depending on how many threads
of control run through them. Other forms of synchronicity imply parallelism.

•

Binding time

: When is the identity of a partner in a transfer-of-control operation es-
tablished? Some control transfers are pre-determined at program-

write

 (i.e., source
code) time,

compile

 time, or

invocation

 time (i.e., when the operating system initializes
the process). Others are bound dynamically while the system is

run

ning.

3.3 Data issues

Data issues describe how data moves around a system. Data issues include:

•

Topology

: Data topology describes the geometric shape of the system’s data flow
graph. The alternatives are as for control topology

•

Continuity

: How continuous is the flow of data throughout the system? A

continuous

-
flow system has fresh data available at all times; a

sporadic

-flow system has new data
generated at discrete times. Data transfer may also be

high-volume

 (in data-intensive
systems) or

low-volume

 (in compute-intensive systems).

•

Mode

: Data mode describes how data is made available throughout the system. In an
object style, it is

passed

 from component to component, whereas in any of the shared
data systems it is

shared

 by making it available in a place accessible to all the sharers.
If the components tend to modify it and re-insert it into the public store, this is a

copy-
out-copy-in

 mode. In some styles data is

broadcast

 or

multicast

 to specific recipients.

•

Binding time

: When is the identity of a partner in a transfer-of-control operation es-
tablished? This is the data analogy of the same control issue,

3.4 Control/data interaction issues

Interaction issues describe the relationship between certain control and data issues.

•

Shape

: Are the control flow and data flow topologies substantially isomorphic to each
other?

•

Directionality

: If the shapes are substantially the same, does control flow in the

same

direction as data or the

opposite

 direction? In a data-flow system such as pipe-and-fil-
ter, control and data pass together from component to component. However, in a cli-
ent-server style, control tends to flow into the servers while data flows into the clients.

3.5 Type of reasoning

Different classes of architectures lend themselves to different types of analysis. A system of
components operating asynchronously in parallel yields to vastly different reasoning
approaches (e.g., nondeterministic state machine theory) than a system that executes as a
fixed sequence of atomic steps (e.g., function composition). Many analysis techniques com-
pose their results from analysis of substructures, but this depends on the ability to combine
sub-analyses. The fit of an analysis technique to an architecture is enhanced if the software
organization matches the analysis organization—that is, if software substructure and analy-

6

sis substructure are compatible.

Thus, different architectural styles are good matches for different analysis techniques. Your
choice of architecture may be influenced by the kinds of analysis you require.

4. Refinements of Styles

The classification scheme of Section 3 maps out the space of architectures, but it does not cap-
ture all the richness found in nature. Each row can be elaborated to capture more detailed
distinctions. These distinctions may matter because they determine whether pre-existing
parts can be used together, or because they affect system performance or other system-level
behavioral quantities.

In this section we expand Table 1 by partially elaborating two well-known families of styles
that have been extensively analyzed by others. We do so with the intent of validating the
classification: If the feature categories capture distinctions observed by others and the table
extends smoothly, this increases our confidence in their relevance.

4.1 Pipe-and-Filter Systems and Dataflow networks

Dataflow networks describe systems whose components operate on large, continuously-avail-
able data stream. The components are organized in arbitrary topologies that stream the data
with non-transforming connectors. What happens when restrictions are placed on the topol-
ogies?

Abowd, Allen, and Garlan analyzed what they call the pipe and filter style by way of formaliz-
ing the semantics of architectural styles (as opposed to cataloguing their construction, as we
have done). They identify three (overlapping) variations of the pipe and filter style [A+95]:

• systems without feedback loops or cycles (acyclic)

• pipelines (linear), and

• systems with only fan-out components.

Their overall pipe and filter style corresponds to the dataflow network style of Table 1: the
components are elements that asynchronously transform input into output with minimal
retained state—i.e., transducers. The transducers are connected in various topologies by
high-volume data flow streams.

The pipeline sub-style of [A+95] can be seen in Table 2 to be a specialization of dataflow net-
work—its data and control topology is restricted from “arbitrary” in the general form to “lin-
ear” in the specialized form but the classifications are otherwise identical. The fan-out and
acyclic sub-styles of [A+95] similarly differ from the general form only by imposing different
topological restrictions.

Unix pipes and filters, a specialization not treated in [A+95] but widely used elsewhere, can
be seen to be a sub-specialization of the pipeline style. The hook-ups can only be specified at
the time a program—script, in this case—is written, or when the command is given to the
operating system. Further, its components are those that accept ascii streams, not generalized
data streams.

The classification shows that all of these styles (acyclic, pipelines, fan-out, Unix pipes and fil-

7

ters) indeed comprise a family that we have called “dataflow network”, in which the mem-
bers are distinguished mainly by topological restriction. Table 2 shows the relationships
among the major style and its family members.

4.2 Cooperative Message-Passing Processes

Andrews [An91] analyzed and catalogued a family of styles based on processes communicat-
ing with each other via message-passing. This family corresponds to the communicating pro-
cesses (CP) style in Table 1. Andrews identifies eight variants. The next sections show how
each variant is a specialization of the basic CP style.

One-way data flow through networks of filters. This is a version of the dataflow network
substyle described in Section 4.1 implemented with communicating processes; in this version
the implementation with messages intrudes on the data flow abstraction. A piece of data
enters the system and makes its way through a series of transformations, each transform
accomplished by a separate process. The series need not be linear; Andrews gives an example
of a tree of processes forming a sorting network. To analyze this sub-style, we note how it dif-
fers from both main styles that it resembles. To cast it as a specialization of dataflow net-
works, we (a) restrict its data and control topologies to one-way flows, and (b) relax its data-
handling requirements from continuous to sporadic. To cast it as a specialization of commu-
nicating processes we restrict its topologies from arbitrary to one-way and its synchronicity
to asynchronous. That is, this style lies within two subspaces of our design space.

Requests and replies between clients and servers. Clients and servers, a popular style,
already occurs in Table 1. It can already be seen to be a specialization of the CP style in which
the topologies, synchronicity, and mode are restricted from the general form. This is the naive
form, which ignores the usual requirement to maintain state for an ongoing sequence of
interactions between the client and the server.

Table 1: Specializations of the dataflow network style

Style

Constituent parts Control issues Data issues
Ctrl/data

interaction

Comp-
onents

Conn-
ectors

Topo-
logy

Synch-
ronicity

Bind-
ing

time

Topo-
logy

Contin-
uity

Mode
Bind-

ing
time

Isomor-
phic

 shapes

Flow
dir-

ections

Data flow styles: Styles dominated by motion of data through the system, with no “upstream” content control by recipient
Dataflow
network [B+88]

trans-
ducers

data
stream

arbi-
trary

asynch

i, r

arbi-
trary

cont lvol
or hvol passed

i, r

yes same

• Acyclic
[A+95] acyclic acyclic

• Fanout
[A+95]

hier-
archy

hier-
archy

• Pipeline
[DG90,
Se88, A+95]

linear linear
-Unix pipes
and filters
[Ba86a]

ascii
stream i i

Key to column entries

Synchronicity
Binding time
Continuity

asynch (asynchronous)
i (invocation-time), r (run-time)
cont (continuous), hvol (high-volume), lvol (low-volume)

8

Back-and-forth (heartbeat) interaction between neighboring processes. A heartbeat algo-
rithm causes each node in the process graph to send information out (expand), and then
gather in new information (contract). An example of applying this algorithm is to discover
the topology of a network. On each “beat”, each process (representing a processor) commu-
nicates with everyone it can, broadcasting its idea of the topology. Between beats, every pro-
cess assimilates the information just sent to it, combining it with its current idea of the layout.
The computation terminates when a completion condition has been met. Andrews proposes
two variations of this sub-style, depending upon whether or not shared memory is used. We
model this form of process interaction by restricting the synchronicity of the CP style to lock-
step-parallel (although asynchronous versions are possible) and reflecting the shared-data/-
distributed-data choice by describing the data and control topologies appropriately.

Probes and echoes in graphs. Probe/echo computations work on (incomplete) graphs. A
probe is a message sent by a process to a set of successors; an echo is the reply. Probe/echo
algorithms can be used to compute a depth-first search on a graph, discover network topolo-
gies, or broadcast using neighbors. Specializing the CP style by restricting the topologies to
an incomplete graph, synchronicity to asynchronous, data mode to passed, and flow direc-
tions to same describes the probe/echo sub-style.

Broadcasts between processes in complete graphs. Broadcast algorithms use a distin-
guished process to send a message to all other processes. An example is to broadcast the
value of a central clock in a soft-real-time system. Modelling the broadcast style in our classi-
fication simply requires restricting the data topology to star (for that portion of the computa-
tion involved in the broadcast) and the data mode to broadcast; the control topology remains
arbitrary.

Token passing along edges in a graph. Token-passing algorithms use tokens (a special kind
of message) to convey temporal rights to the processes receiving the tokens. Token-passing is
used, for instance, in algorithms to compute the global state of a distributed asynchronous
system, or to implement distributed mutual exclusion of a shared resource. Token-passing is
a refinement of the CP style that restricts the synchronicity to asynchronous, data mode to
passed, and flow direction to same. The topologies remain arbitrary, and the continuity
remains sporadic low-volume.

Coordination between decentralized server processes. In this model, identical servers are
replicated to increase the availability of services (for example, in case of the failure or backlog
of a single server). The essence of the algorithm is to provide the appearance to clients of a
single, centralized server; this requires that the servers coordinate with each other to main-
tain a consistent state. One server cannot change the “mutual” state without agreement of a
sufficient majority of the others. This weighted voting scheme is implemented by passing
multiple tokens among the servers. Architecturally, this algorithm is identical to the token-
passing sub-style discussed above.

Replicated workers sharing a bag of tasks. Unlike decentralized servers that maintain mul-
tiple copies of data, this style provides multiple copies of computational elements. The repli-
cated-workers style is a primary tool for single-instruction, multiple-data (SIMD) machine
programmers. Parallel divide-and-conquer is one of its manifestations. One process can be
the administrator, generating the first problem and assigning sub-problems. Other processes
are workers, solving the sub-problems (and generating and administering further sub-prob-
lems as necessary). Sub-solutions bubble back up a hierarchical path until the original
administrator can assemble the solution to the global problem. To see SIMD algorithms as a

9

sub-style of CP, we restrict the topologies to hierarchical, the synchronicity to synchronous,
mode to passed or shared (depending on whether or not shared data is used) and flow direc-
tion to same.

Table 3 summarizes these descriptions.

5. Using Styles in System Design

5.1 Supporting Styles in Architectural Design Languages

Specific styles are supported by a variety of frameworks and architectural description lan-
guages (ADLs) [Ga95]. For instance, every ADL in one survey was able to express a pipe-
and-filter style, though few provided it as a built-in primitive [Cl96]. Some ADLs, however,
go beyond that to support a diverse and open-ended (architect-defined) collection of styles.
Two languages do this: Aesop [G+94] and UniCon [S+95].

Aesop is an object-oriented notation and system for developing style-specific architectural
development environments. Its basic elements of architectural description are components,

Table 2: Specializations of the interacting processes style

Style

Constituent parts Control issues Data issues
Ctrl/data

interaction

Comp-
onents

Connec-
tors

Topo-
logy

Synch-
ronicity

Bind-
ing

time

Topo-
logy

Contin-
uity

Mode
Bind-

ing
time

Isomor-
phic

 shapes

Flow
dir-

ections

Interacting process styles: Styles dominated by communication patterns among independent, usually concurrent, processes

Communicating
 processes
[An91, Pa85]

processes
message
protocols

arb
any but

seq

w, c, r

arb

spor
lvol

any w, c, r possibly
if iso-

morphic
either

One-way data
flow, networks
of filters

linear asynch linear passed

w, c

yes same

Client/server
request/reply star synch star passed yes opposite

Heartbeat hier ls/par
hier or

star

passed
shared
ci/co

no same

Probe/echo
incom-
plete
graph

asynch
incom-
plete

 graph
passed yes same

Broadcast arb asynch star bdcast no same
Token passing

arb asynch arb. passed yes sameDecentralized
servers
Replicated
workers hier synch hier passed

shared yes yes

Key to column entries
Topology
Synchronicity

Binding time
Continuity
Mode

hier (hierarchical), arb (arbitrary), star, linear (one-way)
seq (sequential, one thread of control), ls/par (lockstep parallel), synch (synchronous), asynch (asynchro-

nous), opp (opportunistic)
w (write-time--that is, in source code), c (compile-time), i (invocation-time), r (run-time)
spor (sporadic), lvol (low-volume)
shared, passed, bdcast (broadcast), mcast (multicast), ci/co (copy-in/copy-out)

10

connectors, and configurations. Styles are created by subtyping; style-specific vocabularies of
design elements are created by defining the desired component types as subtypes of the
generic component, the desired connector types as subtypes of the generic connector, and so
on. Configuration rules are captured as part of the subtype definitions.

UniCon also defines components and connectors as the basic elements. Here, however, the
language provides a collection of specific component and connector types. The set is manu-
ally extensible, and specializations are defined via property lists. Styles will be defined as
restrictions on the available vocabulary.

5.2 Choosing Styles to fit the Problem

We expect that the distinctions established in this classification provide a framework for
offering design guidance of the general form, “If your problem has characteristic X, consider
architectures with characteristic Y”. This form of design guidance was explored for the user
interface component of systems by Lane [La90]. Lane characterized both his requirement and
implementation domains as design spaces. He cast his design guidance as rules that mapped
points in the requirement space to points in the implementation space with variable, signed
weights. He wrote similar rules to describe compatibility of alternatives in the implementa-
tion space. This provided the ability to recommend candidate implementations for given
problems.

The choice of an architectural style to fit a requirement is a similar task. We expect that an
approach based on Lane’s will be fruitful. However, organizing this information is a major
undertaking for each domain. In the interim, we can at least state rules of thumb. Some of
these are stated explicitly in analyses of architectural styles by cited authors; others are obser-
vations that derive directly from our classification.

• If your problem can be decomposed into sequential stages, consider batch sequential
or pipeline architectures.

• If in addition each stage is incremental, so that later stages can begin before
earlier stages finish, consider a pipeline architecture.

• If your problem involves transformations on continuous streams of data (or on very
long streams), consider a pipeline architecture.

• However, if your problem involves passing rich data representations, avoid
pipelines restricted to ASCII.

• If a central issue is understanding the data of the application, its management, and its
representation, consider a repository or abstract data type architecture. If the data is
long-lived, focus on repositories.

• If the representation of data is likely to change over the lifetime of the program,
then abstract data types can confine the change to particular components.

• If you are considering repositories and the input data is noisy (low signal-to-
noise ratio) and the execution order cannot be predetermined, consider a
blackboard [Ni86]

• If you are considering repositories and the execution order is determined by a
stream of incoming requests and the data is highly structured, consider a
database management system.

• If your system involves controlling continuing action, is embedded in a physical sys-

11

tem, and is subject to unpredictable external perturbation so that preset algorithms go
awry, consider a closed loop control architecture [Sh95].

• If you have designed a computation but have no machine on which you can execute
it, consider an interpreter architecture.

• If your task requires a high degree of flexibility/configurability, loose coupling be-
tween tasks, and reactive tasks, consider interacting processes.

• If you have reason not to bind the recipients of signals from their originators,
consider an event architecture.

• If the tasks are of a hierarchical nature, consider a replicated worker or heartbeat
style.

• If the tasks are divided between producers and consumers, consider
client/server.

• If it makes sense for all of the tasks to communicate with each other in a fully
connected graph, consider a token passing style.

6. Conclusion

Architectural styles are becoming the lingua franca of architecture-level design, in the same
way that design patterns are moving to center stage in establishing the vocabulary and defin-
ing the solution space for finer-grained design problems. In order to capitalize on the shared
experience represented by the repeated use of styles by system builders, it is necessary to
establish a common vocabulary and a common descriptive framework for communicating
about styles and the circumstances in which they are useful.

This paper provides such a framework. Based on the components and connectors that popu-
late a style and how control and data are handled throughout the style, the framework serves
as a set of distinguishing features for styles. Finer-grained distinctions may be made, leading
to the notion of style families. We have shown how the framework accommodates two com-
monly-cited styles, communicating processes and dataflow networks. Finally, we have sug-
gested how the framework can be used as the basis for imparting design guidance for
choosing and using styles, by identifying those features that dominate the problem at hand.

The way now open for future work, which ranges from refinements of this classification and
finer-grained characterizations of these and other styles, to building style-based architecture-
level design environments that include analytical tools appropriate for each style.

7. Acknowledgments

The style classification and collection of rules of thumb have been developed over a period of several
years. We particularly appreciate the ongoing involvement of David Garlan, Rob DeLine, and Greg
Zelesnik in the discussion. Many others have offered useful advice, particularly our colleagues in the
Composable Systems research group, members of the Software Architecture Reading Group and the
students in Garlan and Shaw’s software architecture course.

This work has profited from efforts of the Software Engineering Institute’s Software Architecture
Analysis Method (SAAM) group, especially Len Bass, Gregory Abowd, and Rick Kazman, who have
provided a taxonomic classification of architectural elements (components and connectors), which
provides the conceptual continuation of the work presented here.

12

This work has been supported by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency, under grant F33615-93-1-
1330 and by a grant from Siemens Corporation. It represents the views of the author and not of Carn-
egie Mellon University or any of the sponsoring institutions The Software Engineering Institute is sup-
ported by the U. S. Department of Defense.

8. Bibliography
[A+95] Gregory D. Abowd, Robert Allen, David Garlan. Formalizing Style to Understand Descriptions of Soft-

ware Architecture. ACM Transactions on Software Engineering and Methodology, 4(4):319-364, October 1995.

[AG94] Robert Allen and David Garlan. Formalizing Architectural Connection. In Proc 16th International Confer-
ence on Software Engineering, 1994.

[An91] Gregory R. Andrews. Paradigms for Process Interaction in Distributed Programs. ACM Computing Sur-
veys, 23(1):49-90, March 1991.

[B+88] M. R. Barbacci, C. B. Weinstock, and J. M. Wing. Programming at the Processor-Memory-Switch Level.
Proc 10th Int’l Conf on Software Engineering, April 1988.

[Ba86a] M. J. Bach. The Design of the UNIX Operating System. Software Series, Prentice-Hall 1986, sec 5.12, pp. 111-
119.

[Ba86b] Robert M. Balzer. Living with the Next Generation Operating System. Proc 4th World Computer Conf.,
September 1986.

[Be90] Laurence J. Best. Application Architecture: Modern Large-Scale Information Processing. Wiley, 1990.

[Bo86] Grady Booch. Object-Oriented Development. IEEE Tr. Software Engineering, February 1986, pp. 211-221.

[Br88] Frederick P. Brooks, Jr. Grasping Reality Through Illusion -- Interactive Graphics Serving Science. Pro-
ceedings of the ACM SIGCHI Human Factors in Computer Systems Conference, May 1988, pp. 1-11.

[Cl96] Paul Clements. A Survey of Architecture Description Languages. Proc International Workshop on Software
Specification and Design, Germany, 1996.

[CS95] James Coplien & Eric Schmidt (eds), Pattern Languages of Program Design, Addison-Wesley 1995.

[DG90] Norman Delisle and David Garlan. Applying Formal Specification to Industrial Problems: A Specifica-
tion of an Oscilloscope. IEEE Software, September 1990.

[Fr85] Marek Fridrich and William Older. Helix: The Architecture of the XMS Distributed File System. IEEE
Software, vol 2, no 3, May 1985 (pp.21-29).

[G+92] David Garlan, Gail Kaiser, and David Notkin. Using Tool Abstraction to Compose Systems. IEEE Com-
puter, 25(6), June 1992.

[G+94] David Garlan, Robert Allen, and John Ockerbloom. Exploiting Style in Architectural Design Environ-
ments. Proc. Second ACM SIGSOFT Symposium on Foundations of Software Engineering, December 1994.

[Ga95] David Garlan (ed). First International Workshop on Architectures for Software Systems, Workshop Sum-
mary. ACM Software Engineering Notes 20(3), July 1995, pp.84-89.

[Ge89] C. Gerety. HP Softbench: A New Generation of Software Development Tools. TR SESD-89-25, Hewlett-
Packard Software Engineering System Division, Ft. Collins CO, November 1989.

[GoF95] E. Gamma, R. Helm. R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley 1995.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture. In Ambriola & Tortora (eds),
Advances in Software Engineering & Knowledge Engineering, vol. II, World Scientific Pub Co., 1993, pp.1-39.

[HN86] Nico Habermann and David Notkin. Gandalf: Software Development Environments. IEEE Tr on Software
Engineering, vol SE-12, December 1986.

[He69] Carl Hewitt. Planner A Language for Proving Theorems in Robots. Proc First Int’l Joint Conf. in Artificial
Intelligence, 1969.

[HR85] Frederick Hayes-Roth. Rule-Based Systems. Communications of the ACM, vol 28, no 9, September 1985,
pp.921-932.

13

[Ja96] Michael Jackson.Software Requirements and Specifications: A Lexicon of Practice, Principles, and Prejudices.
Addison-Wesley 1995.

[K+96] Rick Kazman, Paul Clements, Gregory Abowd, Len Bass. Classifying Architectural Elements. Proc ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 1996, submitted.

[KP88] G. Krasner and S. Pope. A Cookbook for Using the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object Oriented Programming, vol 1, August/September 1988.

[La90] Thomas G. Lane. User Interface Software Structures. Ph.D. Thesis, Carnegie Mellon University, Carnegie
Mellon University Computer Science Technical Report CMU-CS-90-101, June 1987.

[LS79] Hugh C. Lauer and Ed. H. Satterthwaite. Impact of MESA on System Design. Proc Third Int’l Conf. on
Software Engineering, May 1979.

[Ni86] H. Penny Nii. Blackboard Systems. AI Magazine 7(3):38-53 and 7(4):82-107.

[Pa72] David L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. Comm. ACM vol 15,
December 1972.

[Pa85] Mark C. Paulk. The ARC Network: A Case Study. IEEE Software, vol 2 no 3, May 1985, pp. 62-69

[PN86] R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. Journal of Systems and Software,
6(4), November 1986, pp. 307-334.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40-52, Oct 1992.

[Re90] S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment. IEEE Software, 7(4):57-66,
July 1990.

[S+95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, Gregory Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions on Software Engi-
neering, May 1995.

[Se88] V. Seshadri et al. Semantic Analysis in a Concurrent Compiler. Proceedings of ACM SIGPLAN '88 Confer-
ence on Programming Language Design and Implementation.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall
1996.

[Sh81] Mary Shaw (ed). Alphard: Form and Content. Springer-Verlag, 1981.

[Sh95] Mary Shaw. Beyond Objects: A Software Design Paradigm Based on Process Control. ACM Software Engi-
neering Notes, 20(1), Jan 1995.

[Sh96] Mary Shaw. Some Patterns for Software Architectures. Proceedings of Second Workshop on Pattern Lan-
guages for Programming, Addison-Wesley 1996.

[Sp87] Alfred Z. Spector et al. Camelot: A Distributed Transaction Facility for Mach and the Internet - An
Interim Report. Carnegie Mellon University Computer Science Technical Report, June 1987.

