
Control from Computer Science

Oded Maler

CNRS-VERIMAG

Grenoble, France

Control from Computer Science Oded Maler

Model-based System Design

World

Formal Model

Analysis Design

Abstract Controller

Experiments

Thinking

Implementation

OI

Controller

1

Control from Computer Science Oded Maler

The Co�ee Machine

Physics-Information

Information

Processing

ButtonsCoins

Coins Drinks

M1
5

4

6

M2

drink-ready

st-tea
st-coffee

3

2

1

coin-in

cancel

coin-out

7

8

9

req-coffee
req-tea

reset

ok

done

Port From!To Event types Meaning

1 E ! M1 coin-in a coin was inserted

2 E ! M1 cancel cancel button pressed

3 M1 ! E coin-out release the coin

4 M1 ! M2 ok su�cient money inserted

5 M1 ! M2 reset money returned to user

6 M2 ! M1 done drink distribution ended

7 E ! M2 req-coffee co�ee button pressed

req-tea tea button pressed

8 E ! M2 drink-ready drink preparation ended

9 M2 ! E st-coffee start preparing co�ee

st-tea start preparing tea

2

Control from Computer Science Oded Maler

The Two Sub-Machines

done/
0 1

coin-in/ ok

cancel/coin-out, reset

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

M1

3

Control from Computer Science Oded Maler

The Global Model

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

Normal behaviors:

0A coin-in 1B cancel coin-out 0A

0A coin-in 1B req-coffee st-coffee

1C drink-ready 0A

4

Control from Computer Science Oded Maler

An Unexpected Behavior

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

0A coin-in 1B req-coffee st-coffee 1C cancel

coin-out 0C drink-ready 0A

5

Control from Computer Science Oded Maler

Fixing the Bug

drink-ready/done

drink-ready/done

A

C

B

D

reset/

req-coffee/st-coffee,lock

req-tea/st-tea,lock

M2

ok/

M1

0 1

coin-in/ ok

2

lock/

cancel/coin-out, reset

done/

6

Control from Computer Science Oded Maler

Fixing the Bug { the Global Model

0A 1B

drink-ready/

2C

2D

coin-in/

cancel/coin-out req-tea/st-tea

req-coffee/st-coffee

drink-ready/

7

Control from Computer Science Oded Maler

The Moral of the Story

1) Many systems can be modeled as a composition
of interacting automata (transition systems,
discrete event systems).

2) Potential behaviors of the system correspond to
paths in the global transition graph of the system.

3) These paths are labeled by input events. Each
input sequence might generate a di�erent behavior.

4) We want to make sure that a system responds
correctly to all conceivable inputs.

5) For every individual input sequence we can
simulate the reaction of the system. But we cannot
do it exhaustively due to the huge number of input
sequences.

6) Veri�cation is a collection of automatic and semi-
automatic methods to analyze all the paths in the
graph.

7) This is hard for humans to do and even for
computers.

8

Control from Computer Science Oded Maler

Model I: Closed Systems

A transition system is S = (X; �) where X is �nite
and � : X ! X is the transition function.

The state-space X has no numerical meaning and
no interesting structure.

Xk is the set of all sequences of length k; X� the
set of all sequences.

Behavior: The behavior of S starting from an initial
state x0 2 X, is

� = �[0]; �[1]; : : : 2 X�

s.t. �[0] = x0 and for every i,

�[i+ 1] = �(�[i])

Basic Reachability Problem: Given x0 and a set
P � X, does the behavior of S starting at x0 reach
P?

9

Control from Computer Science Oded Maler

Solution by Forward Simulation

�[0]:=x0
F 0 := fx0g
repeat
�[k + 1]:=�(�[k])
F k+1 := F k [f�[i+ 1]g

until F k+1 = F k

F�:=F
k

x1

x2

x3

x4

x5

fx1g; fx1; x2g; fx1; x2; x3g; fx1; x2; x3; x5g

How to do it for continuous system de�ned by _x =
f(x) ?

10

Control from Computer Science Oded Maler

Model II: Systems with One Input

A one-input transition system is S = (X;V; �) where
X and V are �nite � : X � V ! X is the transition
function.

Behavior Induced by Input: Given an input sequence
 2 V �, the behavior of S starting from x0 2 X in
the presence of is a sequence

�() = �[0]; �[1]; : : : 2 X� such that

�[i+ 1] = �(�[i]; [i]):

v1

v2

v2
v1

v1

v1

v2
v2

x1

x2

x3

x4

x5

v1; v2

x1
v1�! x2

v2�! x3
v2�! x5

v1�! x2
v1�! x4

11

Control from Computer Science Oded Maler

Reachability for Open Systems

The reachability problem: Is there some input
sequence 2 V � such that �() reaches P?

For every given we can use the previous algorithm,
simulate and obtain F�().

For an automaton with n states all states are
reachable by sequences of length < n.

F� =
[

�2V n

F�()

v1 v2

x4

x5 x5

v2v1

x3

x4 x5

v1 v2

v1 v2

v1 v2 v1 v2

v1 v2

x3

x1

x2 x3 x5x2

x1

x2

x5

12

Control from Computer Science Oded Maler

A More E�cient Way

Many di�erent inputs lead to the same state.

Immediate successors: �(x) = fx0 : 9u �(x; u) = x0g

Successors of a set F : �(F) = f�(x) : x 2 Fg

Forward reachability algorithm (breadth-�rst):

F 0 := fx0g
repeat
F k+1 := F k [�(F k)

until F k+1 = F k

F�:=F
k

v1 v2

v1 v2

v1 v2

x3

x5x2

x1

x2

x5
v1 v2

x4

x5 x5

x3 x1

v1 v2

Complexity: only O(n � logn � jV j)

13

Control from Computer Science Oded Maler

Variations: Depth-First and Backwards
Depth-�rst:

v1

v1

x3x2

v1 v2

x4

x5 x5

v2v1

x3

x4 x5
v1 v2

x5x2

x5

x1
v2

Backwards: �nd all states from which there is an
input leading to P .

Immediate predecessors:
��1(x) = fx0 : 9u �(x0; u) = xg

F 0 := P

repeat
F k+1 := F k [��1(F k)

until F k+1 = F k

F�:=F
k

14

Control from Computer Science Oded Maler

Admissible Inputs

So far we have assumed that the external
environment can generate all sequences in V �.
Sometimes we have a more restricted environment,
e.g. it will never produce v1v1. We can build
an automaton which models the environment and
compose it with the model of the system.

v1

v2

v2
v1

v1

v1

v2
v2

x1

x2

x3

x4

x5

v1; v2

v1

v2

v2
v1

v1

v2
v2

x1

x2

x3 x5

v1

v2

v2

15

Control from Computer Science Oded Maler

Veri�cation: The State-of-the-Art

There are algorithms that take a description of any
open system and verify whether any of the admissible
inputs drives the system into a set P . Such
algorithms always terminate after a �nite number
of steps.

This is essentially what veri�cation is all about.

The result is general: it is valid for every discrete
�nite-state system. Of course, �nite systems can
be very large and special tricks are needed to verify
them.

The analogue for continuous systems: do the same
for a system de�ned by _x = f(x; u).

16

Control from Computer Science Oded Maler

Systems with two Inputs

A two-input transition system is S = (X;U; V; �)
whereX, U and V are �nite sets and � : X�U�V !
X is the transition function.

u1 u1 u1

u2

u2

u2

v1

v2

v2

v1 v2

v2

v1

v2

v1 v2

v2

v1

u2

v1

u1

v1; v2

v1

x2

x3 x5

x4x1

�(x1; u1; v1) = x1 �(x1; u1; v2) = x2
�(x1; u2; v1) = x2 �(x1; u2; v2) = x4

The behavior in the presence of two inputs, � 2 U�

and 2 V �: a sequence �(�;) s.t.

�[i+ 1] = �(�[i]; �[i]; [i])

17

Control from Computer Science Oded Maler

Games and Strategies

Interpretation of inputs:

U : we, the good guys, the controller.

V : they, the bad guys, disturbances.

An antagonist game situation. Our goal is to choose
each time an element of U such that the behaviors
induces by all possible disturbances are good.

Strategy: a function c : X� ! U

State strategy: a function c : X ! U .

Each strategy c converts a type III system into a type
II system Sc = (X;V; �c) s.t. �c(x; v) = �(x; c(x); v).

Synthesis for Reachability: Let S = (X;U; V; �) let
P � X be a set of \bad" states. The controller
synthesis problem is: �nd a strategy c such that all
the behaviors of the derived system Sc = (X;V; �c)
never reach P .

18

Control from Computer Science Oded Maler

Finding Winning States and Strategies

Controllable Predecessors: For S = (X;U; V; �) and
F � X, the set of controllable predecessors of F is

�(F) = fx : 9u 2 U 8v 2 V �(x; u; v) 2 Fg

The states from which the controller, by properly
selecting u, can force the system into P in the next
step.

The following backward algorithm �nds the set F�
of \winning states" from which P can be avoided
forever.

F 0 := X � P

repeat
F k+1 := F k \ �(F k)

until F k+1 = F k

F�:=F
k

Remark: this is similar to the Ramadge-Wonham
theory of discrete event control.

19

Control from Computer Science Oded Maler

Synthesis Example

u1 u1 u1

u2

u2

v1

v2

v2

v1 v2

v2

v1

v2

v1 v2

v2

v1

u2

v1
u1

v1; v2

v1

x2

x3 x5

x4x1

u2

We want to avoid x5.
F 0 = fx1; x2; x3; x4g
F 1 = fx1; x2; x3g = F�

The resulting \closed-loop" system always remains
in fx1; x2; x3g.

u1

v1

v2

v1 v2
u1

v1; v2

x2

x3

x1

u2

20

Control from Computer Science Oded Maler

Discrete In�nite-State Systems

Computer program are syntactic representation of
dynamical systems with in�nite state-space.

repeat
y:=y + 1

until y = 4
State space: fx1; x2g � Z

x1

x2
4

6 : : :5432

y 6= 4/y:=y + 1x1

y = 4

x2

: : :

Forward reachability algorithm will terminate if
started from (x1; 2) but not from (x1; 5).

The reachability problem is unsolvable: there is no
general algorithm that solves every instance of it.

\Deductive" approach: prove properties \analytically".

\Symbolic" approach: reachability using formulae to
represent sets of states, e.g. x = x1 ^ y � 5.

21

Control from Computer Science Oded Maler

Continuous (and Hybrid) Systems

Why? ...

Problems: state space R
n, in�nite even when

bounded, time domain R . Mathematical R vs.
numerical R in the computer.

Reachability for _x = f(x): When we have a closed-
form solution, e.g. for _x = Ax, the reachable set can
be written as F� = fx0eAt : t � 0g but how to test
whether F� \ P = ;?

Forward simulation: discretize time and replace the
system with �0[(n+ 1)�] = �0[n�] + h(�0[n�];�):

P

x0

�
�0

This is not the \real" thing and it is not guaranteed
to converge but that's life.

22

Control from Computer Science Oded Maler

Continuous Systems with Input

Systems of the form _x = f(x; v). Admissible inputs
are signals of the form : T ! V .

Problem: show that no admissible input drives the
system into a set P .

For every we can simulate and \compute" F�(),
but there is no �nite subset of inputs that covers all
reachable states.

The set of all inputs is a doubly-dense tree, both
vertically (time) and horizontally (V).

x0 x0

23

Control from Computer Science Oded Maler

Incremental Reachability Computation

Breadth-�rst computation of reachable states.

x
t

�! x0 denotes the existence of an input signal
 : [0; t] ! V that drives the system from x to x0 in
t time.

Let F be a subset of X and let I be a time interval.
The I-successors of F are all the states that can be
reached from F within that time interval, i.e.

�I(F) = fx0 : 9x 2 F 9t 2 I x
t

�! x0g:

Semigroup property:

�[0;r2](�[0;r1](F)) = �[0;r1+r2](F):

F 0 := fx0g
repeat
F k+1 := F k [�[0;r](F

k)
until F k+1 = F k

F�:=F
k

24

Control from Computer Science Oded Maler

Approximate Reachability Computation

But �[0;r](F) cannot be computed exactly. We can
over-approximate it by �0 such that for every F

�[0;r](F) � �0[0;r](F)

and �0[0;r](F) belongs to some e�ective sub-class of
R
n, e.g. ppolyhedra.

The result of the algorithm is a set F 0

�
s.t. F� � F 0

�

and hence F 0

�
\ P = ; implies the correctness of the

system.

x0 x0

25

Control from Computer Science Oded Maler

Conclusion

We have developed a system called d/dt which
accepts as input a description of a continuous or a
hybrid system and computes automatically an over-
approximation of the reachable states.

More about it in the special session on reachability.

Challenge: use more knowledge on the system
dynamics in order to increase the performance and
treat systems with higher dimensions.

Challenge: develop algorithms for automatic
synthesis of strategies for systems with two inputs,
_x = f(x; u; v).

26

