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Timed Automata
� Standard modeling formalism for real-time.

� Finite-state automata with clocks.

� Timed trace semantics: sequences of events with real-valued delay

timestamps. E.g.,u = h0:3; a; 2; b; 0; c; 1:1; ai.
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Known Facts about Timed Automata

� Emptiness problem,L(A)
?

= ;: PSPACE-complete [Aluret al. 90]

� Universality problem,L(A)
?

= TT: Undecidable [Alur-Dill 94]

� Language inclusion problem,L(B)
?

� L(A): Undecidable [Idem]
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Our Main Contribution

Theorem. If A has at most one clock, the language inclusion problem

L(B)
?

� L(A)

is decidable.



SVC On the Language Inclusion Problem for Timed Automata 5'
&

$
%

Our Main Contribution

Theorem. If A has at most one clock, the language inclusion problem

L(B)
?

� L(A)

is decidable.

This result is unexpected: in all other known computational models,

deciding language inclusion always uses

L(B) � L(A) () L(B) \ L(A) = ;:

However, one-clock timed automata cannot be complemented...
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Timed Automata Language Inclusion: Related Work

� Digitization techniques:
[Henzinger-Manna-Pnueli 92], [Bošnǎcki 99],

[Ouaknine-Worrell 03a]

� Determinizable classes of timed automata:
[Alur-Fix-Henzinger 94], [Wilke 96], [Raskin 99]

� Fuzzy semantics / noise-based techniques:
[Maass-Orponen 96], [Gupta-Henzinger-Jagadeesan 97],

[Fränzle 99], [Henzinger-Raskin 00], [Puri 00],

[Asarin-Bouajjani 01], [Ouaknine-Worrell 03b]
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Some Applications

� Hardware and software systems are often described via high-level

specifications, describing their intended functional behavior.

� Specifications are often given asfinite-state machines.
A proposed implementationIMP meets its specificationSPECiff

L(IMP) � L(SPEC ):

� Our work enables us to describe and handletimed specifications:

timed automata with a single clock.
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Example: A Login Protocol

START
login_name

x:=0 VALIDATE

pw_wrongx<60?

LOG_ERROR

log_pw_wrongx:=0

RE_VALIDATE
pw_wrong

x<60?LOG_ERROR

log_pw_wrongx:=0

DELAY

connected

restartx>10? x>60?
restart

restart

x<60?
pw_correct

pw_correct
x<60?

x>60?
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LISTEN

CLOSED

passive OPEN
   create TCB

RCVD
 SYN

snd SYN
 SEND

SYN
SENT

rcv SYN
snd ACK

ESTAB

rcv ACK of SYN
           x

rcv SYN, ACK
    snd ACK

WAIT_1
   FIN CLOSE

 WAIT

snd FIN
 CLOSE

snd FIN
 CLOSE

snd ACK
 rcv FIN

snd ACK
 rcv FIN

rcv ACK of FIN
            x

   FIN
WAIT_2

delete TCB
   CLOSE

delete TCB
   CLOSE

CLOSEDTIME_WAIT

LAST_ACK

snd FIN
 CLOSE

Timeout=2MSL
   delete TCB

rcv ACK of FIN
            x

snd ACK
 rcv FIN

CLOSING

rcv ACK of FIN
            x

 
snd SYN, ACK
    rcv SYN

active OPEN
 create TCB
    snd SYN

TCP spec.(DARPA) www.faqs.org/rfcs/rfc793/html
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Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.
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Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET ) = ;.
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Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET ) = ;.

� Find one-clock automataA1, A2, : : : , An such thatL(Bi) � L(Ai).
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Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET ) = ;.

� Find one-clock automataA1, A2, : : : , An such thatL(Bi) � L(Ai).

� WriteABS = A1jjA2jj : : : jjAn.
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Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET ) = ;.

� Find one-clock automataA1, A2, : : : , An such thatL(Bi) � L(Ai).

� WriteABS = A1jjA2jj : : : jjAn.

� Theorem: If L(ABS ) = ;, thenL(NET ) = ;.
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Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.
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Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

� Construct a compatiblewell-quasi-order4 onH:

– WheneverW 4W 0: if W is safe, thenW 0 is safe.

– Any infinite sequenceW1, W2, W3, : : : eventually saturates:

there existsi < j such thatWi 4Wj .
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Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

� Construct a compatiblewell-quasi-order4 onH:

– WheneverW 4W 0: if W is safe, thenW 0 is safe.

– Any infinite sequenceW1, W2, W3, : : : eventually saturates:

there existsi < j such thatWi 4Wj .

� ExploreH, looking for bad nodes. The search must eventually

terminate.
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Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

� Construct a compatiblewell-quasi-order4 onH:

– WheneverW 4W 0: if W is safe, thenW 0 is safe.

– Any infinite sequenceW1, W2, W3, : : : eventually saturates:

there existsi < j such thatWi 4Wj .

� ExploreH, looking for bad nodes. The search must eventually

terminate.

� For simplicity, we will focus onuniversality: A
?

= TT.
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Higman’s Lemma

Let � = fa1; a2; : : : ; ang be an alphabet.

Let4 be thesubword order on��, the set of finite words over�.

Ex.: HIGMAN 4 HIGHMOUNTAIN

Then4 is awell-quasi-order on��:

Any infinite sequence of wordsW1, W2, W3, : : : must eventually have

two wordsWi 4Wj , with i < j.
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Higman’s Lemma

Let � = fa1; a2; : : : ; ang be an alphabet.

Let4 be thesubword order on��, the set of finite words over�.

Ex.: HIGMAN 4 HIGHMOUNTAIN

Then4 is awell-quasi-order on��:

Any infinite sequence of wordsW1, W2, W3, : : : must eventually have

two wordsWi 4Wj , with i < j.
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Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

x>2? b

a      x   := 0

1<x<3?
bs s0 1
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Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

(s1; 1:4)

x>2? b

a      x   := 0

1<x<3?
b1s0s



SVC On the Language Inclusion Problem for Timed Automata 23'
&

$
%

Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

(s1; 4:5)

a      x   := 0

1<x<3?
b1s

x>2? b

0s
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Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

f(s0; 2); (s1; 1:4)g

x>2? b
1<x<3?

b1s0s

a      x   := 0
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Timed Automata Configurations (ctd.)

Every timed traceu gives rise to a configuration ofA.

Ex.: u = h0:5; a; 0:2; b; 0:4; ci leads tof(s5; 0:6); (s6; 0:4)g.

?>=<89:;s1

b // ?>=<89:;s3

c // ?>=<89:;s5 // : : :

// ?>=<89:;s0

a
x:=0

88rrrrrrrr

a

&&LLLLLLLL

?>=<89:;s2

b
x:=0

// ?>=<89:;s4

c // ?>=<89:;s6 // : : :
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Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

� 8a 2 �, 8t1 2 R
+ , 9t2 2 R
+ such that

if A[C1]
t1;a

�! A[C0
1], thenA[C2]

t2;a

�! A[C0
2], andC0
1 R C0
2.

� Vice-versa.
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Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

� 8a 2 �, 8t1 2 R
+ , 9t2 2 R
+ such that

if A[C1]
t1;a

�! A[C0
1], thenA[C2]

t2;a

�! A[C0
2], andC0
1 R C0
2.

� Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 � C2,

if there exists some bisimulation relating them.
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Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

� 8a 2 �, 8t1 2 R
+ , 9t2 2 R
+ such that

if A[C1]
t1;a

�! A[C0
1], thenA[C2]

t2;a

�! A[C0
2], andC0
1 R C0
2.

� Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 � C2,

if there exists some bisimulation relating them.

Theorem. If C1 � C2, then

A[C1] is universal() A[C2] is universal:
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Bisimilar Configurations: Examples

C1 = f(s0; 0:5)g � C2 = f(s0; 1:3)g:

s0s0

s0

C1:
0.50.5

1.3
C2:

~
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Bisimilar Configurations: Examples

C1 = f(s0; 0:5)g � C2 = f(s0; 1:3)g:

s0s0

s0

C1:
0.50.5

1.3
C2:

~

A : // ?>=<89:;76540123s0 x>1? �

// ?>=<89:;76540123s1 ABCFED ���
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Bisimilar Configurations: Examples

C1 = f(s0; 0:5)g � C2 = f(s0; 1:3)g:

s0s0

s0

C1:
0.50.5

1.3
C2:

~

A : // ?>=<89:;76540123s0 x>1? �

// ?>=<89:;76540123s1 ABCFED ���

A[C2] is universal, butA[C1] rejectsh0; ai.
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Bisimilar Configurations: Examples (ctd.)

s0

s0

0.7

0.2

~
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Bisimilar Configurations: Examples (ctd.)

s0

s0

s0

s0

1.4

1.8

~

0.7

0.2

~
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Bisimilar Configurations: Examples (ctd.)

s0

s0

s0

s0

1.4

1.8

~

s0

s0

0.7

0.2

1.4

1.8

0.7

0.2

~

~
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Bisimilar Configurations: Examples (ctd.)

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8
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Bisimilar Configurations: Examples (ctd.)

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A : // ?>=<89:;76540123s0 x<1_x>2? �

// ?>=<89:;76540123s1 ABCFED ���
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Bisimilar Configurations: Examples (ctd.)

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A : // ?>=<89:;76540123s0 x<1_x>2? �

// ?>=<89:;76540123s1 ABCFED ���

A[C2] is universal, butA[C1] rejectsh0:5; ai.
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From Bisimulation to Simulation

Definition. We say thatC1 is simulated byC2, writtenC1 4 C2, if there

existsC0
2 � C2 such thatC1 � C0
2.
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From Bisimulation to Simulation

Definition. We say thatC1 is simulated byC2, writtenC1 4 C2, if there

existsC0
2 � C2 such thatC1 � C0
2.

Theorem. If C1 4 C2, then

A[C1] is universal=) A[C2] is universal:
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Constructing a Decidable Bisimulation Relation

LetK 2 N be the largest constant appearing in clock constraints ofA.

Theorem. LetC andC0 be configurations ofA.

If there exists a bijectionf : C ! C0 that preserves

� locations: f(s; v) = (s0; v0) =) s = s0,

� integer parts of clockx, up toK:

f(s; v) = (s0; v0) =) ((dve = dv0e ^ bvc = bv0c) _ v; v0 > K),

� the ordering of the fractional parts of clockx:

f(si; vi) = (s0i; v
0

i) =) (vi < vj () v0i < v0j),

thenC � C0.
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Constructing a Decidable Bisimulation Relation (ctd.)
� LetK be the largest constant appearing in clock constraints ofA.

� LetREG =
n

f0g; (0; 1); f1g; (1; 2); : : : ; fKg; (K;1)
o

be the collection of ‘one-dimensional regions’ ofA.

� Let S = fs0; s1; : : : ; sng be the set of locations ofA.

� Let � = S � REG.

� LetC be a configuration ofA. For simplicity, assume all the

fractional parts of states inC are distinct.

� Note that each state inC has a unique matching letter in�.

� EncodeC as a wordH(C) 2 ��, ordered by increasing fractional

parts of states.
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Constructing a Decidable Bisimulation Relation (ctd.)

Corollary. For any configurationsC andC0 of A,

H(C) = H(C0) =) C � C 0:
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Constructing a Decidable Bisimulation Relation (ctd.)

Corollary. For any configurationsC andC0 of A,

H(C) = H(C0) =) C � C 0:

Theorem. For any configurationsC andC0 of A,

H(C) 4 H(C0) =) C 4 C 0:
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Constructing a Decidable Bisimulation Relation (ctd.)

Corollary. For any configurationsC andC0 of A,

H(C) = H(C0) =) C � C 0:

Theorem. For any configurationsC andC0 of A,

H(C) 4 H(C0) =) C 4 C 0:

Corollary. For configurationsC andC0 of A, if H(C) 4 H(C0), then

A[C] is universal=) A[C0] is universal:
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The Algorithm: Recapitulation
� Reduce the universality questionL(A)
?

= TT to a reachability

question on the infinite graph��.

� The subword order4 on�� is a compatible well-quasi-order:

– WheneverH(C) 4 H(C0):

if A[C] is universal, thenA[C0] is universal.

– Any infinite sequenceH(C1), H(C2), H(C3), : : : eventually

saturates: there existsi < j such thatH(Ci) 4 H(Cj).

� Explore��, looking for a word/configuration from whichA cannot

perform some event. The search must eventually terminate.
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Summary

� We have given an algorithm to decide the language inclusion

questionL(B)
?

� L(A), providedA has at most one clock.

� Unexpected and fundamentally new result in the theory of timed

automata.

� Interesting potential applications to hardware/software engineering

and verification.
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Closing the Gap

Our decidability result is for all practical purposes the tightest one can get

in terms of restricting the resources of timed automata:

Theorem. ForA a timed automaton, the universality question

L(A)
?

= TT remains undecidable under any of the following restrictions:

� A has two clocks and a one-event alphabet,or

� A has two clocks and uses a single constant in clock constraints,or

� A has a single location and a one-event alphabet,or

� A has a single location and uses a single constant in clock constraints.
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Future Work

� Complexity of the algorithm.

� Extend (if possible) to B̈uchi timed automata.

� Efficient implementation.


