1

On the Language Inclusion Problem for Timed Automata: Closing a Decidability Gap

Joël Ouaknine

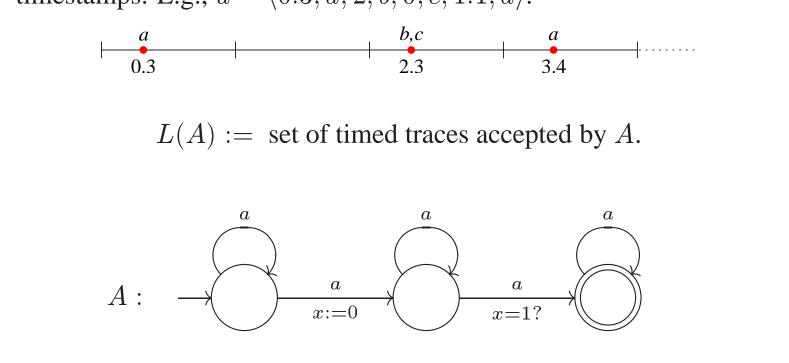
Computer Science Department, Carnegie Mellon University

James Worrell Department of Mathematics, Tulane University

> SVC seminar Sept. 2, 2003

### **Timed Automata**

- Standard modeling formalism for real-time.
- Finite-state automata with clocks.
- Timed trace semantics: sequences of events with real-valued delay timestamps. E.g.,  $u = \langle 0.3, a, 2, b, 0, c, 1.1, a \rangle$ .



### **Known Facts about Timed Automata**

- Emptiness problem,  $L(A) \stackrel{?}{=} \emptyset$ : PSPACE-complete [Alur *et al.* 90]
- Universality problem,  $L(A) \stackrel{?}{=} \mathbf{TT}$ : Undecidable [Alur-Dill 94]
- Language inclusion problem,  $L(B) \stackrel{?}{\subseteq} L(A)$ : Undecidable [*Idem*]

# **Our Main Contribution**

**Theorem.** If A has at most one clock, the language inclusion problem  $L(B) \stackrel{?}{\subseteq} L(A)$ 

is decidable.

### **Our Main Contribution**

**Theorem.** If A has at most one clock, the language inclusion problem  $L(B) \stackrel{?}{\subseteq} L(A)$ 

is decidable.

This result is unexpected: in all other known computational models, deciding language inclusion always uses

$$L(B) \subseteq L(A) \iff L(B) \cap \overline{L(A)} = \emptyset.$$

However, one-clock timed automata cannot be complemented...



#### • Digitization techniques:

[Henzinger-Manna-Pnueli 92], [Bošnački 99], [Ouaknine-Worrell 03a]

- Determinizable classes of timed automata: [Alur-Fix-Henzinger 94], [Wilke 96], [Raskin 99]
- Fuzzy semantics / noise-based techniques: [Maass-Orponen 96], [Gupta-Henzinger-Jagadeesan 97], [Fränzle 99], [Henzinger-Raskin 00], [Puri 00], [Asarin-Bouajjani 01], [Ouaknine-Worrell 03b]

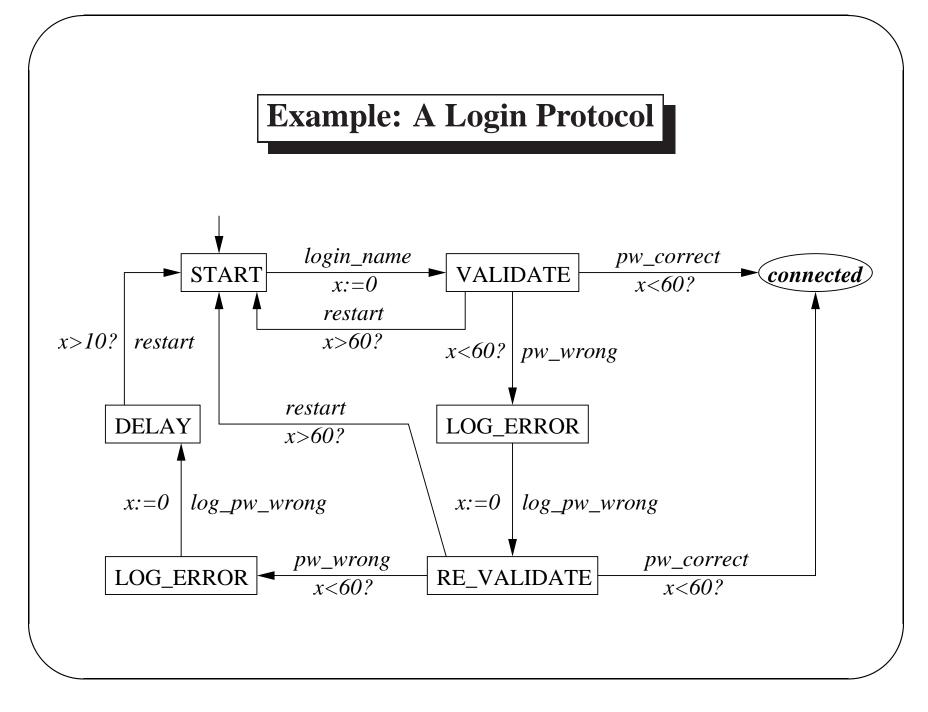
# Some Applications

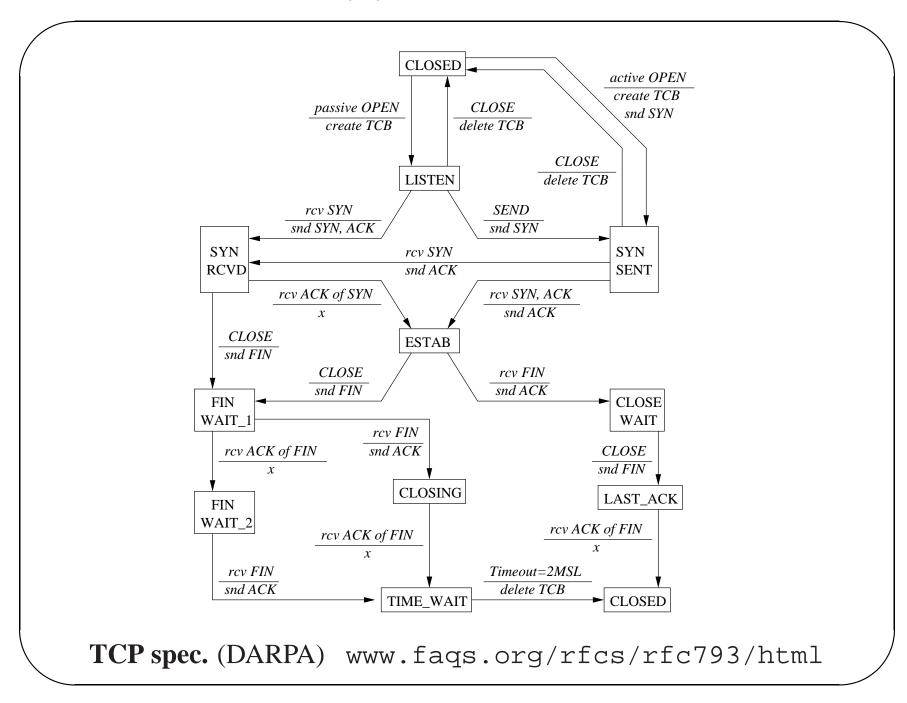
- Hardware and software systems are often described via high-level **specifications**, describing their intended functional behavior.
- Specifications are often given as **finite-state machines**. A proposed implementation *IMP* meets its specification *SPEC* iff

 $L(IMP) \subseteq L(SPEC).$ 

• Our work enables us to describe and handle **timed** specifications: **timed automata with a single clock**.

7







**Compositional and assume-guarantee verification:** 

• Let  $NET = B_1 ||B_2|| \dots ||B_n$  be a network of timed automata.

- Let  $NET = B_1 ||B_2|| \dots ||B_n$  be a network of timed automata.
- Suppose you want to verify that  $L(NET) = \emptyset$ .

- Let  $NET = B_1 ||B_2|| \dots ||B_n$  be a network of timed automata.
- Suppose you want to verify that  $L(NET) = \emptyset$ .
- Find one-clock automata  $A_1, A_2, \ldots, A_n$  such that  $L(B_i) \subseteq L(A_i)$ .

- Let  $NET = B_1 ||B_2|| \dots ||B_n$  be a network of timed automata.
- Suppose you want to verify that  $L(NET) = \emptyset$ .
- Find one-clock automata  $A_1, A_2, \ldots, A_n$  such that  $L(B_i) \subseteq L(A_i)$ .

• Write 
$$ABS = A_1 ||A_2|| \dots ||A_n|$$
.

- Let  $NET = B_1 ||B_2|| \dots ||B_n$  be a network of timed automata.
- Suppose you want to verify that  $L(NET) = \emptyset$ .
- Find one-clock automata  $A_1, A_2, \ldots, A_n$  such that  $L(B_i) \subseteq L(A_i)$ .
- Write  $ABS = A_1 ||A_2|| \dots ||A_n|$ .
- **Theorem:** If  $L(ABS) = \emptyset$ , then  $L(NET) = \emptyset$ .

• Reduce the language inclusion question  $L(B) \stackrel{?}{\subseteq} L(A)$  to a **reachability** question on an infinite graph  $\mathcal{H}$ .

- Reduce the language inclusion question L(B) ⊆ L(A) to a reachability question on an infinite graph H.
- Construct a compatible well-quasi-order  $\preccurlyeq$  on  $\mathcal{H}$ :
  - Whenever  $W \preccurlyeq W'$ : if W is safe, then W' is safe.
  - Any infinite sequence  $W_1, W_2, W_3, \ldots$  eventually saturates: there exists i < j such that  $W_i \preccurlyeq W_j$ .

- Reduce the language inclusion question L(B) ⊆ L(A) to a reachability question on an infinite graph H.
- Construct a compatible well-quasi-order  $\preccurlyeq$  on  $\mathcal{H}$ :
  - Whenever  $W \preccurlyeq W'$ : if W is safe, then W' is safe.
  - Any infinite sequence  $W_1, W_2, W_3, \ldots$  eventually saturates: there exists i < j such that  $W_i \preccurlyeq W_j$ .
- Explore  $\mathcal{H}$ , looking for bad nodes. The search must eventually terminate.

- Reduce the language inclusion question L(B) ⊆ L(A) to a reachability question on an infinite graph H.
- Construct a compatible well-quasi-order  $\preccurlyeq$  on  $\mathcal{H}$ :
  - Whenever  $W \preccurlyeq W'$ : if W is safe, then W' is safe.
  - Any infinite sequence  $W_1, W_2, W_3, \ldots$  eventually saturates: there exists i < j such that  $W_i \preccurlyeq W_j$ .
- Explore  $\mathcal{H}$ , looking for bad nodes. The search must eventually terminate.
- For simplicity, we will focus on **universality**:  $A \stackrel{?}{=} \mathbf{TT}$ .

### Higman's Lemma

Let  $\Lambda = \{a_1, a_2, \dots, a_n\}$  be an alphabet. Let  $\preccurlyeq$  be the **subword order** on  $\Lambda^*$ , the set of finite words over  $\Lambda$ .

 $Ex.: HIGMAN \preccurlyeq HIGHMOUNTAIN$ 

Then  $\preccurlyeq$  is a **well-quasi-order** on  $\Lambda^*$ :

Any infinite sequence of words  $W_1, W_2, W_3, \ldots$  must eventually have two words  $W_i \preccurlyeq W_j$ , with i < j.

### Higman's Lemma

Let  $\Lambda = \{a_1, a_2, \dots, a_n\}$  be an alphabet. Let  $\preccurlyeq$  be the **subword order** on  $\Lambda^*$ , the set of finite words over  $\Lambda$ .

Ex.: HIGMAN  $\preccurlyeq$  HIGHMOUNTAIN

Then  $\preccurlyeq$  is a **well-quasi-order** on  $\Lambda^*$ :

Any infinite sequence of words  $W_1, W_2, W_3, \ldots$  must eventually have two words  $W_i \preccurlyeq W_j$ , with i < j.

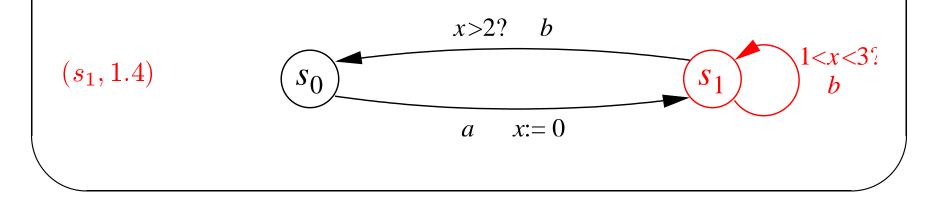
### **Timed Automata Configurations**

- A state of A is a pair (s, v):
  - s is a location.
  - $-v \in \mathbb{R}^+$  is the value of clock x.
- A configuration of A is a finite set of states.



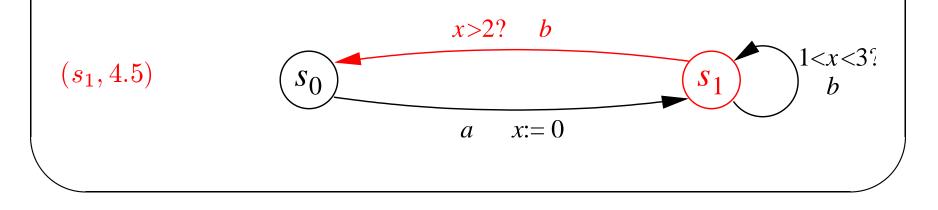


- A state of A is a pair (s, v):
  - s is a location.
  - $-v \in \mathbb{R}^+$  is the value of clock x.
- A configuration of A is a finite set of states.



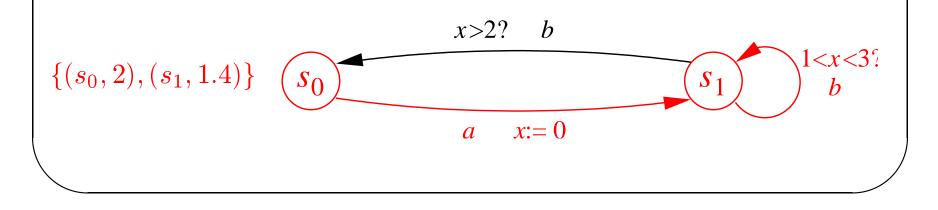


- A state of A is a pair (s, v):
  - s is a location.
  - $-v \in \mathbb{R}^+$  is the value of clock x.
- A configuration of A is a finite set of states.





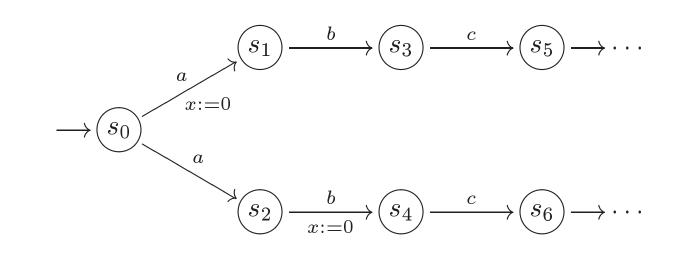
- A state of A is a pair (s, v):
  - s is a location.
  - $-v \in \mathbb{R}^+$  is the value of clock x.
- A configuration of A is a finite set of states.





Every timed trace u gives rise to a configuration of A.

Ex.:  $u = \langle 0.5, a, 0.2, b, 0.4, c \rangle$  leads to  $\{(s_5, 0.6), (s_6, 0.4)\}$ .



### **Bisimilar Configurations**

If C is a configuration, let A[C] be A 'started' in configuration C.

**Definition.** A relation  $\mathcal{R}$  on configurations is a **bisimulation** if, whenever  $C_1 \mathcal{R} C_2$ , then

- $\forall a \in \Sigma, \forall t_1 \in \mathbb{R}^+, \exists t_2 \in \mathbb{R}^+$  such that if  $A[C_1] \xrightarrow{t_1, a} A[C'_1]$ , then  $A[C_2] \xrightarrow{t_2, a} A[C'_2]$ , and  $C'_1 \mathcal{R} C'_2$ .
- Vice-versa.

### **Bisimilar Configurations**

If C is a configuration, let A[C] be A 'started' in configuration C.

**Definition.** A relation  $\mathcal{R}$  on configurations is a **bisimulation** if, whenever  $C_1 \mathcal{R} C_2$ , then

- $\forall a \in \Sigma, \forall t_1 \in \mathbb{R}^+, \exists t_2 \in \mathbb{R}^+$  such that if  $A[C_1] \xrightarrow{t_1,a} A[C'_1]$ , then  $A[C_2] \xrightarrow{t_2,a} A[C'_2]$ , and  $C'_1 \mathcal{R} C'_2$ .
- Vice-versa.

We say that  $C_1$  and  $C_2$  are **bisimilar**, written  $C_1 \sim C_2$ , if there exists some bisimulation relating them.

### **Bisimilar Configurations**

If C is a configuration, let A[C] be A 'started' in configuration C.

**Definition.** A relation  $\mathcal{R}$  on configurations is a **bisimulation** if, whenever  $C_1 \mathcal{R} C_2$ , then

- $\forall a \in \Sigma, \forall t_1 \in \mathbb{R}^+, \exists t_2 \in \mathbb{R}^+$  such that if  $A[C_1] \xrightarrow{t_1, a} A[C'_1]$ , then  $A[C_2] \xrightarrow{t_2, a} A[C'_2]$ , and  $C'_1 \mathcal{R} C'_2$ .
- Vice-versa.

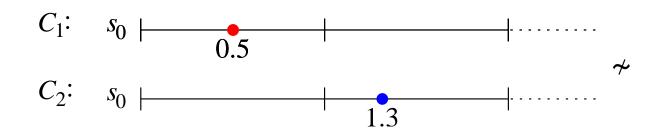
We say that  $C_1$  and  $C_2$  are **bisimilar**, written  $C_1 \sim C_2$ , if there exists some bisimulation relating them.

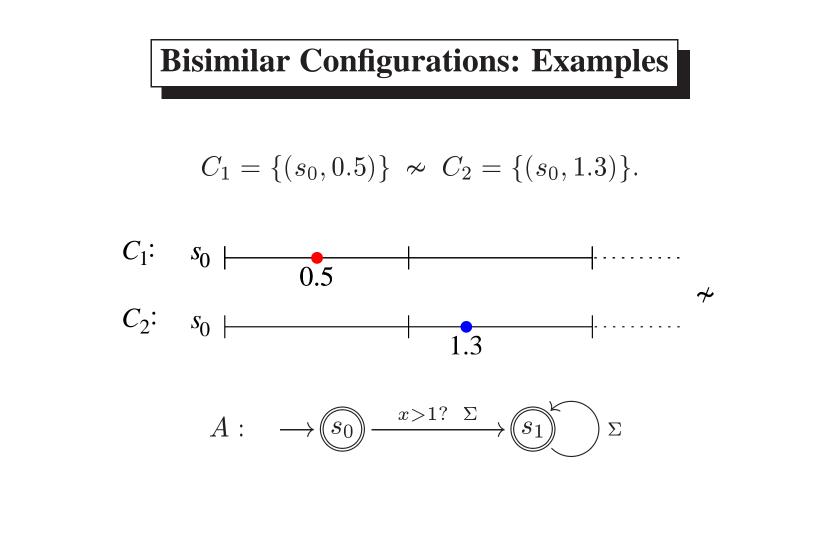
```
Theorem. If C_1 \sim C_2, then
```

```
A[C_1] is universal \iff A[C_2] is universal.
```



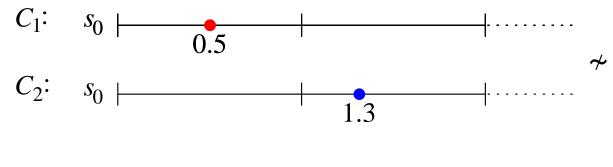
$$C_1 = \{(s_0, 0.5)\} \nsim C_2 = \{(s_0, 1.3)\}.$$

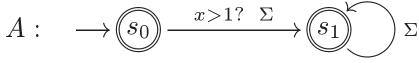




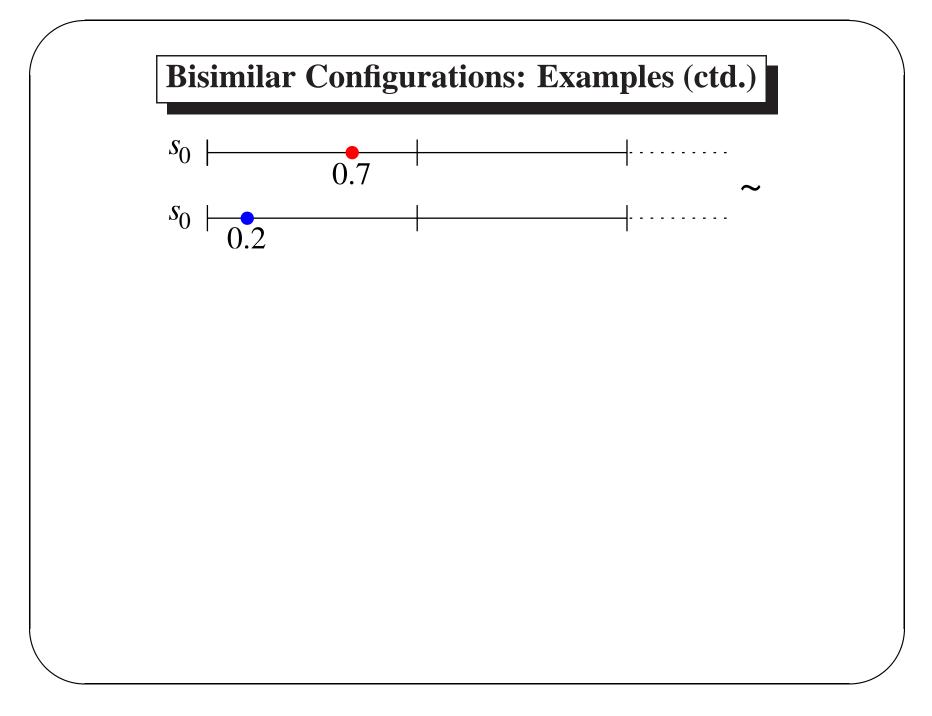


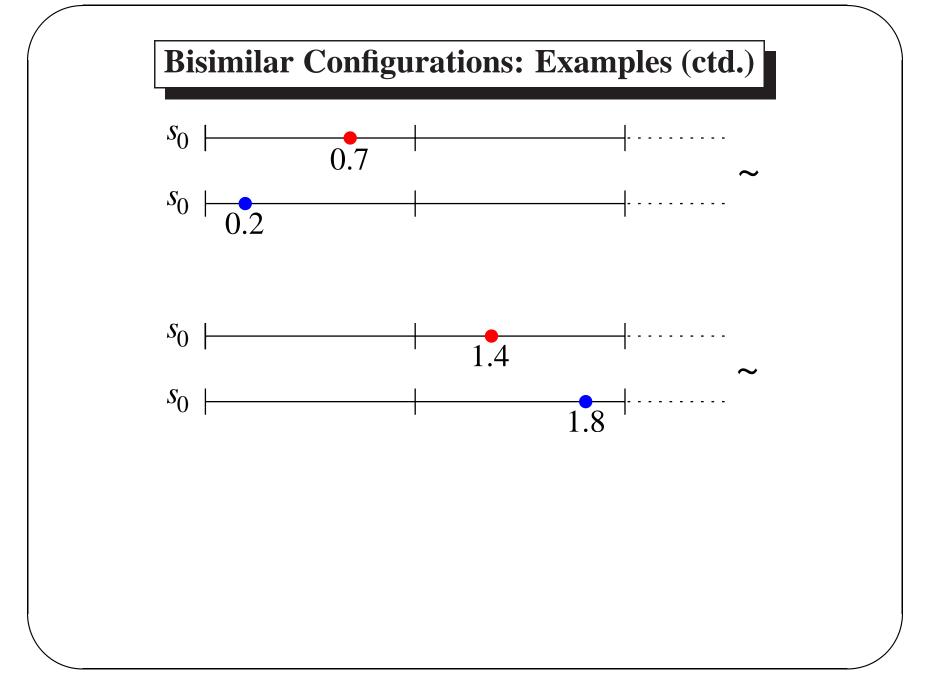


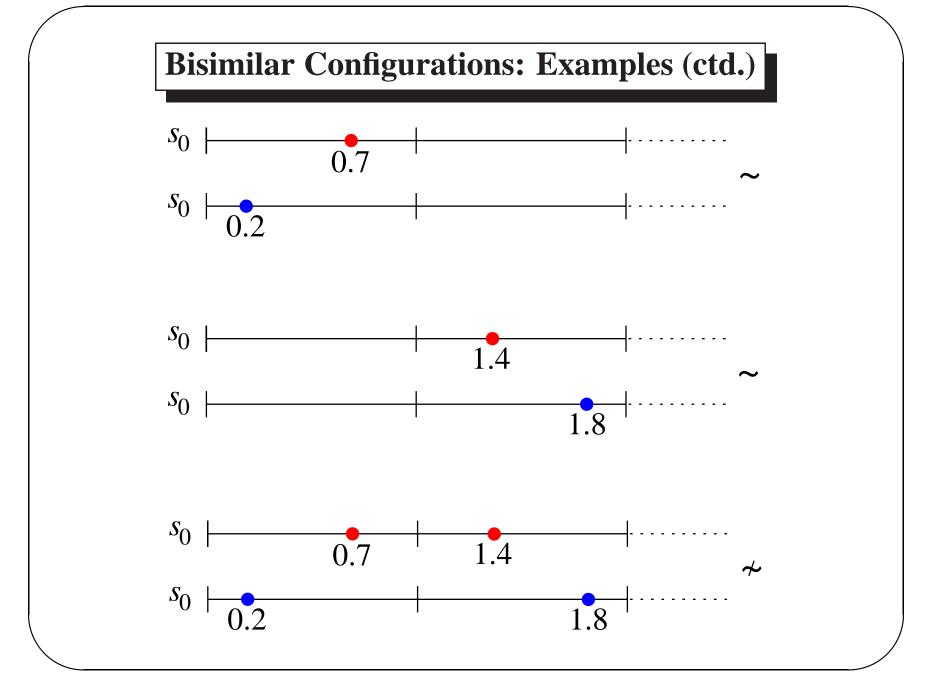


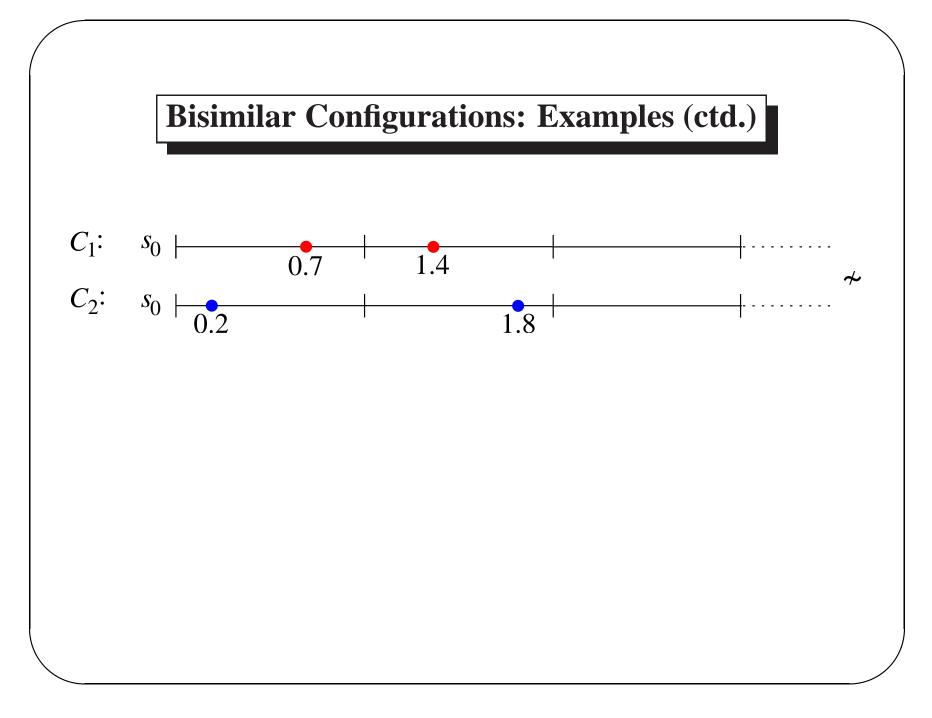


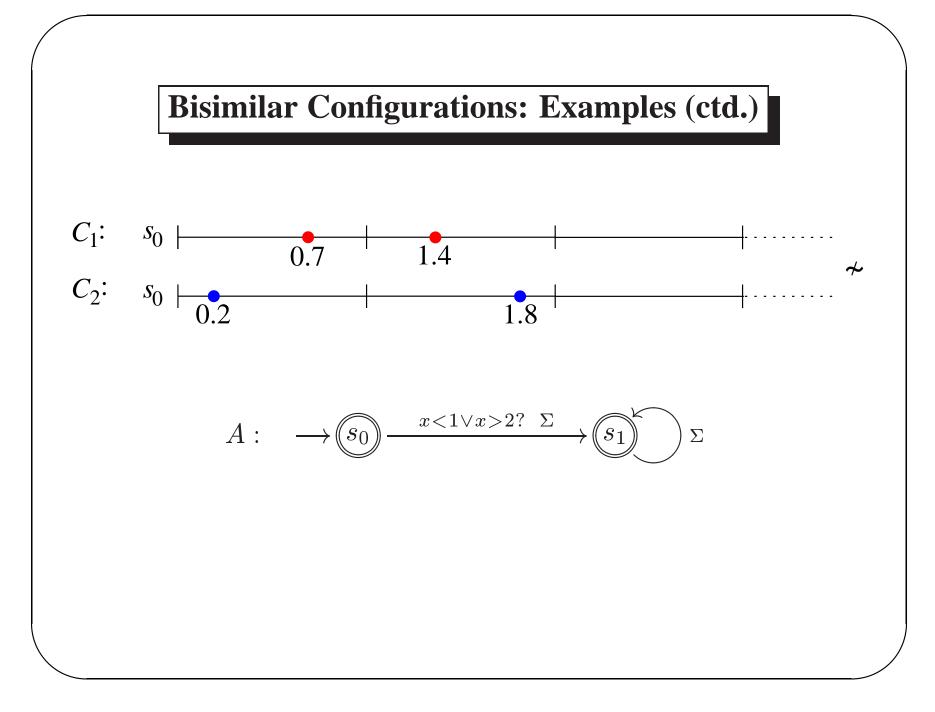
 $A[C_2]$  is universal, but  $A[C_1]$  rejects  $\langle 0, a \rangle$ .

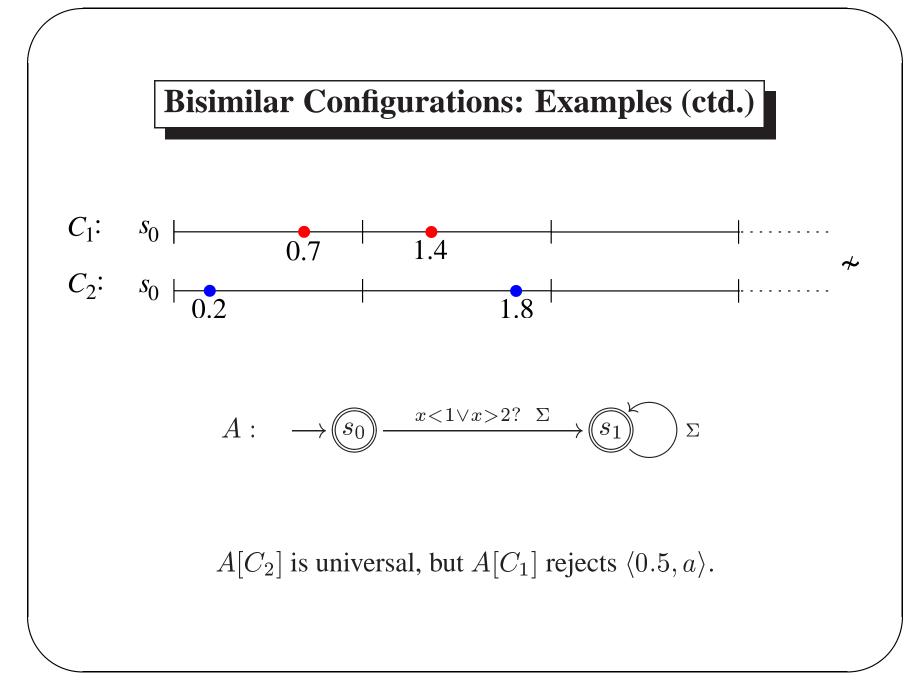












#### **From Bisimulation to Simulation**

**Definition.** We say that  $C_1$  is **simulated** by  $C_2$ , written  $C_1 \preccurlyeq C_2$ , if there exists  $C'_2 \subseteq C_2$  such that  $C_1 \sim C'_2$ .

#### **From Bisimulation to Simulation**

**Definition.** We say that  $C_1$  is **simulated** by  $C_2$ , written  $C_1 \preccurlyeq C_2$ , if there exists  $C'_2 \subseteq C_2$  such that  $C_1 \sim C'_2$ .

**Theorem.** If  $C_1 \preccurlyeq C_2$ , then

 $A[C_1]$  is universal  $\implies A[C_2]$  is universal.

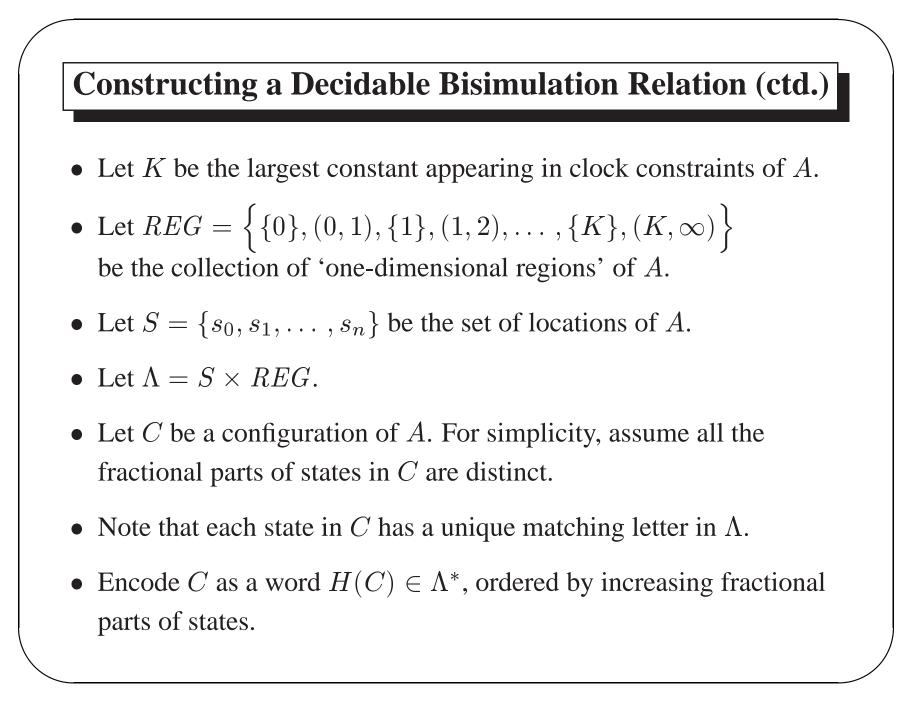
#### **Constructing a Decidable Bisimulation Relation**

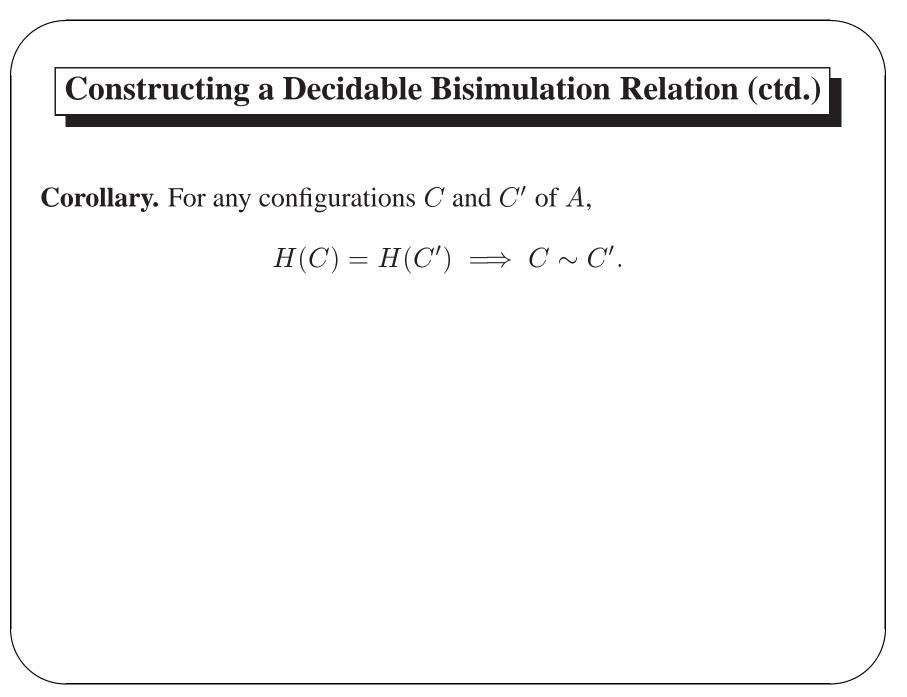
Let  $K \in \mathbb{N}$  be the largest constant appearing in clock constraints of A.

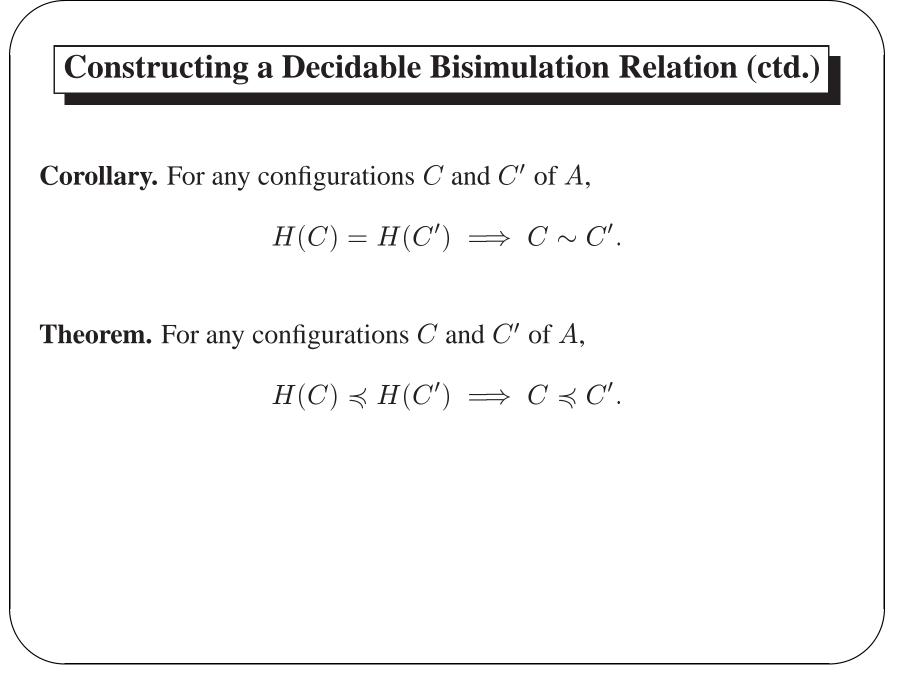
**Theorem.** Let C and C' be configurations of A. If there exists a bijection  $f : C \to C'$  that preserves

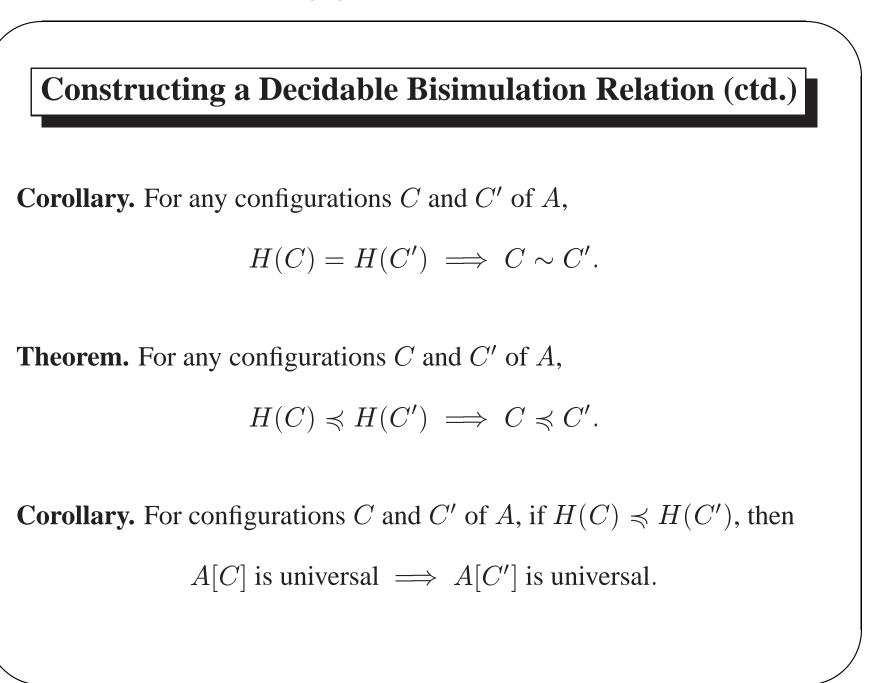
- locations:  $f(s,v) = (s',v') \implies s = s'$ ,
- integer parts of clock x, up to K:  $f(s,v) = (s',v') \implies ((\lceil v \rceil = \lceil v' \rceil \land \lfloor v \rfloor = \lfloor v' \rfloor) \lor v, v' > K),$
- the ordering of the fractional parts of clock x:  $f(s_i, v_i) = (s'_i, v'_i) \implies (v_i < v_j \iff v'_i < v'_j),$

then  $C \sim C'$ .









## The Algorithm: Recapitulation

- Reduce the universality question  $L(A) \stackrel{?}{=} \mathbf{TT}$  to a reachability question on the infinite graph  $\Lambda^*$ .
- The subword order  $\preccurlyeq$  on  $\Lambda^*$  is a compatible well-quasi-order:
  - Whenever  $H(C) \preccurlyeq H(C')$ : if A[C] is universal, then A[C'] is universal.
  - Any infinite sequence  $H(C_1)$ ,  $H(C_2)$ ,  $H(C_3)$ , ... eventually saturates: there exists i < j such that  $H(C_i) \preccurlyeq H(C_j)$ .
- Explore  $\Lambda^*$ , looking for a word/configuration from which A cannot perform some event. The search must eventually terminate.

# Summary

- We have given an algorithm to decide the language inclusion question  $L(B) \subseteq L(A)$ , provided A has at most one clock.
- Unexpected and fundamentally new result in the theory of timed automata.
- Interesting potential applications to hardware/software engineering and verification.

# **Closing the Gap**

Our decidability result is for all practical purposes the tightest one can get in terms of restricting the resources of timed automata:

**Theorem.** For A a timed automaton, the universality question  $L(A) \stackrel{?}{=} \mathbf{TT}$  remains undecidable under any of the following restrictions:

- A has two clocks and a one-event alphabet, or
- A has two clocks and uses a single constant in clock constraints, or
- A has a single location and a one-event alphabet, or
- A has a single location and uses a single constant in clock constraints.

## **Future Work**

- Complexity of the algorithm.
- Extend (if possible) to Büchi timed automata.
- Efficient implementation.