
SVC On the Language Inclusion Problem for Timed Automata 1'
&

$
%

On the Language Inclusion Problem for Timed

Automata: Closing a Decidability Gap

Jöel Ouaknine
Computer Science Department, Carnegie Mellon University

James Worrell
Department of Mathematics, Tulane University

SVC seminar
Sept. 2, 2003

SVC On the Language Inclusion Problem for Timed Automata 2'
&

$
%

Timed Automata
� Standard modeling formalism for real-time.

� Finite-state automata with clocks.

� Timed trace semantics: sequences of events with real-valued delay

timestamps. E.g.,u = h0:3; a; 2; b; 0; c; 1:1; ai.
a

0.3 2.3

b,c

3.4

a

L(A) := set of timed traces accepted byA.

A : //ONMLHIJK
@GF ECD

a

��

a
x:=0

//ONMLHIJK a

x=1?

//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

SVC On the Language Inclusion Problem for Timed Automata 3'
&

$
%

Known Facts about Timed Automata

� Emptiness problem,L(A)
?

= ;: PSPACE-complete [Aluret al. 90]

� Universality problem,L(A)
?

= TT: Undecidable [Alur-Dill 94]

� Language inclusion problem,L(B)
?

� L(A): Undecidable [Idem]

SVC On the Language Inclusion Problem for Timed Automata 4'
&

$
%

Our Main Contribution

Theorem. If A has at most one clock, the language inclusion problem

L(B)
?

� L(A)

is decidable.

SVC On the Language Inclusion Problem for Timed Automata 5'
&

$
%

Our Main Contribution

Theorem. If A has at most one clock, the language inclusion problem

L(B)
?

� L(A)

is decidable.

This result is unexpected: in all other known computational models,

deciding language inclusion always uses

L(B) � L(A) () L(B) \ L(A) = ;:

However, one-clock timed automata cannot be complemented...

SVC On the Language Inclusion Problem for Timed Automata 6'
&

$
%

Timed Automata Language Inclusion: Related Work

� Digitization techniques:
[Henzinger-Manna-Pnueli 92], [Bošnǎcki 99],

[Ouaknine-Worrell 03a]

� Determinizable classes of timed automata:
[Alur-Fix-Henzinger 94], [Wilke 96], [Raskin 99]

� Fuzzy semantics / noise-based techniques:
[Maass-Orponen 96], [Gupta-Henzinger-Jagadeesan 97],

[Fränzle 99], [Henzinger-Raskin 00], [Puri 00],

[Asarin-Bouajjani 01], [Ouaknine-Worrell 03b]

SVC On the Language Inclusion Problem for Timed Automata 7'
&

$
%

Some Applications

� Hardware and software systems are often described via high-level

specifications, describing their intended functional behavior.

� Specifications are often given asfinite-state machines.
A proposed implementationIMP meets its specificationSPECiff

L(IMP) � L(SPEC):

� Our work enables us to describe and handletimed specifications:

timed automata with a single clock.

SVC On the Language Inclusion Problem for Timed Automata 8'
&

$
%

Example: A Login Protocol

START
login_name

x:=0 VALIDATE

pw_wrongx<60?

LOG_ERROR

log_pw_wrongx:=0

RE_VALIDATE
pw_wrong

x<60?LOG_ERROR

log_pw_wrongx:=0

DELAY

connected

restartx>10? x>60?
restart

restart

x<60?
pw_correct

pw_correct
x<60?

x>60?

SVC On the Language Inclusion Problem for Timed Automata 9'
&

$
%

LISTEN

CLOSED

passive OPEN
 create TCB

RCVD
 SYN

snd SYN
 SEND

SYN
SENT

rcv SYN
snd ACK

ESTAB

rcv ACK of SYN
 x

rcv SYN, ACK
 snd ACK

WAIT_1
 FIN CLOSE

 WAIT

snd FIN
 CLOSE

snd FIN
 CLOSE

snd ACK
 rcv FIN

snd ACK
 rcv FIN

rcv ACK of FIN
 x

 FIN
WAIT_2

delete TCB
 CLOSE

delete TCB
 CLOSE

CLOSEDTIME_WAIT

LAST_ACK

snd FIN
 CLOSE

Timeout=2MSL
 delete TCB

rcv ACK of FIN
 x

snd ACK
 rcv FIN

CLOSING

rcv ACK of FIN
 x

snd SYN, ACK
 rcv SYN

active OPEN
 create TCB
 snd SYN

TCP spec.(DARPA) www.faqs.org/rfcs/rfc793/html

SVC On the Language Inclusion Problem for Timed Automata 10'
&

$
%

Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

SVC On the Language Inclusion Problem for Timed Automata 11'
&

$
%

Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET) = ;.

SVC On the Language Inclusion Problem for Timed Automata 12'
&

$
%

Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET) = ;.

� Find one-clock automataA1, A2, : : : , An such thatL(Bi) � L(Ai).

SVC On the Language Inclusion Problem for Timed Automata 13'
&

$
%

Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET) = ;.

� Find one-clock automataA1, A2, : : : , An such thatL(Bi) � L(Ai).

� WriteABS = A1jjA2jj : : : jjAn.

SVC On the Language Inclusion Problem for Timed Automata 14'
&

$
%

Some Applications (ctd.)

Compositional and assume-guarantee verification:

� LetNET = B1jjB2jj : : : jjBn be a network of timed automata.

� Suppose you want to verify thatL(NET) = ;.

� Find one-clock automataA1, A2, : : : , An such thatL(Bi) � L(Ai).

� WriteABS = A1jjA2jj : : : jjAn.

� Theorem: If L(ABS) = ;, thenL(NET) = ;.

SVC On the Language Inclusion Problem for Timed Automata 15'
&

$
%

Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

SVC On the Language Inclusion Problem for Timed Automata 16'
&

$
%

Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

� Construct a compatiblewell-quasi-order4 onH:

– WheneverW 4W 0: if W is safe, thenW 0 is safe.

– Any infinite sequenceW1, W2, W3, : : : eventually saturates:

there existsi < j such thatWi 4Wj .

SVC On the Language Inclusion Problem for Timed Automata 17'
&

$
%

Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

� Construct a compatiblewell-quasi-order4 onH:

– WheneverW 4W 0: if W is safe, thenW 0 is safe.

– Any infinite sequenceW1, W2, W3, : : : eventually saturates:

there existsi < j such thatWi 4Wj .

� ExploreH, looking for bad nodes. The search must eventually

terminate.

SVC On the Language Inclusion Problem for Timed Automata 18'
&

$
%

Sketch of the Algorithm
� Reduce the language inclusion questionL(B)
?

� L(A) to a

reachability question on an infinite graphH.

� Construct a compatiblewell-quasi-order4 onH:

– WheneverW 4W 0: if W is safe, thenW 0 is safe.

– Any infinite sequenceW1, W2, W3, : : : eventually saturates:

there existsi < j such thatWi 4Wj .

� ExploreH, looking for bad nodes. The search must eventually

terminate.

� For simplicity, we will focus onuniversality: A
?

= TT.

SVC On the Language Inclusion Problem for Timed Automata 19'
&

$
%

Higman’s Lemma

Let � = fa1; a2; : : : ; ang be an alphabet.

Let4 be thesubword order on��, the set of finite words over�.

Ex.: HIGMAN 4 HIGHMOUNTAIN

Then4 is awell-quasi-order on��:

Any infinite sequence of wordsW1, W2, W3, : : : must eventually have

two wordsWi 4Wj , with i < j.

SVC On the Language Inclusion Problem for Timed Automata 20'
&

$
%

Higman’s Lemma

Let � = fa1; a2; : : : ; ang be an alphabet.

Let4 be thesubword order on��, the set of finite words over�.

Ex.: HIGMAN 4 HIGHMOUNTAIN

Then4 is awell-quasi-order on��:

Any infinite sequence of wordsW1, W2, W3, : : : must eventually have

two wordsWi 4Wj , with i < j.

SVC On the Language Inclusion Problem for Timed Automata 21'
&

$
%

Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

x>2? b

a x := 0

1<x<3?
bs s0 1

SVC On the Language Inclusion Problem for Timed Automata 22'
&

$
%

Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

(s1; 1:4)

x>2? b

a x := 0

1<x<3?
b1s0s

SVC On the Language Inclusion Problem for Timed Automata 23'
&

$
%

Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

(s1; 4:5)

a x := 0

1<x<3?
b1s

x>2? b

0s

SVC On the Language Inclusion Problem for Timed Automata 24'
&

$
%

Timed Automata Configurations

LetA be a timed automaton with a single clockx,

and discretelocationss0, s1, : : : , sn.

� A stateof A is a pair(s; v):

– s is a location.

– v 2 R
+ is the value of clockx.

� A configuration of A is a finite set of states.

f(s0; 2); (s1; 1:4)g

x>2? b
1<x<3?

b1s0s

a x := 0

SVC On the Language Inclusion Problem for Timed Automata 25'
&

$
%

Timed Automata Configurations (ctd.)

Every timed traceu gives rise to a configuration ofA.

Ex.: u = h0:5; a; 0:2; b; 0:4; ci leads tof(s5; 0:6); (s6; 0:4)g.

?>=<89:;s1

b // ?>=<89:;s3

c // ?>=<89:;s5 // : : :

// ?>=<89:;s0

a
x:=0

88rrrrrrrr

a

&&LLLLLLLL

?>=<89:;s2

b
x:=0

// ?>=<89:;s4

c // ?>=<89:;s6 // : : :

SVC On the Language Inclusion Problem for Timed Automata 26'
&

$
%

Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

� 8a 2 �, 8t1 2 R
+ , 9t2 2 R
+ such that

if A[C1]
t1;a

�! A[C0
1], thenA[C2]

t2;a

�! A[C0
2], andC0
1 R C0
2.

� Vice-versa.

SVC On the Language Inclusion Problem for Timed Automata 27'
&

$
%

Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

� 8a 2 �, 8t1 2 R
+ , 9t2 2 R
+ such that

if A[C1]
t1;a

�! A[C0
1], thenA[C2]

t2;a

�! A[C0
2], andC0
1 R C0
2.

� Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 � C2,

if there exists some bisimulation relating them.

SVC On the Language Inclusion Problem for Timed Automata 28'
&

$
%

Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

� 8a 2 �, 8t1 2 R
+ , 9t2 2 R
+ such that

if A[C1]
t1;a

�! A[C0
1], thenA[C2]

t2;a

�! A[C0
2], andC0
1 R C0
2.

� Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 � C2,

if there exists some bisimulation relating them.

Theorem. If C1 � C2, then

A[C1] is universal() A[C2] is universal:

SVC On the Language Inclusion Problem for Timed Automata 29'
&

$
%

Bisimilar Configurations: Examples

C1 = f(s0; 0:5)g � C2 = f(s0; 1:3)g:

s0s0

s0

C1:
0.50.5

1.3
C2:

~

SVC On the Language Inclusion Problem for Timed Automata 30'
&

$
%

Bisimilar Configurations: Examples

C1 = f(s0; 0:5)g � C2 = f(s0; 1:3)g:

s0s0

s0

C1:
0.50.5

1.3
C2:

~

A : // ?>=<89:;76540123s0 x>1? �

// ?>=<89:;76540123s1 ABCFED ���

SVC On the Language Inclusion Problem for Timed Automata 31'
&

$
%

Bisimilar Configurations: Examples

C1 = f(s0; 0:5)g � C2 = f(s0; 1:3)g:

s0s0

s0

C1:
0.50.5

1.3
C2:

~

A : // ?>=<89:;76540123s0 x>1? �

// ?>=<89:;76540123s1 ABCFED ���

A[C2] is universal, butA[C1] rejectsh0; ai.

SVC On the Language Inclusion Problem for Timed Automata 32'
&

$
%

Bisimilar Configurations: Examples (ctd.)

s0

s0

0.7

0.2

~

SVC On the Language Inclusion Problem for Timed Automata 33'
&

$
%

Bisimilar Configurations: Examples (ctd.)

s0

s0

s0

s0

1.4

1.8

~

0.7

0.2

~

SVC On the Language Inclusion Problem for Timed Automata 34'
&

$
%

Bisimilar Configurations: Examples (ctd.)

s0

s0

s0

s0

1.4

1.8

~

s0

s0

0.7

0.2

1.4

1.8

0.7

0.2

~

~

SVC On the Language Inclusion Problem for Timed Automata 35'
&

$
%

Bisimilar Configurations: Examples (ctd.)

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

SVC On the Language Inclusion Problem for Timed Automata 36'
&

$
%

Bisimilar Configurations: Examples (ctd.)

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A : // ?>=<89:;76540123s0 x<1_x>2? �

// ?>=<89:;76540123s1 ABCFED ���

SVC On the Language Inclusion Problem for Timed Automata 37'
&

$
%

Bisimilar Configurations: Examples (ctd.)

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A : // ?>=<89:;76540123s0 x<1_x>2? �

// ?>=<89:;76540123s1 ABCFED ���

A[C2] is universal, butA[C1] rejectsh0:5; ai.

SVC On the Language Inclusion Problem for Timed Automata 38'
&

$
%

From Bisimulation to Simulation

Definition. We say thatC1 is simulated byC2, writtenC1 4 C2, if there

existsC0
2 � C2 such thatC1 � C0
2.

SVC On the Language Inclusion Problem for Timed Automata 39'
&

$
%

From Bisimulation to Simulation

Definition. We say thatC1 is simulated byC2, writtenC1 4 C2, if there

existsC0
2 � C2 such thatC1 � C0
2.

Theorem. If C1 4 C2, then

A[C1] is universal=) A[C2] is universal:

SVC On the Language Inclusion Problem for Timed Automata 40'
&

$
%

Constructing a Decidable Bisimulation Relation

LetK 2 N be the largest constant appearing in clock constraints ofA.

Theorem. LetC andC0 be configurations ofA.

If there exists a bijectionf : C ! C0 that preserves

� locations: f(s; v) = (s0; v0) =) s = s0,

� integer parts of clockx, up toK:

f(s; v) = (s0; v0) =) ((dve = dv0e ^ bvc = bv0c) _ v; v0 > K),

� the ordering of the fractional parts of clockx:

f(si; vi) = (s0i; v
0

i) =) (vi < vj () v0i < v0j),

thenC � C0.

SVC On the Language Inclusion Problem for Timed Automata 41'
&

$
%

Constructing a Decidable Bisimulation Relation (ctd.)
� LetK be the largest constant appearing in clock constraints ofA.

� LetREG =
n

f0g; (0; 1); f1g; (1; 2); : : : ; fKg; (K;1)
o

be the collection of ‘one-dimensional regions’ ofA.

� Let S = fs0; s1; : : : ; sng be the set of locations ofA.

� Let � = S � REG.

� LetC be a configuration ofA. For simplicity, assume all the

fractional parts of states inC are distinct.

� Note that each state inC has a unique matching letter in�.

� EncodeC as a wordH(C) 2 ��, ordered by increasing fractional

parts of states.

SVC On the Language Inclusion Problem for Timed Automata 42'
&

$
%

Constructing a Decidable Bisimulation Relation (ctd.)

Corollary. For any configurationsC andC0 of A,

H(C) = H(C0) =) C � C 0:

SVC On the Language Inclusion Problem for Timed Automata 43'
&

$
%

Constructing a Decidable Bisimulation Relation (ctd.)

Corollary. For any configurationsC andC0 of A,

H(C) = H(C0) =) C � C 0:

Theorem. For any configurationsC andC0 of A,

H(C) 4 H(C0) =) C 4 C 0:

SVC On the Language Inclusion Problem for Timed Automata 44'
&

$
%

Constructing a Decidable Bisimulation Relation (ctd.)

Corollary. For any configurationsC andC0 of A,

H(C) = H(C0) =) C � C 0:

Theorem. For any configurationsC andC0 of A,

H(C) 4 H(C0) =) C 4 C 0:

Corollary. For configurationsC andC0 of A, if H(C) 4 H(C0), then

A[C] is universal=) A[C0] is universal:

SVC On the Language Inclusion Problem for Timed Automata 45'
&

$
%

The Algorithm: Recapitulation
� Reduce the universality questionL(A)
?

= TT to a reachability

question on the infinite graph��.

� The subword order4 on�� is a compatible well-quasi-order:

– WheneverH(C) 4 H(C0):

if A[C] is universal, thenA[C0] is universal.

– Any infinite sequenceH(C1), H(C2), H(C3), : : : eventually

saturates: there existsi < j such thatH(Ci) 4 H(Cj).

� Explore��, looking for a word/configuration from whichA cannot

perform some event. The search must eventually terminate.

SVC On the Language Inclusion Problem for Timed Automata 46'
&

$
%

Summary

� We have given an algorithm to decide the language inclusion

questionL(B)
?

� L(A), providedA has at most one clock.

� Unexpected and fundamentally new result in the theory of timed

automata.

� Interesting potential applications to hardware/software engineering

and verification.

SVC On the Language Inclusion Problem for Timed Automata 47'
&

$
%

Closing the Gap

Our decidability result is for all practical purposes the tightest one can get

in terms of restricting the resources of timed automata:

Theorem. ForA a timed automaton, the universality question

L(A)
?

= TT remains undecidable under any of the following restrictions:

� A has two clocks and a one-event alphabet,or

� A has two clocks and uses a single constant in clock constraints,or

� A has a single location and a one-event alphabet,or

� A has a single location and uses a single constant in clock constraints.

SVC On the Language Inclusion Problem for Timed Automata 48'
&

$
%

Future Work

� Complexity of the algorithm.

� Extend (if possible) to B̈uchi timed automata.

� Efficient implementation.

