Abstractions of Data Types

Ferucio Laurenţiu Ţiplea

Faculty of Computer Science

"Al.I.Cuza" University of Iasi
6600 Iasi, Romania

- Investigate three types of abstractions in the context of (abstract) data types, and provide preservations results that generalize preservation results known from:
- Shape analysis
- Predicate abstraction
- McMillan's approach
- Duplicating predicate symbols technique
- etc.
- Investigate equationally defined abstractions in the context of (abstract) data types.

Framework

Abstract data types modeled by universal algebras

1. J. Mitchell. Foundations of Programming Languages, The MIT Press, 1996.
2. J. Loecks, H.-D. Ehrich, M. Wolf. Algebraic Specification of Abstract Data Types, in Handbook of Logic in Computer Science, vol 5, Clarendon Press, 2000, 217-316.
3. H. Ehrig, D. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics, Springer-Verlag, 1985.
4. H. Ehrig, D. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints, Springer-Verlag, 1990.

Terminology

- Data types modeled by universal algebras. Why?
- mathematical precision
- independence of implementation
- axiomatic definition of operations
- suitable to reason about operations and their properties
- Abstract data types modeled by classes of universal algebras closed under isomorphism. Why?
- the closer under isomorphism corresponds to the similarity concept
- Specifications given by sets of equations
- Model = data type (algebra) which satisfies a specification

A Motivating Example

Figure: A data type $A=\left(\mathbf{N},+{ }^{A}\right)$ together with a set of predicates

The following property holds true:

$$
(\forall x, y \in A)\left(\operatorname{Isgr} z^{A}(x) \vee \operatorname{Isgr} z^{A}(y) \Rightarrow \operatorname{Isgr} z^{A}\left(x+{ }^{A} y\right)\right)
$$

$|S p e c 1\rangle$

A Motivating Example (cont'd)

Figure: The quotient data type $A / \rho=\left(\mathbf{N} / \rho,{ }^{A / \rho}\right)$ together with a set of predicates
Let $\operatorname{Isgr} z^{A / \rho}$ be the interpretation of $I s g r z$ in A / ρ given by

$$
\operatorname{Isgr} z^{A / \rho}\left([a]_{\rho}\right) \text { iff }\left(\forall a^{\prime} \in[a]_{\rho}\right)\left(\operatorname{Isgr}^{A}\left(a^{\prime}\right)\right)
$$

The following property holds true:

$$
(\forall x, y \in A / \rho)\left(\operatorname{Isgr} z^{A / \rho}(x) \vee \operatorname{Isgr} z^{A / \rho}(y) \Rightarrow \operatorname{Isgr} z^{A / \rho}\left(x++^{A / \rho} y\right)\right)
$$

A Motivating Example (cont’d)

Conclusions:

(1) the meta-language used to express properties of data types (algebras) should be specific to signatures and not to data types (algebras);
(2) data type reductions can be captured by congruences. In such a case, the operations are automatically redefined to operate on the quotient data type (algebra), but the predicates need a special treatment.

Logically Extended Signatures

- logical type
e $w \in S^{+}$
- $w=$ (nat,bool), $w=$ (nat, nat, bool)
- logical S-sorted signature
- Σ_{L} contains only logical symbols (predicate symbols)
- $\Sigma_{L}=\{$ Isgrz,$=\}$
- logically extended S-sorted signature
- ($\left.\Sigma, \Sigma_{L}\right)$, where Σ is an S-sorted signature

($\left.\Sigma, \Sigma_{L}\right)$-algebras

- A Σ-algebra does the following:
- associates domains to sorts
- interprets the function symbols as operations of corresponding types
- $\mathrm{A}\left(\Sigma, \Sigma_{L}\right)$-algebra does the following:
- associates domains to sorts
- interprets the function symbols as operations of corresponding types
- interprets the logical symbols into $\{0,1, \perp\}$

We use Kleene's 3-valued first order logic
|Kleene〉

Kleene's 3-valued First Order Logic

- first order formulas over $\left(\Sigma, \Sigma_{L}\right)$ and X
- $\mathcal{L}\left(\Sigma, \Sigma_{L}, X\right)$
- positive formulas
- $\mathcal{L}^{+}\left(\Sigma, \Sigma_{L}, X\right)$
- assignment
- $\gamma: X \rightarrow A$
- the interpretation function of φ into \mathbf{A}
- $\mathcal{I}_{\mathbf{A}}(\varphi): \Gamma(X, \mathbf{A}) \rightarrow A \cup\{0,1, \perp\}$

$$
\mathbf{A} \models \varphi \quad \Leftrightarrow \quad(\forall \gamma: X \rightarrow A)\left(\mathcal{I}_{\mathbf{A}}(\varphi)(\gamma)=1\right)
$$

Abstractions of Models

An abstraction of a $\left(\Sigma, \Sigma_{L}\right)$-algebra \mathbf{A} is any couple consisting of:

- a quotient algebra of \mathbf{A} under a congruence $\rho(\mathbf{A} / \rho)$, and
- an interpretation of the logical symbols into \mathbf{A} / ρ

Congruences can be defined by:

- surjective homomorphisms
- sets of predicates
- partitions
- etc.

Property Preservation

- strong-preservation - if a set of properties with truth values true or false in the abstract system has corresponding properties in the concrete system with the same truth values;
- weak-preservation - if a set of properties true in the abstract system has corresponding properties in the concrete system that are also true;
- error-preservation - if a set of properties false in the abstract system has corresponding properties in the concrete system that are also false.

Types of Abstractions

$p^{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right), a_{i}^{\prime} \in\left[a_{i}\right]$	$p^{A / p}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)$		
	$\forall \forall$-abs	$\underline{\forall \exists \text {-abs }}$	$\exists^{0,1} \forall$-abs
all 1	1	1	1
all 0	0	0	0
\perp and 0/1	\perp	$0, \perp$	\perp
0 and 1	\perp	0	1

Property Preservation - $\forall \forall$

Theorem Let A be a $\left(\Sigma, \Sigma_{L}\right)$-algebra, ρ a $\forall \forall$-abstraction of \mathbf{A}, and φ a formula. Then

$$
\mathcal{I}_{\mathbf{A} / \rho}(\varphi)(\gamma)=b \quad \Rightarrow \quad\left(\forall \gamma^{\prime} \in \gamma\right)\left(\mathcal{I}_{\mathbf{A}}(\varphi)\left(\gamma^{\prime}\right)=b\right),
$$

for any $b \in\{0,1\}$ and $\gamma \in \Gamma(X, \mathbf{A} / \rho)$.

Corollary $\quad \forall \forall$-abstractions of $\left(\Sigma, \Sigma_{L}\right)$-algebras are strongly preserving w.r.t. formulas in $\mathcal{L}\left(\Sigma, \Sigma_{L}, X\right)$.

Property Preservation - $\forall \exists$

Theorem Let \mathbf{A} be a $\left(\Sigma, \Sigma_{L}\right)$-algebra, ρ an abstraction of \mathbf{A}, and φ a formula in $\mathcal{L}^{+}\left(\Sigma, \Sigma_{L}, X\right)$. If ρ is an $\forall \exists$-abstraction then

$$
\mathcal{I}_{\mathbf{A} / \rho}(\varphi)(\gamma)=1 \Rightarrow\left(\forall \gamma^{\prime} \in \gamma\right)\left(\mathcal{I}_{\mathbf{A}}(\varphi)\left(\gamma^{\prime}\right)=1\right),
$$

for all $\gamma \in \Gamma(X, \mathbf{A} / \rho)$.

Corollary $\forall \exists$-abstractions of $\left(\Sigma, \Sigma_{L}\right)$-algebras are weakly preserving w.r.t. formulas in $\mathcal{L}^{+}\left(\Sigma, \Sigma_{L}, X\right)$.

Property Preservation $-\exists^{0,1} \forall$

Theorem Let \mathbf{A} be a $\left(\Sigma, \Sigma_{L}\right)$-algebra, ρ an abstraction of \mathbf{A}, and φ a formula in $\mathcal{L}^{+}\left(\Sigma, \Sigma_{L}, X\right)$. If ρ is an $\exists^{0,1} \forall$-abstraction then

$$
\mathcal{I}_{\mathbf{A} / \rho}(\varphi)(\gamma)=0 \Rightarrow\left(\forall \gamma^{\prime} \in \gamma\right)\left(\mathcal{I}_{\mathbf{A}}(\varphi)\left(\gamma^{\prime}\right)=0\right),
$$

for all $\gamma \in \Gamma(X, \mathbf{A} / \rho)$.

Corollary $\quad \exists^{0,1} \forall$-abstractions of $\left(\Sigma, \Sigma_{L}\right)$-algebras are error preserving w.r.t. formulas in $\mathcal{L}^{+}\left(\Sigma, \Sigma_{L}, X\right)$.

Applications

The following formalisms can be viewed as particular cases of our approach (regarding the abstraction method and the corresponding preservation results):

- predicate abstraction
- shape analysis
- the technique of duplicating predicate symbols
- McMillan's approach

Abstractions of ADTs

- Abstract Data Type (ADT): class of algebras closed under isomorphism
- monomorphic
- polymorphic
- Specification of an ADT
- syntax (fixes the "form")
- semantics (fixes the "meaning")
- Initial specification
- (syntax) $S p=(\Sigma, E)$ where Σ is a signature and E is a set of Σ-equations
- (semantics) $\mathcal{M}(S p)=\left\{\mathbf{A} \mid \mathbf{A} \cong \mathbf{T}_{\Sigma, E}\right\}$
$\mathcal{M}(S p)$ is also called the monomorphic ADT defined by $S p$

Abstractions of ADTs

Initial logically extended specification

- (syntax) $S p=\left(\Sigma, \Sigma_{L}, E, \Sigma_{L}^{T_{\Sigma, E}}\right)$
- ($\left.\Sigma, \Sigma_{L}\right)$ is a logically extended signature
- E is a set of Σ-equations
- $\Sigma_{L}^{T_{\Sigma, E}}$ is a set of logical operations on $T_{\Sigma, E}$
- (semantics) $\mathcal{M}(S p)=\left\{\mathbf{A} \mid \mathbf{A} \in A l g_{\Sigma, \Sigma_{L}} \wedge \mathbf{A} \cong \mathbf{T}_{\Sigma, \Sigma_{L}, E}\right\}$ where

$$
\mathbf{T}_{\Sigma, \Sigma_{L}, E}=\left(T_{\Sigma, E}, \Sigma^{T_{\Sigma, E}}, \Sigma_{L}^{T_{\Sigma, E}}\right)
$$

Theorem $\mathbf{T}_{\Sigma, \Sigma_{L}, E}$ is an initial algebra in $\mathcal{M}(S p)$.

The Keeping-up Program

- Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag, 1992.

$$
\begin{gathered}
\text { local } x, y \text { : integer where } x=y=0 \\
P_{1}::\left[\begin{array}{l}
l_{0}: \text { loop forever do } \\
{\left[\begin{array}{l}
l_{1}: \text { await } x<y+1 \\
l_{2}: x:=x+1
\end{array}\right]}
\end{array}\right] \| \quad P_{2}::\left[\begin{array}{l}
m_{0}: \text { loop forever do } \\
{\left[\begin{array}{l}
m_{1}: \text { await } y<x+1 \\
m_{2}: y:=y+1
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

Global safety property: $\square(|x-y| \leq 1)$

Specification of Keeping-up (I)

LSpec Keeping-up
sorts: nat
vect(2)
bool
opns: Zero : nat
True, False : bool
Succ : nat \rightarrow nat
Conv : bool \rightarrow nat
Leq : natnat \rightarrow bool
Add : nat nat \rightarrow nat
Trans : vect(2) \rightarrow vect (2)
lopns: GlobalSafety : vect(2)

Specification of Keeping-up (II)

```
eqns: \(\quad \operatorname{Conv}(\) False \()=0\)
    \(\operatorname{Conv}(\) True \()=1\)
    \(\operatorname{Add}(x, Z\) ero \()=x\)
    \(\operatorname{Add}(x, \operatorname{Succ}(y))=\operatorname{Succ}(\operatorname{Add}(x, y))\)
    \(\operatorname{Leq}(\) Zero,\(x)=\) True
    \(\operatorname{Leq}(\operatorname{Succ}(x), Z e r o)=\) False
    \(\operatorname{Leq}(\operatorname{Succ}(x), \operatorname{Succ}(y))=\operatorname{Leq}(x, y)\)
    \(\operatorname{Trans}((x, y))=(\operatorname{Add}(x, \operatorname{Conv}(\operatorname{Leq}(x, y))), y)\)
    \(\operatorname{Trans}((x, y))=(x, \operatorname{Add}(y, \operatorname{Conv}(\operatorname{Leq}(y, x))))\)
leqns: GlobalSafety \(\left(\left[(x, x]_{Q}\right)=1\right.\)
    GlobalSafety \(_{Q}\left(\left[(x, \operatorname{Succ}(x)]_{Q}\right)=1\right.\)
    GlobalSafety \(_{Q}\left(\left[(\operatorname{Succ}(x), x]_{Q}\right)=1\right.\)
```


Abstraction of Keeping-up

$$
\operatorname{Succ}(x)-S u c c(y)=x-y
$$

Abs of Keeping-up

```
vars: x,y : nat
```

abs: $\quad[(\operatorname{Succ}(x), \operatorname{Succ}(y))]_{Q}=[(x, y)]_{Q}$
type: $\quad \forall \forall$

Equivalence classes:

- $\left[[(\text { Zero, Zero })]_{Q}\right]$
- $\left[[(\operatorname{Succ}(\text { Zero }), Z \text { ero })]_{Q}\right]$
- $\left[[(Z \operatorname{ero}, \operatorname{Succ}(Z \operatorname{ero}))]_{Q}\right]$

The Bakery Algorithm

- L. Lamport. A New Solution of the Dijkstra's Concurrent Problem, Communications of the ACM 17, 1974, 453-455.
local $x, y:$ integer where $x=y=0$
$P_{1}::\left[\begin{array}{c}1: x:=y+1 ; \\ 2: \text { loop forever while } \\ y \neq 0 \wedge x>y ; \\ 3: \text { critical section } ; \\ 4: x:=0 ;\end{array}\right] \quad \| \quad P_{2}::\left[\begin{array}{c}1: y:=x+1 ; \\ 2: \text { loop forever while } \\ x \neq 0 \wedge y \geq x ; \\ 3: \text { critical section; } \\ 4: y:=0 ;\end{array}\right]$

Safety property:

$$
\left(\forall\left(x, x^{\prime}, y, y^{\prime}, z\right) \text { reachable }\right)\left(\neg \text { CriticalSection }\left(x, x^{\prime}, y, y^{\prime}, z\right)\right)
$$

Specification of Bakery (I)

LSpec Bakery

```
sorts: nat
```

 vect(5)
 opns: Succ : nat \rightarrow nat
Trans : vect(5) $\rightarrow \operatorname{vect}(5)$
lopns: CriticalSection : vect(5)
vars: $x, x^{\prime}, y, y^{\prime}, z$: nat

Specification of Bakery (II)

$$
\text { eqns: } \begin{aligned}
& \operatorname{Trans}((0,0,0,0,0))=(1,1,1,1,0) \\
& \operatorname{Trans}((1,1,1,1,0))=(1,2,1,1,0) \\
& \operatorname{Trans}((1,2,1,1,0))=(0,0,1,1,2) \\
& \operatorname{Trans}\left(\left(0,0, y, y^{\prime}, z\right)\right)=\left(\operatorname{Succ}(y), 1, y, y^{\prime}, 1\right) \\
& \operatorname{Trans}\left(\left(x, x^{\prime}, 0,0, z\right)\right)=\left(x, x^{\prime}, S u c c(x), 1,2\right) \\
& \operatorname{Trans}((x, 1,0,0,1))=(x, 2,0,0,1) \\
& \operatorname{Trans}((x, 1, y, 1,2))=(x, 2, y, 1,2) \\
& \operatorname{Trans}((x, 2,0,0,1))=(0,0,0,0,0) \\
& \operatorname{Trans}((x, 2, y, 1, z))=(0,0, y, 1,2) \\
& \operatorname{Trans}((0,0, y, 1,2))=(0,0, y, 2,2) \\
& \operatorname{Trans}((x, 1, y, 1,1))=(x, 1, y, 2,1) \\
& \operatorname{Trans}((0,0, y, 2,2))=(0,0,0,0,0) \\
& \operatorname{Trans}((x, 1, y, 2,1))=(x, 1,0,0,1)
\end{aligned}
$$

leqns: CriticalSection $_{Q}\left([(x, 2, y, 2, z)]_{Q}\right)$

Abstraction of Bakery

Abs of Bakery vars: $\quad x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}$: nat abs: $\quad\left[\left(x_{1}, x_{1}^{\prime}, y_{1}, y_{1}^{\prime}, 0\right)\right]_{Q}=\left[\left(x_{2}, x_{2}^{\prime}, y_{2}, y_{2}^{\prime}, 0\right)\right]_{Q}$ $\left[\left(x_{1}, x_{1}^{\prime}, y_{1}, y_{1}^{\prime}, 1\right)\right]_{Q}=\left[\left(x_{2}, x_{2}^{\prime}, y_{2}, y_{2}^{\prime}, 1\right)\right]_{Q}$ $\left[\left(x_{1}, x_{1}^{\prime}, y_{1}, y_{1}^{\prime}, 2\right)\right]_{Q}=\left[\left(x_{2}, x_{2}^{\prime}, y_{2}, y_{2}^{\prime}, 2\right)\right]_{Q}$
type: $\quad \forall \forall$

Equivalence classes:

$$
\begin{aligned}
& {\left[[(1,1,0,0,1)]_{Q}\right]} \\
& {\left[[(0,0,1,1,2)]_{Q}\right]} \\
& {\left[[(0,0,0,0,0)]_{Q}\right]=\left\{[(0,0,0,0,0)]_{Q},[(1,1,1,1,0)]_{Q},[(1,1,2,1,0)]_{Q}\right\}}
\end{aligned}
$$

Conclusions

What we have done:

- general formalism for abstraction of (abstract) data types
- classification of abstractions w.r.t. the property preservation they assure
- equationally specified abstractions in the context of equationally specified abstract data types

What remains to be done:

- extensions to temporal logics
- overloading, ordered sorts, hidden sorts etc.

Specification of $A=\left(\mathbf{N},+{ }^{A}\right)$

LSpec

```
Nat
sorts: nat
opns: Zero : nat
Succ : nat \(\rightarrow\) nat
Add : nat nat \(\rightarrow\) nat
vars: \(\quad x, y\) : nat
eqns: \(\quad \operatorname{Add}(x\), Zero \()=x\)
\(A d d(x, S u c c(y))=\operatorname{Succ}(\operatorname{Add}(x, y))\)
```

〈Back

Specification of $A=\left(\mathbf{N},+{ }^{A}\right)$

LSpec

```
Nat
sorts: nat
opns: Zero : nat
    Succ : nat \(\rightarrow\) nat
    Add : nat nat \(\rightarrow\) nat
lopns: Isgrz: nat
vars: \(\quad x, y\) : nat
eqns: \(\quad \operatorname{Add}(x\), Zero \()=x\)
    \(\operatorname{Add}(x, \operatorname{Succ}(y))=\operatorname{Succ}(\operatorname{Add}(x, y))\)
leqns: \(\quad \operatorname{Isgr}_{Q}\left([\operatorname{Succ}(x)]_{Q}\right)=1\)
```

〈Back|

Specification of $A / \rho=\left(\mathbf{N} / \rho,+^{A / \rho}\right)$

LSpec Nat

```
sorts: nat
opns: Zero : nat
    Succ : nat \(\rightarrow\) nat
    Add : nat nat \(\rightarrow\) nat
lopns: Isgrz: nat
vars: \(\quad x, y\) : nat
eqns: \(\quad \operatorname{Add}(x\), Zero \()=x\)
    \(\operatorname{Add}(x, \operatorname{Succ}(y))=\operatorname{Succ}(\operatorname{Add}(x, y))\)
leqns: \(\quad \operatorname{Isgrz}_{Q}\left([\operatorname{Succ}(x)]_{Q}\right)=1\)
```

Abs of Nat

```
vars: x : nat
abs: }\quad[\operatorname{Succ}(\operatorname{Succ}(x))\mp@subsup{]}{Q}{}=[\operatorname{Succ}(Z\operatorname{Zero})\mp@subsup{]}{Q}{
type: }\quad\forall
```


Kleene's 3-valued Interpretation

$$
[0]=\{0\} \text { and }[1]=\{1,2, \ldots\}
$$

$={ }^{A / \rho}$	$[0]$	$[1]$
$[0]$	1	0
$[1]$	0	\perp

$={ }^{A / \rho}([1],[1])$ is evaluated to \perp because two arbitrary numbers in [1] can be equal or different.

Kleene's 3-valued Interpretation

Information order

\vee	0	1	\perp
0	0	1	\perp
1	1	1	1
\perp	\perp	1	\perp

\wedge	0	1	\perp
0	0	0	0
1	0	1	\perp
\perp	0	\perp	\perp

〈Back|

$\forall \exists$-abstractions

- $p^{A / \rho}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)=1$ if $(\forall i)\left(\forall a_{i}^{\prime} \in\left[a_{i}\right]\right)\left(p^{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=1\right)$
- $p^{A / \rho}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)=0$ if $(\forall i)\left(\exists a_{i}^{\prime} \in\left[a_{i}\right]\right)\left(p^{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=0\right)$
- $p^{A / p}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)=\perp$, otherwise.

〈Back|

Applications: Shape Analysis

Shape Analysis is a Data Flow Analysis technique mainly used for complex analysis of dynamically allocated data structures

- F. Nielson, H.R. Nielson, Ch. Hankin. Principles of Program Analysis, Springer-Verlag, 1999.

It is based on:

- "observing" the shape of these structures
- extracting a finite characterization of them in the form of a shape graph

The shape graph is an abstraction of the behavior of the original data type. The analysis goes on by using corresponding preservation results.

Applications: Shape Analysis

Example: original data type of acyclic lists (Sagiv, Reps, Wilhelm, 2002)

	x	y	t	e
u_{1}	1	1	0	0
u_{2}	0	0	0	0
u_{3}	0	0	0	0
u_{4}	0	0	0	0

n	u_{1}	u_{2}	u_{3}	u_{4}
u_{1}	0	1	0	0
u_{2}	0	0	1	0
u_{3}	0	0	0	1
u_{4}	0	0	0	0

$\leftarrow 2$-valued logic
x, y, t and e are n is a binary predi-
unary predicates

Applications: Shape Analysis

Example: abstract data type of acyclic lists (the abstraction is driven by
x, y, t and e)

	x	y	t	e
u_{1}	1	1	0	0
u_{234}	0	0	0	0

n	u_{1}	u_{234}
u_{1}	0	\perp
u_{234}	0	\perp

$\leftarrow 3$-valued logic
$\leftarrow \forall \forall$
x, y, t and e are
n is a binary prediunary predicates cate

Applications: Shape Analysis

An embedding from S into S^{\prime} is any surjective function $f: U^{S} \rightarrow U^{S^{\prime}}$ such that

$$
\mathcal{I}^{S}(p)\left(u_{1}, \ldots, u_{k}\right) \sqsubseteq \mathcal{I}^{S^{\prime}}(p)\left(f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right),
$$

for any any predicate symbol p of arity k and all $u_{1}, \ldots, u_{k} \in U^{S}$.
Theorem (Embedding Theorem)
Let $S=\left(U^{S}, \mathcal{I}^{S}\right)$ and $S^{\prime}=\left(U^{S^{\prime}}, \mathcal{I}^{S^{\prime}}\right)$ be two structures, and f be an embedding from S into S^{\prime}. Then, for every formula φ and every complete assignment γ for $\varphi, \mathcal{I}^{S}(\varphi)(\gamma) \sqsubseteq \mathcal{I}^{S^{\prime}}(\varphi)(f \circ \gamma)$.

The embedding theorem is a particular case of our theorem regarding property preservation by $\forall \forall$-abstractions

Applications: Duplicating Predicate Symbols

- E. Clarke, O. Grumberg, D.E. Long, 1994
- D. Dams, R. Gerth, O. Grumberg, 1997
- M. Bidoit, A. Boisseau, 2001

Basics:

- associate copies to predicate symbols, P_{\oplus} and P_{\ominus}
- derive two versions of each formula, φ_{\oplus} and φ_{\ominus}
- $P\left(t_{1}, \ldots, t_{n}\right)_{\oplus}=P_{\oplus}\left(t_{1}, \ldots, t_{n}\right)$ and similar for \ominus
- $\left(\varphi_{1} \vee \varphi_{2}\right)_{\oplus}=\left(\varphi_{1 \oplus} \vee \varphi_{2 \oplus}\right)$ and similar for \ominus and the other operators except for \neg
- $(\neg \varphi)_{\oplus}=\neg\left(\varphi_{\ominus}\right)$ and $(\neg \varphi)_{\ominus}=\neg\left(\varphi_{\oplus}\right)$
- use φ_{\oplus} for validation and φ_{\ominus} for refutation

Applications: Duplicating Predicate Symbols

M. Bidoit and A. Boisseau (2001) use an universal algebra formalism to model security protocols and the technique of duplicating predicate symbols to verify security properties:

- messages = terms in a term algebra
- message exchanges = equations and formulas in a first order logic with equality
- states and reachability relation
- secrecy property: S's private key $\left(k^{-1}(S)\right)$ remains secret

$$
\left(\forall q_{0}, q: \text { State }\right)\left(\neg\left(q_{0} . I \models k^{-1}(S)\right) \wedge \operatorname{Reach}\left(q_{0}, q\right) \Rightarrow \neg\left(q \models k^{-1}(S)\right)\right)
$$

〈Back

Applications: Duplicating Predicate Symbols

The abstraction technique:

- abstractions are driven by epimorphisms $\mathbf{A} \xrightarrow{h} \mathbf{A}^{h}$
- $P_{\oplus}^{A^{h}}\left(b_{1}, \ldots, b_{n}\right)$ iff $(\forall i)\left(\forall a_{i} \in h^{-1}\left(b_{i}\right)\right)\left(P^{A}\left(a_{1}, \ldots, a_{n}\right)\right.$
- $P_{\ominus}^{A^{h}}\left(b_{1}, \ldots, b_{n}\right)$ iff $(\forall i)\left(\exists a_{i} \in h^{-1}\left(b_{i}\right)\right)\left(P^{A}\left(a_{1}, \ldots, a_{n}\right)\right.$

Now, one of the main results proved by Bidoit and Boisseau states that:

$$
\mathbf{A}^{h} \models \varphi_{\oplus} \Rightarrow \mathbf{A} \models \varphi
$$

and

$$
\mathbf{A}^{h} \not \vDash \varphi_{\ominus} \Rightarrow \mathbf{A} \not \models \varphi .
$$

Applications: Duplicating Predicate Symbols

In our approach we associate to each predicate P a new copy P^{\prime} and interpret it as $\neg P$.

Theorem The following properties holds true:

- if ρ is a $\forall \exists$-abstraction of \mathbf{A}, then

$$
\mathbf{A} / \rho \models \varphi^{\prime} \Rightarrow \mathbf{A} \models \varphi
$$

- if ρ is an $\exists^{0,1} \forall$-abstraction of \mathbf{A}, then

$$
\mathbf{A} / \rho \not \vDash \varphi^{\prime} \Rightarrow \mathbf{A} \not \models \varphi
$$

where φ^{\prime} is obtained from φ by replacing $\neg P$ by P^{\prime} and $\neg Q^{\prime}$ by Q.
〈Back|

