
1© Software Systems Engineering Research Group, BTU Cottbus, 2002

June 22nd 2270

2© Software Systems Engineering Research Group, BTU Cottbus, 2002 1

Efficient BDD Representation
for Reachability Analysis of

Timed Automata
Dirk Beyer

Software Systems Engineering
Research Group

BTU Cottbus
www.software-systemtechnik.de/Rabbit

3© Software Systems Engineering Research Group, BTU Cottbus, 2002

Problems of existing approaches
• Modeling

– flat set of communicating automata
– structure of system is lost in model
è confusing, hard to understand, not modular

• Verification
– explicit enumeration of discrete states, exponential
– clock valuations are represented by matrices
– non-convex sets require more than one matrices
– CDDs are used, but without regarding variable ordering
è inefficient, exponential effort

• Case studies
– scalable benchmark examples with regular structure
– few models with realistic, unregular structure
è existing case studies to small

4© Software Systems Engineering Research Group, BTU Cottbus, 2002

Example: Fischer‘s protocol

Timed Automata for process i

Uncritical

WaitCritical

Assign

xi ≥ c
k ≠ i

k = 0
x

i
' = 0

xi ≥ c
k = i

k' = 0

k = 0
xi = c x

i
 ≤ c −1

k' = i
xi' = 0

5© Software Systems Engineering Research Group, BTU Cottbus, 2002

Modularity in Cottbus Timed Automata

Module Gate:
INPUT

lower : SYNC
raise : SYNC

LOCAL
g : ANALOG

Module Controller:
INPUT

app : SYNC
exit : SYNC

OUTPUT

LOCAL
t : CLOCK

lower : SYNC
raise : SYNC

Module RailRoadCrossing:

lower : SYNC
raise : SYNC

LOCAL

app : SYNC
exit : SYNC

Module Environment:
INPUT

lower : SYNC
raise : SYNC

OUTPUT
app : SYNC
exit : SYNC

app : SYNC
exit : SYNC

OUTPUT

6© Software Systems Engineering Research Group, BTU Cottbus, 2002

Hierarchy

iPhysical

iBelt1 iBelt10 iTurnTable1 iMachine4…

iSensorA iSensorB iBeltMotor iBelt iSensor
Left

iSensor
Right

iTurnMotor iDrill
Motor

iPosition
Motor

iTop
Sensor

iBottom
SensoriBeltMotoriSensor

iTurnTable2 iMachine3

7© Software Systems Engineering Research Group, BTU Cottbus, 2002

Reuse of components

Physical

TransportBelt WorkBelt TurnTable DrillMachine

Sensor Motor

PressMachineShortBelt

6

2
11 2

2

2

2 2 2 1 1

2

111

1

1

8© Software Systems Engineering Research Group, BTU Cottbus, 2002

Refinement steps for large systems

CONTR_ABST ENV_ABST

Abstract system

CONTR_IMPL ENV_IMPL

Detailed system

Refinement Refinement

9© Software Systems Engineering Research Group, BTU Cottbus, 2002

Problems of existing approaches
• Modeling

– hierarchical model, abstraction layers
– reuse of components, substitution of modules
è structured, understandable, maintainable, because modular,

useful for verification

• Verification
– explicit enumeration of discrete states, exponential
– clock valuations are represented by matrices
– non-convex sets require more than one matrices
– CDDs are used, but without regarding variable ordering
è inefficient, exponential effort

• Case studies
– scalable benchmark examples with regular structure
– few models with realistic, unregular structure
è existing case studies to small

10© Software Systems Engineering Research Group, BTU Cottbus, 2002

Verification of real-time systems

• Formalism for modular modeling
– Theoretical basis: timed and hybrid automata
– Module concept

è Good for modeling large systems

• Reachability analysis using BDD representation
– Integer semantics
– Estimate-based variable ordering
è Very efficient

• Refinement checking
– Simulation relation
è Modular Proofs

11© Software Systems Engineering Research Group, BTU Cottbus, 2002

Reachability analysis

• Verification of safety properties
è Performance problems with existing tools

• 1st problem: explicit discrete states
è BDD representation (own package)

• 2nd problem: separated clock representation
è discrete TA-semantics, using also BDDs

• 3rd problem: variable orderings
è heuristic using communication structure

12© Software Systems Engineering Research Group, BTU Cottbus, 2002

Contribution to efficiency

• Evaluation of our method for three examples
(Fischer, FDDI, CSMA/CD)

• 1. there exists a variable ordering for
polynomial size complexity

• 2. our tool is able to find such variable ordering
automatically

• 3. empirical evidence

• industrial case study: the approach works
• the approach is applicable for DDs in general

13© Software Systems Engineering Research Group, BTU Cottbus, 2002

Complexity results

Θ(n2)Θ(n2)Θ(n2 ttrt2 lg ttrt)
= Θ(n4 lg n)

Token ring
FDDI

Θ(n2)Ω (3n)Θ(n σ3 lg λ)CSMA/CD

Θ(n3)Ω (2n)Θ(c3 n2 lg c)Fischer

CDD size
(smallest)

CDD size
(location-first)

BDD sizeProtocol

14© Software Systems Engineering Research Group, BTU Cottbus, 2002

Complexity analysis: Fischer‘s protocol

Timed Automata for process i

Uncritical

WaitCritical

Assign

xi ≥ c
k ≠ i

k = 0
x

i
' = 0

xi ≥ c
k = i

k' = 0

k = 0
xi = c x

i
 ≤ c −1

k' = i
xi' = 0

15© Software Systems Engineering Research Group, BTU Cottbus, 2002

Communication graph

• General characteristics of „good“ variable
orderings:
– Communicating components have neighboring

positions
– Components which communicate with many

other components at first

• Automatic ordering:
– Estimation for the size of the BDD evaluates

different variable orderings

16© Software Systems Engineering Research Group, BTU Cottbus, 2002

BDD structure and size estimation

...

qi

qi-1

q1

qi+1

qn

() ()()∑ ∏
=

∈
⋅−

n

i
iCommk k

q

A

i Q
1

12

17© Software Systems Engineering Research Group, BTU Cottbus, 2002

Example: Fischer‘s mutex protocol

TA for process i: Communication graph:

Auto. 1

clock 1

Auto. 2

clock 2

Auto. n

clock n

Variable k

…

Uncritical

WaitCritical

Assign

xi ≥ c
k ≠ i

k = 0
xi' = 0

xi ≥ c
k = i

k' = 0

k = 0
xi = c xi ≤ c −1

k' = i
xi' = 0

18© Software Systems Engineering Research Group, BTU Cottbus, 2002

Different variable orderings

Consider 3 different variable orderings for the BDD
representing the reachable set of Fischer’s protocol:

Var k Var k

Var k

Auto 1

Auto 2
Clock 1

Clock 2

Auto 1
Auto 1

Auto 2

Clock 2

Clock 1

Auto 2

Clock 2

Clock 1

Separated k at end k in front

19© Software Systems Engineering Research Group, BTU Cottbus, 2002

Measurement: Fischer‘s protocol

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 20 40 60 80 100 120

Anzahl Prozesse

S
p

ei
ch

er
 (i

n
 B

D
D

-K
n

o
te

n
)

k am Anfang
k am Ende
Uhren separat

20© Software Systems Engineering Research Group, BTU Cottbus, 2002

Comparison with other approaches

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140

Anzahl Prozesse

B
er

ec
hn

un
gs

ze
it

(in
 S

ek
un

de
n)

Rabbit

RED, Wang

21© Software Systems Engineering Research Group, BTU Cottbus, 2002

BDD for the reachable set

32x Fischer

22© Software Systems Engineering Research Group, BTU Cottbus, 2002

BDDs for the reachable sets

4x Fischer
8x Fischer

16x Fischer
32x Fischer
64x Fischer

23© Software Systems Engineering Research Group, BTU Cottbus, 2002

BDDs for the reachable sets

k in front versus k at end

AND 4

24© Software Systems Engineering Research Group, BTU Cottbus, 2002

Estimate vs. real size

real BDD

estimated BDD

25© Software Systems Engineering Research Group, BTU Cottbus, 2002

Problems of existing approaches
• Modeling

– hierarchical model, abstraction layers
– reuse of components, substitution of modules
è structured, understandable, maintainable, because modular

• Verification
– unique symbolic representation of states AND clock valuations
– proved integer semantics, proved upper bound for trans rel
– method for complexity analysis, polynomial is possible
– method for variable ordering, good orderings can be computed
è efficient, polynomial effort for some examples

• Case studies
– scalable benchmark examples with regular structure
– few models with realistic, unregular structure
è existing case studies to small

26© Software Systems Engineering Research Group, BTU Cottbus, 2002

Video production cell

27© Software Systems Engineering Research Group, BTU Cottbus, 2002

Complete production line example (1)

ordering derived from
modular structure

28© Software Systems Engineering Research Group, BTU Cottbus, 2002

Complete production line example (2)

ordering based on
calculated size estimates

ordering derived from
modular structure

29© Software Systems Engineering Research Group, BTU Cottbus, 2002

Problems of existing approaches
• Modeling

– hierarchical model, abstraction layers
– reuse of components, substitution of modules
è structured, understandable, maintainable, because modular

• Verification
– unique symbolic representation of states AND clock valuations
– proved integer semantics, proved upper bound for trans rel
– method for complexity analysis, polynomial is possible
– method for variable ordering, good orderings can be computed
è efficient, polynomial effort for some examples

• Case studies
– scalable benchmark examples => polynomial effort
– large production cell model => verifiable using modular structure
è approach works, is relevant for practice,

executable controller can be synthesized from proven model

30© Software Systems Engineering Research Group, BTU Cottbus, 2002

Results
• Modular formalism for modelling
• Efficient verification using BDD representation

– Complexity analysis of reach sets: good ordering exists
– Good variable orderings can be found by tool

using modular structure of model

• Tool framework for timed and hybrid automata
– Double Description Method for the hybrid case
– Binary Decision Diagrams for the timed case

• Different verification strategies for modular proofs
– Reachabilityanalysis for safety properties
– Refinement check via simulation relation

• Several case studies:
– AND circuit, Fischer‘s protocol, CSMA/CD, FDDI,
– Production cell, controller synthesis

31© Software Systems Engineering Research Group, BTU Cottbus, 2002

FDDI protocol
RingTo1

RingTo2

Ring1

Ring2

x ≤ td

!tt1

x ≤ td

?rt1

x' = 0

!tt2

?rt2
x' = 0

z_Idle

y_Async z_Async

y_Idle

z_Sync

y_Sync

?tti

zi ≤ sa

yi ≤ sa

yi ≥ sa
zi ≥ ttrt

!rti

?tti

zi ≥ sa
yi ≥ ttrt

!rti

zi ≥ sa
yi < ttrt

!rti

yi ≤ ttrt

yi ≥ sa
zi < ttrt

!rti

zi ≤ trtt

32© Software Systems Engineering Research Group, BTU Cottbus, 2002

CSMA/CD protocol

Init Transm

!cd
x < σ

#begini

x' = 0

#endi

Cd

x ≤ σ

#begini

x ≥ σ
#busyi

Init

Cd

Send

Transm

xi' = 0

x i ≤ 2σ

xi' = 0

?cd, xi' = 0

x i = λ
#endi

?cd

xi = 0

#busy i

xi' = 0
?cd

xi' = 0

#begini

xi' = 0

?cd

xi ≤ λ

