June 22nd 2270

© Software Systems Engineering Research Group, BTU Cottbus, 2002

Efficient BDD Representation for Reachability Analysis of Timed Automata

Dirk Beyer

Software Systems Engineering Research Group BTU Cottbus

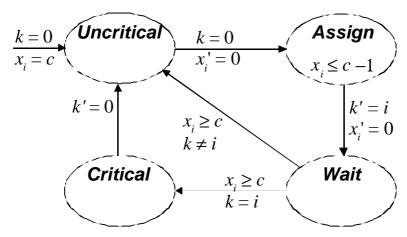
www.software-systemtechnik.de/Rabbit

Modeling

- flat set of communicating automata
- structure of system is lost in model
- > confusing, hard to understand, not modular

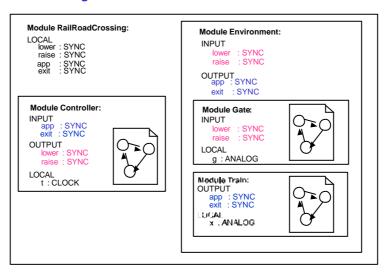
Verification

- explicit enumeration of discrete states, exponential
- clock valuations are represented by matrices
- non-convex sets require more than one matrices
- CDDs are used, but without regarding variable ordering
- > inefficient, exponential effort


Case studies

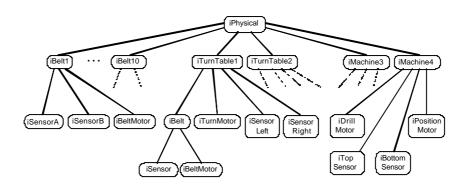
- scalable benchmark examples with regular structure
- few models with realistic, unregular structure
- existing case studies to small

© Software Systems Engineering Research Group, BTU Cottbus, 2002

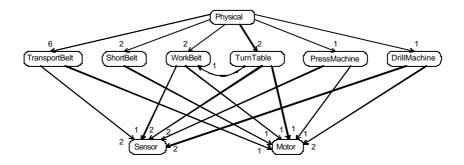

3

Example: Fischer's protocol

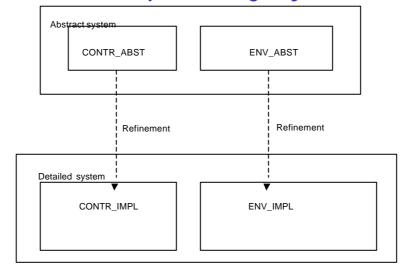
Timed Automata for process i


Modularity in Cottbus Timed Automata

© Software Systems Engineering Research Group, BTU Cottbus, 2002


5

© Software Systems Engineering Research Group, BTU Cottbus, 2002


Reuse of components

© Software Systems Engineering Research Group, BTU Cottbus, 2002

7

Refinement steps for large systems

© Software Systems Engineering Research Group, BTU Cottbus, 2002

- Modeling
 - hierarchical model, abstraction layers
 - reuse of components, substitution of modules
 - → structured, understandable, maintainable, because modular, useful for verification

Verification

- explicit enumeration of discrete states, exponential
- clock valuations are represented by matrices
- non-convex sets require more than one matrices
- CDDs are used, but without regarding variable ordering
- > inefficient, exponential effort

Case studies

- scalable benchmark examples with regular structure
- few models with realistic, unregular structure
- > existing case studies to small

© Software Systems Engineering Research Group, BTU Cottbus, 2002

Q

Verification of real-time systems

- Formalism for modular modeling
 - Theoretical basis: timed and hybrid automata
 - Module concept
 - Good for modeling large systems

Reachability analysis using BDD representation

- Integer semantics
- Estimate-based variable ordering
- Very efficient

Refinement checking

- Simulation relation
- Modular Proofs

Reachability analysis

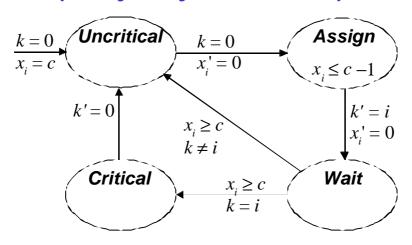
- · Verification of safety properties
 - → Performance problems with existing tools
- 1st problem: explicit discrete states
 - → BDD representation (own package)
- 2nd problem: separated clock representation
 - → discrete TA-semantics, using also BDDs
- 3rd problem: variable orderings
 - → heuristic using communication structure

© Software Systems Engineering Research Group, BTU Cottbus, 2002

11

Contribution to efficiency

- Evaluation of our method for three examples (Fischer, FDDI, CSMA/CD)
- 1. there <u>exists</u> a variable ordering for polynomial size complexity
- 2. our tool is <u>able to find</u> such variable ordering automatically
- 3. empirical evidence
- industrial case study: the approach works
- the approach is applicable for DDs in general


Complexity results

Protocol	BDD size	CDD size (location-first)	CDD size (smallest)
Fischer	Q(c ³ n ² <i>lg</i> c)	W (2 ⁿ)	Q(n³)
CSMA/CD	Q(n s ³ lg 1)	W (3 ⁿ)	Q(n²)
Token ring FDDI	$Q(n^2 \text{ ttrt}^2 lg \text{ ttrt})$ $= Q(n^4 lg n)$	Q(n²)	Q(n²)

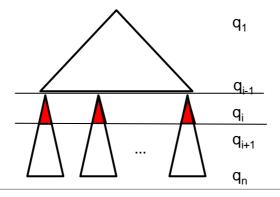
© Software Systems Engineering Research Group, BTU Cottbus, 2002

13

Complexity analysis: Fischer's protocol

Timed Automata for process i

© Software Systems Engineering Research Group, BTU Cottbus, 2002

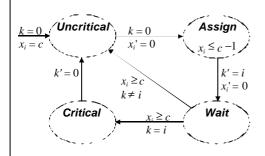

Communication graph

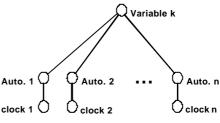
- General characteristics of "good" variable orderings:
 - Communicating components have neighboring positions
 - Components which communicate with many other components at first
- Automatic ordering:
 - Estimation for the size of the BDD evaluates different variable orderings

© Software Systems Engineering Research Group, BTU Cottbus, 2002

15

BDD structure and size estimation


$$\sum_{i=1}^{n} \left(2^{|q_i|} - 1 \right) \cdot \left(\prod_{k \in Comm_A(i)} |Q_k| \right)$$

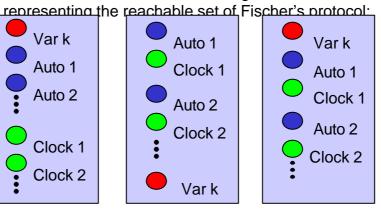

© Software Systems Engineering Research Group, BTU Cottbus, 2002

Example: Fischer's mutex protocol

TA for process i:

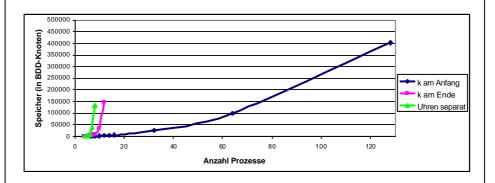
Communication graph:

© Software Systems Engineering Research Group, BTU Cottbus, 2002


17

Different variable orderings

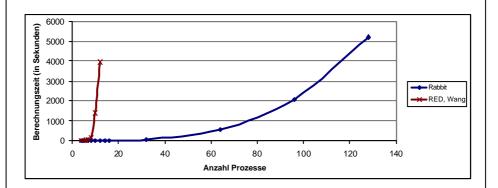
Consider 3 different variable orderings for the BDD

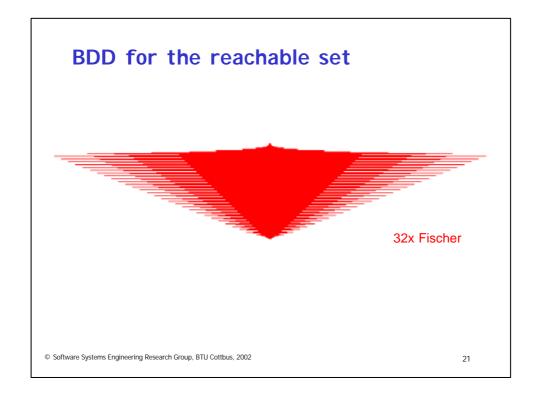


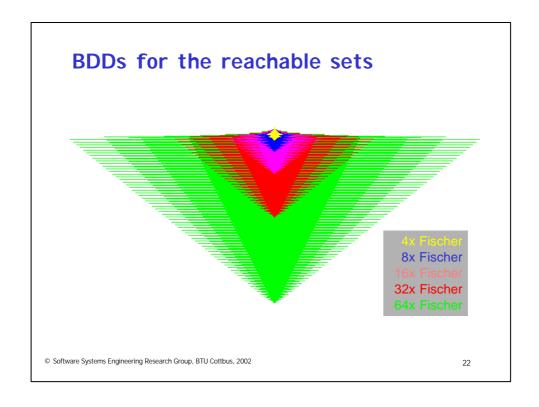
k at end k in front

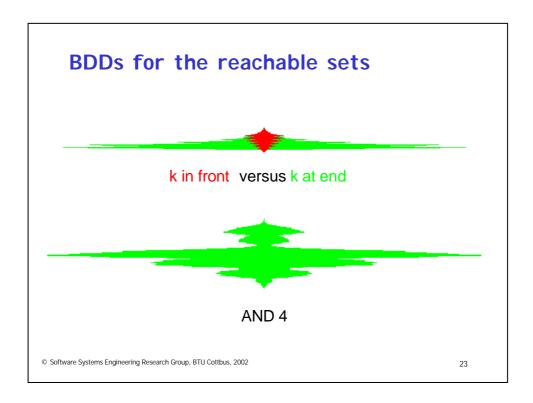
© Software Systems Engineering Research Group, BTU Cottbus, 2002

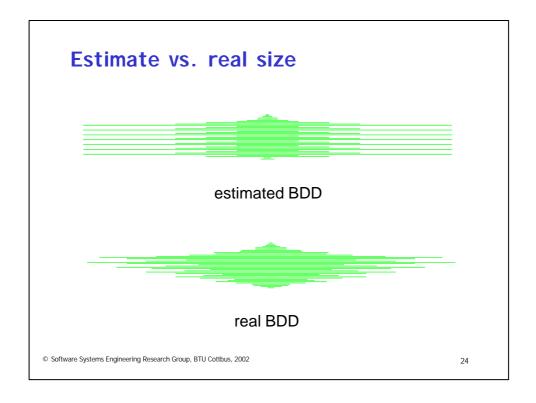
Separated



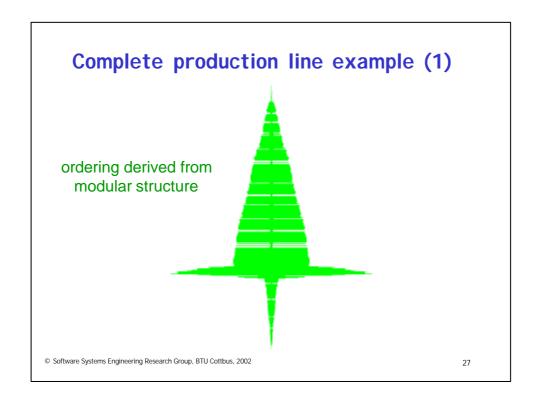

© Software Systems Engineering Research Group, BTU Cottbus, 2002

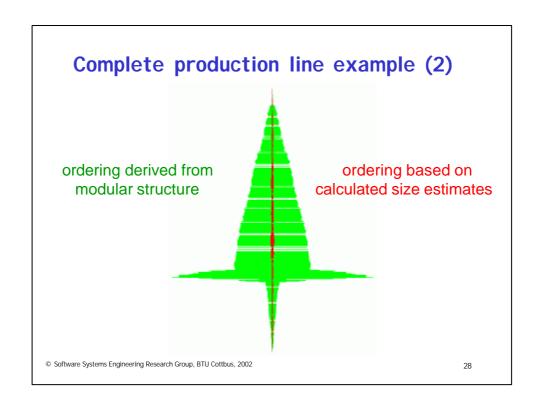

19


Comparison with other approaches



© Software Systems Engineering Research Group, BTU Cottbus, 2002

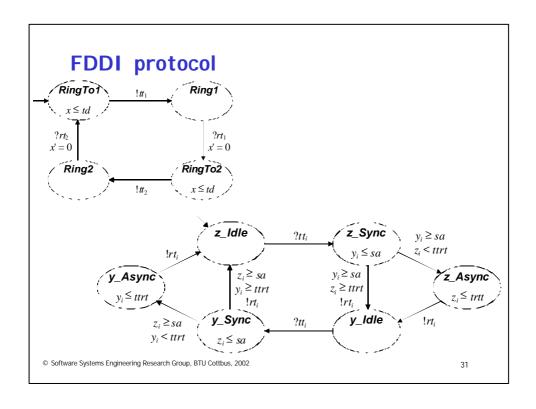


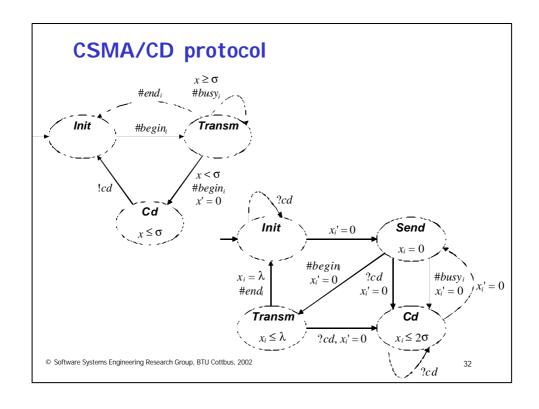

- Modeling
 - hierarchical model, abstraction layers
 - reuse of components, substitution of modules
 - → structured, understandable, maintainable, because modular
- Verification
 - unique symbolic representation of states AND clock valuations
 - proved integer semantics, proved upper bound for trans rel
 - method for complexity analysis, polynomial is possible
 - method for variable ordering, good orderings can be computed
 - → efficient, polynomial effort for some examples
- Case studies
 - scalable benchmark examples with regular structure
 - few models with realistic, unregular structure
 - existing case studies to small

© Software Systems Engineering Research Group, BTU Cottbus, 2002

25

Video production cell


- Modeling
 - hierarchical model, abstraction layers
 - reuse of components, substitution of modules
 - → structured, understandable, maintainable, because modular
- Verification
 - unique symbolic representation of states AND clock valuations
 - proved integer semantics, proved upper bound for trans rel
 - method for complexity analysis, polynomial is possible
 - method for variable ordering, good orderings can be computed
 - → efficient, polynomial effort for some examples
- Case studies
 - scalable benchmark examples => polynomial effort
 - large production cell model => verifiable using modular structure
 - → approach works, is relevant for practice, executable controller can be synthesized from proven model


© Software Systems Engineering Research Group, BTU Cottbus, 2002

29

Results

- Modular formalism for modelling
- Efficient verification using BDD representation
 - Complexity analysis of reach sets: good ordering exists
 - Good variable orderings <u>can be found</u> by tool using modular structure of model
- Tool framework for timed and hybrid automata
 - Double Description Method for the hybrid case
 - Binary Decision Diagrams for the timed case
- Different verification strategies for modular proofs
 - Reachability analysis for safety properties
 - Refinement check via simulation relation
- Several case studies:
 - AND circuit, Fischer's protocol, CSMA/CD, FDDI,
 - Production cell, controller synthesis

