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Problems of existing approaches
• Modeling

– flat set of communicating automata
– structure of system is lost in model
è confusing, hard to understand, not modular

• Verification
– explicit enumeration of discrete states, exponential
– clock valuations are represented by matrices
– non-convex sets require more than one matrices
– CDDs are used, but without regarding variable ordering
è inefficient, exponential effort

• Case studies
– scalable benchmark examples with regular structure
– few models with realistic, unregular structure
è existing case studies to small
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Example: Fischer‘s protocol

Timed Automata for process i
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Modularity in Cottbus Timed Automata

Module Gate:
INPUT

lower   : SYNC 
raise    : SYNC 

LOCAL
g  : ANALOG 

Module Controller:
INPUT

app   : SYNC 
exit   : SYNC 

OUTPUT

LOCAL
t  : CLOCK 

lower : SYNC 
raise  : SYNC 

Module RailRoadCrossing:

lower : SYNC 
raise  : SYNC 

LOCAL

app    : SYNC 
exit    : SYNC 

Module Environment:
INPUT

lower   : SYNC 
raise    : SYNC 

OUTPUT
app   : SYNC 
exit    : SYNC 

app   : SYNC 
exit   : SYNC 

OUTPUT
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Hierarchy
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Reuse of components
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Refinement steps for large systems

CONTR_ABST ENV_ABST

Abstract system

CONTR_IMPL ENV_IMPL

Detailed system

Refinement Refinement
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Problems of existing approaches
• Modeling

– hierarchical model, abstraction layers
– reuse of components, substitution of modules
è structured, understandable, maintainable, because modular,

useful for verification

• Verification
– explicit enumeration of discrete states, exponential
– clock valuations are represented by matrices
– non-convex sets require more than one matrices
– CDDs are used, but without regarding variable ordering
è inefficient, exponential effort

• Case studies
– scalable benchmark examples with regular structure
– few models with realistic, unregular structure
è existing case studies to small
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Verification of real-time systems

• Formalism for modular modeling
– Theoretical basis: timed and hybrid automata
– Module concept

è Good for modeling large systems

• Reachability analysis using BDD representation
– Integer semantics
– Estimate-based variable ordering
è Very efficient

• Refinement checking
– Simulation relation
è Modular Proofs
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Reachability analysis

• Verification of safety properties
è Performance problems with existing tools

• 1st problem: explicit discrete states
è BDD representation (own package)

• 2nd problem: separated clock representation
è discrete TA-semantics, using also BDDs

• 3rd problem: variable orderings
è heuristic using communication structure
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Contribution to efficiency

• Evaluation of our method for three examples
(Fischer, FDDI, CSMA/CD)

• 1. there exists a variable ordering for 
polynomial size complexity

• 2. our tool is able to find such variable ordering
automatically

• 3. empirical evidence

• industrial case study: the approach works
• the approach is applicable for DDs in general
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Complexity results

Θ(n2)Θ(n2)Θ(n2 ttrt2 lg ttrt)
= Θ(n4 lg n)

Token ring 
FDDI

Θ(n2)Ω (3n)Θ(n σ3 lg λ)CSMA/CD

Θ(n3)Ω (2n)Θ(c3 n2 lg c)Fischer

CDD size
(smallest)

CDD size
(location-first)

BDD sizeProtocol
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Complexity analysis: Fischer‘s protocol

Timed Automata for process i
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WaitCritical

Assign
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Communication graph

• General characteristics of „good“ variable 
orderings:
– Communicating components have neighboring 

positions
– Components which communicate with many 

other components at first

• Automatic ordering: 
– Estimation for the size of the BDD evaluates

different variable orderings
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BDD structure and size estimation
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Example: Fischer‘s mutex protocol

TA for process i: Communication graph:

Auto. 1

clock 1 

Auto. 2

clock 2

Auto. n

clock n

Variable k

…

Uncritical

WaitCritical

Assign

xi ≥ c
k ≠ i

k = 0
xi' = 0

xi ≥ c
k = i

k' = 0

k = 0
xi = c xi ≤ c −1

k' = i
xi' = 0
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Different variable orderings

Consider 3 different variable orderings for the BDD 
representing the reachable set of Fischer’s protocol:

Var k Var k

Var k

Auto 1

Auto 2
Clock 1

Clock 2

Auto 1
Auto 1

Auto 2

Clock 2

Clock 1

Auto 2

Clock 2

Clock 1

Separated k at end k in front
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Measurement: Fischer‘s protocol
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Comparison with other approaches
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BDD for the reachable set

32x Fischer
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BDDs for the reachable sets

4x Fischer
8x Fischer

16x Fischer
32x Fischer
64x Fischer
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BDDs for the reachable sets

k in front versus k at end

AND 4
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Estimate vs. real size

real BDD

estimated BDD
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Problems of existing approaches
• Modeling

– hierarchical model, abstraction layers
– reuse of components, substitution of modules
è structured, understandable, maintainable, because modular

• Verification
– unique symbolic representation of states AND clock valuations
– proved integer semantics, proved upper bound for trans rel
– method for complexity analysis, polynomial is possible
– method for variable ordering, good orderings can be computed
è efficient, polynomial effort for some examples

• Case studies
– scalable benchmark examples with regular structure
– few models with realistic, unregular structure
è existing case studies to small
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Video production cell
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Complete production line example (1)

ordering derived from
modular structure
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Complete production line example (2)

ordering based on
calculated size estimates 

ordering derived from
modular structure
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Problems of existing approaches
• Modeling

– hierarchical model, abstraction layers
– reuse of components, substitution of modules
è structured, understandable, maintainable, because modular

• Verification
– unique symbolic representation of states AND clock valuations
– proved integer semantics, proved upper bound for trans rel
– method for complexity analysis, polynomial is possible
– method for variable ordering, good orderings can be computed
è efficient, polynomial effort for some examples

• Case studies
– scalable benchmark examples => polynomial effort
– large production cell model => verifiable using modular structure
è approach works, is relevant for practice, 

executable controller can be synthesized from proven model
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Results
• Modular formalism for modelling
• Efficient verification using BDD representation

– Complexity analysis of reach sets: good ordering exists
– Good variable orderings can be found by tool

using modular structure of model

• Tool framework for timed and hybrid automata
– Double Description Method for the hybrid case
– Binary Decision Diagrams for the timed case

• Different verification strategies for modular proofs
– Reachabilityanalysis for safety properties
– Refinement check via simulation relation

• Several case studies:
– AND circuit, Fischer‘s protocol, CSMA/CD, FDDI, 
– Production cell, controller synthesis
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FDDI protocol
RingTo1

RingTo2

Ring1

Ring2

x ≤ td

!tt1

x ≤ td

?rt1

x' = 0

!tt2

?rt2
x' = 0

z_Idle

y_Async z_Async

y_Idle

z_Sync

y_Sync

?tti
 

zi ≤ sa

yi ≤ sa

yi ≥ sa
zi ≥ ttrt

!rti

?tti
 

zi ≥ sa
yi ≥ ttrt

!rti

zi ≥ sa
yi < ttrt

!rti

yi ≤ ttrt

yi ≥ sa
zi < ttrt

!rti

zi ≤ trtt
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CSMA/CD protocol

Init Transm

!cd
x < σ

#begini

x' = 0

#endi

Cd

x ≤ σ

#begini 

x ≥ σ
#busyi

Init

Cd

Send

Transm

xi' = 0

x i ≤ 2σ

xi' = 0

?cd, xi' = 0

x i = λ
#endi

?cd

xi = 0

#busy i

xi' = 0
?cd

xi' = 0

#begini

xi' = 0

?cd

xi ≤ λ


