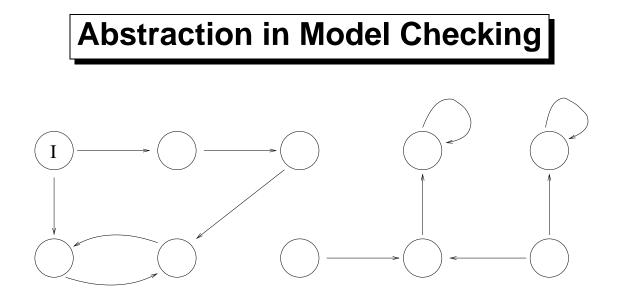
SAT based Abstraction-Refinement using ILP and Machine Learning Techniques

Edmund Clarke A James Kukula C

Anubhav Gupta Ofer Strichman



- Set of variables $V = \{x_1, \ldots, x_n\}$.
- Set of states $S = D_{x_1} \times \cdots \times D_{x_n}$.
- Set of initial states $I \subseteq S$.
- Set of transitions $R \subseteq S \times S$.
- Transition system M = (S, I, R).

Abstract Model

Abstraction Function h: S

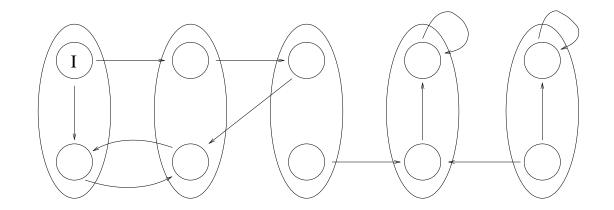
$$S \to \hat{S} \quad \hat{M} = (\hat{S}, \hat{I}, \hat{R})$$

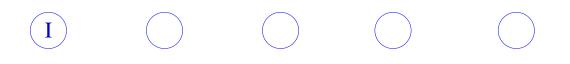


 $\widehat{S} = \{\widehat{s} \mid \exists s. \ s \in S \land h(s) = \widehat{s}\}\$

Abstract Model

Abstraction Function $h: S \to \hat{S}$ $\hat{M} = (\hat{S}, \hat{I}, \hat{R})$

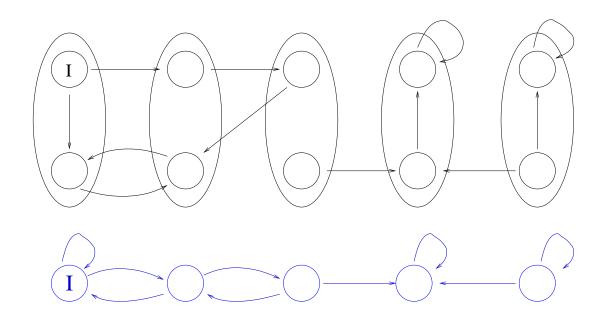




 $\widehat{I} = \{\widehat{s} \mid \exists s. \ I(s) \land h(s) = \widehat{s}\}$

Abstract Model

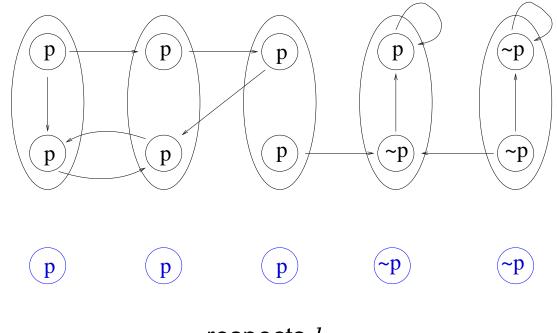
Abstraction Function $h: S \to \hat{S}$ $\hat{M} = (\hat{S}, \hat{I}, \hat{R})$



 $\widehat{R} = \{ (\widehat{s}_1, \widehat{s}_2) \mid \exists s_1. \exists s_2. R(s_1, s_2) \land h(s_1) = \widehat{s}_1 \land h(s_2) = \widehat{s}_2 \}$

Model Checking

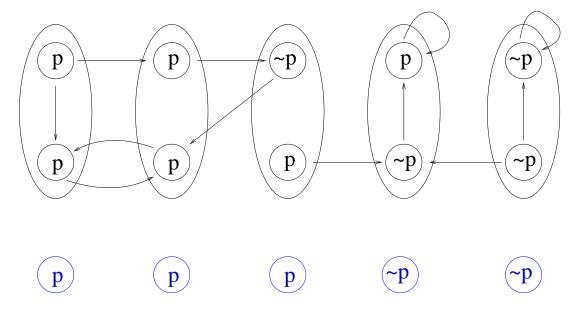
- AGp, p is a non-temporal propositional formula
- p respects h if for all $s \in S$, $h(s) \models p \Rightarrow s \models p$



 \boldsymbol{p} respects \boldsymbol{h}

Model Checking

- AGp, p is a non-temporal propositional formula
- p respects h if for all $s \in S$, $h(s) \models p \Rightarrow s \models p$

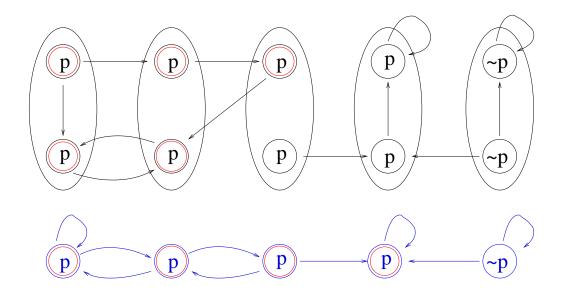


 \boldsymbol{p} does not respect \boldsymbol{h}

Preservation Theorem

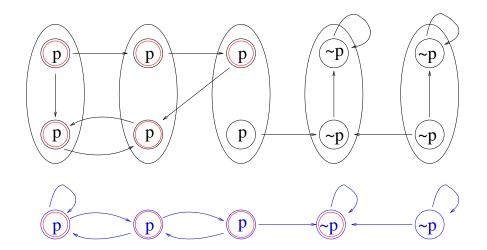
Let \widehat{M} be an abstraction of M corresponding to the abstraction function h, and p be a propositional formula that respects h. Then

 $\widehat{M} \models \mathbf{AG}p \Rightarrow M \models \mathbf{AG}p$



Converse of Preservation Theorem

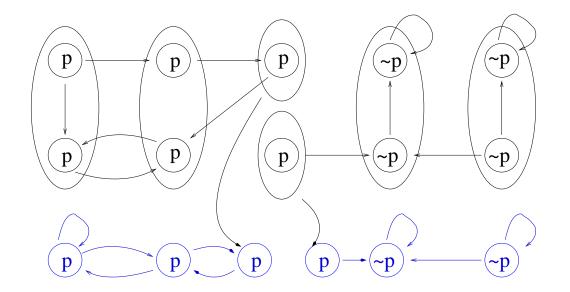
$\widehat{M} \not\models \mathbf{AG}p \not\Rightarrow M \not\models \mathbf{AG}p$



Counterexample is spurious. Abstraction is too coarse.

h' is a refinement of h if

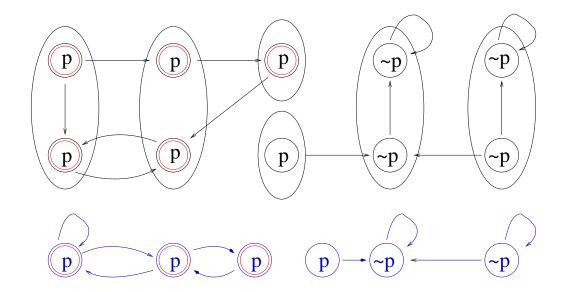
- 1. $\forall s_1, s_2 \in S, h'(s_1) = h'(s_2) \text{ implies } h(s_1) = h(s_2).$
- 2. $\exists s_1, s_2 \in S$ such that $h(s_1) = h(s_2)$ and $h'(s_1) \neq h'(s_2)$.



h' is a refinement of h if

1. $\forall s_1, s_2 \in S, h'(s_1) = h'(s_2) \text{ implies } h(s_1) = h(s_2).$

2. $\exists s_1, s_2 \in S$ such that $h(s_1) = h(s_2)$ and $h'(s_1) \neq h'(s_2)$.



Abstraction-Refinement

- 1. Generate an initial abstraction function h.
- 2. Build abstract machine \hat{M} based on h. Model check \hat{M} . If $\hat{M} \models \varphi$, then $M \models \varphi$. Return TRUE.
- 3. If $\hat{M} \not\models \varphi$, check the counterexample on the concrete model. If the counterexample is real, $M \not\models \varphi$. Return FALSE.
- 4. Refine h, and go to step 2.

Abstraction Function

- Partition variables V into visible(\mathcal{V}) and invisible(\mathcal{I}) variables. $\mathcal{V} = \{v_1, \dots, v_k\}.$
- The partitioning defines our abstraction function $h: S \to \hat{S}$. The set of abstract states is

$$\widehat{S} = D_{v_1} \times \dots \times D_{v_k}$$

and the abstraction functions is

$$h(s) = (s(v_1) \dots s(v_k))$$

$$\begin{array}{c} x_1 & x_2 & x_3 & x_4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right\} \begin{array}{c} x_1 & x_2 \\ 0 & 0 \\ 0 & 0 \end{array}$$

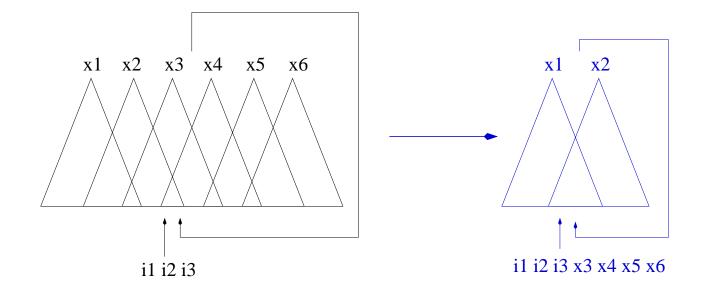
• Refinement : Move variables from ${\mathcal I}$ to ${\mathcal V}.$

Building Abstract Model

 \hat{M} can be computed efficiently if R is in functional form, e.g. sequential circuits.

$$R(s,s') = \exists i (\bigwedge_{j=1}^{m} x'_j = f_{x_j}(s,i))$$

$$\widehat{R}(\widehat{s},\widehat{s}') = \exists s^{\mathcal{I}} \exists i (\bigwedge_{x_j \in \mathcal{V}} \widehat{x}'_j = f_{x_j}(\widehat{s},s^{\mathcal{I}},i))$$



Checking the Counterexample

- Counterexample : $\langle \hat{s}_1, \hat{s}_2, \dots \hat{s}_m \rangle$
- Set of concrete paths for counterexample :

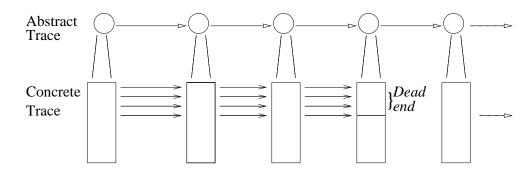
$$\psi_m = \{ \langle s_1 \dots s_m \rangle \mid I(s_1) \land \bigwedge_{i=1}^{m-1} R(s_i, s_{i+1}) \land \bigwedge_{i=1}^m h(s_i) = \hat{s}_i \}$$

- The right-most conjunct is a restriction of the visible variables to their values in the counterexample.
- Counterexample is spurious $\iff \psi_m$ is empty.
- Solve ψ_m with a SAT solver.

Checking the Counterexample

- Similar to BMC formulas, except
 - Path restricted to counterexample.
 - Also restrict values of (original) inputs that are assigned by counterexample.
- If ψ_m is satisfiable we found a real bug.
- If ψ_m is unsatisfiable, refine.

- Find largest index f (failure index), f < m such that ψ_f is satisfiable.
- The set *D* of all states d_f such that there is a concrete path $\langle d_1...d_f \rangle$ in ψ_f is called the set of deadend states.

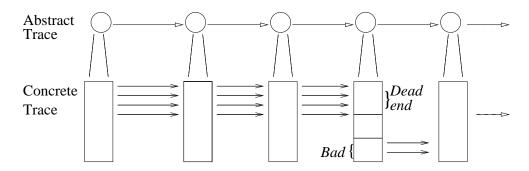


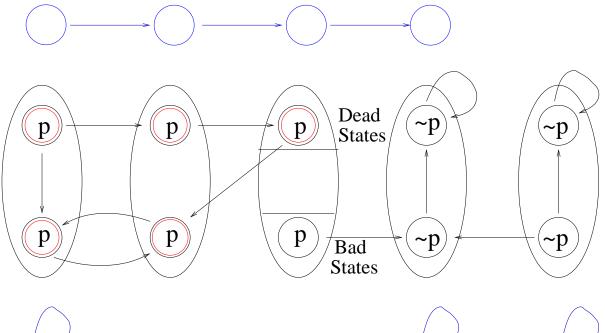
 No concrete transition from D to a concrete state in the next abstract state.

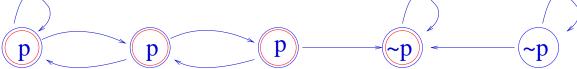
• Since there is an abstract transition from \hat{s}_f to \hat{s}_{f+1} , there is a non-empty set of transitions ϕ_f from $h^{-1}(\hat{s}_f)$ to $h^{-1}(\hat{s}_{f+1})$.

 $\phi_f = \{ \langle s_f, s_{f+1} \rangle \mid R(s_f, s_{f+1}) \land h(s_f) = \hat{s}_f \land h(s_{f+1}) = \hat{s}_{f+1} \}$

• The set *B* of all states b_f such that there is a transition $\langle b_f, b_{f+1} \rangle$ in ϕ_f is called the set of bad states.

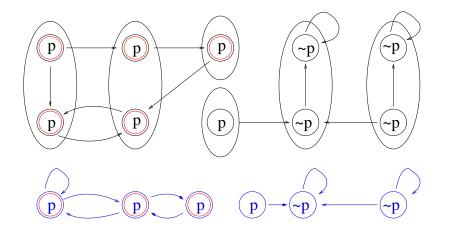






- There is a spurious transition from \hat{s}_f to \hat{s}_{f+1} .
- Spurious transition because D and B lie in the same abstract state.
- Refinement : Put *D* and *B* is separate abstract states.

 $\forall d \in D, \forall b \in B \ (h'(d) \neq h'(b))$



Refinement as Separation

Let $S = \{s_1...s_m\}$ and $T = \{t_1...t_n\}$ be two sets of states (binary vectors) of size l, representing assignments to a set of variables W, |W| = l.

(The state separation problem)

Find a minimal set of variables $U = \{u_1...u_k\}, U \subseteq W$, such that for each pair of states $(s_i, t_j), 1 \le i \le m, 1 \le j \le n$, there exists a variable $u_r \in U$ such that $s_i(u_r) \ne t_j(u_r)$.

Let *H* denote the separating set for *D* and *B*. The refinement h' is obtained by adding *H* to \mathcal{V} .

Proof : Since *H* separates *D* and *B*, for all $d \in D$, $b \in B$ there exists $u \in H$ s.t. $d(u) \neq b(u)$. Hence, $h(d) \neq h(b)$.

Refinement as Separation and Learning

- For systems of realistic size,
 - It is not possible to generate D and B, either explicitly or symbolically.
 - Computationally expensive to separate large D and B.
- Generate samples for $D(\text{denoted } S_D)$ and $B(\text{denoted } S_B)$ and try to infer the separating variables from the samples.
- State of the art SAT solvers like Chaff can generate many samples in a short amount of time.
- Our algorithm is complete because a counterexample will eventually be eliminated in subsequent iterations.

Separation using Integer Linear Programming

Separating S_D from S_B as an Integer Linear Programming (ILP) problem:

 $\operatorname{Min} \sum_{i=1}^{|\mathcal{I}|} v_i$

subject to:
$$(\forall s \in S_D) \ (\forall t \in S_B) \sum_{\substack{1 \le i \le |\mathcal{I}|, \\ s(v_i) \ne t(v_i)}} v_i \ge 1$$

- $v_i = 1$ if and only if v_i is in the separating set.
- One constraint per pair of states, stating that at least one of the variables that separates the two states should be selected.

$$s_1 = (0, 1, 0, 1)$$
 $t_1 = (1, 1, 1, 1)$
 $s_2 = (1, 1, 1, 0)$ $t_2 = (0, 0, 0, 1)$

Min $\sum_{i=1}^{4} v_i$

subject to:

$v_1 + v_3$	\geq 1	/* Separating s_1 from $t_1 * /$
v_2	\geq 1	/* Separating s_1 from $t_2 * /$
v_{4}	\geq 1	/* Separating s_2 from $t_1 * /$
$v_1 + v_2 + v_3 + v_4$	\geq 1	/* Separating s_2 from $t_2 * /$

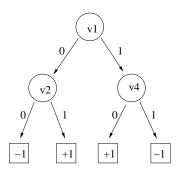
Optimal value of the objective function is 3, corresponding to one of the two optimal solutions (v_1, v_2, v_4) and (v_3, v_2, v_4) .

Separation using Decision Tree Learning

- ILP-based separation:
 - Minimal separation set
 - Computationally expensive
- Decision Tree Learning based separation:
 - Non optimal
 - Computationally efficient

Decision Tree Learning

- Input : Set of examples with classification.
 - Each example assigns values to a set of attributes.
- Output : Decision Tree
 - Each internal node is a test on some attribute.
 - Each leaf corresponds to a classification.



Separation using Decision Tree Learning

Separating S_D from S_B as a Decision Tree Learning problem:

- Attributes correspond to the invisible variables.
- The classifications are +1 and -1, corresponding to S_D and S_B , respectively.
- The examples are S_D labeled +1, and S_B labeled -1.

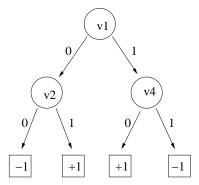
Separating set : All the variables present at an internal nodes of the decision tree.

Proof: Let $d \in S_D$ and $b \in S_B$. The decision tree will classify d as +1and b as -1. So, there exists a node n in the decision tree, labeled with a variable v, such that $d(v) \neq b(v)$. By construction, v lies in the output set.

Example

$$s_1 = (0, 1, 0, 1)$$
 $t_1 = (1, 1, 1, 1)$
 $s_2 = (1, 1, 1, 0)$ $t_2 = (0, 0, 0, 1)$

E = ((0, 1, 0, 1), +1), ((1, 1, 1, 0), +1), ((1, 1, 1, 1), -1), ((0, 0, 0, 1), -1)



Separating set : $\{v_1, v_2, v_4\}$

Decision Tree Learning Algorithm

DecTree(Examples, Attributes) ID3 Algorithm

- 1. Create a *Root* node for the tree.
- 2. If all examples are classified the same, return *Root* with this classification.
- 3. Let A = BestAttribute(Examples, Attributes). Label Root with attribute A.
- 4. Let $Examples_0$ and $Examples_1$ be subsets of Examples having values 0 and 1 for A, respectively.
- 5. Add a 0 branch to the *Root* pointing to subtree generated by $Dectree(Examples_0, Attributes \{A\})$.

- 6. Add a 1 branch to the *Root* pointing to subtree generated by $Dectree(Examples_1, Attributes \{A\})$.
- 7. return Root.

The *BestAttribute* procedure returns an attribute (which is a variable in our case) that causes the maximum reduction in entropy if the set is partitioned according to this variable.

Efficient Sampling

- Direct search towards samples that contain more information.
- Iterative Algorithm.
- At each iteration, the algorithm finds new samples that are not separated by the current separating set.
- Let *SepSet* denote the separating set for the current set of samples. New samples that are not separated by *SepSet* are computed by solving

$$\Phi(SepSet) \doteq \psi_f \land \phi'_f \land \bigwedge_{v_i \in SepSet} v_i = v'_i$$

Efficient Sampling

$$\begin{split} SepSet &= \emptyset; \\ i &= 0; \\ \texttt{repeat forever } \{ \\ & \texttt{If } \Phi(SepSet) \texttt{ is satisfiable, derive } d_i \texttt{ and } b_i \\ & \texttt{from solution; else exit;} \\ & SepSet &= Separating \ Set \ for \ \{ \cup_{j=0}^i \{d_j\}, \ \cup_{j=0}^i \{b_j\} \}; \\ & i &= i+1; \ \} \end{split}$$

Experiments

- NuSMV frontend.
- Cadence SMV.
- A public domain ILP solver.
- Chaff.

Experiments conducted on a 1.5GHz Athlon with 3Gb RAM running Linux.

We used the "IU" family of circuits, which are various abstractions of an interface control circuit from Synopsys.

Circuit	S	MV	Sampling - ILP			Sampling - DTL				Eff. Samp DTL				
	Time	BDD(k)	Time	BDD(k)	S	L	Time	BDD(k)	S	L	Time	BDD(k)	S	L
IU30	0.7	116	0.1	1	0	1	0.1	1	0	1	0.1	1	0	1
IU35	0.6	149	0.1	2	0	1	0.1	2	0	1	0.1	2	0	1
IU40	1.2	225	6.3	21	3	4	0.9	18	5	6	0.6	11	2	3
IU45	37.5	2554	6.1	17	3	4	1.1	18	5	6	0.7	10	2	3
IU50	23.3	2094	19.7	100	13	14	9.8	90	13	14	24.0	1274	4	17
IU55	-	-	-	-	-	-	2072	51703	6	9	3.0	64	1	6
IU60	-	-	7.8	183	4	7	7.8	183	4	7	4.5	109	1	6
IU65	-	-	7.9	192	4	7	7.9	192	4	7	3.8	47	1	5
IU70	-	-	8.1	192	4	7	8.2	192	4	7	3.8	47	1	5
IU75	102.9	7068	32.0	142	9	10	24.5	397	13	14	24.1	550	2	7
IU80	603.7	39989	31.7	215	9	10	44.0	341	13	14	24.1	186	2	7
IU85	2832	76232	33.1	230	9	10	44.6	443	13	14	25.2	198	2	7
IU90	-	-	33.0	230	9	10	44.6	443	13	14	25.4	198	2	7

Circuit	SMV Sampling - ILP			Sampling - DTL				Eff. Samp DTL						
	Time	BDD(k)	Time	BDD(k)	S	L	Time	BDD(k)	S	L	Time	BDD(k)	S	L
IU30	7.3	324	8.0	113	3	20	7.5	113	3	20	6.5	113	3	20
IU35	19.1	679	11.8	186	4	21	12.7	186	4	21	11.0	186	4	21
IU40	53.6	1100	25.9	260	6	23	19.0	207	5	22	16.1	207	5	22
IU45	226.1	6060	28.3	411	5	22	25.3	411	5	22	22.1	411	5	22
IU50	1754	25102	160.4	2046	13	32	85.1	605	10	27	15120	3791	7	31
IU55	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IU60	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IU65	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IU70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IU75	-	-	1080	3716	21	38	586.7	1178	16	33	130.5	1050	5	26
IU80	-	-	1136	3378	21	38	552.5	1158	16	33	153.4	1009	5	26
IU85	-	-	1162	3493	21	38	581.2	1272	16	33	167.7	1079	5	26
IU90	-	-	965	3712	20	37	583.3	1271	16	33	167.1	1079	5	26

Conclusions and Future Work

- Our algorithm outperforms standard model checking in both execution time and memory requirements.
- Exploit criteria other than size of separating set for characterizing a good refinement.
- Explore other learning techniques.