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DES: Introduction

• Discrete states: driven by randomly occurring events

• Events: discrete qualitative changes

– arrival of part in a manufacturing system

– loss of message packet in a communication network

– termination of a program in an operating system

– execution of operation in database system

– arrival of sensor packet in embedded control system

• Examples of discrete event systems:

– computer and communication networks

– robotics and manufacturing systems

– computer programs

– automated traffic systems

3



DES: Example

• States change in response to randomly occurring events
⇒ piecewise-constant state trajectory
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• State trajectory a sequence of triples:
(x0, σ1, t1)(x1, σ2, t2) . . .

• Untimed trajectory (for untimed specification):
(x0, σ1)(x1, σ1) . . .

• Under determinism this is equivalent to:
x0 and σ1σ2 . . .

• Collection of all event traces, language, L = pr(L) 6= ∅
Collection of “final” traces, marked language, Lm ⊆ L

• Language model, (L, Lm), also modeled as automaton:
G := (X,Σ, α, x0, Xm); (L(G), Lm(G)) language model
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Failure Diagnosis of DESs

• Failure: deviation from normal or required behavior

– occurrence of a failure event

– visiting a failed state

– reaching a deadlock or livelock

• Failure Diagnosis: detecting and identifying failures

diagnosability test diagnoser

plant model

fault specification model

M (e)

failure / no failure

e: event generated; M(e): event observed/sensored
M(e) = ǫ: no sensor for the event e
M(e1) = M(e2) 6= ǫ: e.g. motion sensor, detect the
movement of a part, not the moving direction and the
part type

• Diagnoser: observes the sequence of generated events,
and determines (possibly with a delay that is bounded)
whether or not a failure occurred
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Prior Results:

• Formal language / automaton fault specification

• Fault spec.: only “safety properties”

Our Contribution:

• A temporal logic approach for failure diagnosis of DESs

Temporal logic has a syntax similar to natural language
and has a formal semantics

• Fault spec.: both “safety” and “liveness” properties
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Linear-time Temporal Logic (LTL): Introduction

Describing properties of sequence of proposition set traces

Notations

• AP : set of atomic propositions

• ΣAP = 2AP : power set of AP

• Σ∗
AP : set of all finite proposition set traces

• Σω
AP : set of all infinite proposition set traces

Temporal operators & their interpretations
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X : next,

U : until,

F : future or eventually, Ff=TrueUf

G : globally or always, Gf=~F~f

B : before, fBg=~(~fUg)

Syntax of LTL formulae

P1 p ∈ AP ⇒ p is a LTL formula.

P2 f1 and f2 are LTL formulae ⇒ so are ¬f1, f1 ∨ f2, and
f1 ∧ f2.

P3 f1 and f2 are LTL formulae ⇒ so are Xf1, f1Uf2, Ff1,
Gf1, and f1Bf2.
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Semantics: proposition-trace π = (L0, L1, · · ·) ∈ Σω
AP

πi = (Li, · · ·), ∀i ≥ 0

1. ∀p ∈ AP , π |= p ⇐⇒ p ∈ L0.

2. π |= ¬f1 ⇐⇒ π 6|= f1.

3. π |= f1 ∨ f2 ⇐⇒ π |= f1 or π |= f2.

4. π |= f1 ∧ f2 ⇐⇒ π |= f1 and π |= f2.

5. π |= Xf1 ⇐⇒ π1 |= f1.

6. π |= f1Uf2 ⇐⇒ ∃k ≥ 0, πk |= f2

and ∀j ∈ {0,1, · · · , k − 1}, πj |= f1.

7. π |= Ff1 ⇐⇒ ∃k ≥ 0, πk |= f1.

8. π |= Gf1 ⇐⇒ ∀k ≥ 0, πk |= f1.

9. π |= f1Bf2 ⇐⇒ ∀k ≥ 0 with πk |= f2,
∃j ∈ {0,1, · · · , k − 1}, πj |= f1.

Examples of LTL formulae

G¬R1 : an invariance (a type of safety) property.

G((message sent) ⇒ F(message received)) :
a recurrence (a type of liveness) property.

FGp : a stability (a type of liveness) property.
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Notion of Diagnosability in Temporal Logic Setting

System Model: P = (X,Σ, R, X0, AP, L)

• X, a finite set of states;

• Σ, a finite set of event labels;

• R : X × Σ ∪ {ǫ} × X, a transition relation,

∀x ∈ X, ∃σ ∈ Σ ∪ {ǫ}, ∃x′ ∈ X, (x, σ, x′) ∈ R

(P is nondeterministic & nonterminating);

• X0 ⊆ X, a set of initial states;

• AP , a finite set of atomic proposition symbols;

• L : X → 2AP , a labelling function.

M : Σ ∪ {ǫ} → ∆ ∪ {ǫ}, an observation mask.

Fault specification: LTL formula f .

π = (x0, x1, · · ·), πAP = (L(x0), L(x1), · · ·):

π |= f if πAP |= f
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Faulty state-trace

An infinite state-trace π is faulty if π 6|= f .

Remark captures both safety and liveness failures

Indicator

A finite state-trace π is an indicator if all its infinite exten-
sions in P are faulty.

Remark: can only detect indicators through observation of
finite length event-traces

Pre-diagnosability

P is pre-diagnosable w.r.t. f if every faulty state-trace in P
possesses an indicator as its prefix.

Remark Needed for detecting all failures through observa-
tion of finite length event-traces

Example

p1p1

a c

p2

x2x1x0

b d

f = GFp2: not pre-diagnosable; no indicator for x0x
ω
1

f = GFp1: pre-diagnosable
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Diagnosability: single specification

P is diagnosable w.r.t. M and f

if P is pre-diagnosable and

Exists a detection delay bound n such that

For all indicator trace π0

For all extension-suffix π1 of π0, |π1| ≥ n

For all π′ indistinguishable from π0π1

It holds that π′ is an indicator trace

Example

x2
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p1 p1

p2
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a
a

a
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b2
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c2

M(b1) = M(b2) = b; M(c1) = M(c2) = c
f = GFp2: diagnosable (no faulty trace looks like a non-
faulty trace)
f = Gp1: pre-diagnosable but not diagnosable

Diagnosability: multiple specifications

P is diagnosable w.r.t. M and {fi, i = 1,2, · · · , m}
if P is diagnosable w.r.t. M and each fi, i = 1,2, · · · , m.

Remark: Suffices to study the case of only one fault speci-
fication
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Algorithm for Diagnosis with LTL Specifications

Problem of failure Diagnosis

Given P , M , f :

• Test the diagnosability of P w.r.t. M and f ;

• If P is diagnosable, then construct a diagnoser for P .
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Algorithm 1: diagnosis for single fault specification

1. Construct a tableau Tf for f that contains all infinite
proposition-traces satisfying f , and let {Fi,1 ≤ i ≤ r}
denote the generalized Büchi acceptance condition of
f .

2. Test the pre-diagnosability of P .

• Construct T1 = Tf ||APP that generates traces that
are accepted by P and are limits of traces satisfying
f .

• Check whether every infinite state-trace generated
by T1 satisfies f , i.e., whether every infinite state-
trace generated by T1 visits each Fi infinitely often:
T1 |= ∧r

i=1GFFi, a LTL model checking problem.

NO ⇐⇒ P is not pre-diagnosable.

3. Test the diagnosability of P .

• Construct T2 = M−1M(T1)||ΣP that accepts finite
traces of P indistinguishable from finite traces of
T1, i.e., prefixes of non-faulty traces.

• Check whether every infinite trace in T2 satisfies f :
T2 |= f , a LTL model checking problem.

NO ⇐⇒ P is not diagnosable.

4. Output M(T1) as the diagnoser D.

Complexity: O(2|f ||X|4); size of D: O(2|f ||X|).
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Illustrative Example: Mouse in a Maze

: observable

: unobservable

3 4

0

mouse

cat 51

2food

Spec 1 Never visit room 1 (an invariance, a type of safety,
property).

G¬R1: Globally (always) not in Room 1

Spec 2 Visit room 2 for food infinitely often (a recurrence,
a type of liveness, property).

GFR2: Globally (always) in future in Room 2
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System model
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M(u) = ǫ, M(oi) = oi for 0 ≤ i ≤ 4; AP = {R1, R2};

L(xi) = ∅ for i 6∈ {1,2}, L(x1) = {R1}, L(x2) = {R2}.

Specifications: f1 = G¬R1, f2 = GFR2.
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Tableau Tfi
, i = 1,2.

s1 t 1 t 2

F 1 F 1

R1
R2 R2

(b)(a)

Checking pre-diagnosability: T
fi

1 = Tfi
||APP , i = 1,2;

T
fi

1 |= GFF1? i = 1,2.
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P is pre-diagnosable w.r.t. f1 and f2 respectively.
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Checking diagnosability: T
fi

2 = M−1M(T fi

1 )||ΣP , i = 1,2;

T
f1

2 |= G¬R1? T
f2

2 |= GFR2?
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P is diagnosable w.r.t. f1 and f2 respectively.
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Diagnoser D = {M(T f1

1 ), M(T f2

1 )}
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Specifications: f1 = G¬R1, f2 = GFR2.
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Conclusion

• A framework for failure diagnosis in LTL setting

• Notions of indicator, pre-diagnosability, and diagnosabil-
ity

• Algorithms for checking pre-diagnosability & diagnos-
ability in proposed framework

• Construction of diagnoser for on-line diagnosis in pro-
posed framework

• Complexity analysis (polynomial in the plant size, expo-
nential in the formula length)
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