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DES: Introduction
e Discrete states: driven by randomly occurring events

e Events: discrete qualitative changes
— arrival of part in a manufacturing system
— loss of message packet in a communication network
— termination of a program in an operating system
— execution of operation in database system

— arrival of sensor packet in embedded control system

e Examples of discrete event systems:
— computer and communication networks
— robotics and manufacturing systems
— computer programs

— automated traffic systems



DES: Example

e States change in response to randomly occurring events
= piecewise-constant state trajectory
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typical state—trajectory of an elevator

State trajectory a sequence of triples:
(:Uo, o1, tl)(wl, o2, tQ) e

e Untimed trajectory (for untimed specification):
(zo,01)(x1,01) ...

e Under determinism this is equivalent to:
0 and oi10o...

e Collection of all event traces, language, L = pr(L) % ()
Collection of “final" traces, marked language, L,, C L

e [ anguage model, (L, L,,), also modeled as automaton:
G =X, Z,a,720,Xm); (L(G),L,(G)) language model



Failure Diagnosis of DESs

e Failure: deviation from normal or required behavior
— occurrence of a failure event
— visiting a failed state

— reaching a deadlock or livelock

e Failure Diagnosis: detecting and identifying failures

“““ lant model
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. diagnosability test - - failure / no failure
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G‘ault specification modeD

e: event generated; M(e): event observed/sensored
M(e) = e: no sensor for the event e

M(e1) = M(ex) # €. e.g. motion sensor, detect the
movement of a part, not the moving direction and the
part type

e Diagnoser: observes the sequence of generated events,
and determines (possibly with a delay that is bounded)
whether or not a failure occurred



Prior Results:
e Formal language / automaton fault specification
e Fault spec.: only “safety properties”
Our Contribution:
e A temporal logic approach for failure diagnosis of DESs
Temporal logic has a syntax similar to natural language

and has a formal semantics

e Fault spec.: both "safety” and ‘liveness” properties



Linear-time Temporal Logic (LTL): Introduction

Describing properties of sequence of proposition set traces

Notations
e AP: set of atomic propositions
o > ip = 247 power set of AP
e > %, set of all finite proposition set traces
e >4 ,. set of all infinite proposition set traces

Temporal operators & their interpretations

X : next, Xf ._.f_._ ...... B
U : until, fUg .f_]:_.f_ ...... _f._?_
F : future or eventually, Ff=Trueuf F . | _._f._
G : globally or always, Gf=~F~f Gf et _f,_f,_
B : before, fBg=~(~fUQ) fBg | _,_.g_

Syntax of LTL formulae
Pl pe AP = pis a LTL formula.

P2 f1 and f> are LTL formulae = so are —f1, f1V f», and
JiN fa.

P3 f1 and f, are LTL formulae = so are X f1, fiUf2, Ff1,
Gfl, and lefQ.



Semantics: proposition-trace m = (Lo, L1,

1.

2.

Vpe AP, m=p <= p € Lo.

TE-fi <= 7w fi.

. mEf1Vfo <<= wi=f1ornwlE=fo
. mEfiNfo <= w=fi1and © = fo.
. tEXfAH — rtEh.

L w=fUf <= k>0, mF = fo

and V5 € {0,1,---,k— 1}, @/ |= f1.

. r=Ffi «— Jk>0, "= f1.
. m=Gfi <= Vk >0, 7Tk|:f1.

. = fiBfa < Vk >0 with n* |= f,

3 €{0,1, -,k — 1}, © = f1.

Examples of LTL formulae

G—-R1

"')GZQAP

. an invariance (a type of safety) property.

G((message sent) = F'(message received)) :
a recurrence (a type of liveness) property.

FGp

a stability (a type of liveness) property.



Notion of Diagnosability in Temporal Logic Setting
System Model: P = (X,X,R, Xg,AP, L)
e X, a finite set of states;

2, a finite set of event labels;

e R: X xXU{e} x X, a transition relation,
Vee X, o e X U{e}, I’ € X, (z,0,2") €ER
(P is nondeterministic & nonterminating);

e Xp C X, a set of initial states;
e AP, a finite set of atomic proposition symbols;
o [: X — 24P 3 labelling function.

M : > U{e} — AU{e}, an observation mask.

Fault specification: LTL formula f.

m = (xo,x1, "), map = (L(z0), L(x1),---):
7T|:f ifﬂ'Ap |:f



Faulty state-trace
An infinite state-trace = is faulty if @ &= f.

Remark captures both safety and liveness failures

Indicator

A finite state-trace =« is an indicator if all its infinite exten-
sions in P are faulty.

Remark: can only detect indicators through observation of
finite length event-traces

Pre-diagnosability

P is pre-diagnosable w.r.t. f if every faulty state-trace in P
possesses an indicator as its prefix.

Remark Needed for detecting all failures through observa-
tion of finite length event-traces

Example

’ T
\L, ~c .
Py

Py P2

f = GFp>: not pre-diagnosable; no indicator for xgzy
f = GFpi. pre-diagnosable
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Diagnosability: single specification

P is diagnosable w.r.t. M and f
if P is pre-diagnosable and

Exists a detection delay bound n such that
For all indicator trace mg

For all extension-suffix w1 of mo, |m1| > n
For all «’ indistinguishable from mom1

It holds that #«’ is an indicator trace

Example

M(bl) = M(bg) = b, M(Cl) = M(CQ) =c
f = GFpy: diagnosable (no faulty trace looks like a non-
faulty trace)

f = Gp1. pre-diagnosable but not diagnosable
Diagnosability: multiple specifications

P is diagnosable w.r.t. M and {f;,i=1,2,---,m}
if P is diagnosable w.r.t. M and each f;, i =1,2,---,m.

Remark: Suffices to study the case of only one fault speci-
fication
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Algorithm for Diagnosis with LTL Specifications

Problem of failure Diagnosis
Given P, M, f:
e Test the diagnosability of P w.r.t. M and f;

e If P is diagnosable, then construct a diagnoser for P.
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Algorithm 1: diagnosis for single fault specification

1. Construct a tableau T for f that contains all infinite
proposition-traces satisfying f, and let {F;,;1 < i < r}
denote the generalized Buchi acceptance condition of

f.

2. Test the pre-diagnosability of P.

e Construct 71 = T¥||apP that generates traces that
are accepted by P and are limits of traces satisfying

f-

e Check whether every infinite state-trace generated
by Ty satisfies f, i.e., whether every infinite state-
trace generated by Tj visits each F; infinitely often:
T1 = N._;GFF;, a LTL model checking problem.

NO <= P is not pre-diagnosable.

3. Test the diagnosability of P.

e Construct T» = MM (T1)||sP that accepts finite
traces of P indistinguishable from finite traces of
Ty, i.e., prefixes of non-faulty traces.

e Check whether every infinite trace in 15 satisfies f:
T> = f, a LTL model checking problem.

NO «—= P is not diagnosable.
4. Output M(T:1) as the diagnoser D.
Complexity: O(2//|X14); size of D: 02| X]).
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Illustrative Example: Mouse in a Maze

0 ~ catl'?/T\ S
> foocv 2

- 31— 4

mouse

—» : Observable

—= : unobservable

Spec 1 Never visit room 1 (an invariance, a type of safety,
property).
G- R;1: Globally (always) not in Room 1

Spec 2 Visit room 2 for food infinitely often (a recurrence,
a type of liveness, property).

GFR>:. Globally (always) in future in Room 2
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System model

U()

M(’U,) = €, M(Oz) = o; for 0 << 4, AP = {Rl,RQ};
L(z:) =0 for i & {1,2}, L(z1) = {R1}, L(z2) = {Ro}.

Specifications: f1 = G-Ri1, fo = GFRo>.
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Tableau Ty, 1 = 1, 2.

(B (HLED

(@) (b)

Checking pre-diagnosability: Tlff' =T¢||apP, 1 = 1,2;

T/ = GFF7? i=1,2.

) ()

@m@ o /“@
(a) (b)

P is pre-diagnosable w.r.t. f1 and f> respectively.
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Checking diagnosability: Tzfi = M—lM(Tlf”)HzP, i=1,2;

TS = G-Ri? T = GFRy?

u o,
Ol e =

Bl
¢ 9 (5

(a) (b)

P is diagnosable w.r.t. f1 and f> respectively.
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Diagnoser D = {M(Tlfl), M(TifQ)}

Specifications: f1 = G-Ri1, fo = GFRo>.

18



Conclusion
A framework for failure diagnosis in LTL setting

Notions of indicator, pre-diagnosability, and diagnosabil-
ity

Algorithms for checking pre-diagnosability & diagnos-
ability in proposed framework

Construction of diagnoser for on-line diagnosis in pro-
posed framework

Complexity analysis (polynomial in the plant size, expo-
nential in the formula length)
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