Failure Diagnosis of Discrete Event Systems: A Temporal Logic Approach

Shengbing Jiang

Electrical & Controls Integration Lab General Motors R&D

Outline

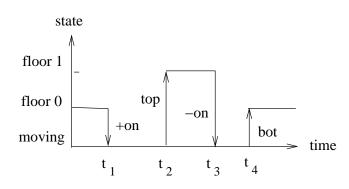
- Introduction
- Notion of Diagnosability in Temporal Logic Setting
- Algorithm for Diagnosis
- Example
- Conclusion

DES: Introduction

- Discrete states: driven by randomly occurring events
- Events: discrete qualitative changes
 - arrival of part in a manufacturing system
 - loss of message packet in a communication network
 - termination of a program in an operating system
 - execution of operation in database system
 - arrival of sensor packet in embedded control system
- Examples of discrete event systems:
 - computer and communication networks
 - robotics and manufacturing systems
 - computer programs
 - automated traffic systems

DES: Example

States change in response to randomly occurring events
 ⇒ piecewise-constant state trajectory

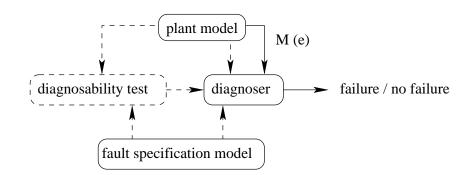


typical state-trajectory of an elevator

- State trajectory a sequence of triples: $(x_0, \sigma_1, t_1)(x_1, \sigma_2, t_2) \dots$
- Untimed trajectory (for untimed specification):
 (x₀, σ₁)(x₁, σ₁)...
- Under determinism this is equivalent to: x_0 and $\sigma_1 \sigma_2 \dots$
- Collection of all event traces, language, $L = pr(L) \neq \emptyset$ Collection of "final" traces, marked language, $L_m \subseteq L$
- Language model, (L, L_m) , also modeled as automaton: $G := (X, \Sigma, \alpha, x_0, X_m); \quad (L(G), L_m(G))$ language model

Failure Diagnosis of DESs

- Failure: deviation from normal or required behavior
 - occurrence of a failure event
 - visiting a failed state
 - reaching a deadlock or livelock
- Failure Diagnosis: detecting and identifying failures



e: event generated; M(e): event observed/sensored $M(e) = \epsilon$: no sensor for the event e $M(e_1) = M(e_2) \neq \epsilon$: e.g. motion sensor, detect the movement of a part, not the moving direction and the part type

 Diagnoser: observes the sequence of generated events, and determines (possibly with a delay that is bounded) whether or not a failure occurred

Prior Results:

- Formal language / automaton fault specification
- Fault spec.: only "safety properties"

Our Contribution:

- A temporal logic approach for failure diagnosis of DESs Temporal logic has a syntax similar to natural language and has a formal semantics
- Fault spec.: both "safety" and "liveness" properties

Linear-time Temporal Logic (LTL): Introduction

Describing properties of sequence of proposition set traces Notations

- AP: set of atomic propositions
- $\Sigma_{AP} = 2^{AP}$: power set of AP
- Σ_{AP}^* : set of all finite proposition set traces
- Σ_{AP}^{ω} : set of all infinite proposition set traces

Temporal operators & their interpretations

X : next,	$Xf \stackrel{f}{\longmapsto} \cdots \cdots$
U : until,	$fUg \stackrel{f}{\longleftarrow} f \stackrel{f}{\longleftarrow} f \stackrel{f}{\longleftarrow} \dots \dots \stackrel{f}{\longrightarrow} f \stackrel{g}{\longleftarrow} \dots$
F : future or eventually, Ff=TrueUf	$Ff \longrightarrow f$
G : globally or always, Gf=~F~f	$Gf \begin{array}{cccc} f & f & f \\ & & & \\ \hline \end{array} \begin{array}{cccc} & & & f & f \\ & & & \\ \hline \end{array} \begin{array}{ccccc} & & & & \\ & & & \\ \end{array} \begin{array}{cccccc} & & & f & f \\ & & & \\ \end{array} \begin{array}{cccccccc} & & & & \\ & & & \\ \end{array} \begin{array}{ccccccccccccccccccccccccccccccccccc$
B : before, fBg=~(~fUg)	$fBg \xrightarrow{f} \dots \xrightarrow{g} $

Syntax of LTL formulae

- **P1** $p \in AP \Rightarrow p$ is a LTL formula.
- **P2** f_1 and f_2 are LTL formulae \Rightarrow so are $\neg f_1$, $f_1 \lor f_2$, and $f_1 \land f_2$.
- **P3** f_1 and f_2 are LTL formulae \Rightarrow so are Xf_1 , f_1Uf_2 , Ff_1 , Gf_1 , and f_1Bf_2 .

Semantics: proposition-trace
$$\pi = (L_0, L_1, \dots) \in \Sigma_{AP}^{\omega}$$

 $\pi^i = (L_i, \dots), \forall i \ge 0$
1. $\forall p \in AP, \pi \models p \iff p \in L_0.$
2. $\pi \models \neg f_1 \iff \pi \not\models f_1.$
3. $\pi \models f_1 \lor f_2 \iff \pi \models f_1 \text{ or } \pi \models f_2.$
4. $\pi \models f_1 \land f_2 \iff \pi \models f_1 \text{ and } \pi \models f_2.$
5. $\pi \models Xf_1 \iff \pi^1 \models f_1.$
6. $\pi \models f_1 Uf_2 \iff \exists k \ge 0, \pi^k \models f_2$
and $\forall j \in \{0, 1, \dots, k-1\}, \pi^j \models f_1.$
7. $\pi \models Ff_1 \iff \exists k \ge 0, \pi^k \models f_1.$
8. $\pi \models Gf_1 \iff \forall k \ge 0, \pi^k \models f_1.$
9. $\pi \models f_1 Bf_2 \iff \forall k \ge 0 \text{ with } \pi^k \models f_2, \exists j \in \{0, 1, \dots, k-1\}, \pi^j \models f_1.$

Examples of LTL formulae

 $G \neg R_1$: an invariance (a type of safety) property.

 $G((\text{message sent}) \Rightarrow F(\text{message received})) :$ a recurrence (a type of liveness) property.

FGp : a stability (a type of liveness) property.

Notion of Diagnosability in Temporal Logic Setting

System Model: $P = (X, \Sigma, R, X_0, AP, L)$

- X, a finite set of states;
- Σ , a finite set of event labels;
- R: X × Σ ∪ {ε} × X, a transition relation,
 ∀x ∈ X, ∃σ ∈ Σ ∪ {ε}, ∃x' ∈ X, (x, σ, x') ∈ R
 (P is nondeterministic & nonterminating);
- $X_0 \subseteq X$, a set of initial states;
- *AP*, a finite set of atomic proposition symbols;
- $L: X \to 2^{AP}$, a labelling function.

 $M: \Sigma \cup \{\epsilon\} \rightarrow \Delta \cup \{\epsilon\}$, an observation mask.

Fault specification: LTL formula f.

$$\pi = (x_0, x_1, \cdots), \ \pi_{AP} = (L(x_0), L(x_1), \cdots):$$
$$\pi \models f \text{ if } \pi_{AP} \models f$$

Faulty state-trace

An infinite state-trace π is *faulty* if $\pi \not\models f$.

Remark captures both safety and liveness failures

Indicator

A finite state-trace π is an *indicator* if all its infinite extensions in P are faulty.

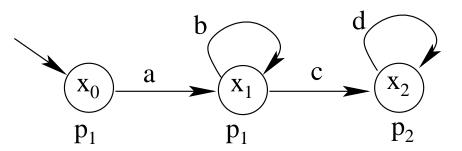
Remark: can only detect indicators through observation of finite length event-traces

Pre-diagnosability

P is *pre-diagnosable* w.r.t. f if every faulty state-trace in P possesses an indicator as its prefix.

Remark Needed for detecting all failures through observation of finite length event-traces

Example



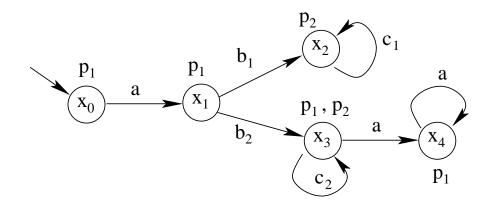
 $f = GFp_2$: not pre-diagnosable; no indicator for $x_0x_1^{\omega}$ $f = GFp_1$: pre-diagnosable

Diagnosability: single specification

P is *diagnosable* w.r.t. M and f if P is pre-diagnosable and

Exists a detection delay bound n such that For all indicator trace π_0 For all extension-suffix π_1 of π_0 , $|\pi_1| \ge n$ For all π' indistinguishable from $\pi_0\pi_1$ It holds that π' is an indicator trace

Example



 $M(b_1) = M(b_2) = b$; $M(c_1) = M(c_2) = c$ $f = GFp_2$: diagnosable (no faulty trace looks like a non-faulty trace) $f = Gp_1$: pre-diagnosable but not diagnosable

Diagnosability: multiple specifications

P is *diagnosable* w.r.t. *M* and $\{f_i, i = 1, 2, \dots, m\}$ if *P* is diagnosable w.r.t. *M* and each f_i , $i = 1, 2, \dots, m$.

Remark: Suffices to study the case of only one fault specification

Algorithm for Diagnosis with LTL Specifications

Problem of failure Diagnosis

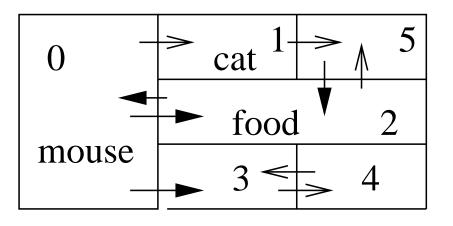
Given P, M, f:

- Test the diagnosability of P w.r.t. M and f;
- If P is diagnosable, then construct a diagnoser for P.

Algorithm 1: diagnosis for single fault specification

- 1. Construct a tableau T_f for f that contains all infinite proposition-traces satisfying f, and let $\{F_i, 1 \le i \le r\}$ denote the generalized Büchi acceptance condition of f.
- 2. Test the pre-diagnosability of P.
 - Construct $T_1 = T_f ||_{AP}P$ that generates traces that are accepted by P and are limits of traces satisfying f.
 - Check whether every infinite state-trace generated by T₁ satisfies f, i.e., whether every infinite state-trace generated by T₁ visits each F_i infinitely often: T₁ ⊨ ∧^r_{i=1}GFF_i, a LTL model checking problem. NO ⇔ P is not pre-diagnosable.
- 3. Test the diagnosability of P.
 - Construct $T_2 = M^{-1}M(T_1)||_{\Sigma}P$ that accepts finite traces of P indistinguishable from finite traces of T_1 , i.e., prefixes of non-faulty traces.
 - Check whether every infinite trace in T₂ satisfies f: T₂ ⊨ f, a LTL model checking problem.
 NO ⇔ P is not diagnosable.
- 4. Output $M(T_1)$ as the diagnoser D.

Complexity: $O(2^{|f|}|X|^4)$; size of D: $O(2^{|f|}|X|)$.



→ : observable

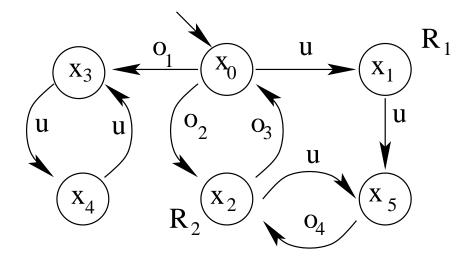
→ : unobservable

Spec 1 Never visit room 1 (an invariance, a type of safety, property).

 $G \neg R_1$: Globally (always) not in Room 1

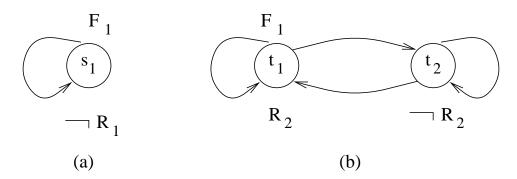
Spec 2 Visit room 2 for food infinitely often (a recurrence, a type of liveness, property). GFR_2 : Globally (always) in future in Room 2

System model

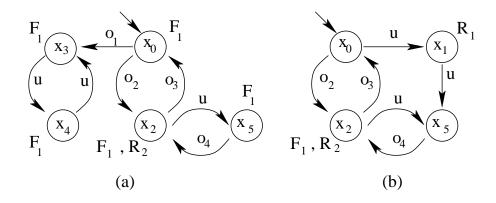


 $M(u) = \epsilon, \ M(o_i) = o_i \text{ for } 0 \le i \le 4; \ AP = \{R_1, R_2\};$ $L(x_i) = \emptyset \text{ for } i \notin \{1, 2\}, \ L(x_1) = \{R_1\}, \ L(x_2) = \{R_2\}.$ Specifications: $f_1 = G \neg R_1, \ f_2 = GFR_2.$

Tableau T_{f_i} , i = 1, 2.

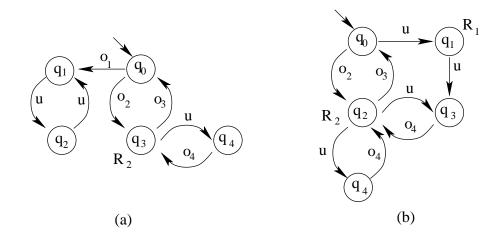


Checking pre-diagnosability: $T_1^{f_i} = T_{f_i}||_{AP}P$, i = 1, 2; $T_1^{f_i} \models GFF_1$? i = 1, 2.



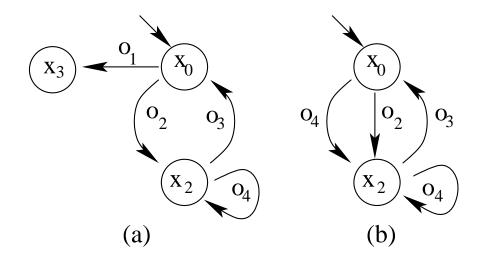
P is pre-diagnosable w.r.t. f_1 and f_2 respectively.

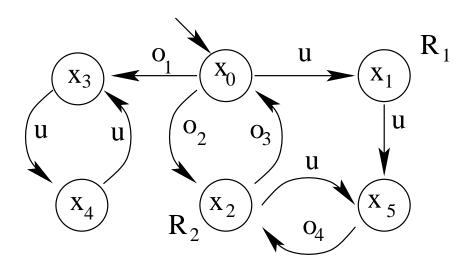
Checking diagnosability: $T_2^{f_i} = M^{-1}M(T_1^{f_i})||_{\Sigma}P$, i = 1, 2; $T_2^{f_1} \models G \neg R_1$? $T_2^{f_2} \models GFR_2$?



P is diagnosable w.r.t. f_1 and f_2 respectively.

Diagnoser $D = \{M(T_1^{f_1}), M(T_1^{f_2})\}$





Specifications: $f_1 = G \neg R_1$, $f_2 = GFR_2$.

Conclusion

- A framework for failure diagnosis in LTL setting
- Notions of indicator, pre-diagnosability, and diagnosability
- Algorithms for checking pre-diagnosability & diagnosability in proposed framework
- Construction of diagnoser for on-line diagnosis in proposed framework
- Complexity analysis (polynomial in the plant size, exponential in the formula length)