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Abstract

We propose a metric to determine whether one version of a system is relatively more secure than
another with respect to the system’s attack surface. Intuitively, the more exposed the attack surface,
the more likely the system could be successfully attacked, and hence the more insecure it is. We
define an attack surface in terms of the system’s actions that are externally visible to its users
and the system’s resources that each action accesses or modifies. To apply our metric in practice,
rather than consider all possible system resources, we narrow our focus on a “relevant” subset of
resource types, which we call attack classes; these reflect the types of system resources that are
more likely to be targets of attack. We assign payoffs to attack classes to represent likelihoods of
attack; resources in an attack class with a high payoff value are more likely to be targets or enablers
of an attack than resources in an attack class with a low payoff value. We outline a method to
identify attack classes and to measure a system’s attack surface. We demonstrate and validate our
method by measuring the relative attack surface of four different versions of the Linux operating
system.
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1 Introduction

In recent years, there has been an alarming increase in the number of successful attacks on systems
due to an increase in the number of vulnerabilities found and exploited by attackers. Industry
has responded to these incidents by increasing the effort to make systems more secure and less
vulnerable. In the future, the amounts of money, time, and effort spent by industry will continue
to increase proportionally to the increased expectations and demands of their customers for more
trustworthy systems. Our work is motivated by the questions faced by industry today: How has
industry’s effort made to make a system more secure paid off? Is the most recent release of a
system more secure than the earlier ones? How can we quantify the results?

In this paper we propose a metric to compare the relative security of two versions of the same
system. Rather than measure the absolute security of a system with respect to some yardstick, we
measure its relative security: Given two versions, A and B, of a system we measure the security of
A relative to B with respect to the system’s attack surface. Intuitively, by decreasing the exposure
of the system’s attack surface, e.g., by eliminating system features, we make it more secure.

1.1 A New Metric

Today we commonly use two measurements to determine the security of a system: at the code level,
we count the number of bugs found (or fixed from one version to the next), and at the system level,
we count the number of times a system version is mentioned in CERT advisories [24], Microsoft
Security Bulletins [29], MITRE Common Vulnerabilities and Exposures (CVEs) [31] etc. We argue
in Section 7 why both measurements, while useful, are less than satisfactory. In this paper, we
propose a new security metric based on the notion of attack surface. It is a metric that strikes at
the design level of a system: above the level of code, but below the level of the entire system.

The system actions externally visible to the system’s users together with the system resources
accessed or modified by each action constitute the system’s attack surface. Intuitively, the more
actions available to a user or the more resources accessible through these actions, the more exposed
the attack surface. The more exposed the attack surface, the more likely the system could be
successfully attacked, and hence the more insecure it is. We can reduce the attack surface to
decrease the likelihood of attack and make a system more secure.

Attacks carried out over the years, however, show that certain system resources are more likely
to be opportunities, i.e., targets or enablers, of attack than others. For example, services running
as the privileged user root in UNIX are more likely to be targets of attack than services running
as non-root users. Files with full control (e.g., rwxrwxrwx in Unix) are more likely to be attacked
than files with less generous permissions. Symbolic links are highly likely to be used as enablers in
attacks. In Windows, applications, such as Internet Explorer and Outlook Express, with VBScript,
JScript, or ActiveX controls enabled are more likely to be enablers of attack than if such scripting
engines and controls were disabled. Our method of measuring a system’s attack surface recognizes
that not all system resources should be treated equally. We identify the system resources that are
opportunities of attack by a given set of properties associated with the resources, and categorize
them into attack classes. These properties reflect the attackability of a type of resource, i.e., some
types of resources are more likely to be attacked than other types.

Given a set of attack classes, and given two versions of a system, we measure whether one is
more secure relative to the other by comparing them with respect to the attack classes. There are
different possible ways of doing this comparison. For example, for each version, we might count the
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number of running instances of each attack class (e.g., the number of services running as root and
the number of open sockets), and compare each version’s respective numbers for each attack class.
We might further refine these counts by weighing instances of some classes more than instances of
others, where weights represent the likelihoods of attack. We could use a payoff function to assign
these likelihoods, e.g., to assign higher payoff to services running as root than those running as
non-root.

Using our method, it is meaningful to compare two similar systems (e.g., two versions of Red
Hat, or Red Hat and Debian) rather than two completely unrelated systems (e.g., Linux and
Windows) because the unrelated systems would have different sets of attack classes. We emphasize
this point in Section 7 when we compare our work on Linux to previous similar work on Windows
[11].

1.2 Contributions and Roadmap

Our contributions in this paper are three-fold:

• In terms of a state machine model of the system, we present formal definitions of attack,
attack surface, and attack class. Our definitions are new, and in particular more precise than
found in earlier work [11].

• We outline a general method to measure the attack surface of any system. We explain what
inputs the user must provide to use our method in practice.

• We demonstrate our method on the Linux operating system. We identify 14 attack classes
and measure the attack surface of four different versions of Linux. Our results are consistent
with the perceived security level of these four versions.

The rest of this paper is organized as follows. In Section 2, we introduce our state machine
model and point out the key differences from other similar models. In Section 3, we present the
formal definitions of attack, attack class, and attack surface. We explain our method of attack
surface measurement in Section 4. We demonstrate the use of our method for the Linux operating
system in Section 5. We discuss the pros and cons of our approach in Section 6 and compare it to
related work in Section 7. We conclude in Section 8.

2 State Machine Model

We use a state machine to model the system, the threat (adversary) trying to attack the system,
the administrator of the system, and the users in the system.

2.1 Informal Overview

The use of state machines is not new in security literature. For example, state machines are used for
intrusion detection ([7] and [12]), and to model security policies ([2] and [17]). Our state machine,
however, differs from standard state machines found in the literature as follows:
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• We explicitly represent an access matrix in the state of the state machine, thereby allowing
us to represent the set of principals (e.g., User and Administrator) explicitly.

• We represent the system itself as a separate entity in our model and not as a principal.

• We distinguish both the threat and the system administrator as system principals different
from other system users.

These differences allow us to partition the set of actions of a state machine into pairwise-disjoint
sets of actions. By tagging the actions with the executor of an action (i.e., a principal or the system)
in a given execution sequence of actions, we can easily and succinctly define the notion of attack.

2.2 Formal Definition

A state machine M = 〈S, I,A, T 〉 is a four-tuple where S is the set of states, I ⊆ S is the set of
initial states, A is the set of actions, and T is the transition relation.

We assume a set of potentially existing resources, Resource, partitioned into disjoint typed sets.
The set of states, S, in a state machine ranges over the type 2State, where the type State itself is
defined as follows:
State = Env × Store×Access Matrix
Env = Name → Resource
Store = Resource → V alue
Access Matrix = Principal ×Resource×Rights

Given a state 〈e, s, am〉 ∈ S, the environment e is a mapping of names to typed resources and
the store s is a mapping of typed resources to their typed values. The access matrix am is a triple
similar to Lampson’s access matrix [13], where our principals are equivalent to Lampson’s domains
and our resources are equivalent to Lampson’s objects. To be concrete in this paper we define
Principal = {Threat, Administrator, User}. The principal Threat is the adversary who attacks
the system with some goal, Goal, in mind. We assume that we can represent the Goal of the Threat
as a predicate over the resources in the system. The Administrator tries to protect the system and
tries to prevent the Threat from achieving its Goal. The User tries to get some useful work done.
For simplicity, we assume only one user in the system, but our model is general enough to handle
multiple users. Access rights definitions are specific to the system being modeled. For instance, on
the UNIX operating system, Rights = {r, w, x}. Representation of the access matrix as a separate
entity in the state makes specifying the pre- and post-conditions of actions convenient. Finally, to
distinguish between actions taken by a principal and those performed by the system, in our model
we represent the system itself by a special entity System.

The action set A consists of the actions of the System, the Threat, the Administrator, and the
User. Each action is specified by its pre- and post-conditions and is tagged to identify the executor
of the action. A = AS ] AT ] AA ] AU , where AS is the action set of the System; AT , the action
set of the Threat; AA, the action set of the Administrator; and AU , the action set of the User. ]
stands for disjoint union.

The transition relation T is defined as T ⊆ S×A×S. For any action a ∈ A, if a.pre and a.post
are the pre- and post-conditions of a, we define the set of transition triples involving the action a
to be a.T = {〈x, a, x′〉 : S ×A× S | a.pre(x) ⇒ a.post(x, x′)}. T is the union of all such sets, a.T ,
for each action a ∈ A. For an action a ∈ A, we define a function, Res: predicate → Resource, such
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that for each resource, r, appearing in the predicate, p, r ∈ Res(p)1. We define the corresponding
function for an action, Res: action → Resource to collect all resources appearing in the pre- and
post-conditions of the specification of action a. Formally, Res(a) = Res(a.pre) ∪Res(a.post).

The System, the Threat, the Administrator, or the User can cause the state machine M to change
its state by executing their respective actions. A state transition, 〈x, a, x′〉, is the execution of action
a in state x resulting in the new state x′. A change of state of M involves the following observable
behaviors: (1) addition, deletion or modification of a resource, and (2) modification of the entries
of the access matrix. The addition or deletion of a resource changes a state’s environment, store,
and access matrix. The modification of an existing resource changes a state’s store and possibly
its access matrix.

3 Definitions and Examples

We use our state machine model to define formally notions of attack, attack surface, and attack
class.

3.1 Attack

Let M = 〈S, I,A, T 〉 be the state machine representing the system under attack and Goal the state
predicate characterizing the adversary’s goal to be achieved in attacking the system.

Definition 1 An attack is a finite sequence of action executions a1, .., ai, .., an such that:

• ∀1 ≤ i ≤ n . ai ∈ A;

• a1 ∈ AT ;

• ∃1 < i ≤ n . ai ∈ AS; and

• Goal is satisfied in the state reached by M after execution of an.

An attack includes actions from the action sets of the System, the Threat, the Administrator,
and the User. Since an attack is initiated by the Threat, the sequence starts with an action of the
Threat. The sequence includes at least one action of the System to model the exploitation of some
system vulnerability by the Threat in the attack. Finally, the adversary’s goal should hold at the
end of the attack.

To illustrate our formalism, let us first consider the specification of two actions: SEND STRINGT

and PROCESS STRINGS . Recall that a system state is a triple, 〈e, s, am〉, of an environment,
store, and access matrix; in particular, when we write e (am) below, we mean the environment
(access matrix) component of the state 〈e, s, am〉. For each action specification, we use a bar over a
variable name, x̄, to denote the resource itself, i.e., e(x); an unprimed variable name, x, to denote
the value of the resource, i.e., s(e(x)), and a primed variable name, x′, to denote its value in the
post-state, i.e. s′(e′(x)). We specify state changes explicitly: a resource named by a variable that
remains unprimed in the post-state is assumed not to change.

1This function can be inductively defined over the syntax of the predicate language, which we intentionally do not
fix in this paper. First-order logic or temporal logic would both be natural choices for a predicate language.
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Below, we assume the type channel has functions enqueue: channel × string → channel and
dequeue: channel → string to write data to and read data from the channel; it also has the function
empty: channel → boolean that returns true if the channel is empty; false, otherwise. The type
process has a function display: process × string → unit to print a string on the user’s terminal and a
function x load: process × string → executable to extract a payload from an input string, returning
a resource of type executable. The type string has a function length: string → int that returns the
length of the string. We associate a function eval: executable → unit with every executable in the
system; when invoked it results in the evaluation of the executable. Note that for an executable,
E, the predicate E.pre ⇒ E.post captures the effect of evaluating E.

action SEND STRINGT (C: channel, I: string)
pre 〈Threat, C̄, rw〉 ∈ am
post C ′ = enqueue(C, I)

action PROCESS STRINGS(C: channel,
P: process)

pre ¬ empty(C)
post ∃I . I = dequeue(C)∧

(length(I) ≤ 512 ⇒ display(P, I)) ∧
(length(I) > 512 ⇒

∃E.(E = x load(P, I) ⇒
E.pre ⇒ E.post))

The effect of executing SEND STRINGT is to enqueue a string onto a channel. The effect of
executing PROCESS STRINGS is to display a string if its length is ≤ 512 and execute the string’s
extracted payload, otherwise.

Now we give a hypothetical attack, where the Threat exploits a buffer overrun in a process
P running in the system by sending through the communication channel C a string X whose
length exceeds 512. (We give another example describing a real-life attack in the appendix. It also
illustrates an attack with a User action.)

Informally, the adversary’s goal is to execute some arbitrary code, E: executable, in the system;
formally, we represent this Goal as the predicate E.pre ⇒ E.post. The attack on the System
consists of the following sequence of two action executions, where time runs down the page. We
italicize the state predicates before and after the attack.

{∃C̄ : channel ∈ e ∧ ∃Ē : executable ∈ e ∧ ∃P̄ : process ∈ e ∧ ∃X̄ : string ∈ e ∧
〈Threat, C̄, rw〉 ∈ am ∧ empty(C) ∧ length(X) > 512}

SEND STRINGT (C, X)
PROCESS STRINGS(C, P)

{∃E : executable . E.pre ⇒ E.post}

Since the length of the string X sent to SEND STRINGT is greater than 512, the last conjunct
of the post-condition of PROCESS STRINGS holds; thus Goal is achieved at the end of this sample
attack.

For a given attack, the target will appear as one of the resources of one of the system actions
of the attack. In the example above, Res(PROCESS STRINGS) = {I, C, E, P}, and the process
P is the target of attack. In addition, the specification of (at least) one of the system actions in

5



the attack reflects the vulnerability of the System exploited by the Threat. In the example, the
post-condition of PROCESS STRINGS reflects the vulnerability of the system, i.e., if the length
of the input string I is greater than 512, the process P executes arbitrary code in I sent by the
Threat. The intended (ideal) behavior for PROCESS STRINGS is to display the input string I,
no matter what its length.

3.2 Attack Surface

Definition 2 The attack surface of the System is the pair, 〈AS ,
⋃

a∈AS

Res(a)〉, where the first com-

ponent is the set of system actions and the second is the collective set of resources, Res(a), for each
system action, a ∈ AS.

Note that each system action a ∈ AS can potentially be part of an attack and hence contributes
to the attack surface. Even though a system action may not have appeared in any attack seen to
date, it can be part of a future attack, exploiting vulnerabilities not yet discovered or fixed.

Similarly, by our definition, every system resource can potentially be part of an attack surface.
In reality, however, not all system resources have the same likelihood of being a target or enabler
of an attack. We use attack classes to capture this intuition.

3.3 Attack Class

To motivate our definition of attack class, consider the general resource type service. In practice, not
all services have the same “attackability,” i.e., likelihood of attack. We might want to distinguish
between services running as root and services running as non-root. Or, while we might have a
general resource type file, we might want to distinguish among files that allow full control, those
that allow only read/write access, and those that allow only read access; and we may not care
about the remaining types of files. These kinds of distinctions can vary across different kinds of
systems; for example, in a medical databases we might try to gain access to patient records, but
in a nuclear control system, we might try to gain access to the sensor and actuator processes. We
want our attack surface metric to be applicable across this broad range of systems.

In order to characterize these distinctions formally, we use “properties of interest” that are
relevant to a given system. In practice, these properties take into consideration the aspects of
resources the Threat finds easy to exploit (e.g., weak access control on files). To be concrete, we
assume that we are given a set of properties, each expressed as a predicate over resource types.

A set of properties, Prop, extends a given set of types, Type, by introducing new types, each a
subtype of some type in Type. This extended type system defines a type hierarchy, where types are
related by a subtype relation (e.g., see Liskov and Wing’s behavioral notion of subtype [14]). For
example, nobody account is a subtype of user account because an account of type nobody account
has all the properties of user account with the further distinguishing property that its user id
is nobody. For types S and T , we write S ≤ T if S is a subtype of T . The subtype relation
characterizes when properties of a resource of a type, T , are preserved by any of T ’s subtypes.
Operationally, if S ≤ T then anywhere we expect a resource of type T we can substitute a resource
of type S. In general, a type hierarchy is a forest of directed acyclic graphs, i.e., a type might have
more than one parent.

Assume we have a type hierarchy relation, Induce, that takes as input a set of properties, Prop,
and a set of types, Type, and yields both a new set of types, SType, and a subtype relation, ≤, such
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that:

• SType ⊃ Type. That is, Induce extends a given set of types with new ones.

• ≤ is a subtype relation on types in SType.

• ∀S ∈ SType\Type ∃T ∈ Type . S ≤ T . That is, each new type is a subtype of some existing
type.

• ∀p ∈ Prop, ∃S ∈ SType\Type such that ∀x : S . p(x). That is, each property plays a role in
defining some new type.

• ∀S ∈ SType\Type, ∃p ∈ Prop such that ∀x : S . p(x). That is, each new type derives from
some property in Prop.

The relation Induce projected on its first type in its domain (Prop) and mapped onto the first
type in its range (SType) is total and onto. Note that a property can be used to define more
than one new type and a new type can be derived from more than one property. If Induce(〈Prop,
Type〉, 〈SType, ≤〉) we say the set of properties Prop induces a type hierarchy on Type, producing
a subtype relation, ≤, on types in SType.

Definition 3 Given a set of properties, Prop, and a set of resource types, Type, let Type Hierarchy
be the subtype hierarchy induced by Prop on Type, i.e., Induce(〈Prop, Type〉, 〈Type Hierarchy, ≤〉).
The attack classes of a system are all the types in Type Hierarchy that are leaf nodes, i.e., have no
subtypes of their own.

Note that by defining an attack class to be a type with no child node in the type hierarchy, we
ensure that all attack classes are disjoint, and thus any count based on the numbers of elements in
a class will not double count resources. (We could give a less restrictive definition of attack class,
but then any straightforward counting method, e.g., based on the number of instances per class,
should make sure instances are not double counted.)

The set of properties specified by the user captures how likely resources of a given type will be
attacked. For example, two general resource types in the Linux operating system are service and
user account. We can use the predicate service running as root: service → boolean to categorize the
services into two attack classes: service running as root and service running as non-root. We can
use the predicates user id: user account × id → boolean and group id: user account × id → boolean
to categorize the user accounts into the attack classes user account with user id=root or group id=
root, nobody account, and all other accounts. (Our type hierarchy for Linux presented in Section
5 is more elaborate.) In the Windows (as in Linux) operating system, one general resource type
is channel. We can use the predicate channel protocol: channel × protocol → boolean to catego-
rize the resources of type channel into the attack classes socket, RPC end point, named pipe and
all other channels.

4 Attack Surface Measurement Method

In this section we outline a general method that can be used to identify the attack classes of a
system and measure its attack surface. We base our method on our formal model and definitions
described in earlier sections; we present it in a way so that it can be applied to any system.

7



4.1 Attack Surface Measurement

The attack surface of a system consists of the set of system actions AS and the collective set of
resources of each action a ∈ AS . A naive but impractical way of measuring the attack surface is to
enumerate the set of system actions of a given system and count the number of resources in each
of the action’s resource set. We describe below a more practical, yet meaningful way to measure
the attack surface based on the attack classes of the system. Then, given two versions, A and B,
of a system we compare their relative attack surface exposure with respect to the attack classes.

4.2 Method

Consider a system with a fixed set, AS , of system actions, each specified in terms of pre- and
post-conditions. In practice, a system’s API serves as the set of system actions.

Step 1. Identify the resources that are potential targets of attack as
⋃

a∈AS

Res(a) from the given

set of system actions AS . Let Type be the set of types of all these resources.

Step 2. Given a set, Prop, of properties of interest over the resources, induce a type hierarchy over
the set, Type, of resource types identified in Step 1. Every leaf node in this type hierarchy is
an attack class of the system. Let Attack Class be the set of attack classes.

Step 3. Define a payoff function F: Attack Class → [0, 1] to assign payoffs to each attack class
identified in Step 2.

Step 4. Choose some k attack classes from the attack classes identified in Step 2. (We discuss why
we include this step below.)

Step 5. Compare the two versions of the system, A and B, with respect to these k attack classes
to obtain their relative attack surface exposure.

Some notes on these steps in our method:
In Step 2, we need to rely on our knowledge of the system to state the properties of interest.

They will differ from system to system and they may change over time based on our experience
with a system as it evolves over time.

In Step 3, payoffs represent the likelihoods of attack. An attack class with a high payoff indicates
that resources of that class are more likely to be attacked than resources of an attack class with
a lower payoff. One naive way of assigning payoffs is to count the number of times a resource
appears in the pre- and post-conditions of system actions; we would assign higher payoffs to the
resources having higher counts. Another way of assigning payoffs is based on a system’s reported
history and we give higher payoffs to attack classes that appear in a greater number of vulnerability
bulletins. A more sophisticated approach for defining a payoff function is to quantify the “damage”
the adversary can effect if resources in a given attack class are compromised, e.g., in terms of cost
to repair the system.

In Step 4, we acknowledge that measuring an attack surface in practice need not involve all the
attack classes of the system. We might choose the top k attack classes of a system based on the
payoffs assigned in Step 3. Or, more pragmatically (as we will see in Section 5), we might simply
choose the k attack classes for which we have an automated means of counting their sizes.
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In Step 5, there are many ways to use the attack classes to do the comparison. One simple way
is to count the number of instances of each attack class in both versions and compare the numbers.
The higher the count for a given attack class, the more the attack surface exposure is for that
class. Another way is to incorporate the payoffs identified in Step 3 as weights in these counts;
e.g., we could count the weighted sum of all instances in each attack class with the same immediate
supertype, and compare the versions with respect to the supertype, rather than its individual attack
class subtypes. In other words, the attack surface contribution of a resource type T with attack

classes S1, S2, .., Sk as its subtypes is given by
k∑

i=1
n(Si)×wi, where n(Si) is the number of instance

of the attack class Si and wi is the payoff assigned to Si in Step 3. A more sophisticated comparison
might take into account the interactions between various attack classes, e.g., we can compare the
number of sockets opened by services running as root and ignore the other sockets in the system.

4.3 Reducing the Attack Surface

Our formal model and measurement method suggest ways in which we can reduce the exposure of
an attack surface:

• Reduce the number of system actions.

• Remove a known or potential system vulnerability by strengthening the pre- and post-
conditions of a system action a ∈ AS , e.g., in a way that prevents the Goal of the Threat
from ever being achieved.

• Eliminate an entire attack class.

• Reduce the number of instances of an attack class.

5 Linux Example

In this section, we describe the results of measuring the attack surface of four versions of the Linux
operating system.

Step 1 of our method requires that we identify all resources of the system that are potential
targets of attacks. Since it is impractical to enumerate the set of system actions for Linux, and then
identify all possible resources each action might access or modify, we derived the set of resource
types indirectly. We considered all resources that appear in the MITRE CVEs [31] as potential
targets of attack and identified their types accordingly.

In Step 2, we defined a set of properties over the resource types identified in Step 1, and induced
a type hierarchy over the extended set of resource types. Every leaf node in this type hierarchy
is an attack class, resulting in 14 attack classes for Linux. Fig 1 depicts the type hierarchy and
the 14 Linux attack classes. For example, in our type hierarchy, nobody account ≤ user account ≤
all resource and symbolic link ≤ all resource. We use descriptive names for the types and subtypes
to be suggestive of the properties we used to induce the hierarchy.

In Step 3, we used the history of attacks on Linux based on CVEs to assign payoffs to the attack
classes identified in Step 2. We did not assign explicit numeric payoff values because we did not
plan to use the numeric values in Steps 4 and 5. Instead, we assumed a higher payoff for an attack
class if the resources of that attack class appear a greater number of times in the CVEs. Note that
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Figure 1: Linux Attack Classes: Attack Classes are represented by rectangular boxes.

counting the number of times a system appears in the CVEs is different from counting the number
of times each attack class of the system appears in the CVEs. For example, consider two versions,
A and B, of a system having ten attack classes and each appearing in 50 CVEs. Let two of the
attack classes of version A appear in 25 CVEs each, ten of the attack classes of version B appear in
5 CVEs each, and the first two attack classes have lower payoffs compared to the remaining eight.
Both A and B appear in same number of CVEs, but the attack surface exposure of B is more than
that of A with respect to the ten attack classes.

In Step 4, we chose 11 attack classes for attack surface measurement out of the 14 identified
in Step 2. We did not include three attack classes in our measurement since it was not possible
to count the number of instances of each of them for all four versions of Linux. In Section 5.2, we
explain in more detail why we omitted these three attack classes.

In Step 5, we counted the number of instances of each of the 11 attack classes for four versions
of the Linux operating system and compared the numbers to get a relative measure of their attack
surface.

5.1 Attack Classes

We identified the resources appearing in the publicly known vulnerabilities reported in the CVEs
and CVE candidates list of MITRE [31]. We obtained further information about the vulnerabilities
from the CERT Advisories [24], Debian Security Advisories [28], and Red Hat Security Advisories
[33] referenced in the CVEs . We categorized the types of these resources into 14 attack classes.
We describe below each attack class and give an example (CVE) of a vulnerability of a resource in
that attack class.

5.1.1 Linux Attack Classes

open TCP/UDP socket: The services running on the system open TCP/UDP sockets and listen
for client requests on them. Multiple sockets can be opened by a service and multiple services can
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share the same socket. This attack class is a subtype of the resource type channel. CVE-2001-
0309 describes an attack involving open sockets— since the inetd daemon does not properly close
sockets for internal services such as daytime and echo, an attacker can cause a denial-of-service
attack by opening a series of connections to these services.

open remote procedure call(RPC) endpoint: Remotely accessible handlers for RPCs are
registered in the system by RPC servers. This attack class is a subtype of the resource type channel.
A remote attacker can exploit an integer overflow vulnerability in the SunRPC xdr array function
described in CVE-2002-0391 to execute arbitrary code on the system.

service running as root: This attack class is a subtype of the resource type service. Exam-
ples of services running as root are crond and telnetd. CVE-1999-0192 describes a buffer overflow
in the telnetd daemon which a remote attacker can exploit to gain root privilege on the system.

service running as non-root: This attack class is a subtype of the resource type service.
Examples of services running as non-root are portpmap and rpc.statd. CVE-2000-0666 describes
a format string vulnerability in the service rpc.statd which a remote attacker can exploit to
execute arbitrary code on the system.

setuid(setgid) root program: Setuid root programs are owned by root and execute in the
context of root instead of the user who invokes them. This attack class is a subtype of the resource
type executable. CVE-2000-0949 describes a heap overflow in the setuid root program traceroute
which local users can exploit to execute arbitrary commands on the system.

enabled local user account: This attack class is a subtype of the resource type user account.
Many of the attacks on Linux systems can be carried out only by local users. CVE-1999-0130
describes an exploit in which local users can gain root privilege by starting Sendmail in daemon
mode.

user id=root or group id=root account: This attack class is a subtype of the resource type
user account such that the user id or group id of the user account is root (0). These accounts
are potential targets of attack because of their enhanced privilege. CVE-2002-0875 describes a
vulnerability in the daemon fam which unprivileged users can exploit to discover a list of files
accessible to the root group.

unpassworded account: This attack class is a subtype of the resource type user account such
that the password of the user account is set to blank. CAN-1999-0502 describes the presence of
a unix account with default, null, blank or a missing password as a vulnerability of the system.

nobody account: Nobody is a special user account created in the system. This attack class is
a subtype of the resource type user account such that the user id is set to nobody. CAN-2002-
0424 describes a vulnerability in efingerd running as nobody which local users can exploit to gain
nobody privilege by modifying their own .efingerd file and running finger.

weak file permission: This attack class is a subtype of the resource type file such that the
access matrix entries of the file grant access rights to every user in the system. CVE-2001-1322
describes a vulnerability in xinted (runs with a default umask 0) which allows local users to read
or modify files created by the programs running under xinted and not setting their safe umask.

script enabled: This attack class is a subtype of the resource type application such that the
applications are enabled to execute scripts. Examples of such applications are browsers and e-mail
clients. CVE-2001-0745 describes a vulnerability in Netscape which a remote attacker can exploit
to obtain sensitive user information via Javascript.

symbolic link: This attack class consists of all resources of type symbolic link. When a program
running as root creates files in /tmp without checking for symlink, an attacker can create a
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symbolic link in /tmp before the program starts and hence can write to sensitive files. CVE-2000-
0728 describes a vulnerability in the xpdf PDF viewer which local users can exploit to overwrite
arbitrary files via symlink attack.

httpd module: This attack class consists of all resources of type httpd module. CAN-2003-0789
describes a vulnerability involving handling of CGI redirect in the mod cgid module in apache which
an attacker can exploit to view sensitive information.

dynamic web page: This attack class is a subtype of the resources type web page. CVE-1999-
0058 describes a buffer overflow vulnerability in the php program php.cgi which allows shell access
to a remote attacker.

5.1.2 Attack Class Validation

We obtained 14 attack classes for Linux by identifying the resources that appear in MITRE CVEs.
These 14 attack classes should be complete enough to cover vulnerabilities maintained in any other
Linux vulnerability database. Thus, toward a partial validation of our 14 attack classes, we recasted
some of the reported vulnerabilities of Linux available at the Bugtraq database [21] in terms of our
attack classes. If our 14 attack classes are complete enough, then any vulnerability mentioned in
Bugtraq should be covered by one of our attack classes.

For example, the vulnerability entry in the Bugtraq database with bugtraqid 7769 [22] describes
a format string vulnerability, stack overflow, and file corruption in the mod gzip module running
in debug mode. The target of the attack involving the vulnerability is the resource mod gzip and
it is an instance of our Linux attack class httpd module.

As another example, Bugtraqid 8732 [23] describes ASN.1 parsing vulnerabilities in OpenSSL
which a remote attacker can exploit to cause a denial-of-service or to execute arbitrary code on the
system. The resources that are the targets of this attack are the applications such as ssh that use
OpenSSL. ssh is an instance of our Linux attack class service running as root.

5.2 Attack Surface Measurements

We present the results of measuring the attack surface of following four versions of the Linux
operating system.

• Debian is a Debian GNU/Linux 3.0r1 distribution obtained from Debian’s website [27].

• RH Default is a Red Hat 9.0 Linux distribution obtained from Red Hat’s website [32].

• RH Facilities is a customized Red Hat 9.0 Linux distribution installed by the Computing
Facilities of CMU School of Computer Science [25].

• RH Used is an instance of RH Facilities after use by a graduate student for three months.

We took measurements for Debian, RH Default, and RH Facilities the very day each system
was installed. We did not modify any of these three systems in any manner after installation. We
took measurements for RH Used after three months of its installation. As described in Step 5 of
Section 5, we counted the number of instances of each attack class in our measurement. The results
of our measurements are shown in Table 1.

For the weak file permission attack class, we counted the number of file system objects with
world-writable permission. We did not install any web server on the system running Debian and
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Attack Class Debian RH Default RH Facilities RH Used
open TCP/UDP socket 15 12 40 41
open remote procedure call(RPC) endpoint 3 3 3 3
service running as root 21 26 29 30
service running as non-root 3 6 8 8
setuid(setgid) root program 54 54 72 72
enabled local user account 21 25 33 34
user id=root or group id=root account 0 4 3 3
unpassworded account 0 0 2 2
nobody account 1 1 1 1
weak file permission 7 7 21 37
script enabled 1 2 2 2
symbolic link * * * *
httpd module - - - -
dynamic web page - - - -

Table 1: Attack surface measurement results

RH Default since the system running RH Facilities did not have a web server installed. Hence we
did not count the numbers of instances of the attack classes httpd module and dynamic web page.
We did not count the number of instances of the attack class symbolic link since it is impractical
to determine whether the programs running as root check for symlinks before opening temporary
files.

Our metric and method give us different ways to compare the security of different versions of a
system:

• Default comparison: We compare the attack surfaces of Debian and RH Default to measure
the relative security of different flavors (versions) of the system.

• Customized usage-based comparison: We compare the attack surfaces of RH Default and RH
Facilities to observe the change in the security level of a system based on its customization.

• Time-based comparison: We compare the attack surfaces of RH Facilities and RH Used to
monitor the security level of a system as it changes over time.

5.2.1 Debian vs. RH Default

As shown in Table 1, RH Default has higher counts in each of five attack classes, Debian has a
higher count in one attack class, and both have the same counts in each of five attack classes.
Hence the attack surface exposure of Red Hat is greater than that of Debian. Debian is perceived
to be a more secure operating system and this is reflected in our measurement. We believe that
even though the code base is the same for the two systems, design choices play an important role
in making a system more or less secure.
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5.2.2 RH Default vs. RH Facilities

As shown in Table 1, RH Facilities has higher counts in each of seven attack classes, RH Default has
higher counts in one attack class, and both have the same counts in each of three attack classes. The
attack surface exposure of the facilities distribution is more than that of the default distribution.

The facilities distribution is customized to make it more useful compared to the default distribu-
tion. For example, it has the AFS file system installed. It has services such as lclaadmd, opshell,
kopshell and terad installed for remote management and network backup. Installing these fea-
tures increases the counts for the attack classes open TCP/UDP socket, service running as root,
enabled local user account, etc. Our results show that the attack surface exposure has increased
with customization, thereby making the system less secure.

5.2.3 RH Facilities vs. RH Used

As shown in Table 1, RH Used has higher counts in each of four attack classes and both have the
same counts in each of seven attack classes. The used version’s attack surface exposure is greater
than the initially installed version. The three-month use of the system increased the counts of
the attack classes open TCP/UDP socket, service running as root, enabled local user account, and
weak file permission. Our results show that the attack surface exposure has increased over time
making the system less secure.

6 Discussion

In this section, first we make some qualifying remarks on our metric and Linux measurement results,
and then we describe the advantages of our approach.

6.1 Caveats

We have some general caveats in using our attack surface metric in determining the relative security
of different versions of a system.

• Our method measures the security of a running instance of a system. We are not measuring
the system artifact (e.g., as manifest by its code), but rather a specific running version of it.
Unlike a count of the number bugs in the code, it is a dynamic, not static measure.

• Our method measures the security of a system in a given configuration. A system typically
has many settings; any combination of those settings yields a specific configuration.

Thus, it is important to realize that system’s security level will change as its configuration changes
over time. For example, initially a feature may be turned off but over time, the user might enable
it, potentially increasing its attack surface, making it just as insecure as a system that initially has
that feature turned on.

We also have caveats with respect to our specific results for Linux.
First, we chose 11 out of 14 attack classes in our attack surface measurement and our results

should be interpreted in the context of these 11 attack classes. Suppose version A is more secure
compared to a version B with respect to the 11 attack classes. If we were to include the remaining
three attack classes in the measurement, version A may not be more secure, e.g., there may be
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higher counts for these classes for A than for B. Moreover if the payoffs for these three classes
are higher than for the 11 we counted, and we weighed our counts by payoff, then A would look
significantly worse than B.

Second, CMU School of Computer Science Computing facilities has replaced many standard
services such as telnetd and rshd with local versions that use Kerberos for authentication and en-
cryption in the distribution RH Facilities. These local versions are perceived to be more secure than
the standard versions. Although we did not consider these security enhancements in our measure-
ment, here is how we would: To account for the higher security level of Kerberized services, we would
introduce a new predicate kerberos support: service → boolean to allow us to distinguish whether
a service uses Kerberos. We could use this predicate along with the previously defined predi-
cate service running as root: service → boolean to define four distinct subtypes (attack classes) of
the type service: kerberized service running as root, non-kerberized service running as root, kerber-
ized service running as non-root, and non-kerberized service running as non-root. We would then
assign lower payoffs to the attack classes whose services use Kerberos.

6.2 Advantages

The use of attack surface as a security metric and our method of measuring the attack surface have
the following advantages.

First, our metric is a relative measure of security. It is difficult to identify a yardstick for
measuring a system’s absolute security. Instead, we find it more practical and more useful to
compare the security of two versions of a system with respect to a given set of attack classes. Our
metric can be used to determine whether a new release of a system is more secure than an earlier
version. By measuring the attack surfaces of different versions, system designers could potentially
reduce the number of security patches that are released after the deployment of a new version in
the field.

Second, our metric can be used to track the security level of the system over time by measuring
the attack surface at regular intervals. We can observe the change in security level as different
resources are turned on and off as required.

Finally, our method of measuring the attack surface leverages our knowledge of and experience
with the system. Use of specific domain knowledge plays an important role in Steps 2-5 outlined in
Section 4.2. Our method gives us the flexibility to refine upon our choice of properties that induce
our type hierarchy, our assignment of payoffs, and our comparison method. We would make these
refinements because of newly acquired knowledge and experience, changes in the threat model, or
changes in technology.

7 Related Work

The use of attack surface as a security metric for any system is a novel idea. Michael Howard
of Microsoft first introduced it informally for the Windows operating system. We compare our
generalization of this metric and its application to Linux in Section 7.1 and then compare this
metric to other security metrics in Section 7.2.
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Attack Class Windows Linux
1 Open sockets open TCP/UDP socket
2 Open RPC endpoints open remote procedure call(RPC) endpoint
3 Services running as SYSTEM service running as root
4 Enabled accounts enabled local user account
5 Enabled accounts in admin group user id=root or group id=root account
6 Guest account enabled unpassworded account
7 Weak ACLs in FS weak file permission
8 JScript enabled script enabled
9 Active Web handlers httpd module
10 Dynamic web pages dynamic web page

Table 2: Comparison of Windows and Linux Attack Classes

7.1 Attack Surface Metric

Our work is inspired by Howard’s Relative Attack Surface Quotient (RASQ) measurements for the
Windows operating system [10] further elaborated by Pincus and Wing [11]. Howard, Pincus and
Wing give a list of twenty attack classes for the Microsoft Windows operating system and compare
seven versions of Windows [11]. The contributions of this paper as compared to the earlier work
done for Windows [10, 11] are three-fold:

• We define the notion of attack, attack surface, and attack class more formally and in terms of
a different state machine model. The significant differences in our state machine model are in
making the access matrix explicit and in distinguishing the system as an entity different from
its principals. The significant contributions in our definitions are in further dividing types of
resources into attack classes by introducing a type hierarchy and distinguishing among the
attack classes based on their attackability.

• In Section 4, we present a method for applying our metric so that others can use the notion of
attack surface for any system. The method requires identifying resources that are potential
targets of attacks and identifying interesting properties of the resources to characterize their
attackability. We also allow users to specify a payoff function for attack classes, to help
determine what attack classes to use for comparing two versions of a system.

• We apply our method and metric to Linux. The concrete contributions are in identifying the
14 attack classes for Linux and in measuring the attack surface of four different versions of
Linux.

We compare the attack classes of Windows and Linux in Table 2. There exists a one-to-one
mapping between ten attack classes of Windows and Linux. The remaining ten attack classes of
Windows have no corresponding equivalents in Linux. Similarly the remaining four attack classes
of Linux have no corresponding equivalents in Windows.
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7.2 Other Security Metrics

Many have done work in the area of detection of bugs at the code level [8, 9, 19, 20]. Using bug
counts as a security metric has the following disadvantages: (1) the bug detection process may miss
some bugs and may raise false positives, and (2) equal importance is given to all bugs, even though
some bugs are easier to exploit than others.

Many organizations, such as CERT [24] and MITRE [31], and websites, such as SecurityFocus
[21], track vulnerabilities found in various systems. Counting the number of times a system appears
in these bulletins is not an ideal metric because it ignores the specific system configuration that
gave rise to the vulnerability, and it does not capture a system’s future attackability.

Our approach lies in between these two approaches: It is at a higher level abstraction than the
code level, implicitly giving importance to bugs based on ease of exploit. It is at a lower level of
abstraction than the entire system, linking vulnerabilities to specific system configurations.

Browne et al. [5] give a mathematical model to reflect the rate at which incidents involving
exploits of vulnerability are reported to the CERT. Beattie et al. [3] give a model for finding
the appropriate time for applying security patches to a system for optimal uptime. Both of these
studies focus on vulnerabilities with respect to their discovery, exploitation and remediation over
time, rather than a single system’s collective points of vulnerability.

There has been some work done in the area of quantitative modeling of the security of a system.
Brocklehurst et al. [4, 15] measure the operational security of a system by estimating the effort
spent by an attacker to cause a security breach in the system and the reward associated with the
breach. Alves-Foss et al. [1] use the System Vulnerability Index—obtained by evaluating factors
such as system characteristics, potentially neglectful acts and potentially malevolent acts—as a
measure of computer system vulnerability. Voas et al. [18] propose the minimum-time-to-intrusion
(MTTI) metric based on the predicted period of time before any simulated intrusion can take
place. MTTI is a relative metric that allows the users to compare different versions of the same
system. Ortalo et al. [16] model the system as a privilege graph [6] exhibiting its vulnerabilities
and estimate the effort spent by the attacker to attack the system successfully, exploiting these
vulnerabilities. The estimated effort is a measure of the operational security of the system. These
works focus on the vulnerabilities of a system as a measure of its security, where as we use the
notion of the attackability of various resources of the system as a measure of its security.

8 Conclusions

Our state machine model is general enough to model the behavior of the system, the threat,
the administrator and the users on the system. Our attack surface measurement method can be
applied to any system. Our application of our metric and method to Linux give results that confirm
perceived beliefs about the relative security of four versions of the Linux operating system.

Measurement of security, both quantitatively or qualitatively, has been a long-standing challenge
to the community. We view our work as a first step towards a meaningful and practical metric for
security measurement (e.g., see CRA Grand Challenge # 3 [26]). We believe that the best way to
begin is to start counting what is countable and then use the resulting numbers in a qualitative
manner. We believe that our understanding over time would lead us to more meaningful and useful
quantitative metrics for security measurement.
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Microsoft Security Bulletin MS02-005

To show the generality of our formal model and specification approach, we describe an attack se-
quence exploiting a Windows vulnerability. It is one of the vulnerabilities described in the February
11, 2002 Microsoft Security Bulletin MS02-005 [30]. The processing of an HTML document having
an embedded object by the MSHTML parser involves a buffer overrun. The adversary can exploit
this vulnerability to execute arbitrary code in the security context of the user.

In the specifications of the actions below, we assume the type web server has a function
make doc: web server × emb obj → web page to create a web page with an embedded object
and a function add page: web server × web page → web server to add a page to the web server.
The type web page has a function get obj: web page → emb obj which returns the object embedded
in the web page. The type emb obj has a function length: emb obj → int that returns the length of
the embedded object. The type browser has a function dload: browser × web server → web page
to download a web page from a web server. It also has a function get security zone: browser ×
web server → security zone to get the security zone to which the web server is mapped on the
system. The type security zone has a function r activex: security zone → boolean that returns true
if the user has enabled the option to run ActiveX controls in the security zone; false, otherwise.
The type parser has a function display: parser × emb obj → unit to display the embedded object
and a function x load: parser × emb obj → executable to extract the payload from the embedded
object.

action CREATE DOCUMENTT (W: web server, X: emb obj)
pre true
post W ′ = add page(W,make doc(W,X))

action DOWNLOADU (W: web server,
B: browser): D: web page

pre true
post D = dload(B,W ) ∧ D̄ ∈ e′

action PARSES(M: parser, P: web page,
Z: security zone)

pre true
post ∃X . X = get obj(P ) ∧ r activex(Z) ⇒

[(length(X) ≤ 512 ⇒ display(M,X)) ∧
(length(X) > 512 ⇒

∃E . (E = x load(M,X) ⇒
E.pre ⇒ E.post))]

The effect of executing CREATE DOCUMENTT is to create a web page with an embedded
object on the web server. The effect of DOWNLOADU is to download a web page from a web
server. The effect of PARSES is to display the embedded object in the web page being parsed if
the length of the embedded object is ≤ 512 and execute the object’s extracted payload, otherwise.

Now we give an example of attack on the System exploiting the buffer overrun. We assume
that the user has mapped the web server WS to security zone Z on the system, and has enabled
the option to run ActiveX controls in zone Z. Informally, the adversary’s goal is to execute some
arbitrary code, E: executable, in the system; formally, we represent this Goal as the predicate
E.pre ⇒ E.post. The attack on the System consists of the sequence of three action executions.
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{∃WS : web server ∈ e ∧ ∃IE : browser ∈ e ∧ ∃MSHTML : parser ∈ e ∧
∃Z : security zone ∈ e ∧ ∃X : emb obj ∈ e ∧ length(X) > 512 ∧

Z = get security zone(IE,WS) ∧ r activex(Z)}
CREATE DOCUMENTT (WS, X)

D = DOWNLOADU (WS, IE)
PARSES(MSHTML, D, Z)

{∃E : executable . E.pre ⇒ E.post}

Since the length of the object, X, embedded in the web page is greater than 512, the second
conjunct of the post-condition of PARSES holds; thus Goal of the adversary is achieved at the end
of the attack.
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