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1. INTRODUCTION

The predictive coding of video typically entails a motion
estimation and compensation step followed by lossy
encoding of the residual between the original and predicted
images. While this strategy has been shown to be effective
for moderate to high rate video compression applications
(e.g., the MPEG-1 video coding standard [1]), it neglects
the fact that significant correlation may exist between the
predicted and residual images. To achieve superior rate-
distortion performance, this correlation should be exploited
in applications that require high compression ratios.

Recently, we have presented preliminary results on a new
predictive coding technique that we call vector restoration,
that adaptively exploits the non-trivial correlation between
the predicted and residual signals [2]. Vector restoration
(VR) is closely related to the technique of residual vector
quantization (VQ) [3]. We previously have shown that VQ
is a special and suboptimal case of VR [2]. Experiments
showed performance gains over VQ and a transform-based
technique for the low bit rate compression of video, at the
expense of increased encoder and decoder complexity.

While our initial study on full-search vector restoration
with unstructured codebooks yielded encouraging results,
the complexity of VR will have to be reduced for it to
become a viable compression technique. Towards this end,
in this article we extend the extensively researched con-
cepts of tree-structured codebooks and optimal codebook
pruning [4, 5] to vector restoration. We provide a brief dis-
cussion on the relationship between pruned tree-structured
VR and VQ, and we include experimental comparisons
between these techniques for the compression of several
standard video-conferencing sequences.

2. REDUCED COMPLEXITY VECTOR
RESTORATION

The core portion of the vector restoration coder is depicted
in Fig. 1. A finite set restoration functions are designed off-

line and are stored at the encoder and decoder. For each
original-predicted vector pair, the function that yields min-
imum distortion is selected and is applied to the predicted
vector at the decoder torestore the original vector.

For mathematical tractability, we restrict the restoration
functions in the VR codebook to affine transformations,
consisting of a linear estimation and a translation portion.
In keeping with our desire of reduced coder complexity, we
apply the constraint of separability on the linear estimation
portion of the function. This constraint reduces both the
storage requirement of the VR codebook and the number
of multiplications and additions that must be performed by
the restoration operation1. While in theory separability
reduces the performance of the VR coder, in practice we
have observed that separable transforms are more robust
and often outperform unconstrained restoration functions

1. To realize the multiplication and addition reductions, the res-
toration function must be applied in block-matrix form. For
simplicity of notation, we present the equivalent vector form
obtained by row-ordering the corresponding blocks.
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Figure 1: Vector restoration based coding



on vectors outside the training set. For ann-dimensional
original vector , and anm-dimensional predicted vector

, the restored vector  obtained by using theith-indexed
restoration function, is given by,

(1)

where the separable transform and translation vector are
given by  and , respectively.

A tree-structured vector restoration (TSVR) coder is based
on a tree of restoration functions as shown in Fig. 2.
Encoding is performed through a binary decision at each
level of the tree for the restoration node that yields mini-
mum distortion between the original and restored vectors.
The binary search continues until a terminal, or leaf, node
is reached. The path of ‘0’s and ‘1’s describing the
sequence of binary searches is transmitted to the decoder
and is used to retrieve the specified restoration function.

The codebook generation for tree-structured vector restora-
tion (TSVR) and vector quantization (TSVQ) differ only
slightly in the specifics of the calculation of the codebook
entries and the splitting of these entries to generate higher-
rate codebooks. In our initial study [2], we provided a
detailed treatment of the calculation of the optimum resto-
ration function from a partitioned set of training vectors
using the generalized Lloyd algorithm [6].

Higher rate TSVR codebooks are obtained by splitting the
terminal nodes’ restoration functions of an initial codebook
into left and right children (lchild and rchild) restoration
function nodes. We split the parent restoration function by
perturbing the translation portion of the restoration func-
tion. The linear estimation portion is merely replicated
from the parent nodes to its children nodes. This effectively
divides the partition and maintains the relationship used to
exploit the predicted-residual vector correlation for the par-
ent node. The complete restoration function splitting is
given by (2) and (3), whereε is the perturbation vector.

(2)

 and (3)

We set thejth element of the perturbation vector equal to
one-half the standard deviation of the difference between

the jth elements of the original and restored vectors. The
standard deviation quantities are obtained from the diago-
nal of the original-restored vector conditional covariance
matrix , where

(4)

Equation (4) allows for the calculation of the perturbation
vector without requiring the encoding of the training data
for a new restoration function.

Once the tree-structured VR codebook has been generated
for the desired depth, optimal codebook pruning using the
generalized BFOS algorithm [4] can be applied directly to
obtain variable rate TSVR codebooks. The two variants of
this technique trade either average rate (length-pruned tree
structure) or average entropy (entropy-pruned tree struc-
ture) for average distortion by discarding nodes from the
tree, resulting in an unbalanced tree structure.

3. EXPRIMENTAL RESULTS

All image frames were predicted using block-based motion
compensation with half-pixel accuracy and
blocks. Predicted and corresponding original image blocks
were subdivided into four  blocks for use in pruned
tree-structured vector restoration (PTSVR) and residual
vector quantization (PTSVQ) simulations.

The original and predicted training vectors were obtained
from the luminance component of 149 frames of each the
Mom and Mom and Daughter video-conferencing
sequences using an MPEG-1 simulation. The vectors were
included in the training set only if the prediction distortion
was greater than a fixed threshold. This resulted in a train-
ing set of 91219 vectors.

Tree-structured VR and VQ codebooks with eleven levels
were designed from the training set. Figure 3 shows the
distortion performance for the training set obtained by
length-pruning the balanced binary tree codebooks to vari-
ous average rates. Similar results were obtained for
entropy-pruned TSVR and TSVQ.

For test purposes, 149 frames of theGrandmom video-con-
ferencing sequence were coded via PTSVR and PTSVQ.
The first frame in the sequence was losslessly encoded and
the remainder of the frames were predicted from the previ-
ously reconstructed frame. Both codebooks were pruned to
approximately 0.14 bpp. A predicted block was coded only
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Figure 2: Balanced binary tree structure.
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if its distortion was greater than a fixed threshold. Since the
reconstructed vector distortion may be greater than that of
the predicted vector distortion for both VR and VQ, a
block was scalar quantized in both simulations when this
situation occurred and the prediction distortion was greater
than the specified threshold. The per-frame peak signal-to-
noise ratio (PSNR) and bit count results are shown in Fig. 4
(average values in parentheses). These results are for coded
blocks and do not include bit counts for frame or macrob-
lock header information. The gains experienced for the test
sequence are consistent with those of the training set.

4. CONCLUSIONS

We have extended the concepts of tree-structured code-
books and optimal codebook pruning from vector quantiza-
tion to vector restoration based coding; the only difference
is in the splitting of the codebook. However, significant
performance gains result. For theGrandmom sequence
PTSVR yielded an average gain of approximately 1.23 dB
over PTSVQ, with only a 3% increase in bit rate.

Future work will include comparisons of optimally pruned
TSVR with rate-controlled DCT-based coders. While this
study focused on reduced complexity vector restoration
through tree-structured codebooks, we also plan to exam-
ine the performance of an entropy-constrained vector resto-
ration implementation [7].
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Figure 3: PSNR versus average rate for training set.
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Figure 4: Equivalent rate performance comparison between
PTSVR and PTSVQ forGrandmomsequence.


