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Abstract - Aircraft flight pressurization/depressurization cycles cause their skins to inflate and deflate,
stressing the skin around the rivets that fasten it to the airframe. The resulting strain, exacerbated by any
corrosion that might be present, drives the growth of the initially microscopic cracks that are an
unavoidable by-product of rivet installation. To avoid catastrophe, aircraft are periodically inspected for
cracks and corrosion. The inspection technology employed is ~90% naked-eye vision. Of the ~10% that is
instrumented, ~90% is with hand-held eddy current pencil probes. We have developed and demonstrated
robotic deployment of remote eddy current and remote enhanced stereoscopic video instrumentation,
augmented by image enhancement and image understanding algorithms, aimed at alleviating human
performance problems and workplace hazards in inspection. This paper describes the aircraft skin
inspection application, our two robotic deployment systems, the corresponding instrumentation packages
we have demonstrated, and our progress toward developing image enhancement and understanding
techniques to assist aircraft inspectors in finding cracks and corrosion. A wavelet-based approach is able
to select radial features around rivets, and then to discriminate between cracks and scratches.

I. INTRODUCTION

Aircraft are routinely inspected for a variety of actual and potential problems: the airframe and major structures,
engines, landing gear, fuel tanks, and skin are all subject to a variety of load and age related problems. Our work
focuses on finding skin cracks and the corrosion that accelerates their growth. Skin inspection intervals are conser-
vatively designed to allow a growing crack to be overlooked in two successive inspections and found in a third
inspection well before any risk to flight safety is deemed to exist. Nevertheless there have been mishaps, the best
known in April 1988 when a Boeing 737 operated by Aloha Airlines lost the crown of its fuselage from floor level to
floor level, for a distance of six or seven seats back from the passenger door. This “incident” is generally
attributed[1] to an unusual and unfortunate combination of circumstances: an “island hopping” airline with many
short low altitude flights, an airplane with an unusually high number of pressurization/depressurization cycles, the
corrosion-inducing moist sea air operating environment, a recent inspection that, in retrospect, should have
resulted in an order for preventive repairs, and, most interesting from a fundamental perspective, the omission from
then-current thinking about failure modes, of the possibility that two short cracks will meet to form one long crack.
Since crack growth rate is more-or-less proportional to crack length (crack length increases more-or-less exponen-
tially in time), the result is of this “multiple site damage” (MSD) is unexpectedly rapid growth and catastrophic
structural failure. Shortly after this incident Congress mandated that the FAA begin an “Aging Aircraft Research
Program”. This research program has been highly successful, and its implementation has been rapid, to the point
where the risk of an Aloha-type failure is now regarded as neutralized by new procedures and technologies. Never-
theless, there is room for improvement: current human labor-intensive inspection methods are expensive, time
consuming, and place the inspectors in some danger to life and limb. The effort which is reported in part in this
paper aims at demonstrating that the technologies of robotics, automation, teleoperation, remote data display and
imaging, and automated signal and image processing and understanding aiding the inspectors will lead to their
doing at least as good a job as they do now, to do it more economically, and to do it with lower risk of human injury.

In Section Il we describe in more detail the aircraft inspector’s job. In Section 11l we describe ANDI, a small suction-



cup-based robot designed to deploy eddy current sensors more-or-less anywhere on an airplane’s exterior. In
Section IV we describe CIMP, a large-wheeled robot designed to deploy a 3D-stereoscopic vision system and other
sensors on the crown of medium to large sized aircraft. In Section V we describe recent progress with image
enhancement and understanding algorithms for cracks (and corrosion) in CIMP’s data stream. In Section VI we
draw conclusions and indicate future directions for this work.

II. THE AIRCRAFT INSPECTOR’S JOB

Some commercial airlines have separate organizations for performing instrumented nondestructive inspection
(NDI) and visual inspection (essentially naked-eye), others employ the same staff for both. The military sector
generally relies more heavily on nondestructive inspection, and does not always explicitly employ visual inspection,
although military NDI, maintenance, and repair crews, de facto in the course of everything else they do, perform
extensive visual inspection[1]. The following two subsections discuss the tools and procedures employed respec-
tively in nondestructive and visual inspection.

A. Nondestructive Inspection

Nondestructive inspection includes eddy current sensing, ultrasonic sensing, x-ray methods, and a variety of
visualization techniques such as shearography, thermography, and D-Sight (a commercial low angle illumination
system)[2]. In addition, it includes dye penetrant and magnetic particle methods that fall on the borderline between
NDI and visual inspection. Of these methods, at least for skin inspection, eddy current sensors dominate by far.
Small pencil probes (with a single miniature coil serving as both transmitter and receiver) and the somewhat larger
pitch-catch probes (with separate transmitter and receiver coils) are the mainstay sensors, and cardboard or
flexible plastic sheet templates are the mainstay guidance devices. However, with users’ increasing expectations
for image-like displays, state-of-the-art alternative sensors[3] that display areal images obtained either by
mechanical raster scanning of a single probe, linear scanning perpendicular to the length of a linear array of
miniature probes, or as a mosaic of areal patches obtained from a two dimensional array of miniature probes, or
from an inherently areal magneto-optical probe, are increasingly being seriously considered.

B. Visual Inspection

The visual inspector’s tools[8] are his eyes, a high quality flashlight, and a 10x magnifier. There are few standard
inspection procedures, and the inspectors do not usually receive any specific training in visual inspection (although
they are trained in the applicable regulations and required paperwork). Rather than being “created” by a training
process, the visual inspectors are typically drawn from the ranks of mechanics who have worked for ten to fifteen
years, and who have exhibited a talent for spotting subtle signs of problems. Their individual talents are sometimes
highly specialized: one may be particularly attuned to small cracks, another to rivets that are not set quite right,
another to the surface pillowing that accompanies subsurface corrosion. They recognize their own and their co-
workers talents, they frequently call each other in for “consultations”, and they often organize themselves into
teams with complementary strengths.

Nevertheless there is considerable commonality in the way they actually work. Most seem to have a knack for
spotting a problem area at a distance. Moving in closer, they first swing the flashlight in an arc to dynamically
illuminate the surface at a low angle from a variety of directions. Then, having narrowed the suspicious area to a
patch about the size of a coin, they use the 10x magnifier to get very close to the apparent flaw. Again, moving the
flashlight to achieve dynamic lighting, they are able to distinguish, e.g., a harmless surface scratch from a structure
threatening crack. The scratch/crack distinction is typically based on understanding that light disappears into a
crack, but returns specularly from some part of a scratch.

Some specialized equipment, including long-handled mirrors and illumination devices, is used to visually inspect
difficult-to-reach interior spaces, and borescopes are routinely used for engine and similar interior inspections, but
except for a small pick to remove a paint chip or to poke at a possibly loose rivet head, etc, the flashlight and
magnifier are the only tools used in visual skin inspection.
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Fig. 1: Mechanical drawing of ANDI.

UTOMATED NONDESTRUCTIVE INSPECTOR (ANDI)

ANDI, the Automated NonDestructive Inspector1[4] was designed in the late
1980s and early 1990s in response to the FAA's interest, in the aftermath of the
Aloha incident of 1988, in improving the speed and reliability of eddy current
inspection of large numbers of rivet rows that might be subject to multiple site
cracking damage. Its mechanical design, known in the robotics literature as a
“beam walker”, is well suited to moving a pencil probe in a precisely shaped
(generally straight line) and precisely oriented path. ANDI is teleoperated via a
graphical user interface (GUI) that permits both low level commands to
individual actuators and higher level coordinated control of multiple actuators via

Only key skeletal components are
shown in this figure. Compare with
the photograph, inset to Fig. 2

an on-board microprocessor.

ANDI carries four cameras for alignment
and navigation. Two cameras are mounted fore and aft, looking down at the
skin with a field of view that encompasses typically five or six rivets. Shrouds
that eliminate ambient light and low angle illumination that accentuates rivets
make it possible, with high reliability, to identify rivets and to abstract lines of
rivets, and thus to align ANDI fore and aft, with appropriate parallel offset, with
the line of rivets under inspection. This image collection and processing is
incorporated in a closed loop algorithm that automatically aligns and guides
ANDI. The third camera is mounted on the eddy current sensor end effector,
giving the operator a view of the sensor and its target. An inspector/operator
could use it to obtain visual confirmation of anomalies suggested by the eddy
current signal. The fourth camera, mounted above the tail end, has several
proprioceptive functions, primarily confirming that the actual configuration of
ANDI's body parts corresponds to the commanded configuration, and

Fig. 2: Photograph of ANDI on nose of
DC-9 at Aging Aircraft Nondestructive
Testing Center.

providing the driver’s view for navigation, obstacle avoidance, etc. The cameras are not intended to have sufficient
resolution for visual inspection for cracks; however they are potentially useful for more opportunistic kinds of visual
inspection, e.g., for spotting the typically centimeter-sized splatter marks of a lightning strike, for noticing dents

where a food service cart has bumped the airplane, etc.

IV. THE CROWN INSPECTION MOBILE PLATFORM (CIMP)

Fig. 3: Overview photo of CIMP operating
on a Boeing 747. See closeup of sensor
pod in Fig. 4.

1. Also, for our namesake Andrews, Carnegie and Mellon.

CIMP, the Crown Inspection Mobile Platform was designed in the early-
and mid-1990s in response to our realization that to move automation
technology for aircraft inspection from demonstration to commercialization
it is essential to provide an integrated system the heart of whose sensor
suite is a high quality remote enhanced visual inspection capability. This
capability is provided by a 3D-stereoscopic video system that provides
each of the inspector's eyes with its own full color, full NTSC/VGA
resolution video stream updated at the full standard 30 frames-per-
second?. The effect, in addition to the perceptual value of binocular vision
and stereopsis, is an increase in perceived spatial resolution because the
noise on the two video streams is uncorrelated.

2. This is achieved using special hardware that deinterlaces, buffers, and multiplexes the two camera streams for display on a single 120 Hz
VGA monitor viewed through LCD shutter glasses synchronized with the view alternation. However the details need not concern us here.



Fig. 4: Closeup photo of CIMP sensor pod.
Note low angle variable azimuth
illumination source at right.

CIMP was tested and demonstrated on a Boeing 747 at Northwest Airlines
and on a McDonnell-Douglas DC-9 at US Airways. Several aircraft
inspectors operated CIMP and viewed the 3D-stereoscopic images of the
aircraft, and of test samples from their lab. Although they were split more-
or-less evenly in their estimates of the economic value of remote visual
inspection, they unanimously agreed that the perceptual quality of the
imagery was more than adequate for the task. Two apparent flaws were
located during one of these demonstrations, although subsequent probing
(by the inspector who saw it initially in the video) with, in one case, a pick,
and in the other an eddy current sensor, proved that one was a paint chip,
the other a paint crack.

Despite our initial concern that inspectors would be hostile to any
suggestion that the computer could assist them in identifying flaws, or
perhaps eventually it could even find flaws autonomously, they actually

made these suggestions and encouraged us to test their feasibility. The following section summarizes our progress

in this direction.

V. AUTOMATED IMAGE ENHANCEMENT AND UNDERSTANDING

A. Inspection Console

The inspection console consists of a video monitor that displays CIMP’s live
high-quality stereoscopic imagery of the aircraft surface, a Silicon Graphics
Indy workstation that provides image capture and access to a library of
image enhancement and understanding algorithms, and a radio control unit
through which CIMP’s motion and imaging sensors are controlled remotely.
The video monitor provides flicker-free, full spatial and temporal resolution
per eye, stereoscopic imagery from either the inspection or proprioceptive
cameras. The workstation provides a graphical user interface (GUI), the
Intelligent Inspection Window (lIW), that displays live monoscopic or still
stereoscopic imagery of the inspection surface. The IIW is also an interface
to the library of image enhancement and understanding algorithms. The
inspector, by specifying parameters on the [IW, can choose and customize
the algorithms for enhancing and detecting defects in the particular image
being displayed. Fig. 5 displays the live video station and Fig. 6 the IW
display screen.

B. Image Enhancement

Fig. 5: Aircraft inspector observing the
live stereoscopic imagery on the video
monitor using active eyewear

Fig. 6: Intelligent Inspection Window
(IIW) display screen.

Image enhancement algorithms amplify high spatial frequencies of the
imagery, highlighting surface features such as scratches, cracks, lightning
strikes and corrosion that are typically rich in high spatial frequencies. Since
these algorithms have fast implementations, they allow the inspector to
quickly identify high spatial frequency areas of the image that are most
likely to contain defects. The enhancement algorithms are also useful to
compensate for poor image quality that may arise occasionally due to non-
ideal imaging conditions. For example, features of the live remote imagery
that cannot be discriminated by naked eye due to poor lighting, motion of
the cameras, insufficient depth-of-field, etc, can sometimes be seen clearly
after application of an appropriate image enhancement algorithm.

We have developed a library of monoscopic and stereoscopic image
enhancement algorithms[7]. Algorithm selection, and the extent of high
spatial frequency amplification applied, is controlled by the inspector via

buttons and sliders on the [IW control panel. Several options are discussed in the following sections.
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Fig. 7: Flow chart for high-frequency emphasis algorithm.

B.1 Monoscopic Image Enhancement

We have developed three monoscopic enhancement algorithms: high frequency emphasis, sharpening, and
adaptive histogram equalization. Here we describe only the high frequency emphasis algorithm.

High-frequency emphasis is a two stage process wherein a high-pass spatial
filtering operation is performed first, then a fraction of low-frequency content
of the original image is added back to the high-pass filtered image. This
sequence amplifies high frequency features in the image while attenuating
the background low pass information, resulting in the former (suggestive of
flaws) being highlighted. The algorithm is illustrated in Fig. 7. This method
has proved to be quite useful in highlighting scratches, cracks and corrosion
texture, since these defects are typically of high frequency nature. The gain of
the high-pass filter is controlled by the sensitivity slider on the IIW. Fig. 8
displays a live image and Fig. 9 an image with a mild degree of high-

Fig. 8: Live video image (monoscopic
view taken from one of the stereoscopic
camera pair).

B.2 Stereoscopic Image Enhancement

We have implemented two stereo-
scopic image enhancement algorithms on the IIW. They are the stereoscopic
high-frequency emphasis and the augmented-stereoscopic high-frequency
emphasis algorithms. The former algorithm performs a monoscopic high
frequency emphasis on the left and right images of the stereoscopic image.
The latter algorithm synthetically exaggerates the stereoscopic information
content present in the original images. The processed images from these
algorithms are displayed stereoscopically on the IIW display screen. The
inspector views these images stereoscopically through active eyeware that is
synchronized with the display. We have included, in the IIW, controls that
adjust the horizontal and vertical disparities between the left and right
displayed frames. The inspector, by adjusting these controls to a desired
level, can comfortably view the enhanced imagery stereoscopically. We
briefly describe the augmented-stereoscopic high-frequency emphasis
algorithm.

Fig. 10: Left and right augmented-stereoscopic high-frequency emphasized images.

frequency emphasis. Note the emphasized scratches on this image.

Fig. 9: High-frequency emphasized
image.

An augmented-stereoscopic image
is created by synthetically changing
the disparity of features of interest
in the stereoscopic image. These
features then appear, when viewed
stereoscopically, to loom above the
background. The augmented-
stereoscopic high-frequency
emphasis algorithm is composed of
three steps: (1) the left and right
images of the stereoscopic image



are high-frequency emphasized as described in section B.1; (2) the filtered images are dynamically thresholded to
identify the features of interest; (3) the identified features are overlaid on the original left and right images with the
desired depth offset. The IIW slider controls the depth offset. The result is illustrated in Fig. 10. Note the change in
spatial location of edge-like features in the images such as rivet outlines and scratches.

C. Image Understanding

The image enhancement algorithms discussed in section B. above emphasize high spatial frequencies in the
image. Since aircraft surface defects such as cracks and surface corrosion are inherently of a high frequency
nature, applying enhancement algorithms to imagery results in these defects being highlighted. However, also
included in the set of emphasized features are normal features such as scratches, rivet heads, paint cracks and
color transitions, discoloration, dirt, etc, which are also of high frequency natures. Hence, it is left to the inspector’s
judgement to separate the skin defects from the normal features. The goal of image understanding algorithms is to
combine the image enhancement capability discussed above with an algorithmic equivalent of the human
inspector’s interpretation skills. The capability of an algorithm to discriminate defects from normal features of
similar appearance depends on correlating features of live imagery with prior or learned knowledge of actual
defects. A high correlation of a feature in the live imagery with a defect type will result in the feature being classified
as a defect of the correlated type. However actually creating a robust algorithm that detects defects remains an
open challenge. Considering economic and human factors issues, one plausible scenario for application of image
understanding algorithms in remote visual inspection is screening large volumes of image data. The image under-
standing algorithm can conservatively label all plausible defects, so that the inspector separates a larger fraction of
actual defects from normal features in a smaller volume of raw data. Another scenario is the interactive use of
these algorithms by inspectors to obtain a second opinion about a particular suspicious flaw. It is with these
scenarios, less demanding than the scenario that asks the algorithm to identify all the flaws and misidentify none of
the normal flaw-like features, that we emphasize in the current work described in the following sections. We discuss
progress towards a algorithm for surface crack detection. We have made similar progress toward an algorithm for
visible surface corrosion detection; however space limitations preclude discussing it in this paper.

C.1 Surface crack detection algorithm
C.1.a Background

The crack detection algorithm that we have developed is modeled closely on the widely practiced test for detection
of cracks using directional lighting[8]. The crack detection algorithm restricts its search to the immediate neigh-
borhood of rivets, in a manner similar to the practice of inspectors. This is reasonable because cracks typically
grow outward from rivet holes. To take advantage of the differences in specular appearance of cracks and
scratches, the crack detection algorithm uses multiple images obtained under systematically varying lighting condi-
tions®. This is analogous to the inspector's use of a manually scanned flashlight to dynamically highlight features
that discriminate cracks and scratches. We simulate the directional lighting produced by the inspector’s flashlight
with a remotely controlled rotatable directional light source inside CIMP’s sensor pod. With this control, the
inspector can remotely rotate the directional light source around rivet locations of interest, and obtain a set of
images similar to those obtained by rotating a flashlight on the inspection surface. The inspector can then either
manually, or by the application of the crack detection algorithm, examine the set of images for cracks. Fig. 11
displays a block diagram of the crack detection algorithm.

rivet detection and )
region of interest calculatiof®

multiscale coarse- feature L
edge detection || t0-fine | pulvector __p-|Classification
i edge calculation
imagel — linking

Fig. 11: Block diagram of the surface crack detection algorithm

3.At present, our algorithm operates monoscopically on the right or left member of the stereoscopic image pair.



C.1.b Rivet detection and region of interest (ROI) calculation

The first step of our crack detection algorithm is to find rivet locations in the image. Since cracks appear in the
neighborhood of rivets, by finding rivet locations the algorithm is able to focus on areas that are most likely to
contain cracks. Rivets are identified by detecting the circular arc edges made by their heads. We assume rivets to
be the only objects on the inspection surface with circular edges. The rivet detection algorithm consists of the
following steps:

1. Find all the edges in the image, discarding edges that are less than a minimum length, e.g.,10 pixels.

2. Fitacircular arc to each edge, calculating the fitting error and discarding all edges with more than a minimum
fit error. The remaining edges are taken to be circular arcs belonging to rivet heads.

3. Merge the edges that are close to each other to form groups of circular edges, each belonging to a distinct
rivet. The number of distinct groups found is equal to the number of rivets present in the image. Calculate the
centroid (i, j) for each group.

We define the region of interest (ROI) as the neighborhood of the rivet that is to be examined for cracks. For each
detected rivet, a corresponding ROI is defined as

ROI = {(i, j) llip—os<i<iy+o0s jy—0s< j<j,+o0s}

where (ip, jg) is the centroid and os is an offset. The pixel range is bounded by the image size (0: M-1, 0: N-1).

C.1.c Multiscale edge detection

An ROl in the live image contains a large number of edges, most of which are caused by rivet edges, scratches, dirt
marks and occasionally real cracks. In order to separate cracks from non-cracks, we need an analysis framework
with assigns to each edge a feature vector that allows for the discrimination of the small fraction of edges belonging
to cracks from the many edges that belong to non-cracks.

A crack is typically very small compared to other objects present on the aircraft surface such as rivets, scratches,
etc. Therefore the size of an edge is a important feature for discriminating cracks from non-cracks. It is also of
interest to note that the edges corresponding to cracks are typically of the step-edge type due to their small edge
width, while edges corresponding to non-cracks are mostly of the ramp-edge type.

These observations motivated us to select a multiscale (multiresolution) edge detection framework for the detection
and analysis of edges in the ROIs. Multiscale edge detection is defined as the detection of edges at multiple scales
or equivalently multiple resolutions[9]. Scale implies the size of the neighborhood in which the intensity changes
are detected for edge determination. In multiscale edge detection, edges belonging to small objects appear only at
low scales or high resolutions while edges of large objects appear at higher scales or low resolutions. Hence, the
multiscale edge detection process allows us to characterize the size of each edge by assigning a relative size
corresponding to the object that created the edge. In addition, Mallat and Zhong[10] have shown that the local
shape of an edge can be characterized within the multiscale framework, by analyzing the evolution of wavelet*
local maxima across scales[9]. This is of importance for crack characterization and detection, since cracks are
typically of the step-edge type. In short, we have chosen the multiscale edge detection framework because it
allows us to estimate the size of the object that created the edge and also describe the type of the edge. Both are
important features in discriminating cracks from non-cracks.

Multiscale edge detection is a two step process wherein the ROI is first decomposed into different resolutions by
successive smoothing, followed by edge detection at each resolution. We have selected wavelet based filters for
the projection of ROI to different resolutions and the estimation of intensity variations for edge detection. The
wavelet based filters were chosen for two reasons. First, it is easy to define filters corresponding to a certain scale
using wavelets. Secondly, as mentioned above, the set of wavelet local maxima of an edge in different scales
define the type of edge. Therefore the wavelet maxima values can be used to indirectly characterize edge types.
We now show the use of wavelet filters in multiscale edge detection.

We have chosen the cubic spline and its derivative, the quadratic spline, described by Mallat[10], as our scaling
and wavelet functions. Let o, and g, be the scaling and wavelet functions at scale s. Assume, without loss of

4. Wavelets are time and frequency localized basis functions. See [10] and [11] for more details.



generality, that f(x) is a 1D continuous and differentiable function. The wavelet transform of f(x) is given
by W F(x) = f(x) O wgy(x)
where the operation is a convolution. Now, the scaling and wavelet functions are related by

0 = S

Substituting Wt (x) = S(1(x) 0 @)

Therefore the wavelet transform W_f(x) is the first derivative of the signal smoothed at scale s. This procedure is
very similar to the classical edge detection process.The local extrema of the wavelet transform at scale s corre-
sponds to the edges of the image at that scale.

Listed below are the steps taken to generate the multiscale edges within each ROI in our crack detection algorithm
using the wavelet filters.

1. Filter each ROI with the

. - r c rc

filter b:_:mk.shown in Fig. % ho. hy » h,.h;

12. This gives a dyadic

scale (scale = 1, 2,4) ROI of the

decom.posmon of the IMage _ppi —— po do = W,o grl = Wyp > dz W,
ROI. Filters hpand gy

denote the filters corre-

sponding to the scaling — gco > Wyol g @fl > Wy, P 902 =W,
and wavelet functions at scale = § Scale = 2 scale = 3
scale 1. Filters h, and

gp used at dyadic scale Fig. 12: Multiresolution decomposition of the live image.

2n (n>0) are derived

from hgand go. Wy” and W, denote the wavelet transform images at scale 2nin the y (row) and x (column)
directions of the ROIs while rand ¢ denote row and column filtering®.Calculate the magnitude M; and angle A;
images for each scale of the wavelet transform images W, and W,, using

2 2
Mi = *’Wxi+wyi fori=0,1,2

Ai = atar(Wyi/Wxi) fori=0,1,2

2. Threshold each magnitude image M=0,i,2 using a dynamic threshold calculated using its histogram. Pixels
above the threshold are as marked edge points.

3. Link edge points based on 8-neighbors if their corresponding angles differ less than a maximum angle. This
produces edges that are smoothly varying in direction which are characteristic of natural edges such as cracks.
The above process produces a set of edges in each ROI at dyadic scales 1, 2 and 4.

C.1.d Coarse-to-fine edge linking

scale 1 Multiscale edge detection described in the last

section generates edges at a set of scales for
eighborhood searched in scale 2 to link each ROI in the image. We model an edge

scale 2 edge B from scale 4 belonging to an object. appearing at multiple

scales as the propagation of the edges along
scale space. We define the propagation depth
as the number of scales in which the edge

scale 4 . .
appears. We then assign a propagation depth
. . — value to each edge at scale 1. The propagation
Fig. 13: Coarse-to-fine edge linking of edges A and B depth captures the size information of the

5. h, (g,)is formed by including 2"-1 zeros between the coefficients of hy(gy); hp = {0.125, 0.375, 0.375, 0.125}, gg = {-2, 2}.



object represented by multiscale edges. For example, edges of objects that are small will have a lower propagation
depth that edges of objects that large. The propagation depth of an edge is found using a coarse-to-fine edge
linking process. The coarse-to-fine edge linking process attempts to trace an edge from a coarse resolution (large
scale) to a finer resolution (small scale). Fig. 13 illustrates the coarse-to-fine edge linking process. Note that the
edges A and B have propagation depths 1 and 2 respectively.

C.1.e Feature vector calculation

We are now in a position to assign a feature vector to each edge in scale 1. We have selected the following
attributes of an edge found through the multiscale edge detection process.

Average wavelet magnitude of active pixels.

Propagation depth number.

1
2.
3. Average wavelet magnitudes of any linked edges in scale 2 and scale 4.
4. Signs osum(W) andsum(W) whereW,, W, are the wavelet coefficients in tkandy directions of an active pixel at

scale 1.
5.  Number of active pixels.

Active pixels are defined as pixels belonging to an edge.

C.1.f Feature Classification

Fig. 15: Image containing real cracks.

. % \\\

o

Fig. 17: Detected cracks (dark) and
non-cracks gray) in image containing

real cracks.

The feature vectors are classified into
one of two classes, cracks and non-
cracks. We use a neural net with six
inputs, one hidden layer with four
elements, and one output neuron. The
network is trained using backpropa-
gation with momentum. We generated
fourteen feature vectors of simulated
cracks (fine black fibers of approxi-
mately 10 micrometer diameter) and
thirty feature vectors of non-cracks
corresponding to actual rivet edges
and scratches. Seven of the simulated

Fig. 14: Surface containing several
simulated cracks.

cracks and fifteen of the non-cracks were used to train the network. After
1000 training cycles, the network was approximately 71.5% accurate in predicting cracks, with a 27% false alarm
rate for the test set edges. The simulated cracks and the discrimination of cracks from crack-like non-cracks are
illustrated in Fig. 14 and Fig. 16 respectively.

Fig. 15 shows a section of an aircraft
surface containing two natural cracks
and several scratches appearing in
the neighborhood of a rivet hole. The
first crack emanating from the rivet
hole is ~0.5 inch long, while the
second crack (which is partially
masked by a scratch beside) it is ~0.3
inch long. Fig. 17 shows the result of
applying the algorithm described. In
Fig. 16 and Fig. 17, edges that are
marked in black indicate suspected
cracks, edges marked in gray indicate
edges that the algorithm detects and

classifies as non-cracks. The algorithm detects the known cracks in both
images. It also correctly classifies the edges of the rivet hole and the scratches as non-cracks. The other edges
that are marked in black are false alarms.

Fig. 16: Detected cracks (dark) and
non-cracks (gray) in image
containing simulated cracks.



VI. FUTURE WORK AND CONCLUSION

Based on our experience with the surface crack detection algorithm, we are convinced that the multiscale edge
analysis framework on which the algorithm is based is suitable for extraction and analysis of surface cracks. We are
encouraged by its performance in detecting real and simulated cracks despite the small sample of available cracks
for training and testing. We have the following plans for further development of this algorithm:

1. Inclusion of additional features in the feature vectors that describe edges in a multiscale framework.

2. Providing multiple images of the same surface obtained under different lighting conditions to the algorithm to
enrich the data set.

3. Obtaining a larger library of natural surface cracks for algorithm training and testing.

Another algorithm (that space limitations preclude our discussing here) has been similarly successful in detecting
visible surface corrosion in test images; these results will be discussed in a future paper.
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