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ABSTRACT

Visual inspection is the most widely used method in commercial aircraft surface inspection. We have
developed a prototype remote visual inspection system, designed to facilitate testing the feasibility and
advantages of remote visual inspection of aircraft surfaces. We describe experiments with image under-
standing algorithms to aid remote visual inspection by enhancing and recognizing surface cracks and cor-
rosion from live imagery. Also described are the supporting mobile robot platform that delivers the
imagery, and the inspection console through which the inspector accesses it. We discuss initial results of
the image understanding algorithms and speculate on their future use in aircraft surface inspection.
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1. INTRODUCTION

Visual inspection of aircraft is the most widely used method employed for ensuring the structural integ-
rity of an aircraft skin and its substructure. For example, a typical heavy inspection carried out on a com-
mercial aircraft after every 12,000 flying hours, is about 90% visual and 10% non-destructive inspection
(NDI).r  Visual inspection involves putting a human inspector on the body of the aircraft to visually
examine its surface for defects such as cracks, corrosion, damaged rivets, lightning strikes, etc. This prac-
tice raises safety issues for the inspector, is time consuming, and suffers at times from being ineffective
due to inspector fatigue or boreddm.

An attractive alternative to the current inspection practice is remote visual inspection. In remote visual
inspection, the inspector examines, at an inspection console, high-quality imagery of the inspection sur-
face that is captured and delivered to the console by a remote mobile robot on the body of the aircraft.
The robot may be teleoperated via low level controls, it may navigate autonomously under computer con-
trol, or typically something in between with high level commands issued by the inspector and low level
details decided and executed by the computer. This method, while inherently safe (since the inspector is
on the ground), allows for direct human observation of the remote aircraft surface. It also provides for
computer processing of the delivered imagery for image processing, enhancing and understanding. Image
processing involves adjusting contrast or range of the imagery dynamically, for improved visualization.
Image enhancement amplifies high spatial frequencies of the imagery to highlight features suggestive of
surface defects which are typically of high frequency na?’tulmaage understanding via characterization

and recognition of surface defects, allows for automated defect detection and classification of the surface
imagery. With the aid of these facilities, an inspector can safely, quickly and accurately perform the nec-
essary visual inspection from the inspection console.

In Section 2 of this paper, we describe a prototype mobile robot called the Crown Inspection Mobile Plat-
form (CIMP) designed to test and demonstrate the hypothesized feasibility and advantages of the remote
visual inspection of an aircraft surface. Also included in section 2 is a brief description of the predecessor
to CIMP, the Automated NonDestructive Inspection (ANDI) réboSection 3 discusses the inspection
console that displays the remote imagery and a graphical user interface (GUI) that provides the inspector

* This is an updated version of the paper “Image Understanding Algorithms for Remote Visual Inspection of Aircraft Surfaces”,
Priyan Gunatilake, M.W. Siegel, A.J.Jordan, and G. Podnar, Proceedings of SPIE “Machine Vision Applications in Industrial
Inspection V”, A. Ravishankar Rao and Ning Chang, Chairs/Editors, 10-11 February 1997, San Jose, CA, SPIE Vol. 3029.
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with access to image processing, enhancing and understanding algorithms. Section 4 contains a brief dis:
cussion of image understanding for surface defect detection and a description of two common aircraft
surface defects. Section 5 describes a surface crack detection algorithm. Section 6 describes a surface co
rosion detection algorithm. Section 7 describes an approach to subsurface corrosion detection. Section &
provides a summary discussion and thoughts about future work, and Section 9 draws some conclusions.

2. CIMP
The first aircraft-capable mobile robot developed at CMU was A ._,'

(the Automated NonDestructive Inspector of aging aircraft). Al [ :
successfully demonstrated mobility, manipulation and navigat .} .
capabilities on an aircraft surface. However, due to the ANDI prc {1
emphasis on mobility and navigational issues, the delivery of |,
quality visual imagery useful for remote visual inspection was #=
addressed at length. After the initial demonstrations of ANDI,
first author launched another research effort with the twin objec
of designing a high quality remote imaging system that delivers
ful inspection data and developing an inspection console cons
of a graphical user interface (GUI) and a library of image enhe
ment and understanding algorithms, through which an insp
could access, enhance and recognize surface defects from tt
imagery. [See the Acknowledgments section for additional histo
details.]

CIMP was developed as a part of this second research effort. CI
a wireless remote-controlled mobile vehicle that carries a se¢
package designed to deliver high quality, live imagery of the air
crown on which it travels. The sensor package of CIMP conta  Fig 2. Crown Inspection Mobile
stereoscopic pair of inspection cameras, a dynamic lighting i Platform (CIMP) robot
consisting of two fixed flood lights and a rotatable directional |
source, and a stereoscopic pair of proprioceptive navigational
eras. The inspection cameras were developed in our laborator
are constructed in a geometrically correct imaging configuration
provides 3.5x magnified, natural, easy to view, high quality ste
scopic imagery of the aircraft surfaéThe navigational and propr
oceptive cameras provide a wide-angle stereoscopic view of (
with respect to the aircraft body that is used by the inspector to
trol and navigate CIMP. Left and right frames of the inspectiol
navigational camera pairs are interleaved at 120 Hz on a moni
the inspection console, and viewed stereoscopically through ¢
eyeware. Figures 1 and 2 show the ANDI and CIMP robots.

3. INSPECTION CONSOLE

The inspection console, through the display of stereoscopic im:
delivered by the inspection cameras and the proprioceptive ne
tional cameras, provides for remote visual inspection of aircraft
face and remote control and navigation of CIMP on the aircraft k
The current inspection console consists of two primary displays
their supporting equipment and a radio transmitter (of the type
to control model vehicles) that controls forward and backv
motion, left right steering, camera position and orientation, and |
ing selection and orientation. The first display is a monitor that pro-

vides live, flicker-free, full spatial and temporal resolution per eye, stereoscopic imagery of either the

P e

Fig 1. Automated NonDestructive
Inspection (ANDI) robot

& 1"""

Fig 3a. remote live video station

Fig 3b. Intelligent Inspection
Window (I1W)
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inspection or navigational camera pair. The second is a Silicon Graphics Indy workstation with a GUI
that we call the Intelligent Inspection Window (IIW). The IIW performs a variety of tasks: it displays live
monoscopic or still stereoscopic imagery; it acts as the operational interface and output display unit to the
image enhancement and understanding algorithms that are tied to the menus and buttons of the 1IW; anc
in the future, it will contain facilities for creating, editing, storing and retrieving multimedia records of
surface defects. Figure 3a displays the live video station. Figure 3b displays the 1IW.

4. IMAGE UNDERSTANDING AND SURFACE DEFECTS - BACKGROUND

The goal of an image understanding algorithm is to recognize and classify certain surface flaws from the
live imagery. The recognition capability of this algorithm is achieved by correlating features of the live
imagery with prior or learned knowledge of the surface flaw type. A high correlation of a feature in the
live imagery with a flaw type will result in the feature being classified as a flaw of the correlated type.
However, developing a successful image understanding algorithm remains a non-trivial challenge due to
its dependency on factors such as normal and defect feature characterization, imaging resolution and
environment factors such as illumination.

One scenario for application of image understanding algorithms in remote visual inspection is screening
large volumes of image data. The image understanding algorithm can conservatively label all plausible
defects, so that the inspector separates a larger fraction of actual defects from normal features in a smalle
volume of raw data. Another scenario is the interactive use of these algorithms by inspectors to obtain a
second opinion about a particular suspicious flaw. The latter possibility is most attractive when the real-
time inspector is relatively inexperienced, in general or with respect to a specific problem, compared to
the inspector or inspectors whose expertise has been incorporated (explicitly or implicitly) in the algo-
rithm; in this case the computer fulfills a training role in addition to its direct inspection role.

We have developed prototype algorithms that detect surface cracks, surface corrosion, and subsurface
corrosion evidenced by surface pillowing; the pillowing detection algorithm uses an auxiliary laser spot
projector to facilitate precise height mapping of the inspected surface.

4.1. SURFACE CRACKS

Pressurization and de-pressurization of the aircraft during each flight cycle causes its body to expand and
contract in a manner similar to inflating and deflating of a balloon. This expansion and contraction
induces stress fatigue at rivets (which hold the aircraft surface skin to its frame), resulting in the growth of
cracks outward from the rivets. The growth of a surface crack is essentially exponential in nature. There
are many reliable mod@&lsvhich predict crack growth quite accurately as a function of the number of
pressurization and depressurization cycles. The goal of visual inspection is to detect cracks that are above
a minimum threshold length. This threshold length provides a safety margin that allows a crack to be
missed in two or three consecutive inspections before it is big enough to endanger the structure of the air-
craft.

One of the main methods inspectors use to find cracks is to observe the reflection of directional lighting
incident on a rivet location, using a flashlight held at a low angle to the stifdisence of reflecting

light from an edge (line on the surface) emanating from the rivet suggests the possibility of a crack; on the
other hand, reflection of light indicates a scratch, which if small is harmless. Therefore the task for an
inspector is to first detect edges emanating outwards from the rivets and then to discriminate the cracks
from scratches and other edges from that edge pool. Since there may be hundreds of thousands of rivet
on the aircraft body, inspection for cracks is a demanding and tiring task for the inspector.
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4.2. SJRFACE CORROSION

Corrosion is common due to the frequent exposure of the ai
body to environments such as aircraft operating fluids, liq
spilled in the galleys, lavatory liquids, moisture of sea air,
Corrosion can appear as subsurface or surface corrosion. S
corrosion is recognized by the appearance of corrosion te» :
Subsurface corrosion is recognized by the bulging of the affe &
surface region, called "pillowing". Since corrosion results in a
of structural material of the affected area, early detection is
cial. Corrosion is also known to induce cracking.

5. SURFACE CRACK DETECTION ALGORITHM Fig 4a. Metal surface with two cracks and

The crack detection algorithm that we have developed is mot several other crack-like features.
closely on the widely practiced test for detection of cracks u
directional lighting. We simulate the directional lighting produt
by the inspectors flashlight with a remotely controlled rotati &
directional light source on CIMP. The inspector can rema .
rotate the light source around a rivet location and examine e ¥ %\5\
resulting live monoscopic or stereoscopic imagery of the rivet | % = &GSy <N
its neighborhood for cracks. In addition, the inspector canrui [, 1 .7 t
crack detection algorithm on these images for detection or v Y

cation of cracks in the live imagery. The stereoscopic imagen
also be recorded (at slightly reduced resolution) on a star Fig 4b. Output of crack detection algorithm:

Figure 4a shows a section of an aircraft surface containing two

natural cracks and several scratches appearing in the neighborhood of a rivet hole. The first crack emanat
ing from the rivet hole is 1/2 inch in length while the second crack which is partly masked by the scratch
beside it is 1/3 inch long. The output of the surface crack detection algorithm is shown in Figure 4b.
Edges that are marked in black indicate suspected cracks. Edges marked in grey indicate edges that th
algorithm detects but classifies as “non-cracks”. The algorithm detects the two known cracks which are
marked in black in the output image. It also correctly classifies the edges of the rivet hole and scratches as
“non-crack” edges. The other edges that are marked in black are false alarms for cracks. Figure 5 displays
a block diagram of the crack detection algorithm.

rivet detection and
region of interest T
calculation multiscale coarse- feature o
edge detection | to-fine | g |vector _>classmcat|o1
. edge calculation
image! — linking

Figure 5. Block diagram of the surface crack detection algorithm

5.1. RVET DETECTION AND REGION OF INTEREST CALCULATION

The first step of our crack detection algorithm is to find rivet locations in the image. Since cracks appear
in the neighborhood of rivets, finding rivet locations enables the algorithm to focus on areas that are most
likely to contain cracks. The neighborhood surrounding the rivet that is examined for cracks is defined as
the Region of Interest (ROI). The algorithm defines for each detected rivet, a ROI. By focussing on ROIs,
the algorithm avoids unnecessary processing of features outside the ROIs; they are not likely to be cracks
Rivets are identified by detecting the circular arc edges made by their heads. Rivet detection and ROI
determination consists of the following steps.
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Smooth with a gaussian filter. Convolve with the x- and y- partial derivatives. Calculgtadtent magnitude image
Calculate the histogram of the gradient magnitude image. Ddfiigh ¢hresholdabove which lie a specified fraction of

the pixels. Mark the pixels above the high thresholeda® pointsLink the edge points to creagdges

Define dow thresholdbelow which lie a specified fraction of the pixels. Grow edges with adjacent pixels below the low
threshold. Discard edges that contain fewer than 10 pixels.

Fit a circular arc to each edge. Discard edges whose fit error is worse than a minimum value. The remaining edges are
rivet head edges

5. Merge nearby rivet head edges int@ts Define theROIl as a fixed-size box whose center is the rivet centroid.

Figure 6a displays a section of an aircraft surface with three <;
lated cracks appearing as dark lines from the two rivets. This il
is processed by the crack detection algorithm. Figure 6b dis|

the two ROls found by the algorithm

5.2. MULTISCALE EDGE DETECTION

An ROI in the live image contains a large number of edges, mc
which are caused by rivet edges, scratches, dirt marks, lap joi
metal repair plates on the surface and occasionally real cr
Therefore, we need an analysis framework which lends itself t
discrimination of the small fraction of cracks which are edge
interest to us from those edges that are not of interest. Fig 6a. Metal surface with three synthetic

. . . cracks and other crack like features
A crack is typically very small compared to other objects pre-
on the aircraft surface such as rivets, scratches, etc. This mot
us to select a multiscale edge detection framework for the dete
and analysis of edges in the ROIs. Multiscale edge detecti
defined as detection of edges at multiple scales or equival
multiple resolutions. Here, scale implies the size of the neigt
hood in which intensity changes are detected for edge deter:
tion. In multiscale edge detection, edges belonging to small ok
appear at low scales or high resolutions while edges of
objects appear at higher scales or coarser resolutions. Ther
performing multiscale edge detection and analysis on the det  Fig 6b. ROIs found in Fig 6a.
edges in the ROIs will allow us to characterize each edge by
assigning a relative size corresponding to the object that created the edge. This is an important feature
useful in the discrimination of cracks from non-cracks due to the relatively small size of a typical crack in
comparison to other objects appearing on the aircraft surface.

Multiscale edge detection is a two step process where the ROI is first decomposed into different resolu-
tions, usually by successive smoothing, followed by edge detection at each resolution. We have selected
wavelet based filters for the projection of the ROI to different resolutions and estimations of intensity
variation in them for multiscale edge determination. Wavelets are basis functions with good spatial and
frequency localization that is controlled by a scaling parameter attached to the wavelets. Hence, they are
a natural choice for multiresolution analysis due to the ease of defining the resolution of interest through
the use of the scaling parameter of the wavelet.

We have chosen the cubic spline and its derivative the quadratic spline, described b{Psisitat; scal-

ing and wavelet functions. The frequency responses of these functions are shown in Figure 7. Note that
scaling and wavelet functions are low pass and high pass in nature. The wavelet transform of a ROI at
scale s is equal to the convolution of the ROI with a filter derived from the wavelet of scale s. Since the
wavelet we chose is the derivative of a smoothing function, the wavelet transform is equivalent to first
smoothing the ROI to a scale s by a smoothing filter, and then taking its first derivative. This is identical to
the sequence of operations undertaken in classical edge detection. Note that the edge points of the ROI &
a particular scale corresponds to the extrema of the wavelet transform of that scale. By varying the scaling
parameter of the wavelet by successive factors of two (dyadic scale), we generate edges of the ROI at
multiple scales. To summarize, listed below are steps taken to generate multiscale edges within each ROI

A W o dDpE
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Fig 7. Frequency response of the wavelet and scaling functions

1. Filter each ROI with the dyadic scale filter bank shown in Figure 8a. _ _
2. Calculate the magnitude;fnd angle fAimages for each scale of the wavelet transform imagesnd/\W, using

2 2 _ 3
Mj = Wi+ Wy A = atar(W,,;/W,;)  fori=0,1,2
3. Threshold each magnitude image using a threshold calculated from its histogram. Mark pixels above the thedghold as

points
4. Link edge points if their corresponding angles differ by less than a threshold angle. This produces edges that are smoothly
varying in direction, and thus characteristic of natural edges such as cracks

This process generates a list of edges in each ROI at each scale. Figure 9 displays the edges in Figure 6f

5.3. COARSE-TO-FINE EDGE LINKING

Multiscale edge detection described in the previous section generates edges, at several scales, for eac
ROI in the image. It is clear in Figure 9 that edges of the same object are present in more than one scale
For example, parts of the rivet head edges appear in all three scales while the simulated cracks shown ir
Figure 6a appear only at the first two scales.The next step of this process is to assign to each edge a fec
ture value that will provide information about the size of the object that produced the edge. This size
information is useful in the discrimination of edges of cracks from edges of non-cracks appearing in each
ROI.

We model an edge belonging to an object appearing at multiple scales, as the propagation of that edge
along scale (or resolution) space. We define propagation depth as the number of scales in which the edg
appears. We then assign a propagation depth value to each edge at scale 1. The propagation depth ca
tures the size information of the object revealed by multiscale edges. For example, edges of objects that
are small will have a lower propagation depth than edges of objects that are large. This explains why
edges corresponding to the simulated cracks (actually black fibers of approximately 10 diameter),

appear only in two scales, whereas edges of the rivets and scratches appear in all three scales in Figure ¢

rc rc
> ho ho P h.hy
ROI of the
image __p, »| ! r r
Jo ‘»Wyo — 01 Wyl gy Wy2
9 W C 9
— 0 0t 01 W, P9 W,

scale = 9 scale = 2 scale = 3

Fig 8a. Multiresolution decomposition of the live image.

Filters hy and g denote the filters corresponding to the scaling and wavelet functions at scale 1.
h,and g, are derived fromand g by inserting 2”n-1 zeros between the coefficients of

hg = {0.125, 0.375, 0.375, 0.125} angd g {-2, 2}.

Wy, and W, denote the wavelet transform images at scala the y (row, r) and x (column, c) directions.
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We. use a coarse-to-fine edge linking process to finc A

: ) B
propagation depth of all edges appearing at scale 1. —~ / scale 1
coarse-to-fine edge linking process attempts to trac A A neighborhood searched
edge from a coarse resolution (high scale) to a fine re in scale 2 to link
tion (low scale). We define active pixels as those pi 5 edge B from scale 4
that belong to the edge of ref Given bel g
g ge of reference. Given below ar¢ scale 2
steps of the coarse-to-fine edge linking process.
1. Assign to each edge, in each scale (scale = 1, 2,4), a featun
tor with the following components: |

a. Centroid of the active pixels Ve scale 4

b. Average wavelet magnitude of the active pixels

c. Number of active pixels that constitute the edge Fig 8b. Coarse-to-fine edge linking of edges A and B

2. For each edgE in scale 4, define a window centered on its
centroid in scale 2. Find all unlinked edges {e} in scale 2 that are within the window. Find the &dg$ that produces
the minimum weighted square difference between itselEardnk E to e.
3. Do (2) for each edge in scale 2 with edges in scale 1
4. For each edge in scale 1, count the number of links (how deeply it is connected); thisisabation deptlof that edge.
Figure 8b illustrates the coarse-to-fine edge linking process. Note that edges A and B have propagation
depths of 1 and 2 respectively.

5.4. FEATURE VECTOR CALCULATION

We are now in a position to assign a feature vector for each edge in scale 1. The feature vector assigned t
the edge will characterize its properties so that edges of cracks can be discriminated from edges of non-
cracks based on classification of the feature vectors. We have selected the following attributes of an edge
to be included in a feature vector:

1. Average wavelet magnitude of active pixels;
2. Propagation depth number;

3. Average wavelet magnitudes of any linked edges in scale 2 and scale 4;
4. Signs of sum(\W and sum(\y) where W, andW; are the coefficients in the x- and y-directions of at scale 1;
5.  Number of active pixels.

The wavelet magnitudes at each scale of an edge that propagates down multiple scales was includec
because it has been shown that under certain conditions, these values characterize the shape of an edc
e.g., a step or a ramp ede.

5.5. HEATURE CLASSIFICATION

The.feature vectors are classified into one of two classes, cracks or non-cracks. We use a six input, 1 hid-
den layer with four elements and one output neural network trained under backpropagation with momen-

tum to classify the feature vectors. We generated 14 feature vectors of simulated cracks and 30 feature
vectors of non-cracks corresponding to rivet edges and scratches. A training set of 7 simulated cracks anc
15 non-cracks were used to train the network. After 1000 training cycles, the network was approximately

72% accurate in predicting cracks with a 27% false alarm rate for the test set edges.

Figure 6a is repeated in Figure 10a. The output image of the algorithm is shown in Figure 10b.

Fig 9a. Edge image at scale 1 Fig 9b. Edge image at scale 2 Fig 9c. Edge image at scale 4
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Fig 10a. Metal surface with three synthetic Fig 10b. Output of the crack detection
cracks and other crack like features algorithm.

6. SURFACE CORROSION DETECTION ALGORITHM

A comprehensive corrosion detection algorithm needs to detect both surface and subsurface corrosion.
Surface corrosion is detected by texture visually suggestive of corrosion, whereas subsurface corrosion is
detected by distortion (“pillowing”) of the surface. Thus a comprehensive algorithm requires an image
and a shape profile of the inspection surface to detect both types of corrosion. In this section, we describe
the algorithm we developed to detect surface corrosion. Section 7 discribes our subsurface corrosion
detection apparatus and algorithm.

We detect surface corrosion by a binary segmentation of the image into regions of texture suggestive of
corrosion and regions of texture suggestive of freedom from corrosion. Texture can be well described by
scale and orientation. This has resulted in the development of many methods based on multiresolution,
multiorientation based approaches that allow scale and orientation based analysis of'te¥t®es.
corrosion detection algorithm, shown as a block diagram in Figure 11, is based on a similar method.

Figure 12a displays an image of a corroded section of an aircraft surface. Figure 12b shows the output of
our surface corrosion detection algorithm; bright and dark areas respectively indicate corrosion and cor-
rosion free areas in this image. The following three sections outline the three modules of the processing
pipeline indicated schematically in Figure 11.

) discrete feature
Image _____pm! wavelet —| extraction = classification
transform in scale space

Fig 11. surface corrosion detection algorithm

i . |
Fig 12a. surface with corrosion Fig 12b. output of corrosion detector

Mel Siegel <mws@cmu.edu> / The Robotics Institute / Carnegie Mellon University /Pittsburgh PA 15213 USA / 412 268 8802 / FAX 412 268 5569
Workshop on Intelligent NDE Sciences for Aging and Futuristic Aircraft / FAST Center for Structural Integrity of Aerospace Systems

University of Texas at El Paso / 1997-September-30 to 1997-October-02

Remote and Automated Inspection: Status and Prospects (“cimp_paper”) page 8 of 12 pages
/usr/people/mws/mss/AgingAircraft/EIPaso97/cimp_paper/text/elp_cimp97t-aj.mkr as of September 29, 1997 12:21 pm




6.1. DSCRETE WAVELET TRANSFORM (DWT)

In the first module we perform a multiresolution, multiorientat || HL
decomposition of the image using the discrete wavelet trans 1{2
(DWT). The DWT can be thought of as filtering of the image | 3|4 8
sub-bands by an array of scale and orientation specific filters.
wavelets have good spatial and frequency localization, the we
coefficients provide a good characterization of the texture.

We have selected Daubechies D6 orthogonal wavelet (coeffic 9 10
{0.3327, 0.8069, 0.4599, -0.1350, -0.0854, 0.0352}) for the D'
The orthorgonal wavelet prevents correlation between scales |
decomposition of the image by DWT. We perform a three-I
wavelet decomposition of an image which results in 10 sub-b: _. ) -
Figure 13 displays the corresponding sub-bands created b mo %,?é,;%eguffémasvilféi%?omposmon
transform.

6.2. FEATURE EXTRACTION

In the second module, feature extraction, the image is first divided into non-overlapping blocks of size
8x8 pixels. For each block, a 10-dimensional feature vector is assigned whose components represent
energy within the block in each of the wavelet transform frames. Myshown in Figure 13. Letting the

energy of block B(i) in VWbe given by Ki), we have:

E () = w (K, 2

LH HH

(k, |)% B(i)

wherewi(k,l) is the wavelet coefficient at (k) in the wavelet transform frameThe feature vector is
normalized by the total energy of the block.

6.3. FEATURE CLASSIFICATION

In the third and last module we classify the features developed in the previous modules. We generated a
training and test set of 2400 vectors (1200 each corrosion and corrosion free vectors), using a set of
images of corrosion and corrosion free surfaces. A clustering algorithm was applied on the training sam-
ple vectors to find three prototype vectors representing clusters of the corrosion vectors and five prototype
vectors representing clusters of corrosion free vectors in the training set. The algorithm uses a 1 neares:
neighbor method to classify a new feature vector into corrosion or corrosion free classes based on its dis-
tance to the prototype vectors. The trained algorithm was able to detect 95% of the corrosion vectors of
the test set.

Figure 14a displays an image of a corroded section of an aircraft surface. Figure 14b shows the output of
the surface corrosion detection algorithm. Bright and dark areas indicate corrosion and corrosion free
areas in the image.

A4

Fig 14b. output of corrosion detector
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Fig 15: Left and right perspectives on the projected 17x17 laser grid.
The blue dot in the right image [leftmost] corresponds to the red dot
[near upper left of grid pattern] in the left image. The red dots in the
right image are candidates that the matching algorithm rejected.

7. SUBSURFACE CORROSION DETECTION SYSTEM

Subsurface corrosion may be visible externally because of the surface “pillowing” it induces. Pillowing is

a change in skin surface shape rather than surface texture; it is detectable as an increase in skin surfac
height toward the center of each rivet row-and-column-bounded rectangle over a region suffering from
subsurface corrosion. Stereoscopic cameras are well suited to creating surface altitute maps, but the low
density of high contrast features on aircraft sheet metal expanses makes the critical step of identifying
corresponding points in left and right images very difficult. We circumvent this difficulty by illuminating

the surface with a laser that projects a square grid of 17x17 spots; by concentrating on these spots rathe
than on natural textural features of the surface, the correspondance problem is easily solved.

We illustrate this system with Figure 15, which shows the dot pattern from left and right stereoscopic per-
spectives, one dot in the left image marked by a small red square [near the upper left of the grid, in b&w
rendering], several candidates, in color, for the corresponding dot in the right image, and the dot identi-
fied as the matching one shown also in red [the leftmost small square, in b&w rendering].

Figure 16 shows the result of applying this method to a surface step (above, actually a rubber stopper) anc
to a slightly wrinkled piece of aircraft belly skin that is sloping downward from back to front (below).

8. SUMMARY DISCUSSION AND FUTURE WORK.

8.1. CIMP AND REMOTE VISUAL INSPECTION

We have successfully demonstrated CIMP’s remote control and imaging capability to Northwest Airlines
at their Minneapolis 747 maintenance and inspection facility and to US Airways at their Pittsburgh main-
tenance and inspection facility. Our demonstration showed that state-of-the-art 3D stereoscopic video
technology implemented by us and operated by inspectors not specifically trained in its use, delivers
imagery of sufficiently high visual quality that aircraft inspectors and NDI supervisors were willing to
accept it (and sometimes prefer it) as an alternative to direct visual inspection.

8.2. SJRFACE CRACK DETECTION ALGORITHM

Based on our experience with the algorithm and insights gained through limited testing, we are convinced
that the multiscale edge analysis framework on which the algorithm is based is an appropriate framework
for extraction and analysis for aircraft surface cracks. We are encouraged by its performance in detecting
simulated cracks though it was trained and tested using only a small sample of simulated cracks. Antici-
pated future development needs include: adding suitable new features to the feature vectors that describ
edges, e.g., pairing adjacent rising and falling edges, linking neighboring edges with similar feature vec-
tors, i.e., edges that presumably belong to a single object, data fusion involving multiple images of the
same region under dynamic lighting conditions, and, for all of these, training and testing with a richer
library of natural surface cracks.

Mel Siegel <mws@cmu.edu> / The Robotics Institute / Carnegie Mellon University /Pittsburgh PA 15213 USA / 412 268 8802 / FAX 412 268 5569
Workshop on Intelligent NDE Sciences for Aging and Futuristic Aircraft / FAST Center for Structural Integrity of Aerospace Systems

University of Texas at El Paso / 1997-September-30 to 1997-October-02

Remote and Automated Inspection: Status and Prospects (“cimp_paper”) page 10 of 12 pages
/usr/people/mws/mss/AgingAircraft/EIPaso97/cimp_paper/text/elp_cimp97t-aj.mkr as of September 29, 1997 12:21 pm




8.3. SURFACE AND SUBSURFACE CORROSION DETECTION ALGORITHMS

The surface corrosion detection algorithm is successful in detecting surface corrosion as indicated by the
performance on the test images. We plan on training and testing the algorithm with a wider array of cor-
rosion test samples. The subsurface corrosion detection algorithm using a laser spot grid projector pro-
duces surface profile maps that lab experiments indicate will be useful for detecting pillowing and other
problems that are manifested as surface height variations.

9. CONCLUSION

Our research efforts are directed at testing the hypothesized feasibility and advantages of remote visual
inspection. To test this premise, we have built CIMP, a prototype mobile robot that carries a remote imag-
ing system and an inspection console that allows the inspector to view monoscopic or stereoscopic imag-
ery of the remote inspection surface. In addition, the inspection console provides the inspector with a
library of image enhancement and understanding algorithms that can be used to process, enhance an
understand the remote imagery to aid the detection of surface defects. Through field testing, we have
demonstrated successfully that our remote imaging system delivers imagery of sufficient high visual
quality that aircraft inspectors are willing to accept it as an alternative to direct visual inspection. In this
paper, we have described image understanding algorithms for surface crack and corrosion detection anc
subsurface corrosion detection, and we have reported test results that are promising. We believe that fur-
ther development of these algorithms based on their adaptation to real world environments through exten-
sive testing will significantly increase their probability of flaw detection and make them successful and
productive tools for remote visual inspection.
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Fig 16. Method of detecting subsurface corrosion by elevation mapping of the visible surface. Top three frames are left
and right perspectives of the projected laser grid illuminating a rubber stopper, and the corresponding depth map.
Bottom three frames are left and right perspectives of the projected laser grid illuminating a sloping aircraft sheet
metal surface, and the corresponding depth map. Elevation resolution is about 0.5 mm.
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