
1

Partitioning Bin-Packing Algorithms for Distributed
Real-Time Systems

Dionisio de Niz and Raj Rajkumar
dionisio@cs.cmu.edu, raj@ece.cmu.edu

Real-Time and Multimedia Systems Laboratory
Electrical & Computer Engineering

Carnegie Mellon University

Abstract— Embedded real-time systems must satisfy not only
logical functional requirements but alsopara-functionalproperties
such as timeliness, Quality of Service (QoS) and reliability.
We have developed a model-based tool calledTime Weaver
which enables the modeling of functional and para-functional
behaviors of real-time systems. It also performs automated
schedulability analysis, and generates glue code to integrate the
final runtime executable for the system. Its extensive glue code
generation capabilities include the ability to insert inter-processor
communications code at arbitrary software boundaries. In other
words, from a functional point of view, a software component
may be viewed as a single logical entity but from the tool point of
view, the component can be partitioned into two or more pieces
running on different nodes. This capability opens up many dif-
ferent possibilities to map (partitioned) software components to
hardware nodes. The objective of this deployment is to minimize
hardware requirements while satisfying the timing constraints of
the software. The classical approach to addressing this problem is
to use bin-packing techniques. In this paper, we studyPartitioning
Bin Packing, an extension to bin-packing algorithms to exploit the
capability of partitioning software modules into smaller pieces.
We analytically show that the number of bins required can be
reduced. We also evaluate a number of heuristics to minimize not
only the number of processors (bins) needed but also the network
bandwidth required by communicating software modules that are
partitioned across different processors. We find that a significant
reduction in the number of bins is possible. Finally, we show
how different heuristics lead to different tradeoffs in processing
vs network needs.

I. I NTRODUCTION

Embedded real-time systems are tightly coupled with the
physical world. This tight coupling imposes para-functional
requirements (such as timeliness, jitter, fault-tolerance, and
security) that go beyond functional (logical) behaviors. We
have developed a model-based embedded system develop-
ment tool calledTime Weaver [6], which provides new
abstractions that enable the modeling of both functional and
para-functional behaviors. Each functional behavior and para-
functional behavior is captured in a separate view. Each view
focuses on a single concern enabling a domain expert (e.g.
a signal processing expert, a control system expert, a real-
time systems expert, a fault-tolerance expert) to focus on
the concern of her expertise. Interactions among the multiple
views are automatically handled by the tool. For instance, a

software-defined radio1 model presents a functional view to
the signal processing engineers to compose the mathematical
transformation of signals in order to modulate/demodulate
them. A second view models the Fault-Tolerance (FT) struc-
ture (calledFault-Toleranceview) and can be modified by
the FT expert. In this second view, the FT expert defines
which functional modules should be replicated to tolerate
faults, how to synchronize their execution such that their
internal state does not deviate from one another, and how
to ensure failure independence (e.g., by deploying them on
different processors). A third expert, the Real-Time (RT)
Systems expert, can be working on aTiming view defining
timing relationships among components (e.g. how the rate of
execution of a component relates to that of another). Another
important view in our tool is the deployment view, where
the hardware is described and the deployment of software
to hardware is modeled. The tool automatically projects the
impact of changes in one view to the others. For instance,
the addition of a new component in the functional view is
propagated to all the other views (Timing, Fault-Tolerance, and
Deployment), the replication of modules is propagated to the
Deployment view to be able to deploy the new replicas, and the
timing relationships among components are propagated to the
deployment view to evaluate whether the available processors
have enough cycles to execute the software within their timing
constraints. This automatic synchronization across the multiple
views gives these views strong semantics, and hence we refer
to them assemantic dimensions. Once the multiple concerns of
the system and their mechanisms are modeled in the different
views of the tool, the final executable code of the system
can be automatically generated, integrating the functional code
with the code for the specified para-functional behaviors.

In order to be effective, model-based technology must take
the design decisions down to the running code. One of the im-
portant decisions in the design of distributed real-time systems
is the allocation of software modules to hardware nodes. Given
the constraints and cost sensitivity of many embedded systems,
this allocation must reduce hardware costs while satisfying
all the functional and para-functional requirements of the
application. The automatic assignment of software modules
(or tasks) to hardware nodes is the focus of this paper.

1A software-defined radio is a radio that implements the modulation and
demodulation of radio transmissions in software.

2

The traditional approach to allocate software modules to
hardware nodes is to use a bin-packing scheme (or its cousin,
load-balancing). For example, tools such as RapidRMA from
Tri-Pacific Corporation and TimeWiz from TimeSys Corpora-
tion support various kinds of bin-packing and load-balancing
techniques. These techniques are appealing because (a) they
perform well in practice in reducing the number of bins
required, and (b) they are computationally efficient. However,
these techniques and tools generally treat each software mod-
ule as an unbreakable entity with each being deployed as one
piece. In this paper, we show that the flexibility to “partition”
a software module across two or more processors can lead to a
(sometimes significant) reduction in the number of processors
needed. We provide both analytical and simulation results. An-
alytically, we show that the number of processors (“bins”) can
be reduced in the worst case. Our simulation approach shows
that our heuristics work well in practice. For instance, we show
cases where our approach needs only 201 processors when the
classical approach requires as many as 244 processors.

A. Our Approach

In our allocation scheme, we model the software as a
directed acyclic graph of modules that communicate through
messages. Modules are characterized as consuming CPU cy-
cles (periodically) and messages as consuming bandwidth (bits
per second). A second graph is used to represent the hardware
architecture. In this graph, the nodes are processors and net-
works, and the links represent connectivity among them. (We
assume only simple hardware architecture graphs such as bus-
based or switch-based networks.) Processors are considered to
provide a processing capacity expressed in cycles per second
and networks are considered to provide a communication
capacity in bits per second. Given these two graphs, the
allocation problem is posed as a packing problem that assigns
modules to processors and messages to networks (when the
communicating parties are not on the same processor). We
also assume that the Earliest Deadline First (EDF) scheduling
algorithm [10] is used. When an object is partitioned and
deployed on two (or more) processors, any timing constraint
that applies to the object must now span those processors. The
choice of intermediate deadlines and related latency issues are
outside the scope of this work. However, our approach can be
extended in rather straightforward fashion to include classical
real-time scheduling techniques to deal with these issues.
When an object is partitioned across multiple processors, we
assume that a communication bandwidth requirement may be
imposed between the parts of the objects. However, we assume
that no timing penalty is incurred in terms of execution time
(i.e. object size) due to the partitioning. An “inflation factor”
to account for this overhead can be added later if necessary.

The ideal objective of the packing problem is then to use the
minimum number of processors and network links to deploy
a software graph. We can think of this problem as the generic
problem of packing a list of objects into the minimum number
of bins. This generic problem is known as bin-packing. The
optimal solution to this problem is known to be NP-complete
[8] but multiple near-optimal algorithms have been studied

over the years. However, these solutions assume that objects
are independent of one another (e.g. software modules do not
communicate) and hence have limited practical application. In
this paper we present our extensions to bin-packing algorithms
to allow partitioning of software graphs to minimize the num-
ber of processors needed to run the system while attempting
to reduce the network links needed (due to messages across
processors) as much as possible. A formal analysis of these al-
gorithms proves that the worst-case behavior with partitioning
improves over the worst-case behavior of previous solutions
that did not allow partitioning. In particular, we show that in
the worst-case we can save at least two bins. We conjecture
that the worst-case behavior is improved significantly more,
but leave it as an open problem. A new algorithm, derived
from the formal properties is also designed. In addition we
perform several experiments to evaluate their average-case
performance and explore the “bad” cases. In these cases, we
observed a difference against the non-partitioning scheme of
over 20% (i.e. 20% of the processors were saved out of 244).
Furthermore, our polynomial scheme is near-optimal in that it
incurs only an average difference of just 4% over the optimal
scheme which requires an exponential amount of computation.
In summary, the partitioning scheme improves both the worst-
case and average-case behavior of bin-packing, and is near-
optimal despite its polynomial complexity.

B. Related Work

Multiple research efforts have been conducted relating to
deployment of software modules to hardware. We discuss
below the most representative among these studies. Additional
research with useful results on bin-packing will be discussed
in the context of our analysis in Sections II and III.

In [1], Abdelzaher et al. propose a period-based load par-
titioning scheme that minimizes a metric called thesystem
hazard, which is defined as the maximum response time
among all tasks. These tasks are real-time tasks with prece-
dence constraints and dependent execution times. A branch-
and-bound algorithm was developed to cluster hardware nodes
and software modules with the objective of performing an
hierarchical allocation that minimizes the system hazard. In
contrast, our work does not minimize the system hazard but
the number of processors needed for a specific software graph.
Our work, however, does verify that enough CPU cycles
are allocated to software modules to honor their deadlines
(assuming an EDF scheduler).

In [11], Mutka and Li presented a tool to allocate real-time
tasks to processors. Their tasks are modeled as independent
tasks and a fixed-priority scheduler with RMS [9]. A branch-
and-bound algorithm is used to find a feasible allocation. In
our scheme, we allow components to have communication
dependencies.

In [13], Tindell et al. developed a simulated annealing
algorithm for real-time task allocation. Tasks communicate
with each other using a token protocol and the task’s deadlines
are modified to take into account the delay of such commu-
nication. Audsley’s [2] response time analysis was used to
calculate the “energy” component of the algorithm. In our

3

case, we assume that the deadlines have already been adjusted
for any delays due to dependencies and focus on the allocation
of software to processors and messages to networks.

Related to bin-packing, an algorithm to allocate divisible
objects to bins was developed in [4]. However, the size of
the objects are restricted to be in a special divisible sequence,
where the size of objecto1 is divisible by the size of object
o2, which in turn is divisible by the size of objecto3 and so on
and so forth. Such a restriction makes this approach difficult
to apply in practice. Our work does not have this restriction
and allows components to be partitioned intoany size.

In the networking arena, Naaman presents in [12] a bin-
packing algorithm to fit packets into a TDMA network. These
packets can be fragmented but the fragmentation adds an
overhead factor representing the additional bits that need to be
sent. The purpose of the algorithm is to pack network packets
compactly, avoiding fragmentation as much as possible. Even
though this work also deals with object partitioning, in our
case, we formally analyze the improvements on the worst-case
performance of bin-packing algorithms due to partitioning,
assuming that such partition does not impose any overhead.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II
introduces the most popular bin-packing schemes and their
performance characteristics. Section III presents our partition-
ing schemes, and analyses some of their properties. Section
IV presents extensions to our schemes to reduce the network
bandwidth requirement due to communicating modules de-
ployed on different processors. Section V provides evaluation
results of heuristics based on the analyses. Section VI presents
the concluding remarks. Finally, in the appendix, we provide
a brief description of ourTime Weaver tool.

II. B IN-PACKING ALGORITHMS

Our deployment algorithms are based on a new paradigm
that may “partition” software modules into two or more pieces.
In practice, partitioning pieces will lead to communication
code insertion at the partitioning points. We have built a
model-based design tool for embedded real-time systems
called Time Weaver . With Time Weaver , communica-
tions code required to connect a partitioned object can be auto-
matically generated. Also, both functional and para-functional
behaviors can be verified with the assistance of built-in or
external analyses. Hence, object partitioning to reduce the
number of processors (“bins”) is a very desirable objective.

Our partitioning algorithms are derived from the traditional
bin-packing algorithms. Bin-packing algorithms try to solve
the problem of packing a set of objects into the minimum
set of bins. In the basic version, the maximum size of each
object is 1, and each bin is of size 1. A bin can be filled with
objects until the total size of all the objects in the bin sum up
to 1. Objects cannot be partitioned and must be allocated as
whole. Previous research [8] has already shown that finding
the minimum number of bins to pack a set of objects (namely
the bin-packing problem) is NP-complete. However, multiple
near-optimal algorithms of polynomial complexity have been

designed. The most popular and best understood is Best
Fit Decreasing (BFD). This algorithm orders the objects in
decreasing order of size and the bins in increasing order of
available space (gaps).BFD then tries the allocation of the
first object in each of the bins in order. This scheme has two
attributes. One, it assigns the largest objects first when it is
more likely to find a larger gap. Two,BFD seeks to leave the
minimum gap possible by assigning the largest object to the
smallest gap that accommodates it. This second attribute is the
basis of the less complex algorithm called Best Fit (BF).

Other less complex algorithms such as First Fit and First
Fit Decreasing have also been used for bin-packing. First Fit
(FF) does not order the bins or the objects, and assigns an
object to the first bin where it fits. First Fit Decreasing (FFD)
is an improvement on FF where the objects are ordered in
decreasing order to reduce the gaps in the processors. We
will not use these two algorithms because the worst-case
performance ofBFD is better thanFF (as we will discuss).
In the analysis of these algorithms, we will useXFD when
the properties discussed apply to bothBFD and FFD , and
XF when they refer to eitherBF or FF .

Our framework is designed to support distributed real-
time systems, where software modules on one processor
may communicate with modules on other processors. If such
communicating modules can be assigned to the same processor
(as a composite one), their communication requirements across
a network will be minimized or even eliminated. However,
not all modules that communicate with each other may fit
into the same processor. Furthermore, due to the (recursive)
encapsulation of software components into composite ones,
each component can became potentially large in size, to
the extent that it may not fit into one processor. The bin-
packing scheme will therefore fail for such large objects. We
avoid these problems by allowing objects to be partitioned
(or split) into smaller objects2 down to individual elementary
components if required. In this section, we will propose some
extensions to bin-packing schemes to deal with partitioned
objects, and will analyze their worst-case performance.

For these schemes we make the following assumptions.
First, each bin is assumed to be equal to 1. Secondly, each
object ranges in size from 0 to 13. Finally, if an object is
partitioned, the sum of its parts equals the size of the original
object.

A. Performance of the Basic Bin-Packing Algorithms

Different authors have analyzed the worst-case performance
of bin-packing algorithms. To define this performance, John-
son [7] usesFF (L), BF (L), FFD(L), andBFD(L) to denote
the worst-case number of bins used by each of these algorithms
to accommodate a listL of objects to be assigned. Similarly,
XFD(L) denotes the number of bins used by any of these
algorithms. In addition,L∗ is defined as the optimal (minimal)
number of bins to accommodate the listL. The performance

2The compositing of components into larger ones is a software abstraction
designed to enhance reuse and facilitate the construction of systems of
systems.

3Larger composites are assumed to have been already partitioned to sizes
less than 1.

4

of an algorithm is then defined as the ratio〈alg〉(L)
L∗ where

〈alg〉 can be replaced by any of the algorithms. The maximum
value that this ratio can achieve over all lists withL∗ = k
is represented byR〈alg〉(k). The worst-case performance is
then defined as:limk→∞ R〈alg〉(k)4. These ratios are achieved
for small values ofk, and so their asymptotic results can
be applied to all values ofk. These ratios effectively define
an upper bound on the worst-case performance of these
algorithms.

Johnson et al. [8] proved that the bound forFF and BF
is 17

11L∗ + 2 and Johnson [7] proved that the bound forFFD
and BFD is 11

9 L∗ + 4. Later, Baker [3] reduced the bound
for FFD andBFD to 11

9 L∗ + 3. Some of these proofs tend
to be very long (some exceeding 75 pages). We will use
selected theorems and lemmas from these proofs as a basis
for analyzing our partitioning schemes.

III. BFD WITH PARTITIONING (PBFD)

When objects are partitioned, communication needs are
likely to be introduced between components assigned to dif-
ferent processors. Therefore, in addition to the classical bin-
packing objective of minimizing the number of processors,
one can also seek to minimize the network bandwidth across
processors. We refer to this multiple objective problem as a
BFD packing problem with partitioning (PBFD). Mathemati-
cally, each software component can be considered to be a node
in a graphG with an edge added between two nodes if the
two nodes represented by these nodes communicate. Then,
each connected graph component is treated as a composite
object that can be partitioned and assigned by the bin-packing
scheme.

In classical bin-packing, bins are of unit size. One starts
with (zero bins or) 1 bin and additional empty bins are added
when necessary. In our context, adding bins on demand can
lead to unnecessary and premature partitioning of objects.
For instance, consider a list of objects{w, x, y, z} to be
deployed with sizes(0.6, 0.6, 0.2, 0.2) in that order. If we
add bins on demand, we would start with a single binb1

and allocate objectw of size 0.6. At this point, we would
consider objectx and decide that it does not fit in binb1

and, since we do not have another bin, we proceed to split
the component, perhaps in halvesx1 and x2 putting them
back in the list ({x1, x2, y, z}). Now, the next objectx1 can
be assigned to binb1. Assuming that no other object can be
partitioned, we would need to allocate a new binb2 to continue
with the deployment. This bin can now hold the rest of the
objects in the list ({x2, y, z}), leading to an assignment as
follows: b1 = {w, x1}, b2 = {x2, y, z}. Now, if instead of
allocating bins on demand, we start with two binsb1 and
b2. Next, we can allocatew and x to each of these bins.
Then, allocate objectsy and z to bins b1 and b2 leading
to the assignment:b1 = {w, y}, b2 = {x, z}. The resulting
network bandwidth requirement is zero given that no object

4It turns out that a higher ratio can be achieved for lists that can be packed
in two or three bins. However, this is deemed to be a special case that is
not reproducible in larger lists where an automatic algorithm is likely needed.
This observation long made by bin-packing studies (e.g. [8]) also leads us to
focus on lists of a large number of objects.

was partitioned. We therefore avoid the premature partitioning
of objects by initializing the bin-packing scheme differently
(but equivalently). Specifically, we pre-allocate bins such that
the sum of the capacity of these bins isdloade, where load
is the sum of the sizes of all the objects.dloade represents
a lower bound on the number of bins required. One of two
potential partitioning schemes will be used:

1) Early Partitioning . This scheme partitions an object
immediately if it does not fit into any of the pre-allocated
bins. The goal is to partition the largest objects as early
as possible when there is a higher likelihood of finding
larger gaps.

2) Late Partitioning . This scheme defers the partitioning
of the objects that do not fit into any of the bins until we
are done deploying all the objects that can be deployed
without partitioning. The goal of this algorithm is to
ensure that we deploy the largest number of objects
without partitioning to try to minimize the penalty of
the partition, i.e. communication between processors.

It must be noted that if we are able to accommodate all the
objects in the pre-allocated bins, then our algorithms behave
like vanilla BFD.

ThePBFD algorithm can be summarized as follows. First,
we pre-allocate a number of bins equal todloade as discussed
above. Secondly, the allocation order ofBFD is followed.
Specifically, we order the bins by non-decreasing order of
gaps and try the deployment of composites in decreasing
order of size. Thirdly, if partitioning is needed (as defined
by the partitioning scheme in use) the selected composite
is partitioned into two parts that can be fit into the largest
gaps5 available. If this partitioning is possible, these parts are
returned to the list of objects to be deployed and the list is
reordered (in descending order of object/piece sizes). In other
words, the object is partitioned but instead of being deployed,
the pieces are added to the list of objects to be deployed. If,
on the other hand, the composite cannot be partitioned into
parts that fit into any gap, then a new bin is added, and the
unpartitionedcomposite is assigned to the new bin. Finally,
the deployment continues until all objects have been assigned.

We now show that the partitioning schemes improve the
worst-case performance of the bin-packing algorithms.

We first prove that the worst-case performance of bin-
packing algorithmsXFD can be improved when objects
can be partitioned into two parts6 whose sizes are below a
threshold value. We then prove that even when the two parts
are partitioned into equal halves, this improvement holds.

Remark: Some aspects of the worst-case analysis may be
somewhat confusing at first. The theorems on bin-packing
focus only on theworst-casebehavior of the algorithms,
and determine the sizes of the objects that play a key role
in increasing the number of bins required for packing as
compared to (say) the optimal algorithm. A similar behavior
manifests with partitioning bin-packing. Objects must satisfy
some constraints on size to increase the number of bins

5One just has to compare the parts with the largest gaps available.
6Partitioning into more pieces is just an extension to this assumption given

that the resulting pieces can be partitioned later into pairs.

5

required. For arbitrary lists of objects whose sizes do not
satisfy these constraints, the number of bins required would
be better in relation to the optimal algorithm.

We consider a family ofPBFD algorithms where we start
with an initial number of bins equal todloade. We refer to
these bins created at initialization time as theprimary bins .
New bins are added only when the next object to be allocated
(even after partitioning it into two parts) does not fit into any
available gap. We refer to these bins as thesupplementary
bins. To prove the worst-case behavior of our schemes, we
first restate some lemmas, facts, and theorems from previous
authors and develop some new ones.

Johnson et al. [8] proposed the following lemma to prove
that small objects can be disregarded without modifying the
worst-case behavior of bin-packing algorithms. We use the
following notation as defined and used by Johnson to minimize
ambiguity:

• L denotes the list of objects to be packed,
• L∗ denotes the number of bins used by the optimal

packing algorithm (theoretical) to pack listL,
• L\x denotes the deletion of objectx from list L,
• P denotes a packing of a list of objects,
• P ∗ denotes the optimal packing of a list of objects,
• ai denotes the size of objecti,
• Bi denotes bini, and
• Blast denotes the last bin of the packing as ordered by

BFD.
As stated earlier,FF (L), BF (L), FFD(L), andBFD(L)
denote the worst-case number of bins used by each of
these algorithms to accommodate a listL of objects to
be assigned. Similarly,XFD(L) denotes the number of
bins used by any of these algorithms.

Lemma 3.1:Suppose L is a list such thatXFD(L) >
rL∗ + d with r,d ≥ 1. The list L′ = L\x|x ≤ r−1

r also
hasXFD(L′) > rL′∗ + d.

Proof: Let P be the packing ofL and P ′ the packing
of L′ usingK andK ′ bins respectively. IfK > K ′, then no
element in the last bin ofP can be larger thanr−1

r , and hence
all but the last bin must have levels exceeding1

r , since neither
BF nor FF will start a new bin with an element which would
fit in a previous bin. Thus,L∗ ≥

∑
ai > 1

r (K − 1) and so
K < rL∗+1, contrary to hypothesis. HenceK ′ ≥ K and the
lemma is proved.

Corollary 3.2: Only lists L with objects of sizes in the
range(2

11 , 1] need to be considered for the worst-case analysis
of XFD .

Proof: This follows from Lemma 3.1 and by the bound
of XFD(L) = 11

9 L∗ + 3 proven by Baker [3].
Based on Corollary 3.2, Baker in [3] states the following

fact:
Fact 3.3: In an XFD packing P of list L, if the size of

the smallest objectx in L is 1
2 ≥ x > 1

3 , then pieces of size
greater than(1−x) that, in turn, are greater than12 are packed
alone in bins in bothP andP ∗, while the remaining pieces,
which are of size at most12 , are paired in bins of bothP
and the optimal packingP ∗ (except for a possible odd piece);
henceXFD(L) = OPT (L). So the smallest objectx of any

list L that exhibits the worst-case performance must have a
size 2

11 < x ≤ 1
3 .

With this fact, we can formulate the following new lemmas.
Lemma 3.4:In any listL such thatXFD(L) = L∗+n with

n ≥ 1, the largest elementsL∗+i in bin L∗ + i, 1 ≤ i ≤ n, in
the packingPXFD is less than or equal to13 .

Proof: Suppose that we are currently assigning objectai.
If ai is the first object assigned to binBL∗+1 in XFD , then it
means that it does not fit in any binBj for j < L∗+1. It also
means thatar ≥ ai|r < i. Hence, all objects deployed on this
and any subsequent bin would be less than or equal toai. As
a result, a listL′ = L\aj |j > i exhibitsXFD(L′) = L∗ + 1
with ai as the only element in binBL∗+1. Hence, by Fact
3.3 we know thatai ≤ 1

3 and we know that every subsequent
object ar ≤ ai so binsBL∗+i for 1 ≤ i ≤ n can only have
objects≤ 1

3 .
Lemma 3.5:In any list L such thatL∗ = d

∑
aie, all

objectsaj partitioned byPBFD are smaller than or equal
to 1

3 .
Proof: By the definition ofPBFD , any object that fits

into the primary bins is not partitioned. Hence ifL∗ = d
∑

aie,
then the number of primary bins is equal toL∗. Therefore,
all the objects that are partitioned would have been allocated
by BFD into bins BL∗+i, i ≥ 1. By Lemma 3.4, any object
allocated byBFD into a binBL∗+i, i ≥ 1 is smaller than or
equal to 1

3 .
Let us consider a simple example before interpreting the

above lemma.
Example: Consider three objects each of size 0.51. We have

d
∑

aie = 2. However,no non-partitioning scheme including
the optimal scheme can use less than 3 bins. In contrast, with
PBFD, we will start with 2 primary bins and the first two
objects will be assigned to those 2 bins. The third object will
then be partitioned into two pieces of (say) sizes 0.49 and 0.02
and assigned to the two primary bins respectively. In other
words, PBFD can do better than the optimal non-partitioning
scheme! (We will return to this in the next section).

Remark: Note that Theorem 3.5 applies only whenL∗ =
d
∑

aie. It is not always true thatL∗ = d
∑

aie as in the
example above. This implies that whenL∗ > d

∑
aie, PBFD

can partition objects that are greater than1
3 again as in the

above example. In these cases, the performance of PBFD will
lean away from the worst-case behavior.

Lemmas 3.4 and 3.5 allow us to state our theorems about
the worst-case behavior of partitioning schemes. In these
theorems, we prove thatPBFD can save bins thatBFD would
require. A generic theorem is stated for partitions of any size
and a special case for partitioning in halves.

Theorem 3.6:For all listsL such thatBFD(L) > rL∗+d,
d ≥ 1, if list L′ is a copy of the original listL with every object
in Blast partitioned into two partsx1 and x2 with each part
being less than or equal tor−1

r , thenBFD(L′) ≤ rL′∗ + d.
Proof: By Lemma 3.1, ifBFD(L′) > rL′∗ + d then for

a list L′′ = L′\x|x ≤ r−1
r , BFD(L′′) > rL′′∗ + d should

hold, meaning that such objects do not contribute to the worst
case. But we know thatx ≤ r−1

r for x ∈ Blast and such
a bin only contains this kind of objects, meaning that this
last bin was freed in packingPBFD . Hence, it must be that

6

BFD(L′) ≤ rL′∗ + d.
Note: As mentioned, Baker [3] showed thatBFD(L) >

11
9 L∗ + 3, i.e. we haved = 3 above. Since the statement of

Theorem 3.6 requires only thatd ≥ 1, it can be applied twice
with partitioning untild = 1. In other words, two processors
can be saved even in the worst-case configuration of Baker by
using PBFD.

Theorem 3.7:In any list L such thatL∗ =
∑

ai and
BFD(L) > 11

9 L∗ + d with d ≥ 1, if all the objects of any
one binBL∗+i for i ≥ 1 is partitioned into halves, then the
bin can be freed.

Proof: By Lemma 3.5, all the objects that are partitioned
are smaller than or equal to13 . Hence, if we split them in
halves, each would be of sizex, x ≤ 1

6 < 2
11 . By Lemma 3.1,

we can delete them and free up that bin.

A. Redefining Optimality With Partitioning

We now introduce the novel view that different levels of
optimality can be defined in solving the bin-packing problem.
Specifically, when partitioning is allowed, three different op-
timal packings can be defined:

• Fluid-Flow Optimal (L∗ff). This refers to an ideal
but impractical packingP ∗

ff if all the objects can be
partitioned into arbitrarily fine-grained sizes that could
be perfectly accommodated leaving no gaps except in the
last bin. In other words,L∗ff = d

∑
aie.

• Optimal without Partitioning (L∗). This refers to the
optimal packingP ∗ when objects cannot be partitioned.
This packing could leave gaps in the bins but it yields
the minimum number of bins possible given a listL, but
no partitioning of objects.

• Optimal with Partitioning (L∗p). This refers to the
optimal packingP ∗

p if each object can be broken into
a finite set of pre-defined sizes. This packing could leave
gaps in any or all of the bins but it yields the minimum
number of bins possible under the allowed partitioning
constraints.

The relationship between the above optimal packings is that
L∗ff ≤ L∗p ≤ L∗. Let us illustrate this relationship with an
example. In this example, we only represent objects by their
size (all sizes are less than one and all bins are of size 1),
and composite objects by a list of the sizes of the composing
objects. For instance,(0.5) represents an object of size 0.5
that cannot be partitioned. Similarly,(0.3, 0.1) represents a
composite object of total size 0.4 which can be partitioned
into two pieces of size0.3 and 0.1. Now, consider an object
list L with 10 composites of typea = (0.25, 0.6), 10 objects
of type b = (0.35), 10 objects of typec = (0.7), and 1 object
of type d = (1.0). The optimal packing without partitioning
yields L∗ = 26, allocating one bin for the object of type
d, one bin for each of the objects of typea (10 of them),
one bin for each of the objects of typec (10 of them), and
five bins for objects of typeb (with each bin containing two
objects of typeb). The optimal packing with partitioning yields
L∗p = 21. This packing partitions objects of typea into objects
of types a′ = (0.25) and a′′ = (0.6), then creates pairs of
one object of typea′ with an object of typec (adding up

to 0.25 + 0.7 = 0.95) and allocates them in a bin, using
10 bins to accommodate them all. Then, it creates pairs of
one object of typea′′ and one object of typeb (adding up
to 0.35 + 0.6 = 0.95) and allocates them in a bin, using 10
bins. The last bin is then assigned the only object of size1.0.
Finally, the fluid-flow optimal would have the same packing
as the optimal with partitioning for the first 20 bins. However,
the last object of size1.0 is split into 20 fragments of size
0.057 and puts these fragments into each of the initial 20
bins, leading to a packing with onlyL∗ff = 20 bins. Contrary
to the optimal bin packing with partitioning (that does not
incur in any penalty for partitioning) our algorithms avoid
partitioning objects as long as they fit into a bin to prevent
the creation of messages across processors. This behavior and
the decreasing order (by size) of BFD lead to the partitioning
of the smallest objects. However, these algorithms can still
partition objects that are still too big to be accommodated in
the primary bins. Another algorithm calledExcess-bin Early
Partitioning Best-Fit Decreasingis specifically designed to
avoid breaking objects that could produce fragments too big
to be accommodated in the primary bins. We describe this
algorithm next.

B. Excess-bin Early Partitioning Best-Fit Decreasing
(EEPBFD)

We refer to bins that are allocated in addition to the number
of bins allocated by the optimal algorithm with partitioning
(i.e. in excess ofL∗p) asexcess bins. This definition allows us to
define a new partitioning algorithm that limits its partitioning
only to objects that would have been allocated to the excess
bins by the optimal packing. Specifically, this algorithm limits
its partitioning to objects of sizes≤ 1

3 . In other words, if the
algorithm runs out of primary bins, it will partition an object
that does not fit into any gap only if its size is≤ 1

3 and would
put the pieces back into the list to be packed. Otherwise, it
will allocate a new bin and allocate the object to that new bin.

Theorem 3.8:In any list L such thatBFD(L) > 11
9 L∗ + d

for d ≥ 1, if all the objects partitioned byEEPBFD are split
in halves, then it will save at least one bin.

Proof: Given that all the objects partitioned byEEPBFD
are ≤ 1

3 , then their halves are≤ 1
6 < 2

11 . By Lemma 3.1,
we can delete these halves. By Lemma 3.4, we know that all
excess bins will have objects≤ 1

3 and therefore partitioning
all the objects that fill up one bin will free up this bin.

C. Conjecture about PBFD

There are several degrees of freedom in designing a parti-
tioning bin-packing scheme of polynomial complexity. These
degrees of freedom include the number of bins a scheme starts
with, the points when a new bin can be added, the partitioning
choices for an object, and the sizes of partitioned pieces of an
object. In other words, there is a large family of partitioning
bin-packing algorithms.

We now make the following conjecture that the worst-
case performance of partitioning bin-packing algorithms is
significantly better than that of BFD schemes.

7Fluid-flow is allowed to partition into arbitrary sizes.

7

Conjecture: PBFD(L) > 10
9 L∗ + k wherek ≥ 0.

In other words, we believe that an appropriate partitioning
bin-packing scheme can go beyond reducing the constant
factor, and reduce even the worst-case proportional fraction
11
9 to 10

9 relative to an optimal non-partitioning scheme. Note
that our conjecture characterizes theworst-caseperformance
of PBFD. We already know that PBFD can actually perform
better than even an optimal non-partitioning scheme in some
cases as shown in an example earlier.

D. Summary of Theoretical Results

We now summarize the three theoretical results presented
in this section.

First, we proved thatPBFD can save the bins in excess of
11
9 L∗ + 1 with respect toBFD in the worst case. We prove

this for the general case when the objects in the bins being
saved can be partitioned to sizes less than or equal to2

11 . In
the average case, the savings can be much higher as will be
seen next in our experiments.

Secondly, we showed that when the sizes of the objects are
strictly partitioned into equal halves, the processor savings still
hold.

Thirdly, we showed that if we limit the partitioning to
objects of sizes less than or equal to1

3 , at least one bin can
be saved.

Finally, we also conjectured that the worst-case performance
of a partitioning bin-packing scheme can be significantly better
than that of a classical bin-packing scheme.

IV. BANDWIDTH MANAGEMENT

The partitioning of objects that PBFD performs does carry
a cost: the bandwidth of the messages sent between the parts
a composite was broken into. In this section, we extend the
basic PBFD algorithm to minimize the number of partitions
needed, and if possible the bandwidth generated by such
partitions. Specifically, we present variations of bin-packing
schemes guided by our earlier analysis to take into account
the bandwidth that partitions generate. The design of these
schemes is followed by its empirical evaluation. We start the
discussion with the early partitioning approach and follow it
by the design of two late-partitioning algorithms.

A. Cycle-Driven Early-Partitioning Bin-Packing (CEP)

This approach attempts to minimize both the CPU cycles
and the network bandwidth needed for the modules. To mini-
mize CPU cycles, the traditional approach of adding the largest
module to where it fits best is used. To minimize bandwidth,
the approach is to partition modules to the largest size that
can fit into the processor with the most available cycles. This
scheme assumes that partitioning a large object generates a
large bandwidth demand between its parts. As a result, as soon
as it finds the largest object that does not fit any available gap,
it immediately partitions this composite to generate the largest
bandwidth requirement as early as possible. The assumption
is that it is more likely to find a larger gap in the network
capacity at this early stage.

B. Bandwidth-Driven Late-Partitioning Bin-Packing (BLP)

The objective of this algorithm is to minimize both the
number of processors and link capacities. To achieve this,
we go through the processors in decreasing order and fill
each one as much as possible. To fill the processors, the
software graph is divided into disconnected sub-graphs. These
sub-graphs are deployed in decreasing order of size until no
more sub-graphs can fit into the processors. At that time, we
select a sub-graph and partition it into further communicating
sub-graphs, adding the pieces back to the list of sub-graphs
to be deployed. We use the following efficient heuristic to
pick the sub-graphs. The selection of the sub-graph to be
partitioned has the purpose of reducing the size of the graph
cut (which represents the bandwidth requirement between
partitions). To perform this selection, we mark each sub-graph
(at creation time) with abandwidth compression factorthat
will be described shortly. The bandwidth compression factor
represents the bandwidth of the messages exchanged among
internal nodes. Because these messages are internal to the
processor, they do not demand link bandwidth if the sub-graph
is deployed on a single processor and hence is compressed
away from the total demand. Moreover, when partitioning
a sub-graph, the larger this factor, the larger the potential
bandwidth demand generated by such a partition. With late
partitioning, we partition composites that are more likely to
generate more bandwidth earlier when it is more likely to find
larger gaps in the network.

The bandwidth compression factor is calculated as follows.
First, partitioning of sub-graphs is done starting from the node
with higher bandwidth demand and adding the neighbors with
which it shares the highest bandwidth. The neighbor addition
is repeated until the appropriate partition size is reached. In
general, this partitioning scheme has a tendency to decrease
the bandwidth demand of the new parts (local increases are not
unusual, but the general trend is to slope down). Figure 1 plots
an idealized decreasing curve of the bandwidth demand from
the partition to other pieces. At the origin of the X axis is the
first partition when the size is small and the communication
of that small part is the largest toward all the other parts.
On the other extreme of the X axis, the bandwidth demand
drops to zero when all the composing elements have been
added to the part and all the internal communication has been
compressed away. Second, on top of this curve, a fading slope
line is drawn to simplify calculations. Finally, the area under
this line is calculated and used as the bandwidth compression
factor.

C. Cycle-Driven Late-Partitioning Bin-Packing (CLP)

In bandwidth-driven late-partitioning bin-packing, band-
width demands were used as the primary metric to deter-
mine partitions. The CLP (Cycle-Driven Late-Partitioning Bin-
Packing) scheme is designed to use the sub-graph size as
the primary determinant for making partition decisions. The
rationale is that the largest composites are likely to be allocated
early when there are multiple big gaps available in the bins.

8

size

Bandwidth demand curve

b
an

d
w

id
th

 t
o

 o
u

ts
id

e

Size

fading slope

max−bandwidth

Area = bandwidth compression

Fig. 1. Bandwidth Compression Factor

V. EXPERIMENTS

We now evaluate the above 3 schemes for their efficacy
in minimizing the number of bins and network bandwidth.
We compare each scheme against an optimal allocation. Given
the exponential complexity of finding the optimal allocation
without partitioning, our experiments are designed such that
an optimal allocation is known a priori by construction.
Specifically, we pick a desired number of bins, and for each
bin, we assign randomly chosen modules until it is nearly
full. Then, we fill the gap that remains with an object of
exactly that size. We then randomly assign communications
and message lengths among modules in the bin. Objects
that communicate become composites. This configuration now
represents an optimal packing. The workload of composites in
the configuration is then given to the bin-packing algorithms
to be deployed and their performance is compared against the
optimal (which by construction corresponds to the number of
bins = total workload and zero communication bandwidth).

A. Average-Case Behavior

For the average case, random module sizes are created.
The parameters of our experiment are:
• 1 Mbps links
• 1 GHz Processors
• Module sizes vary with uniform distribution between 1 -

45 % of the processor utilization,
• Messages bandwidth varies uniformly between 64 to

50,000 bits/s, and
• A Module load of 99 processors.
Figure 2 depicts the average over 30 runs on the number

of processors used by the different algorithms. As can be
seen, in the average case, all the algorithms behave well,
allocating only one extra processor relative to the optimal
scheme. The difference between the algorithms lies in the
amount of bandwidth used for the messages across processors.
Figure 3 depicts this difference when the message bandwidth
across modules is randomly chosen within a range from 64
to 50,000 bits/s. This large bandwidth range highlights the
difference in the allocation algorithms when bandwidth is con-
sidered. In this case, the difference between the Cycle-driven
Early Partitioning and the Bandwidth-driven Late Partitioning

Processors

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

100.2

Optimal CEP CLP BLP

Processors

Fig. 2. Average Performance - Num. Processors

Net Load (bits/s)

0

10000

20000

30000

40000

50000

60000

Optimal CEP CLP BLP

Net Load (bits/s)

Fig. 3. Average Performance - Network Load

algorithms is more than twice with respect to bandwidth
used. However, if the bandwidth is chosen from a narrow
range, the performance difference is reduced. Figure 4 depicts
an experiment where the messages are allowed to range
between 10,000 and 50,000 bits/s. In this case, the difference
between the network bandwidth allocated by the Cycle-driven
Early Partitioning and the Bandwidth-driven Late Partitioning
algorithms is reduced to about 25%.

B. Worst-Case Behavior

The experiments presented in this section are based on a
worst-case workload pattern presented in [8]. This pattern
forces a performance ratio of119 betweenBFD and the
optimal algorithm. The modules from the worst-case pattern
(assumed to be composite modules) can be partitioned and
further messages are added among the parts every time they
are partitioned (to encourage their joint deployment). Finally,
the modules are put in a list of modules to be deployed and
the deployment algorithms are run.

The objective of this pattern is to test our algorithms under
“bad” cases. We know the analytical worst case (verified
experimentally) and we also know that on average, all the
algorithms behave fairly well. Hence, we want to evaluate
them in a region of bad cases. To perform this evaluation,
an optimal module load is created and further partitioned
randomly to enable a variety of module sizes and messages

9

Net Load (bits/s)

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

Optimal CEP CLP BLP

Net Load (bits/s)

Fig. 4. Average Performance - Network Load Small Range

Fraction of Unused Processor Cycles

0

0.005

0.01

0.015

0.02

0.025

0.03

Optimal CEP CLP BLP

Fraction of Unused Processor Cycles

Fig. 5. Worst-Case Pattern- Fraction of Unused Processor Cycles

among them. Then, the algorithms are run to evaluate their
performance while deploying the modules. Thirty runs are
averaged and the following measurements are evaluated:

• Fraction of Unused Processors. This figure represents the
total fraction of processors that was unused and left idle.

• Number of Processors. The total number of processors
allocated.

• Network Message Bandwidth. The bandwidth required by
the messages sent across a network. Given the configu-
ration of the optimal module load, the optimal algorithm
does not require messages sent across the network.

Figure 5 depicts a bar chart that compares the unused
processor cycles for the Bandwidth-Driven Late Partitioning,
Cycle-Driven Late Partitioning, Cycle-Drive Early Partition-
ing, and Optimal algorithms. Figure 6 depicts the actual num-
ber of processors allocated. As can be seen, early partitioning
has an advantage both in the fraction of unused processors
and the number of processors. This is explained by the fact
that the earlier the modules are partitioned, the larger are the
gaps available to accommodate large modules. However, the
fraction of unused processors in all three cases is under 3%.

Figure 7 depicts the network load in bits per second due
to messages among modules on different processors. This
figure depicts the effect of partitioning early, i.e., it creates
a larger load in the network. On the other hand, among the
late partitioning algorithms, when partitioning is done based

Processors

97

98

99

100

101

102

103

104

Optimal CEP CLP BLP

Processors

Fig. 6. Worst-Case Pattern Number of Processors Allocated AsCompared
to 121 Processors without Partitioning

Net Load (bits/s)

0

5000000

10000000

15000000

20000000

25000000

Optimal CEP CLP BLP

Net Load (bits/s)

Fig. 7. Worst-Case Based - Network Load

on bandwidth, the network load generated is lower that when
partitioning by CPU cycles.

C. Verification of EEPBFD Improvement

We next conduct an experiment to evaluate Excess-bin
Early PartitioningBFD (EEPBFD). This experiment uses a
workload where the optimal algorithm with partitioning uses
more bins than the fluid-flow optimal. To do this, we create
an optimal load with small gaps in each processor. Then, the
number of processors for the optimal load is chosen to be
200 to aggregate the gaps into one full processor (200 ∗ 1

200).
TheEEPBFD algorithm uses a guard that avoids partitioning
modules that are> 1

3 , while acting asCEP otherwise.
Figures 8 and 9 depict the fraction of unused processors

and the number of processors allocated respectively. As can
be seen, when the excess-bin guard is used, then we are
able to save one processor with respect to usingCEP . It
must be noted that without partitioning, an additional 43
processors would be required. However, as depicted in Figure
10, EEPBFD can slightly increase the network load of the
partition.

VI. CONCLUSIONS

We have proposed a family ofpartitioning bin-packing
algorithms that can potentially partition objects to be packed

10

Fraction of Unused Processor Cycles

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Optimal EEPBFD CEPBFD

Fraction of Unused Processor
Cycles

Fig. 8. Excess-bin Partitioning - Unused Processor Cycles

Processors

199

199.5

200

200.5

201

201.5

202

202.5

Optimal EEPBFD CEPBFD

Processors

Fig. 9. Excess-bin Partitioning - Number of Processors Allocated As
Compared to 244 without Partitioning

and allocate them as smaller objects. These partitioning algo-
rithms are polynomial in complexity, but in some cases can
perform better than even optimal schemes without partitioning
that have exponential complexity. We extend the analysis
of the worst-case performance of bin-packing to prove that
partitioning components leads to a reduction in the worst-
case bounds on the number of processors required. We also
conjecture that in the worst case, one processor every 10
processors can be saved and pose its proof as an open problem.

Our analysis also leads to a new algorithm calledExcess-bin
Early Partitioning BFD (EEPBFD) that avoids partitioning
objects unnecessarily. This algorithm is extended to concur-
rently minimize both the number of processors needed for the
components and the number of links needed for the messages
across processors. Three other schemes are developed: Cycle-
based Early Partitioning (CEP), Cycle-based Late Partitioning
(CLP) and Bandwidth-compression-based Late Partitioning
(BLP). These algorithms model the software system as a col-
lection of composite components that encapsulate components
that communicate with each other. The algorithms then try
to deploy each of these composites into a single processor
and upon failure, they decompose a component into parts, and
attempt to minimize the communication among the parts. Such
parts are then evaluated again for deployment.CEP assumes
that keeping the largest components together automatically
minimizes bandwidth and hence tries to avoid the partitioning
of large objects. However, if a composite cannot be packed,

Net Load (bits/s)

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Optimal EEPBFD CEPBFD

Net Load (bits/s)

Fig. 10. Excess Partitioning - Network Load

it is immediately partitioned. BothCLP and BLP defer the
partitioning until the late stages, performing a full pass on
all components that can be deployed without partitioning.
Once there are no more components that fit available bins,
the deferred components are partitioned and deployed. Two
choices are used then to partition the objects: one based on the
CPU cycles needed by the object (CLP), and another based on
the calculated amount of bandwidth that the internal messages
require (calledbandwidth compression factor).

Finally, experiments show that, in the average case, the
three algorithms behave relatively the same. However, the
experiments for the worst-case region show that in general
CEP behaves well and uses the least number of processors.
On the other hand,BLP provides the minimum number of
links required by the system while utilizing about 4% more
processors thanCEP . These schemes allow us to tradeoff
processors against links depending on the specific needs of
the system.

Future work can prove (or disprove) our conjecture. Further-
more, the cost of partitioning in terms of processor cycles must
be accounted for. Finally, more complex hardware topologies
must be considered.

REFERENCES

[1] Take F. Abdelzaher and Kang G. Shin. Period-Based Load Partitioning
and Assignment for Large Real-Time Applications.IEEE Transactions
on Computers, 49, 2000.

[2] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Hard Real-
Time Scheduling: The Deadline Monotonic Approach. InProceesings
8th IEEE Workshop on Real-Time Operating Systems and Software,
1991.

[3] Brenda S. Baker. A new proof for the first-fit decreasing bin-packing
algorithm. Journal of Algorithms, 6:49–70, 1985.

[4] Coffman, E.G., Jr., M.R. Garey, and D.S. Johnson. Bin Packing with
Divisible Item Sizes.Journal of Complexity, 3(4):406–428, December
1987.

[5] Dionisio de Niz and Raj Rajkumar. Glue-code Generation: Closing
the Loophole in Model-based Development. InIEEE Real-time Systems
and Application Simposium (RTAS) 2004 - MoDES, Toronto, CANADA,
June 2004.

[6] Dionisio de Niz and Raj Rajkumar. Time Weaver: A Software-Through-
Models Framework for Embedded Real-Time Systems. InProceedigs of
ACM Language Compilers and Tools for Embedded Systems Symposium
2003, San Diego, CA, June 2004.

[7] D.S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973.

11

[8] D.S. Johnson, A. Demers, D. Ullman, M.R. Garey, and R.L. Graham.
Worst-case performance bounds for simple one-dimensional packing
algorithms.SIAM Journal of Computing, 3:299–325, 1974.

[9] Mark H. Klein, Thomas Ralya, Bill Pollak, and Ray Obenza.A Prac-
titioners’ Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic Publishers, 1993.

[10] C. L. Liu and J. Layland. Scheduling alghorithms for multiprogramming
in a hard real-time environment.Journal of the ACM, 20(1), 1973.

[11] Matt W. Mutka and Jong-Pyng Li. A Tool for Allocation Periodic Real-
Time Tasks to a Set of Processors.Systems Software, 29:135–148, 1995.

[12] Nir Naaman and Raphael Rom. Packet Scheduling with Fragmentation.
In Proceedings of the IEEE INFOCOM Symposium 2002, New York,
NY, June 2002.

[13] Ken Tindell, Alan Burns, and Andy Wellings. Allocating Hard Real-
Time Tasks: An NP-Hard Problem Made Easy.Real-Time Systems,
4(2):145–65, 1992.

APPENDIX

Time Weaver is a model-based development framework
for embedded real-time systems with two key contributions:
(a) the reduction of complexity in the modeling of embedded
real-time system through novel decomposition structures and
(b) the integration of analysis and synthesis algorithms to the
framework to automate design choices that together with a
code generation framework is able to produce the final runtime
system.

Time Weaver provides two key modeling abstractions to
construct the decomposition structures of an embedded system.
These abstractions arecouplersand semantic dimensions. A
coupler describes a relationship between software modules.
Multiple couplers can be added among the same group of
modules (two or more) to describe the multiple relationships
that exist among them. For instance, two modulesA and B
can be related becauseA sends data toB. In addition, module
B can also be related to another moduleC in a mutual-
exclusion relationship, i.e., only one of the two can be running
at any given time. Both of these sample relationships are
encoded with couplers in our framework enabling a module to
be involved in multiple relationships (couplings) at the same
time. Such couplings are classified into types that can be
extended as needed. Before discussing these types of couplers,
we introduce the structure of theTime Weaver components.

A. Components

Software modules inTime Weaver are known ascom-
ponents. These components are modules that communicate to
other components through ports. Ports communicate events
that represent occurrences in a component that need to be
communicated. These events can contain data and are typed.
As a consequence, ports are considered to betypedand they
are restricted to communicate a single type of event. Such
typed ports can only be connected to ports of the same type.

Components encapsulate a piece of code in an element
calledApplication Agent. The reaction of the application agent
to the events received by the component is modeled in a
transition tablethat encodes a transition for each type of event
it can receive. This transition captures the worst-case execution
time needed to process the event and the set of output events
that it generates. Inside the ports two additional types of
pieces of code are present:protocol agentsandstate managers.
Protocol agents encapsulate the communication protocol used

to send events to the ports of other components connected to
this port. Protocol agents define also a worst-case execution
time needed to run the communication protocol. Protocol
agents can be active, effectively encapsulating a thread inside.
When a receiving protocol agent (in an input port) is active,
it receives the event from the sending protocol agent and
continues the processing of the event with its own thread.

State managers, on the other hand, encapsulate a synchro-
nization protocol that behaves like an event valve, retaining or
allowing the pass of events from the protocol agent to the ap-
plication agent in input ports and the opposite for output ports.
The state managers that participate in this synchronization
protocol are from different ports from different or the same
component. For instance, to implement a mutually-exclusive
execution of two componentsA andB that receive an event
and generate another as a response, their input and output
ports are added state managers that lock a mutex (common to
all four state managers) upon arrival of an event to the input
ports and unlocks it when the output event is generated. The
synchronization protocol of the state managers is modeled in
a transition table, similar to the one used by the application
agent, that encodes the transitions that occur in the protocol.

Components have two special ports: theActivationport and
theCompletion port. The activation port can generate a special
Tick event periodically when it is set as active. The period of
the tick can be set as a port property. In addition, activation
ports can have a deadline specified to define the time when the
computation initiated by this timer is expected to complete.

The completion port receives aCompletionevent when the
computation triggered by an input event finishes. This port
is intended to be used to host state managers that need to
synchronize at the completion of the components computation.

B. Coupler Types

The different types of relationships among components are
modeled with different types of couplers. The basic coupler
types are as follows:

• Event Couplers. This type of couplers encodes commu-
nication relationships among ports.

• Synchronization Couplers. This type of couplers defines
both a group of ports to be involved in a synchroniza-
tion protocol and a state manager that implements and
models such a protocol. When ports are associated to
a synchronization coupler, copies of the state manager
specified by the coupler are inserted into such ports and
the synchronization group is set in each of these state
managers.

• Property Couplers. This type of couplers defines rela-
tionships among properties of the ports. For instance one
such a coupler can defined a common period to be used
by the activation port of two components.

• Constraint Couplers. Define restriction to be honor by
synthesis algorithms. For instance, adisjoint deployment
constraint can be associated to the replicas of a replicated
component to ensure they are deployed on different
processors enabling failure independence.

• Hardware Couplers. Describe the hardware upon which
components can be deployed.

12

These basic types of couplers can be used recursively
to create composition/decomposition structure that forms the
basis of the complexity reduction inTime Weaver .

C. Composition Structures

Components can be associated into composite components
with composite ports. To these composite ports multiple com-
ponent ports and other composite ports can be associated.
Composite ports can be coupled with event couplers. This
coupling has the same effect of connecting all the composing
ports individually. However, only ports of the same type and
opposite direction (input or output) are effectively connected.

The relationships modeled by couplers can be composed
coupling couplers with another one. Composite couplers can
definecoupling portsthat allows couplers to be defined over
such ports that can later be associated to the final component
ports. For instance, in a replication composite coupling, two
coupling ports can be defined (one for each replica). Over
these ports a synchronization coupler can be defined with a
state manager that ensures that the input events are received
in all the replicas (two in this case) before passing it to the
application agent. In addition, adisjoint deploymentcoupler
can also be defined over the coupling ports to ensure that the
components connected to such ports are not deployed on the
same processor. This composite coupler can be readily reused
in other systems as needed.

Property couplers are composed defining relationships
among components. For instance, a root period can be defined
by a couplerC0 that couples two property couplersC1 and
C2. C1 can then defined a period to be twice the period of
the root coupler andC2 can define its period to be half of the
roots period.

Finally, hardware couplers are composed with two purposes.
First, these couplers are used to describe the communication
hardware such as a network connecting two processors. Sec-
ondly, the hardware couplers are also used to describe com-
munication scopes. Communication scopes identify groups
of connected ports (with event couplers) such that all the
members of the group are connected only to other ports also
associated to this scope. For instance, consider two processor
couplersP1 and P2 that are coupled by a network coupler
N1 and two componentsC1 and C2 associated to (coupled
by) P1 while a third oneC3 is associated toP2. If the port
C1.out1 is connected toC2.in1 andC1.out2 is connected to
C3.in1 then port group consisting of portsC1.out1 andC2.in1

belongs to the communication scope defined byP1 while the
port group consisting of portsC1.out2 and C3.in1 belongs
to the communication scope defined byN1. Protocol agents
are added to hardware couplers to specify the communication
protocol to be used by the ports in their communication scopes.
For instance a TCP protocol agent associated toN1 would
change the protocol agent in portsC1.out2 and C3.in1 for
TCP protocol agents.

D. Semantic Dimensions

The multiple types of relationships couplers can model
can belong to different aspects (functionality, fault-tolerance,

timing, etc.) of the system. For this reason, our framework
separates these types of couplers into different views each of
them focusing on a single aspect. These views can be modified
independently from the user point of view. The realizations
of these views, however, do interact on the target platform
since they consume common resources and impose constraints.
These interactions can also be captured during model construc-
tion and resource demands mediated during platform deploy-
ment. Given the automatic resolution of conflicts these views
have stronger semantics and are calledsemantic dimensions.
Our framework defines a set of basic semantic dimensions for
embedded real-time systems and enables de addition of new
dimensions.

E. Glue Code Generation

Time Weaver has a glue code generation framework that
links the executable code inside the executable elements of
the components (application agents, protocol agents, and state
managers) to build the final running system. In this framework
it is possible to define one target programming language per
process, assuming that an implementation in this programming
language is available for all the executable elements of the
components attached to this process. Optimizations to this
code generation has been implemented, the most effective been
based on graph reinterpretation when components are assumed
to be data flow components [5].

F. Analysis / Synthesis

Analysis and synthesis are two key capabilities ofTime
Weaver . It is able to generate a timing model that can be
exported to timing analysis tools such as TimeWizR©. Synthe-
sis algorithms are a central part of our framework to automate
design decisions in an optimal or near-optimal way. In this
paper we present our extensions to bin-packing algorithms to
synthesize the mapping of components to hardware.

