Partitioning Bin-Packing Algorithms for Distributed
Real-Time Systems

Dionisio de Niz and Raj Rajkumar
dionisio@cs.cmu.edu, raj@ece.cmu.edu
Real-Time and Multimedia Systems Laboratory
Electrical & Computer Engineering
Carnegie Mellon University

Abstract— Embedded real-time systems must satisfy not only software-defined radlomodel presents a functional view to
logical functional requirements but alsopara-functionalproperties the signal processing engineers to compose the mathematical
\S}\L/Jghh ;vse térgsgflepsfa Surﬁg%’eloéafgg‘”;%l (S:”Sé)mi;r;d V(/ee":\?e”r'ty- transformation of signals in order to modulate/demodulate
which enables the modeling of functional and para-functional them. A second view model_s the Fault-Tolerance (_F_T) struc-
behaviors of real-time systems. It also performs automated ture (calledFault-Toleranceview) and can be modified by
schedulability analysis, and generates glue code to integrate thethe FT expert. In this second view, the FT expert defines
final runtime executable for the system. Its extensive glue code which functional modules should be replicated to tolerate
generation capabilities include the ability to insert inter-processor faults, how to synchronize their execution such that their

communications code at arbitrary software boundaries. In other . ¢ | state d t deviate f th d h
words, from a functional point of view, a software component Internal State does not deviale irom one another, an ow

may be viewed as a single logical entity but from the tool point of t0 ensure failure independence (e.g., by deploying them on
view, the component can be partitioned into two or more pieces different processors). A third expert, the Real-Time (RT)

running on different nodes. This capability opens up many dif- Systems expert, can be working onTaning view defining
ferent possibilities to map (partitioned) software components to timing relationships among components (e.g. how the rate of

hardware nodes. The objective of this deployment is to minimize " f t relates to that of th Anoth
hardware requirements while satisfying the timing constraints of €X€cution of a component relates to that of another). Another

the software. The classical approach to addressing this problem is important view in our tool is the deployment view, where
to use bin-packing techniques. In this paper, we studyartitioning the hardware is described and the deployment of software

Bin Packing an extension to bin-packing algorithms to exploit the to hardware is modeled. The tool automatically projects the
capability of partitioning software modules into smaller pieces. impact of changes in one view to the others. For instance,

We analytically show that the number of bins required can be the additi f t in the functi [vi .
reduced. We also evaluate a number of heuristics to minimize not '€ addition of a new component In the tunctional view IS

only the number of processors (bins) needed but also the network Propagated to all the other views (Timing, Fault-Tolerance, and
bandwidth required by communicating software modules that are Deployment), the replication of modules is propagated to the

partitioned across different processors. We find that a significant Deployment view to be able to deploy the new replicas, and the
reduction in the number of bins is possible. Finally, we Show iming relationships among components are propagated to the
how different heuristics lead to different tradeoffs in processing . .
vs network needs. deployment view to evaluate whether the available processors
have enough cycles to execute the software within their timing
constraints. This automatic synchronization across the multiple
views gives these views strong semantics, and hence we refer
to them assemantic dimension®©nce the multiple concerns of
I. INTRODUCTION the system and their mechanisms are modeled in the different
views of the tool, the final executable code of the system
Embedded real-time systems are tightly coupled with tlean be automatically generated, integrating the functional code
physical world. This tight coupling imposes para-functionakith the code for the specified para-functional behaviors.
requirements (such as timeliness, jitter, fault-tolerance, andin order to be effective, model-based technology must take
security) that go beyond functional (logical) behaviors. Wihe design decisions down to the running code. One of the im-
have developed a model-based embedded system devefsptant decisions in the design of distributed real-time systems
ment tool calledTime Weaver [6], which provides new is the allocation of software modules to hardware nodes. Given
abstractions that enable the modeling of both functional agige constraints and cost sensitivity of many embedded systems,
para-functional behaviors. Each functional behavior and patais allocation must reduce hardware costs while satisfying
functional behavior is captured in a separate view. Each view the functional and para-functional requirements of the
focuses on a single concern enabling a domain expert (ea@plication. The automatic assignment of software modules
a signal processing expert, a control system expert, a re@r tasks) to hardware nodes is the focus of this paper.
time systems expert, a fault-tolerance expert) to focus on
the concern of her expertise. Interactions among the muItipIeA software-defined radio is a radio that implements the modulation and
views are automatically handled by the tool. For instance,damodulation of radio transmissions in software.

The traditional approach to allocate software modules twer the years. However, these solutions assume that objects
hardware nodes is to use a bin-packing scheme (or its cousire independent of one another (e.g. software modules do not
load-balancing). For example, tools such as RapidRMA frooommunicate) and hence have limited practical application. In
Tri-Pacific Corporation and TimeWiz from TimeSys Corporathis paper we present our extensions to bin-packing algorithms
tion support various kinds of bin-packing and load-balancirntg allow partitioning of software graphs to minimize the num-
techniques. These techniques are appealing because (a) tegyof processors needed to run the system while attempting
perform well in practice in reducing the number of binso reduce the network links needed (due to messages across
required, and (b) they are computationally efficient. Howeveasrocessors) as much as possible. A formal analysis of these al-
these techniques and tools generally treat each software mgorithms proves that the worst-case behavior with partitioning
ule as an unbreakable entity with each being deployed as omproves over the worst-case behavior of previous solutions
piece. In this paper, we show that the flexibility to “partitionthat did not allow partitioning. In particular, we show that in
a software module across two or more processors can lead the worst-case we can save at least two bins. We conjecture
(sometimes significant) reduction in the number of processdhat the worst-case behavior is improved significantly more,
needed. We provide both analytical and simulation results. Abdt leave it as an open problem. A new algorithm, derived
alytically, we show that the number of processors (“bins”) canom the formal properties is also designed. In addition we
be reduced in the worst case. Our simulation approach shgeesform several experiments to evaluate their average-case
that our heuristics work well in practice. For instance, we shoperformance and explore the “bad” cases. In these cases, we
cases where our approach needs only 201 processors wherotiserved a difference against the non-partitioning scheme of
classical approach requires as many as 244 processors. over 20% (i.e. 20% of the processors were saved out of 244).
Furthermore, our polynomial scheme is near-optimal in that it
incurs only an average difference of just 4% over the optimal
scheme which requires an exponential amount of computation.

In our allocation scheme, we model the software asIa summary, the partitioning scheme improves both the worst-
directed acyclic graph of modules that communicate throughse and average-case behavior of bin-packing, and is near-
messages. Modules are characterized as consuming CPUaptimal despite its polynomial complexity.
cles (periodically) and messages as consuming bandwidth (bits
per second). A second graph is used to represent the hardwar
architecture. In this graph, the nodes are processors and efReIated Work
works, and the links represent connectivity among them. (WeMultiple research efforts have been conducted relating to
assume only simple hardware architecture graphs such as lsleployment of software modules to hardware. We discuss
based or switch-based networks.) Processors are considerdoeiow the most representative among these studies. Additional
provide a processing capacity expressed in cycles per secoegkarch with useful results on bin-packing will be discussed
and networks are considered to provide a communicationthe context of our analysis in Sections Il and Il1.
capacity in bits per second. Given these two graphs, theln [1], Abdelzaher et al. propose a period-based load par-
allocation problem is posed as a packing problem that assidit®oning scheme that minimizes a metric called thystem
modules to processors and messages to networks (whenhheard which is defined as the maximum response time
communicating parties are not on the same processor). Waong all tasks. These tasks are real-time tasks with prece-
also assume that the Earliest Deadline First (EDF) schedulidgnce constraints and dependent execution times. A branch-
algorithm [10] is used. When an object is partitioned anaind-bound algorithm was developed to cluster hardware nodes
deployed on two (or more) processors, any timing constraiand software modules with the objective of performing an
that applies to the object must now span those processors. Tilerarchical allocation that minimizes the system hazard. In
choice of intermediate deadlines and related latency issues @atrast, our work does not minimize the system hazard but
outside the scope of this work. However, our approach can thee number of processors needed for a specific software graph.
extended in rather straightforward fashion to include classidaur work, however, does verify that enough CPU cycles
real-time scheduling techniques to deal with these issuese allocated to software modules to honor their deadlines
When an object is partitioned across multiple processors, @ssuming an EDF scheduler).
assume that a communication bandwidth requirement may ben [11], Mutka and Li presented a tool to allocate real-time
imposed between the parts of the objects. However, we assumasks to processors. Their tasks are modeled as independent
that no timing penalty is incurred in terms of execution timeasks and a fixed-priority scheduler with RMS [9]. A branch-
(i.e. object size) due to the partitioning. An “inflation factor'and-bound algorithm is used to find a feasible allocation. In
to account for this overhead can be added later if necessagur scheme, we allow components to have communication

The ideal objective of the packing problem is then to use tliependencies.
minimum number of processors and network links to deploy In [13], Tindell et al. developed a simulated annealing
a software graph. We can think of this problem as the genedfgorithm for real-time task allocation. Tasks communicate
problem of packing a list of objects into the minimum numbewith each other using a token protocol and the task’s deadlines
of bins. This generic problem is known as bin-packing. Thare modified to take into account the delay of such commu-
optimal solution to this problem is known to be NP-completeication. Audsley’s [2] response time analysis was used to
[8] but multiple near-optimal algorithms have been studiechlculate the “energy” component of the algorithm. In our

A. Our Approach

case, we assume that the deadlines have already been adjudgsiyned. The most popular and best understood is Best
for any delays due to dependencies and focus on the allocatién Decreasing BFD). This algorithm orders the objects in
of software to processors and messages to networks. decreasing order of size and the bins in increasing order of
Related to bin-packing, an algorithm to allocate divisiblavailable space (gapsBFD then tries the allocation of the
objects to bins was developed in [4]. However, the size {ifst object in each of the bins in order. This scheme has two
the objects are restricted to be in a special divisible sequenatyibutes. One, it assigns the largest objects first when it is
where the size of objeat; is divisible by the size of object more likely to find a larger gap. Twd3FD seeks to leave the
02, Which in turn is divisible by the size of objeat and so on minimum gap possible by assigning the largest object to the
and so forth. Such a restriction makes this approach difficgitnallest gap that accommodates it. This second attribute is the
to apply in practice. Our work does not have this restrictiopasis of the less complex algorithm called Best BF).
and allows components to be partitioned iatay size. Other less complex algorithms such as First Fit and First
In the networking arena, Naaman presents in [12] a bifit Decreasing have also been used for bin-packing. First Fit
packing algorithm to fit packets into a TDMA network. Thes€FF') does not order the bins or the objects, and assigns an
packets can be fragmented but the fragmentation adds abject to the first bin where it fits. First Fit DecreasinghD)
overhead factor representing the additional bits that need toibean improvement on FF where the objects are ordered in
sent. The purpose of the algorithm is to pack network packetscreasing order to reduce the gaps in the processors. We
compactly, avoiding fragmentation as much as possible. Eveill not use these two algorithms because the worst-case
though this work also deals with object partitioning, in ouperformance ofBFD is better thanF'F' (as we will discuss).
case, we formally analyze the improvements on the worst-cdeethe analysis of these algorithms, we will ud&'D when
performance of bin-packing algorithms due to partitionindhe properties discussed apply to ba##'D and FFD, and
assuming that such partition does not impose any overhead’F' when they refer to eitheBF or FF.
Our framework is designed to support distributed real-
C. Organization of the Paper time systemsl, wherg software modules on one processor
. , _may communicate with modules on other processors. If such
, The rest of the paper is org.amzed as follows. Section ébmmunicating modules can be assigned to the same processor
introduces the most pppular b|n-'pack|ng schemes and't.h Eacomposite one), their communication requirements across
performance characteristics. Section Il pr_esents our part|t|o_ network will be minimized or even eliminated. However,
ing schemes, and _analyses some of their properties. SEClol o modules that communicate with each other may fit
IV presents extensions to our schemes to reduce the netWﬁ)ﬁ|6 the same processor. Furthermore, due to the (recursive)

bandwidth requirement due to communicating modules qgﬁcapsulation of software components into composite ones,
ployed on different processors. Section V provides evaluatlglach component can became potentially large in size, to

results of heuristics based on the analyses. Section VI presepls ayient that it may not fit into one processor. The bin-

the gonclud|r_lg _remarks. l_:mally, in the appendix, we IorOVIO‘&icking scheme will therefore fail for such large objects. We
a brief description of ouffime Weaver tool. avoid these problems by allowing objects to be partitioned
(or split) into smaller objectsdown to individual elementary
Il. BIN-PACKING ALGORITHMS components if required. In this section, we will propose some
Our deployment algorithms are based on a new paradigmtensions to bin-packing schemes to deal with partitioned
that may “partition” software modules into two or more piece®bjects, and will analyze their worst-case performance.
In practice, partitioning pieces will lead to communication For these schemes we make the following assumptions.
code insertion at the partitioning points. We have built Birst, each bin is assumed to be equal to 1. Secondly, each
model-based design tool for embedded real-time systepisiect ranges in size from 0 to®.1Finally, if an object is
called Time Weaver . With Time Weaver , communica- partitioned, the sum of its parts equals the size of the original
tions code required to connect a partitioned object can be autbject.
matically generated. Also, both functional and para-functional
behaviors can be verified with the assistance of built-in @&. Performance of the Basic Bin-Packing Algorithms

external analyses. Hence, object partitioning to reduce thepjfterent authors have analyzed the worst-case performance
number of processors (“bins”) is a very desirable objective.ot pin_nacking algorithms. To define this performance, John-
Our partitioning algorithms are derived from the traditional, [7] uses*F (L), BF (L), FFD(L), and BFD(L) to denote
bin-packing algorithms. Bin-packing algorithms try to solVgne \orst-case number of bins used by each of these algorithms
the problem of packing a set of objects into the miNiMuR, accommodate a list of objects to be assigned. Similarly,
set of bins. In the basic version, the maximum size of ea?F'FD(L) denotes the number of bins used by any of these
object is 1, and each bin is of size 1. A bin can be filled withgrithms. In additionL* is defined as the optimal (minimal)

objects until the total size of all the objects in the bin sum U\ mber of bins to accommodate the It The performance
to 1. Objects cannot be partitioned and must be allocated as

whole. Previous research [8] has already shown that findingThe compositing of components into larger ones is a software abstraction

the minimum number of bins to pack a set of objects (namei?signed to enhance reuse and facilitate the construction of systems of
. . - . Systems.

the b'”'PaCk'”g prpblem) IS NP-compIete. HOW.everv multipl SLarger composites are assumed to have been already partitioned to sizes

near-optimal algorithms of polynomial complexity have beelass than 1.

of an algorithm is then defined as the ratﬁé@ﬁ where was partitioned. We therefore avoid the premature partitioning
(alg) can be replaced by any of the algorithms. The maximuof objects by initializing the bin-packing scheme differently
value that this ratio can achieve over all lists witti = k£ (but equivalently). Specifically, we pre-allocate bins such that
is represented byR(,;, (k). The worst-case performance ighe sum of the capacity of these bins[i®ad]|, whereload
then defined adimy,_.oc R(q) (k)*. These ratios are achievedis the sum of the sizes of all the objecfoad] represents
for small values ofk, and so their asymptotic results cara lower bound on the number of bins required. One of two
be applied to all values of. These ratios effectively define potential partitioning schemes will be used:

an upper bound on the worst-case performance of these) garly Partitioning. This scheme partitions an object

algorithms. immediately if it does not fit into any of the pre-allocated
. i?hr:son et al. [8] proved that the bound f6f" and BF bins. The goal is to partition the largest objects as early
is 171" 42 and Johnson [7] proved that the bound f6f'D as possible when there is a higher likelihood of finding

and BFD is 4 L* + 4. Later, Baker [3] reduced the bound larger gaps.
for FFD and BFD to 5 L* + 3. Some of these proofs tend) |ate Partitioning. This scheme defers the partitioning

to be very long (some exceeding 75 pages). We will use — of the objects that do not fit into any of the bins until we
selected theorems and lemmas from these proofs as a basis are done deploying all the objects that can be deployed

for analyzing our partitioning schemes. without partitioning. The goal of this algorithm is to
ensure that we deploy the largest number of objects
lIl. BFD WITH PARTITIONING (PBFD) without partitioning to try to minimize the penalty of

When objects are partitioned, communication needs are the partition, i.e. communication between processors.

likely to be introduced between components assigned to dif-must be noted that if we are able to accommodate all the
ferent processors. Therefore, in addition to the classical bighjects in the pre-allocated bins, then our algorithms behave
packing objective of minimizing the number of processor§ke vanilla BFD.
one can also seek to minimize the network bandwidth acrossrhe pBED algorithm can be summarized as follows. First,
processors. We refer to this multiple objective problem as\ge pre-allocate a number of bins equal[toad] as discussed
BFD packing problem with partitioning{BFD). Mathemati- apove. Secondly, the allocation order BFD is followed.
cally, each software component can be considered to be a neg.cifically, we order the bins by non-decreasing order of
in a graphG' with an edge added between two nodes if thgaps and try the deployment of composites in decreasing
two nodes represented by these nodes communicate. Th§er of size. Thirdly, if partitioning is needed (as defined
each connected graph component is treated as a compagifethe partitioning scheme in use) the selected composite
object that can be partitioned and assigned by the bin-packiggpartitioned into two parts that can be fit into the largest
scheme. gaps$ available. If this partitioning is possible, these parts are
In classical bin-packing, bins are of unit size. One starfstumedto the list of objects to be deployed and the list is
with (zero bins or) 1 bin and additional empty bins are addggdordered (in descending order of object/piece sizes). In other
when necessary. In our context, adding bins on demand &g#rds, the object is partitioned but instead of being deployed,
lead to unnecessary and premature partitioning of objedige pieces are added to the list of objects to be deployed. If,
For instance, consider a list of objec{s,z,y,2} to be on the other hand, the composite cannot be partitioned into
deployed with sizeg(0.6,0.6,0.2,0.2) in that order. If we parts that fit into any gap, then a new bin is added, and the
add bins on demand, we would start with a single bin ynpartitionedcomposite is assigned to the new bin. Finally,
and allocate objectv of size 0.6. At this point, we would the deployment continues until all objects have been assigned.
consider objectz and decide that it does not fit in by \e now show that the partitioning schemes improve the
and, since we do not have another bin, we proceed to Sljbrst-case performance of the bin-packing algorithms.
the component, perhaps in halves and z, putting them \ye first prove that the worst-case performance of bin-
back in the list (w1, z2,y, 2}). Now, the next object:; can packing algorithms XFD can be improved when objects
be assigned to bih;. Assuming that no other object can b pe partitioned into two paftsvhose sizes are below a
partitioned, we would need to allocate a new birto continue {hreshold value. We then prove that even when the two parts
with the deployment. This bin can now hold the rest of thgre partitioned into equal halves, this improvement holds.
objects in the list {x2,y,z}), leading to an assignment as pamark: Some aspects of the worst-case analysis may be
follows: by = {w,@1},b2 = {x2,y,2}. Now, if instead of g5newhat confusing at first. The theorems on bin-packing
allocating bins on demand, we start with two bibis and 50,5 only on theworst-casebehavior of the algorithms,
by. Next, we can allocates and = to each of these bins. 5 getermine the sizes of the objects that play a key role
Then, allocate objecty and z to bins by and b, leading i, jncreasing the number of bins required for packing as
to the assignmenty; = {w,y},bo = {z,z}. The resulting oynared to (say) the optimal algorithm. A similar behavior
network bandwidth requirement is zero given that no objegtanifests with partitioning bin-packing. Objects must satisfy
4t turns out that a higher ratio can be achieved for lists that can be pack%(ame constraints on size to increase the number of bins

in two or three bins. However, this is deemed to be a special case that is

not reproducible in larger lists where an automatic algorithm is likely needed.>One just has to compare the parts with the largest gaps available.

This observation long made by bin-packing studies (e.g. [8]) also leads us t¢Partitioning into more pieces is just an extension to this assumption given
focus on lists of a large number of objects. that the resulting pieces can be partitioned later into pairs.

required. For arbitrary lists of objects whose sizes do nligt L that exhibits the worst-case performance must have a
satisfy these constraints, the number of bins required Woui'[te% <z < %
be better in relation to the optimal algorithm. With this fact, we can formulate the following new lemmas.
We consider a family ofPBFD algorithms where we start Lemma 3.4:In any listL such thatX D (L) = L*+n with
with an initial number of bins equal tfload]. We refer to n > 1, the largest element;-; in bin L* +i, 1 <4 <n, in
these bins created at initialization time as fhémary bins. the packingPxrp is less than or equal té.
New bins are added only when the next object to be allocated Proof: Suppose that we are currently assigning objgct
(even after partitioning it into two parts) does not fit into anyf a; is the first object assigned to b, -, in XFD, then it
available gap. We refer to these bins as thpplementary means that it does not fit in any bis; for j < L*+ 1. It also
bins. To prove the worst-case behavior of our schemes, weeans that,. > a;|r < i. Hence, all objects deployed on this
first restate some lemmas, facts, and theorems from previeusl any subsequent bin would be less than or equa).tds
authors and develop some new ones. aresult, a listL’ = L\a;|j > i exhibits XFD(L') = L* + 1
Johnson et al. [8] proposed the following lemma to prowith a; as the only element in biB.-.;. Hence, by Fact
that small objects can be disregarded without modifying tfe3 we know that; < and we know that every subsequent
worst-case behavior of bin-packing algorithms. We use tt#®jecta, < a; so binsBr-; for 1 < i < n can only have
following notation as defined and used by Johnson to minimigjects< 3. [
ambiguity: Lemma 3.5:In any list L such thatL* = [} a;], all

« I denotes the list of objects to be packed objectsa; partitioned by PBFD are smaller than or equal

o L* denotes the number of bins used by the optim&? %
packing algorithm (theoretical) to pack likt

« L\z denotes the deletion of objectfrom list L,

o P denotes a packing of a list of objects,

« P* denotes the optimal packing of a list of objects,

« a; denotes the size of objeét

o B; denotes bin, and

e B, denotes the last bin of the packing as ordered tﬁg
BFD.
As stated earlief?F(L), BF(L), FFD(L), andBFD(L) aPove lemma.

denote the worst-case number of bins used by each xample: Consider three objects each of size 0.51. We have
[

these algorithms to accommodate a listof objects to ai = 2. However,no non-partitioning spheme including .
be assigned. SimilarlyXFD(L) denotes the number Ofthe optimal sgheme can use Ie.ss than.3 bins. In coqtrast, with
bins used by any of these algorithms. PBFD, we will start with 2 primary .b|ns and t'he flr_st two
. . objects will be assigned to those 2 bins. The third object will

Lemma 3.1:Suppose L is a list such thaXFD(L) > then be partitioned into two pieces of (say) sizes 0.49 and 0.02
rL* +d with r,d > 1. The list L' = L\zlz < "' als0 ng assigned to the two primary bins respectively. In other
has XFD(L') > rL™ +d. words, PBFD can do better than the optimal non-partitioning

Proof: Let P be the packing ofL. and P’ the packing gscheme! (We will return to this in the next section).

of L" using K and K’ bins respectively. Ik > K’, then no Remark: Note that Theorem 3.5 applies only whérn =
element in the last bin aP can be larger thafi—*, and hence [Sa;]. It is not always true thatL* = [Y a;] as in the
all but the last bin must have levels exceedingsince neither example above. This implies that whéri > [3" a;], PBFD

fit in & previous bin. ThusL* > 3 a; > (K — 1) and S0 ahove example. In these cases, the performance of PBFD will

lemma is proved. _ _ _ _ = Lemmas 3.4 and 3.5 allow us to state our theorems about
Corol2lary 3.2: Only lists L with objects of sizes in the the worst-case behavior of partitioning schemes. In these
range(7, 1] need to be considered for the worst-case analysifeorems, we prove th&BFD can save bins thaé#D would

Proof: By the definition of PBFD, any object that fits
into the primary bins is not partitioned. Hencdlif = [a;],

then the number of primary bins is equal Id. Therefore,

all the objects that are partitioned would have been allocated
by BFD into bins Br-4;,7 > 1. By Lemma 3.4, any object
allocated byBFD into a bin Br«,;,7 > 1 is smaller than or
ual toz. n

Let us consider a simple example before interpreting the

of XFD. require. A generic theorem is stated for partitions of any size
Proof: This follows from Lemma 3.1 and by the boundand a special case for partitioning in halves.
of XFD(L) = % L* + 3 proven by Baker [3]. B Theorem 3.6:For all lists L such thatBFD(L) > rL* +d,
Based on Corollary 3.2, Baker in [3] states the following > 1, if list L’ is a copy of the original lisL. with every object
fact: in Bys partitioned into two parts; andxy with each part
Fact 3.3: In an XF'D packing P of list L, if the size of being less than or equal t’e;—l then BFD(L') < rL™ +d.
the smallest object in L is ; >« > 1, then pieces of size Proof: By Lemma 3.1, ifBFD(L’) > rL"™ +d then for

greater thar(1 —z) that, in turn, are greater thapare packed a list L” = L'\z|x < *=1, BFD(L") > rL"* + d should
alone in bins in bothP and P*, while the remaining pieces, hold, meaning that such objects do not contribute to the worst
which are of size at mos%, are paired in bins of botl? case. But we know that < %1 for x € Bj,s: and such
and the optimal packing* (except for a possible odd piece);a bin only contains this kind of objects, meaning that this
henceXFD(L) = OPT(L). So the smallest objeat of any last bin was freed in packing’zrp. Hence, it must be that

BFD(L) < rL™ +d. B to 0.25 + 0.7 = 0.95) and allocates them in a bin, using
Note: As mentioned, Baker [3] showed th&FD(L) > 10 bins to accommodate them all. Then, it creates pairs of
%L* + 3, i.e. we haved = 3 above. Since the statement obne object of typex” and one object of typé (adding up
Theorem 3.6 requires only thdt> 1, it can be applied twice to 0.35 + 0.6 = 0.95) and allocates them in a bin, using 10
with partitioning untild = 1. In other words, two processorsbins. The last bin is then assigned the only object of $ide
can be saved even in the worst-case configuration of Baker fpally, the fluid-flow optimal would have the same packing
using PBFD. as the optimal with partitioning for the first 20 bins. However,
Theorem 3.7:In any list L such thatL* = > a; and the last object of sizd.0 is split into 20 fragments of size
BFD(L) > 19—1L* +d with 4 > 1, if all the objects of any 0.05" and puts these fragments into each of the initial 20
one binBy-; for i > 1 is partitioned into halves, then thebins, leading to a packing with onlg} ; = 20 bins. Contrary
bin can be freed. to the optimal bin packing with partitioning (that does not
Proof: By Lemma 3.5, all the objects that are partitionethcur in any penalty for partitioning) our algorithms avoid
are smaller than or equal t@. Hence, if we split them in partitioning objects as long as they fit into a bin to prevent
halves, each would be of size x < é < 12—1 By Lemma 3.1, the creation of messages across processors. This behavior and
we can delete them and free up that bin. m the decreasing order (by size) of BFD lead to the partitioning
of the smallest objects. However, these algorithms can still
A. Redefining Optimality With Partitioning partitiqn objegts that are still toq big to be accommodated in
, , , the primary bins. Another algorithm calldgéixcess-bin Early
We now introduce the novel view that different levels op,iioning Best-Fit Decreasings specifically designed to
optimality can be defined in solving the bin-packing problemy iy preaking objects that could produce fragments too big

Specifically, when partitioning is allowed, three different opry pe accommodated in the primary bins. We describe this
timal packings can be defined: algorithm next.

+ Fluid-Flow Optimal (L3};). This refers to an ideal

but impractical packingP;, if all the objects can be B, Excess-bin Early Partitioning Best-Fit Decreasing
partitioned into arbitrarily fine-grained sizes that couldgEpPBFD)

be perfectly accommodaied leaving no gaps exceptin theyq refer to bins that are allocated in addition to the number
Iast_bm. In. other Wor(.j.SLf.f - [Z*aﬂ' . of bins allocated by the optimal algorithm with partitioning
* Opt'lmal W'th.OUt Ij:artmonmg. (L7). This refers t.o. the (i.e. in excess ol.;) asexcess binsThis definition allows us to
op'glmal pa_lckmgP when objects_ cannot_be part'_t'oneddefine a new partitioning algorithm that limits its partitioning
This pa_cklng could Ieave_gaps |n_the plns but it erIOI8nly to objects that would have been allocated to the excess
the minimum numbe_r of bins possible given a Usthut bins by the optimal packing. Specifically, this algorithm limits
no paruuomng of o_b;ec_ts. y . its partitioning to objects of sizes % In other words, if the
* Opt'lmal W'th. Par*tlt!onlng (L.P)' This refers to the algorithm runs out of primary bins, it will partition an object
Op'.“mal packing 7, 'f. each. object can be. broken Intothat does not fit into any gap only if its size;ﬁ% and would
a f|n|t(_a set of pre-defined SIZ€S. Thls packmg Coglq Ie%@%t the pieces back into the list to be packed. Otherwise, it
gaps In ary or all of Fhe bins but it yields the MINIMUMyi)| allocate a new bin and allocate the object to that new bin.
number. of bins possible under the allowed partitioning Theorem 3.8:In any list L such thatBFD(L) > L L* +d
constraints. for d > 1, if all the objects partitioned by EPBFD 9are split
The relationship between the above optimal packings is thathalves, then it will save at least one bin.
L3y < L < L*. Let us illustrate this relationship with an proof: Given that all the objects partitioned WEzPBFD
example. In this example, we only represent objects by thejfe < 1, then their halves arec ¢ < 2. By Lemma 3.1,
size (all sizes are less than one and all bins are of size Jk can delete these halves. By Lemma 3.4, we know that all
and composite objects by a list of the sizes of the composigg@cess bins will have objects : and therefore partitioning

objects. For instance(0.5) represents an object of size 0.%| the objects that fill up one bin will free up this bin. m
that cannot be partitioned. Similarly0.3,0.1) represents a

composite object of total size 0.4 which can be partitioned, Conjecture about PBFD
into two pieces of sizé.3 and0.1. Now, consider an object
list L with 10 composites of type = (0.25,0.6), 10 objects
of type b = (0.35), 10 objects of type: = (0.7), and 1 object
of type d = (1.0). The optimal packing without partitioning
yields L* = 26, allocating one bin for the object of type
d, one bin for each of the objects of type (10 of them),
one bin for each of the objects of type(10 of them), and
five bins for objects of typé (with each bin containing two
objects of typé). The optimal packing with partitioning yields
L, = 21. This packing partitions objects of typeinto objects
of typesa’ = (0.25) anda” = (0.6), then creates pairs of
one object of typea’ with an object of typec (adding up 7Fluid-flow is allowed to partition into arbitrary sizes.

There are several degrees of freedom in designing a parti-
tioning bin-packing scheme of polynomial complexity. These
degrees of freedom include the number of bins a scheme starts
with, the points when a new bin can be added, the partitioning
choices for an object, and the sizes of partitioned pieces of an
object. In other words, there is a large family of partitioning
bin-packing algorithms.

We now make the following conjecture that the worst-
case performance of partitioning bin-packing algorithms is
significantly better than that of BFD schemes.

Conjecture: PBFD(L) > X L* + k wherek > 0. B. Bandwidth-Driven Late-Partitioning Bin-Packindg(P)

In other words, we believe that an appropriate partitioning o) _ _ o
bin-packing scheme can go beyond reducing the constanf € Objective of this algorithm is to minimize both the
factor, and reduce even the worst-case proportional fractiBimPer of processors and link capacities. To achieve this,
4 to L0 relative to an optimal non-partitioning scheme. Not¥® 90 through the processors in decreasing order and fil
that our conjecture characterizes tiverst-caseperformance ©ach one as much as possible. To fill the processors, the
of PBFD. We already know that PBFD can actually perforoftware graph is divided into disconnected sub-graphs. These

better than even an optimal non-partitioning scheme in sorféP-graphs are deployed in decreasing order of size until no
cases as shown in an example earlier. more sub-graphs can fit into the processors. At that time, we

select a sub-graph and partition it into further communicating
sub-graphs, adding the pieces back to the list of sub-graphs

D. Summary of Theoretical Results to be deployed. We use the following efficient heuristic to
We now summarize the three theoretical results presentgidk the sub-graphs. The selection of the sub-graph to be
in this section. partitioned has the purpose of reducing the size of the graph

First, we proved thaPBFD can save the bins in excess otut (which represents the bandwidth requirement between
%L* + 1 with respect toBFD in the worst case. We prove patrtitions). To perform this selection, we mark each sub-graph
this for the general case when the objects in the bins beifa creation time) with dandwidth compression factdahat
saved can be partitioned to sizes less than or equa}tdn will be described shortly. The bandwidth compression factor
the average case, the savings can be much higher as willrbpresents the bandwidth of the messages exchanged among
seen next in our experiments. internal nodes. Because these messages are internal to the

Secondly, we showed that when the sizes of the objects arecessor, they do not demand link bandwidth if the sub-graph
strictly partitioned into equal halves, the processor savings still deployed on a single processor and hence is compressed
hold. away from the total demand. Moreover, when partitioning

Thirdly, we showed that if we limit the partitioning toa sub-graph, the larger this factor, the larger the potential
objects of sizes less than or equal §0 at least one bin can bandwidth demand generated by such a partition. With late
be saved. partitioning, we partition composites that are more likely to

Finally, we also conjectured that the worst-case performangenerate more bandwidth earlier when it is more likely to find
of a partitioning bin-packing scheme can be significantly bett&rger gaps in the network.

than that of a classical bin-packing scheme. The bandwidth compression factor is calculated as follows.
First, partitioning of sub-graphs is done starting from the node
IV. BANDWIDTH MANAGEMENT with higher bandwidth demand and adding the neighbors with

The partitioning of objects that PBFD performs does car

Pghich it shares the highest bandwidth. The neighbor addition
a cost: the bandwidth of the messages sent between the pI

rtrsepeated until the appropriate partition size is reached. In

a composite was broken into. In this section, we extend t gngrala th:jsthpgrtltlon:jngf?ﬁheme hasi altencli(_ancy to decreascta

basic PBFD algorithm to minimize the number of partition € bandwi emand ot the new parts (loca INCcreases are no
usual, but the general trend is to slope down). Figure 1 plots

needed, and if possible the bandwidth generated by such. ! i :
" e o - . an idealized decreasing curve of the bandwidth demand from
partitions. Specifically, we present variations of bin packm\% partition to other pieces. At the origin of the X axis is the

schemes guided by our earlier analysis to take into acco L artition when the size is small and the communication
the bandwidth that partitions generate. The design of thed thpt - ”W tis th IZI ! - d all th thu ! It
schemes is followed by its empirical evaluation. We start t g that small part 1s he largest toward all he other parts.

discussion with the early partitioning approach and follow | rrc])ptzetoOt;:rroe\)/(vt;Zr:ealcl)ft:e]:ecﬁn?:)(l)ss,irtgee?:r:(;\gtlgt?la(\j/eemt?enedn
h ign of late-partitioning algorithms. . o
by the design of two late-partitioning algorithms added to the part and all the internal communication has been

compressed away. Second, on top of this curve, a fading slope

A. Cycle-Driven Early-Partitioning Bin-Packing(dEP) line is drawn to simplify calculations. Finally, the area under

This approach attempts to minimize both the CPU cycléBis line is calculated and used as the bandwidth compression
and the network bandwidth needed for the modules. To mir@ctor.
mize CPU cycles, the traditional approach of adding the largest
module to where it fits best is used. To minimize bandwidth,
the approach is to partition modules to the largest size that cycle-Driven Late-Partitioning Bin-Packing’(P)
can fit into the processor with the most available cycles. This
scheme assumes that partitioning a large object generates la bandwidth-driven late-partitioning bin-packing, band-
large bandwidth demand between its parts. As a result, as saodth demands were used as the primary metric to deter-
as it finds the largest object that does not fit any available gapine partitions. The CLP (Cycle-Driven Late-Partitioning Bin-
it immediately partitions this composite to generate the largd3acking) scheme is designed to use the sub-graph size as
bandwidth requirement as early as possible. The assumptiba primary determinant for making partition decisions. The
is that it is more likely to find a larger gap in the networkationale is that the largest composites are likely to be allocated
capacity at this early stage. early when there are multiple big gaps available in the bins.

Processors

max—bandwidth 100.2

100 1 S N N

andwidth demand curve
99.8

99.6
fading slope
99.4

@+# Processors

bandwidth to outside

Area = bandwidth compression 99.2

99 —

98.8 — —

98.6 — —

size 98.4 ;
" Optimal CEP CLP BLP

Size

Fig. 1. Bandwidth Compression Factor Fig. 2. Average Performance - Num. Processors

Net Load (bits/s)
V. EXPERIMENTS

We now evaluate the above 3 schemes for their efficacy
in minimizing the number of bins and network bandwidth. 50000 =
We compare each scheme against an optimal allocation. Given | .., |
the exponential complexity of finding the optimal allocation
without partitioning, our experiments are designed such that | 3@ B Netloa (Gis/S)
an optimal allocation is known a priori by construction.
Specifically, we pick a desired number of bins, and for each
bin, we assign randomly chosen modules until it is nearly | oo
full. Then, we fill the gap that remains with an object of
exactly that size. We then randomly assign communications opima cep e e
and message lengths among modules in the bin. Objects
that communicate become composites. This configuration newy. 3. Average Performance - Network Load
represents an optimal packing. The workload of composites in
the configuration is then given to the bin-packing algorithms
to be deployed and their performance is compared against Higorithms is more than twice with respect to bandwidth
optimal (which by construction corresponds to the number g&eq. However, if the bandwidth is chosen from a narrow
bins = total workload and zero communication bandwidth). range, the performance difference is reduced. Figure 4 depicts

an experiment where the messages are allowed to range

60000

20000

A. Average-Case Behavior between 10,000 and 50,000 bits/s. In this case, the difference
For the average case, random module sizes are createdbetween the network bandwidth allocated by the Cycle-driven
The parameters of our experiment are: Early Partitioning and the Bandwidth-driven Late Partitioning
« 1 Mbps links algorithms is reduced to about 25%.

o 1 GHz Processors
« Module sizes vary with uniform distribution between 1 B. Worst-Case Behavior

45 % of the processor utilization, The experiments presented in this section are based on a
+ Messages bandwidth varies uniformly between 64 tgorst-case workload pattern presented in [8]. This pattern
50,000 bits/s, and forces a performance ratio o} between BFD and the
« A Module load of 99 processors. optimal algorithm. The modules from the worst-case pattern

Figure 2 depicts the average over 30 runs on the numidassumed to be composite modules) can be partitioned and
of processors used by the different algorithms. As can Iherther messages are added among the parts every time they
seen, in the average case, all the algorithms behave walle partitioned (to encourage their joint deployment). Finally,
allocating only one extra processor relative to the optim#ie modules are put in a list of modules to be deployed and
scheme. The difference between the algorithms lies in ttiee deployment algorithms are run.
amount of bandwidth used for the messages across processorghe objective of this pattern is to test our algorithms under
Figure 3 depicts this difference when the message bandwidblad” cases. We know the analytical worst case (verified
across modules is randomly chosen within a range from @#perimentally) and we also know that on average, all the
to 50,000 bits/s. This large bandwidth range highlights tregorithms behave fairly well. Hence, we want to evaluate
difference in the allocation algorithms when bandwidth is cothem in a region of bad cases. To perform this evaluation,
sidered. In this case, the difference between the Cycle-driven optimal module load is created and further partitioned
Early Partitioning and the Bandwidth-driven Late Partitioningandomly to enable a variety of module sizes and messages

Net Load (bits/s) # Processors

140000000 104

120000000 103 S

100000000] 102

80000000 01

B Net Load (bit [@# Processors|

100 —
60000000

99
40000000
98
20000000
97
al

0

Optimal CEP CLP BLP

Fig. 4. Average Performance - Network Load Small Range Fig. 6. Worst-Case _Pattern qu_nbt_ar of Processors Allocate@@mpared
to 121 Processors without Partitioning

Fraction of Unused Processor Cycles
Net Load (bits/s)

25000000

20000000

15000000

0015 @ Fraction of Unused Processor Cycles
T Net Load (bits/s)

1
om 0000000

5000000

Optimal CEP CLP BLP 0

Optimal CEP cLp BLP

Fig. 5. Worst-Case Pattern- Fraction of Unused Processor Cycles Fig. 7. Worst-Case Based - Network Load

among them. Then, the algorithms are run to evaluate thg§ handwidth, the network load generated is lower that when
performance while deploying the modules. Thirty runs alartitioning by CPU cycles.

averaged and the following measurements are evaluated:

« Fraction qf Unused Processar$his figure represents tr_leC_ Verification of EEPBFD Improvement
total fraction of processors that was unused and left idle. i)

« Number of ProcessorsThe total number of processors We Next conduct an experiment to evaluate Excess-bin
allocated. Early PartitioningBFD (EEPBFD). This experiment uses a

« Network Message Bandwidtfihe bandwidth required by Workload where the optimal algorithm with partitioning uses
the messages sent across a network. Given the confiire t_>ins than th_e fluid-flow opt_imal. To do this, we create
ration of the optimal module load, the optimal algorithn®" optimal load with small gaps in each processor. Then, the
does not require messages sent across the network. number of processors for the optimal load is chosen to be

H 1

Figure 5 depicts a bar chart that compares the unu 20p to aggregate the gaps into one full proce§30®(< @)' .

. . - UNUSPQe EEPBED algorithm uses a guard that avoids partitioning
processor cycles for the Bandwidth-Driven Late Part't'on'nghodules that are> L while acting asCEP otherwise
Cycle-Driven Late Partitioning, Cycle-Drive Early Partition- _. 31 g as)

Figures 8 and 9 depict the fraction of unused processors

ing, and Optimal algorithms. Figure 6 depicts the actual' NUBhd the number of processors allocated respectively. As can
ber of processors allocated. As can be seen, early part|t|ong1g seen, when the excess-bin guard is used, then we are

has an advantage both in the fraction of unused processgrs .
and the number of processors. This is explained by the fa‘?‘c € to save one processor W'th. _res_pect to usﬁ]i@l__ - It
i ust be noted that without partitioning, an additional 43

that the earlier the modules are partitioned, the larger are {he

. rocessors would be required. However, as depicted in Figure
gaps available to accommodate large modules. However, . .
. : . . EEPBFD can slightly increase the network load of the
fraction of unused processors in all three cases is under 3%.’.. .
. . L partition.
Figure 7 depicts the network load in bits per second due
to messages among modules on different processors. This
figure depicts the effect of partitioning early, i.e., it creates VI. CONCLUSIONS
a larger load in the network. On the other hand, among theWe have proposed a family gbartitioning bin-packing

late partitioning algorithms, when partitioning is done baseaagorithms that can potentially partition objects to be packed

10

Fraction of Unused Processor Cycles Net Load (bits/s)

0.016 45000000

0014 40000000

0.012 35000000
30000000 —
0.01 R
. 25000000
cycles 20000000 —_—
0.006 —
15000000
0008 10000000 —
0.002 5000000
0 T T 0 T T
Optimal EEPBFD CEPBFD Optimal EEPBFD CEPBFD
Fig. 8. Excess-bin Partitioning - Unused Processor Cycles Fig. 10. Excess Partitioning - Network Load
Processors
2005 it is immediately partitioned. BottCLP and BLP defer the

partitioning until the late stages, performing a full pass on
all components that can be deployed without partitioning.
Once there are no more components that fit available bins,
24 the .deferred components are partmone_d and deployed. Two
2005 — choices are used then to partition the objects: one based on the
CPU cycles needed by the obje¢tf{ P), and another based on
the calculated amount of bandwidth that the internal messages
require (calledbandwidth compression facfor

—— cerBrD cEPBFD Finally, experiments show that, in the average case, the
three algorithms behave relatively the same. However, the
Fig. 9. Excess-bin Partiioning - Number of Processors Allocated A@XPeriments for the worst-case region show that in general
Compared to 244 without Partitioning CEP behaves well and uses the least number of processors.
On the other handBLP provides the minimum number of
links required by the system while utilizing about 4% more

and allocate them as smaller objects. These partitioning algocessors tharCEP. These schemes allow us to tradeoff
rithms are polynomial in complexity, but in some cases c&fOCessors against links depending on the specific needs of
perform better than even optimal schemes without partitionitige System.
that have exponential complexity. We extend the analysisFUthe work can prove (or disprove) our conjecture. Further-
of the worst-case performance of bin-packing to prove th8tore. the cost of partitioning in terms of processor cycles must
partitioning components leads to a reduction in the wordi€ accounted for. Finally, more complex hardware topologies
case bounds on the number of processors required. We dlé¢st be considered.
conjecture that in the worst case, one processor every 10
processors can be saved and pose its proof as an open problem.

Our analysis also leads to a new algorithm caliledess-bin
Early Partitioning BFD (EEPBFD) that avoids partitioning [1] Take F. Abdelzaher and Kang G. Shin. Period-Based Load Partitioning
objects unnecessarily. This algorithm is extended to concur- gzdcﬁfnsigufgezgfozro'a%fge Real-Time ApplicationEEE Transactions
rently minimize both the number _Of processors needed for ﬂ‘E] N.C. Augsley:SA. i3urns,.M.F. Richardson, and A.J. Wellings. Hard Real-
components and the number of links needed for the messages Time Scheduling: The Deadline Monotonic Approach. Aroceesings
across processors. Three other schemes are developed: Cycle8th IEEE Workshop on Real-Time Operating Systems and Software
based Early Partltlo_nmﬂEP)‘ Cyc_le-based Late Part'“‘?r,“”g 3] Brenda S. Baker. A new proof for the first-fit decreasing bin-packing
(CLP) and Bandwidth-compression-based Late Partitioning " aigorithm. Journal of Algorithms 6:49-70, 1985.
(BLP). These algorithms model the software system as a coll Coffman, E.G., Jr, M.R. Garey, and D.S. Johnson. Bin Packing with
lection of composite components that encapsulate components ?gg?‘b'e Item Sizes.Journal of Complexity3(4):406-428, December
that communicate with each other. The algorithms then tr) pionisio de Niz and Raj Rajkumar. Glue-code Generation: Closing
to deploy each of these composites into a single processor the Loophole in Model-based Development.IHEE Real-time Systems

and upon failure, they decompose a component into parts, and ‘J"SgeAgggza“O” Simposium (RTAS) 2004 - MoDESronto, CANADA,

attempt to minimize the Communication among the parts. SUGB] pionisio de Niz and Raj Rajkumar. Time Weaver: A Software-Through-
parts are then evaluated again for deploymé&rtP assumes Models Framework for Embedded Real-Time Systemrceedigs of

; ; ACM Language Compilers and Tools for Embedded Systems Symposium
that keeping the largest components together automatically 2003 San Diego. CA. June 2004,

minimizes pandwidth and hgnce tries to avoid the partitioning; p s johnson. Near-Optimal Bin Packing Algorithms PhD thesis,
of large objects. However, if a composite cannot be packed, Massachusetts Institute of Technology, 1973.

202 +

2015 —

200 +

199.5 — —

199

REFERENCES

11

[8] D.S. Johnson, A. Demers, D. Uliman, M.R. Garey, and R.L. Graharto send events to the ports of other components connected to
Worst-case performance bounds for simple one-dimensional packifigis port. Protocol agents define also a worst-case execution
algorithms. SIAM Journal of Computing3:299-325, 1974. . ded h . L p |

[9] Mark H. Klein, Thomas Ralya, Bill Pollak, and Ray ObenzwPrac- IMe needed to run the communication protocol. Protoco
titioners’ Handbook for Real-Time Analysis: Guide to Rate Monotoniagents can be active, effectively encapsulating a thread inside.
Analys_is for Real-Time Systemsu_]wer Acad_emic Publishgrs, 1993._ When a receiving pl’OtOCOl agent (in an input pOI’t) is active,

[10] C. L. Liu and J. Layland. Scheduling alghorithms for multlprogrelmm|n<1:;t . h f h di | d
in a hard real-time environmenfournal of the ACM20(1), 1973. re_ce“/es the event_ rom the sen 'ng_ pl’.OtOCO agent an
[11] Matt W. Mutka and Jong-Pyng Li. A Tool for Allocation Periodic Real-continues the processing of the event with its own thread.
Time Tasks to a Set of Processo8ystems Software9:135-148, 1995. State managersl on the other hand, encapsu'ate a Synchro_
[12] Nir Naaman and Raphael Rom. Packet Scheduling with Fragmentation. ti t | that beh lik t val taini
In Proceedings of the IEEE INFOCOM Symposium 2082w York, niza '_On protocol that benaves like an event valve, retaining or
NY, June 2002. allowing the pass of events from the protocol agent to the ap-
(13] _*Fe” Tdek”' AA'a”NBPUg‘S’da’;d ﬁlndy \&Vegingé. /;'OCIa$D9 Hsafd Real-plication agent in input ports and the opposite for output ports.
Ime lasks: An -Har roblem Made Easyreal-Time Systems .-
4(2):145-65, 1992. The state managers that participate in this synchronization
protocol are from different ports from different or the same
APPENDIX component. For instance, to implement a mutually-exclusive

Ti W . del-based devel tf gxecution of two componentd and B that receive an event
Ime YVeaver 1S a mode-based development Iramewory, generate another as a response, their input and output

for tehmbe?jde? realf-t|me slys'gtem_s ;’K'th th :<_ey C?nt”gu%%nﬁbrts are added state managers that lock a mutex (common to
(2) the reduction of complexity in the modeling of embe egh four state managers) upon arrival of an event to the input

real—tim_e system through n(_)vel decompos.ition structures grts and unlocks it when the output event is generated. The
(b) the integration of analysis and synthesis algorithms to t nchronization protocol of the state managers is modeled in

framework to_ automate de§|gn choices that toge.ther W't,ha ransition table, similar to the one used by the application
code generation framework is able to produce the final runtin

‘ Eent, that encodes the transitions that occur in the protocol.
sy_srem. W id K dell b . Components have two special ports: thetivationport and

Ime \yeaver provides two key modeling abstractions tcfheCompIetion portThe activation port can generate a special
construct the decomposition structures of an embedded syst

Th bstracti | q tic di iong k event periodically when it is set as active. The period of
ese abstractions amuplersand semantic dimension the tick can be set as a port property. In addition, activation

:/loulglelr descr||bes a rekl)atlorésdhlz betweenthsoftware mOdUIB rts can have a deadline specified to define the time when the
ulliple couplers can be added among e Same group mputation initiated by this timer is expected to complete.

thdU|e_S (two or mr(])re) to describe the muItlpI(;angIatlgnshlps The completion port receives@ompletionevent when the
that eX|st|among them. For instance, two moautesin BI computation triggered by an input event finishes. This port
can be related becausesends data t@. In addition, module s intended to be used to host state managers that need to

B can also b_e re'?‘te‘.‘ to another modylein a mutual- _synchronize at the completion of the components computation.
exclusion relationship, i.e., only one of the two can be running
at any given time. Both of these sample relationships age Coupler Types

encoded with couplers in our framework enabling a module t0The different types of relationships among components are

t.)e involved in mu'ItipIe relationships:@plings) at the same odeled with different types of couplers. The basic coupler
time. Such couplings are classified into types that can %)es are as follows:

extended as needed. Before discussing these types of couplers

i . « 'Event Couplers. This type of couplers encodes commu-
we introduce the structure of tilégme Weaver components. - pie nis typ b
nication relationships among ports.

« Synchronization Couplers. This type of couplers defines
A. Components both a group of ports to be involved in a synchroniza-
Software modules immime Weaver are known ascom- tion protocol and a state manager that implements and
ponents These components are modules that communicate to models such a protocol. When ports are associated to
other components through ports. Ports communicate events a synchronization coupler, copies of the state manager
that represent occurrences in a component that need to be specified by the coupler are inserted into such ports and
communicated. These events can contain data and are typed. the synchronization group is set in each of these state
As a consequence, ports are considered ttypedand they managers.
are restricted to communicate a single type of event. Suche Property Couplers. This type of couplers defines rela-
typed ports can only be connected to ports of the same type. tionships among properties of the ports. For instance one
Components encapsulate a piece of code in an element such a coupler can defined a common period to be used
calledApplication AgentThe reaction of the application agent by the activation port of two components.
to the events received by the component is modeled in as Constraint Couplers. Define restriction to be honor by
transition tablethat encodes a transition for each type of event synthesis algorithms. For instancegiajoint deployment
it can receive. This transition captures the worst-case execution constraint can be associated to the replicas of a replicated
time needed to process the event and the set of output events component to ensure they are deployed on different
that it generates. Inside the ports two additional types of processors enabling failure independence.
pieces of code are preseptotocol agentaindstate managers o« Hardware Couplers. Describe the hardware upon which
Protocol agents encapsulate the communication protocol used components can be deployed.

12

These basic types of couplers can be used recursivéilying, etc.) of the system. For this reason, our framework
to create composition/decomposition structure that forms teeparates these types of couplers into different views each of

basis of the complexity reduction ifime Weaver . them focusing on a single aspect. These views can be modified
independently from the user point of view. The realizations
C. Composition Structures of these views, however, do interact on the target platform

. . : since they consume common resources and impose constraints.
Components can be associated into composite components ~ . ; .
. . . X ese interactions can also be captured during model construc-
with composite ports. To these composite ports multiple com- ; .

. ._tiop and resource demands mediated during platform deploy-

ponent ports and other composite ports can be associated. . . : . !
) . ment. Given the automatic resolution of conflicts these views
Composite ports can be coupled with event couplers. TPH

S . - ;
. . .nave stronger semantics and are cabethantic dimensions
coupling has the same effect of connecting all the composi

%%r framework defines a set of basic semantic dimensions for

ports |.nd|V|_duaI.Iy. H_owever, only ports of the.same type an mbedded real-time systems and enables de addition of new
opposite direction (input or output) are effectively connecte iaqensions

The relationships modeled by couplers can be compose
coupling couplers with another one. Composite couplers can
definecoupling portsthat allows couplers to be defined ovefE. Glue Code Generation
such ports that can later be associated to the final componerTime Weaver has a glue code generation framework that
ports. For instance, in a replication composite coupling, twimks the executable code inside the executable elements of
coupling ports can be defined (one for each replica). Oviite components (application agents, protocol agents, and state
these ports a synchronization coupler can be defined withmanagers) to build the final running system. In this framework
state manager that ensures that the input events are receivésl possible to define one target programming language per
in all the replicas (two in this case) before passing it to the&rocess, assuming that an implementation in this programming
application agent. In addition, disjoint deploymentoupler language is available for all the executable elements of the
can also be defined over the coupling ports to ensure that dtenponents attached to this process. Optimizations to this
components connected to such ports are not deployed on ¢bele generation has been implemented, the most effective been
same processor. This composite coupler can be readily reusaged on graph reinterpretation when components are assumed
in other systems as needed. to be data flow components [5].

Property couplers are composed defining relationships
among components. For instance, a root period can be deml’i.qunalysis / Synthesis

by a couplerCy that couples two property couples; and i . R
C,. C, can then defined a period to be twice the period of Analysis and synthesis are two key capabilitiesTaine
Weaver. It is able to generate a timing model that can be

the root coupler and’; can define its period to be half of the > © .) i
roots period. exported to timing analysis tools such as Tlme®|zSynthe-

Finally, hardware couplers are composed with two purposésS algorithms are a central part of our framework to automate
First, these couplers are used to describe the communicafiti¥i9n decisions in an optimal or near-optimal way. In this
hardware such as a network connecting two processors. SRP€r We present our extensions to bin-packing algorithms to
ondly, the hardware couplers are also used to describe comithesize the mapping of components to hardware.

munication scopes. Communication scopes identify groups
of connected ports (with event couplers) such that all the
members of the group are connected only to other ports also
associated to this scope. For instance, consider two processor
couplersP; and P, that are coupled by a network coupler
N; and two component§’; and C, associated to (coupled
by) P, while a third oneCs is associated td>. If the port
Cy.outy is connected ta’s.in, and C.outy is connected to
Cjs.1nq then port group consisting of ports .out; andCs.in
belongs to the communication scope definediyywhile the

port group consisting of port§';.out, and Cs.in; belongs

to the communication scope defined B¥. Protocol agents
are added to hardware couplers to specify the communication
protocol to be used by the ports in their communication scopes.
For instance a TCP protocol agent associatedvViowould
change the protocol agent in port§.outy and Cs.ing for
TCP protocol agents.

D. Semantic Dimensions

The multiple types of relationships couplers can model
can belong to different aspects (functionality, fault-tolerance,

